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Abstract—Federated Learning (FL) has evolved as a promising
distributed learning paradigm in which data samples are dissem-
inated over massively connected devices in an IID (Identical and
Independent Distribution) or non-IID manner. FL follows a col-
laborative training approach where each device uses local train-
ing data to train local models, and the server generates a global
model by combining the local model’s parameters. However, FL is
vulnerable to system heterogeneity when local devices have vary-
ing computational, storage, and communication capabilities over
time. The presence of stragglers or low-performing devices in the
learning process severely impacts the scalability of FL algorithms
and significantly delays convergence. To mitigate this problem,
we propose Fed-MOODS, a Multi-Objective Optimization-based
Device Selection approach to reduce the effect of stragglers in
the FL process. The primary criteria for optimization are to
maximize: (i) the availability of the processing capacity of each
device, (ii) the availability of the memory in devices, and (iii)
the bandwidth capacity of the participating devices. The multi-
objective optimization prioritizes devices from fast to slow. The
approach involves faster devices in early global rounds and
gradually incorporating slower devices from the Pareto fronts
to improve the model’s accuracy. The overall training time of
Fed-MOODS is 1.8× and 1.48× faster than the baseline model
(FedAvg) with random device selection for MNIST and FMNIST
non-IID data, respectively. Fed-MOODS is extensively evaluated
under multiple experimental settings, and the results show that
Fed-MOODS has significantly improved model’s convergence and
performance. Fed-MOODS maintains fairness in the prioritized
participation of devices and the model for both IID and non-IID
settings.

Index Terms—Federated learning, Adaptive device selection,
Statistical heterogeneity, Multi-objective optimization, Straggler-
resilient device

I. INTRODUCTION

Federated learning (FL) is a paradigm in distributed ma-
chine learning where multiple devices collaboratively train
a model without sharing raw data [1]. Apart from privacy,
it reduces the communication burden by sending only the
model parameters instead of sending terabytes of data to the
server. Implementation of federated learning is very chal-
lenging, as it suffers from system (device) heterogeneity and
statistical (data) heterogeneity. System heterogeneity refers to
devices with varying computation capacity, memory capacity,
bandwidth, etc., [2]–[4], and statistical heterogeneity means
Identical and Independent Distribution (IID) and non-Identical
and Independent Distribution (non-IID) of data [4], [5]. Due

to stragglers in the federated learning system, keeping sta-
tistical accuracy high and dealing with system heterogeneity
simultaneously is very challenging. Straggler devices are low
performing devices that are incompetent in processing, com-
municating and storage. Involving stragglers causes significant
delays from learning to inference [6].

Federated learning is of two types based on how devices
take part in learning: cross-device and cross-silo [6]. In cross-
silo FL, every device takes part in every round of the learning
process. Compared to that, in cross-device FL, millions of
devices are attached to the edge. Since devices are dynamic, all
devices cannot be available for the entire process. Therefore,
only a few devices participate in the learning process in each
round. The server selects a subset of devices randomly for
every round of training. However, the random selection of
devices works better for straggler-free FL settings. In the
presence of huge stragglers, mainly on non-IID data, the
random selection based learning approach converges very
slowly, and a high impact of randomness is present in the
model training [7], [8]. The server’s interest is most preferred
in client selection i.e., the devices that respond quickly to the
server only take part in the learning. As a result, stragglers
can never contribute to the FL. Moreover, removing straggler
devices and only training models based on the non-straggler
devices may not generalize the final model properly and cause
huge information loss, which may lead to unfairness in the
learning process and jeopardize the sustainability of the FL
system. Therefore, it is essential to choose devices such that
the model converges quickly, produces sufficient accuracy, and
maintains fairness.

To mitigate these problems, Reisizadeh et al. [9] proposed
an approach called FLANP that leverages the interplay be-
tween model accuracy and device heterogeneity. The algorithm
includes faster devices based on computation capability in the
early learning rounds and later involves stragglers. However,
they only ranked devices based on their computational abil-
ity. We considered computation, communications, and stor-
age characteristics of devices altogether and introduced Fed-
MOODS, a multi-objective optimization-based adaptive device
selection approach. We inferred multi-objective optimization
to rank devices based on system performance, i.e., available
processing, memory, and bandwidth capacity. Devices are



selected adaptively from the Pareto fronts to contribute in
every global rounds. Multiple devices with varying computing
and storage capabilities constitute a typical federated learning
environment. Due to slow devices or stragglers, applying
standard federated learning algorithms such as FedAvg [10]
on highly heterogeneous devices result in significant and unan-
ticipated delays. Our focus in this work is to mitigate these
problems that aggravates from system heterogeneity in the FL
framework while keeping the performance of the model stable.
We employ interaction between statistical accuracy and system
heterogeneity to design a straggler-resilient federated learning
approach that selects a subset of available devices adaptively
in each global round of training. Our main contributions are
as follows.
• We introduce Fed-MOODS, a straggler-resilient multi-

objective optimization-based adaptive prioritized device
selection approach to mitigate the system heterogeneity
problems in federated learning.

• Fed-MOODS considers computation, communications,
and storage heterogeneity and formulates them as multi-
objective functions to optimize and generate the rank of
the local devices.

• Fed-MOODS minimizes the overall wall-clock training
time of the model, improves the model’s performance,
maintains fairness in device selection, and generalizes the
final model.

• We experimented Fed-MOODS across multiple bench-
mark datasets (MNIST, FMNIST, and CIFAR-10) and
baseline models (FedAvg, FedProx) with random-device
selection. We show that the proposed approach is superior
to other baselines models for both IID and non-IID
settings.

We assumed that (i) Devices would share the system level
information with the server. (ii) Local devices and the server
are both trustworthy. (iii) During the learning process, the de-
vice’s local data remains unchanged, and (iv) all participating
devices remain active for the whole learning.

Organization. The rest parts of paper is organized as
follows: we provide a brief literature survey in Section II.
The proposed approach is given in Section III. Experiments,
results, and analyses are reported in Section IV. Finally, the
conclusion and future work are discussed in Section V.

II. RELATED WORK

Federated Learning [10] allows users to learn a predictive
model collaboratively while maintaining privacy, ownership,
and data localization. Each participating device produces a
model update during local training, which is sent to the server
and aggregated with other devices’ models to produce the
global update [2]. This global update is subsequently dis-
tributed to all participating devices, allowing them to improve
their local models in next consecutive rounds. The partici-
pating devices are heterogeneous from the system and data
perspective. Federated learning causes system heterogeneity
problems for devices’ having different processing, communi-
cation, and storage capacities. Asynchronous approaches have

shown considerable benefits in distributed or decentralized
learning [11], but these approaches are not very attractive in
FL for the staleness of slow devices [12], [13]. FLANP [9],
a straggler-resilient adaptive device participation algorithm to
reduce the stragglers’ effect in FL. The learning begins with
computationally faster devices and then adaptively includes
the slower devices. This process continues until the model
converges. In [2], the authors analyzed the impact of statistical
heterogeneity on the device selection, the convergence of the
model, and fault tolerance in FL settings. In [14], the authors
showed that the existing federated algorithms suffer from a
speed-accuracy problem in presence of statistical and system
heterogeneity. The algorithm finds global minima at a sub-
linear rate. To solve that issue, they proposed FedLin, which
guarantees linear convergence to the global minima. In [3], the
authors carried out empirical studies on the effect of system
heterogeneity in the FL system. They built a heterogeneity-
aware FL framework that compiles standard federated algo-
rithms while considering the system heterogeneity. In [15],
the authors proposed a FL model with attention transfer that
reduces the effect of stragglers. A few more works on adaptive
FL are in [16], [17].

Multi-objective optimization-based solutions in federated
learning is interesting in finding model optimality by satisfying
the fairness constraints of every participating device [18],
[19]. Fairness in federated learning is a challenging task to
accomplish [20]. Unfairness may arise in different phases of
the FL process, starting from local device selection [21], [22]
to model optimization [23], [24]. The notions of fairness in FL
can be categorized in different ways, such as, accuracy parity
[24], good-intent fairness [23], selection fairness [21], [22],
contribution fairness [25], and many more. In this paper, we
only considered good-intent fairness and selection fairness.

Here, we employ the advantages of multi-objective opti-
mization to achieve optimal performance of the learned model
in presence of stragglers.

III. PROPOSED APPROACH

This section starts by describing the system model of
the proposed approach. Then, we formulate the adaptive FL
problem and the objectives of device selection. After that,
we describe the Fed-MOODS algorithm and analyze the
computation time for learning.

A. System model

Many heterogeneous devices are distributed across the edge
of the network and connected to the global server in typical FL
settings. A set of devices is selected adaptively from the Pareto
fronts in every global round (see Figure 1). On the other end,
a global server is present to orchestrate the learning process
and build the global model. The server broadcasts the learned
model to all the devices. The procedure continues until the
model converges.
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Fig. 1. Overview of Fed-MOODS framework - an adaptive straggler-resilient
device selection.

B. Problem formulation

The problem formulation is divided into two categories: (i)
Multi-objective formulations of device heterogeneous proper-
ties, such as computation or processing, communication, and
storage capacity. The primary goal is to optimize these func-
tions or properties, generate Pareto fronts, and rank devices
based on them. (ii) The formulation of the empirical loss
function for the adaptive device selection based on Pareto
fronts to mitigate the statistical heterogeneity problem in FL.

1) Multi-objective formulations: We formulate three ob-
jective functions based on the available device computation or
processing, memory, and bandwidth capacity of each device.

a) Maximize available processing capacity: Low level
performance can measure the instructions per cycle (IPC)
of each device processing capacity [26]. In a multi-core
environment, a processor can handle multiple instructions per
clock cycle. Multiple devices have CPU (central processing
unit) with different processing capacities in a heterogeneous
federated environment. The CPU utilization (u) is estimated
as: u = 1 − pa [26], where a is the number of processes
currently running, p is the average percentage of waiting time
[26]. If the device contains c multiple cores then the overall
CPU utilization of each device can be defined as:

Du =
1

c

c∑
i=1

(1− pa)

where Du ∈ [0, 1]

(1)

A device contains GPU (Graphics Processing Unit) along with
CPU. Based on Eq. (1), GPU utilization is Dgu and CPU
utilization is Dcu. The operating system (OS) of each device
checks how much GPU (Dg) and CPU(Dc) are free using Eqs.
(2) and (3), respectively.

Dg = (1−Dgu)(%) (2)

Dc = (1−Dcu)(%) (3)

Suppose N devices are participating in FL. The server
attempts to maximize the available processing capacity (DPA

i )
as in Eq. (4).

N
max
i=1

DPA
i =

1

2
(Dg +Dc)

s.t. 0 ≤ Dg ≤ 100,

0 ≤ DC ≤ 100

(4)

b) Maximize available memory: Memory requirement
(MR) for device Di is the amount of memory required to train
a neural network model1. While training a ConvNet, the total
required memory includes storage for parameters, intermediate
layers, and the gradient of each parameter. An extra memory
is needed if the learning uses optimizers like momentum, RM-
Sprop, Adams, etc. Hence, the memory requirement (DMR

i )
to learn a neural network is calculated as follows.

DMR
i = B ×

L∑
l=1

MRl ×Byte

where the neural network has L layers (including input and
fully connected layers) and B is Batch size. Suppose the ith

device, Di has current total memory DTM
i . The available

memory, DAMR
i is computed as follows.

DAMR
i = DTM

i −DMR
i

Now server collects DAMR
i from the N devices and maximize

in the following Eq. (5).

N
max
i=1

DAMR
i

s.t.
DTM
i

DMR
i

≥ 1,

0 ≤ DTM
i ≤ 100,

0 ≤ DMR
i ≤ 100

(5)

c) Maximize available bandwidth: Network bandwidth
can be estimated based on the amount of data transferred
between devices and the server. Each device calculates the
total amount of data (DTD

i ) to be replicated in gigabytes,
data duplication ratio (DDR

i ), and length of the replication
window time (DRWT

i ) in seconds. The server collects these
information from each device and calculates the required
network bandwidth2 (DRNB

i )in Gbps for N devices using Eq.
(6).

DRNB
i =

DTD
i ∗ (100/DDR

i )

(DRWT
i )

(6)

1https://cs231n.github.io/convolutional-networks/#case
2https://bit.ly/ibm-itsm-srv-doc



TABLE I
FED-MOODS: AN EXAMPLE TO ILLUSTRATE HOW THE MULTI-OBJECTIVE

OPTIMIZATION PROCESS WORKS ACROSS 5 DEVICES.

Device(s) PA MA AB (PAd) MAd ABd
PAd +MAd

+ABd

D1 97 56 25 3 0 4 7
D2 99 76 10 4 3 3 10
D3 82 81 3 2 4 1 7
D4 56 60 5 0 1 2 3
D5 70 61 2.5 1 2 0 3

Server computes the required network bandwidth for N local
devices and perform the objective in the following Eq. (7).

N
max
i=1

DRNB
i

s.t. DRWT
i ≥ 1,

DDR
i ≥ 100,

DTD
i ≥ 0

(7)

Multi-objective optimization of these three functions generate
the Pareto fronts where devices are arranged in ascending order
from best to worst performing devices.
Illustration. We showcase a scenario in which there are
5 heterogeneous mobile devices for smooth understanding.
These devices vary in configurations, i.e., different available
processing capacities, memory, and bandwidth of the com-
munication channels. According to Table I, let 5 devices are:
D = {D1, D2, D3, D4, D5}. The server first computes the
available processing capacity (PA), available memory (MA),
and available bandwidth (AB) of each device. Next, the server
calculates the domination count {(PAd), (MAd), and (ABd)}
of each device. Domination count of a device, Di signifies
how much better the device is in terms of PA, MA, and
AB compared to the other participating devices. For example,
in Device D2, PAd is 4, MAd is 3, and ABd is 3, i.e.,
Device D2 has maximum available processing capacity. It has
more available memory than 3 devices except for D3 and the
available bandwidth is also better than 3 devices except for
D1. We add all the domination counts (PAd +MAd +ABd)
and rank each device based on them. The final list contains
{{D2}, {D3, D1}, {D5, D4}}. If there is a tie in domination
count, we select the device with the highest available pro-
cessing capacity to break the tie. To estimate the domination
counts, we employ a multi-objective optimization approach,
NSGA-II [27] to obtain an optimal solution. NSGA-II is an
evolutionary multi-objective optimization approach that can
optimize three defined objectives efficiently.

2) Federated learning formulation: Considering a fed-
erated learning system consists of N local devices, D =
{D1, D2, . . . , DN}, and a server. Each device Di ∈ D
has access to m data samples denoted by XDi =
{xDi

1 , xDi
2 , . . . , xDi

m }, and XDi ∈ R. The empirical loss
function of device Di is defined as:

LDi(wDi) =
1

m

m∑
j=1

l(wj , x
Di
j )

where l(w, xDi
j ) is the empirical loss of the model w trained

on the jth data sample of the ith device Di. For any global
iteration, suppose the participating devices are n′ ( n′ ←
min(n + 〈τ, k〉, N), and n′ ∈ [1, N ]) then the empirical loss
for each global round (L(wτ )) is defined as:

L(wτ ) ≡ Ln′(wn′) =
1

n′

n′∑
i=1

LDi(wDi)

where Ln′(wn′) denotes the average empirical loss over n′

devices. Number of devices are increasing adaptively in each
global round (τ ) until the global model converges. The adap-
tiveness is denoted as k. Here, the objective is to minimize the
global loss. The empirical loss for G global rounds is defined
as:

L(w∗) =
G

min
τ=1
L(wτ )

C. Algorithm

We propose Fed-MOODS, a multi-objective optimization-
based adaptive device selection approach for FL that maxi-
mizes available processing capacity, memory, and bandwidth
among N devices. Based on the three objectives mentioned in
Eqs. (4, 5, and 6), Fed-MOODS ranks devices according to
their performance and selects devices adaptively in each global
round. We describe Fed-MOODS in two parts, Algorithm 1
for adaptive device selection and learning; and Algorithm 2
for multi-objective optimization based device ranking.

a) Algorithm 1: It has two phases. Phase I (steps 2 to
3) is to rank devices according to the Pareto fronts. Phase
I is described in detail in Algorithm 2. In Phase II (steps
4 to 18), the server adaptively selects local devices from D
(step 5) for each global iteration until the model converges.
The algorithm is adaptive (steps 5 to 15), i.e., in every global
round of learning, devices get an opportunity to contribute to
the global model. At first, the algorithm selects the first n
devices from the set D and then adaptively adds k devices in
each global round (τ ) until the model converges. In the worst
case, all devices participate in the learning process.

b) Algorithm 2: The server initially collects meta-data
from devices regarding the processing capacity, memory, and
bandwidth, respectively. Then calculate DPA

i , DAMR
i , and

DRNB
i for each device (i ∈ N )(steps 3 to 5). Later, we employ

NSGA-II to find the domination count of the devices and rank
them accordingly to their Pareto fronts (step 6). Finally, the
server generates a list of devices, D′, based on their ranks
(steps 7 to 9) and returns to the Fed-MOODS (step 10).

D. Computational time analysis

We characterize and compare the computational run-time
of Fed-MOODS with random participation of devices as a
baseline. Suppose the computation time of the N available
devices are {TCl1 , TCl2 , . . . TClN }. In Algorithm 1, each local
device performs E local iterations and G global rounds
until convergence. n is the initial set of devices, k is the
adaptiveness factor. System heterogeneity causes different
computation time for each device. Therefore, server waits until



Algorithm 1 Fed-MOODS - Adaptive Device Selection and
Training
Input: D . Collect meta-data to compute available processing capacity,
memory, and bandwidth from N number of total devices
X = {∀Ni=1X

Di}
Output: L(w∗) . The optimal model, and loss function

initialize: wτ = w0 . Initialize global model weight
1: procedure FED-MOODS(D)
2: Phase 1:
3: D← call DEVICERANK(D) . Rank all devices
4: Phase 2:
5: Select first n′ devices from D
6: for each global iteration τ = 1, 2, . . . G do
7: Broadcast global model wτ to n′ devices
8: for each selected devices Di in parallel do
9: for each local epoch E do

10: for batch b ∈ XDi and b ≤ m do. . Data divided in to
m batches

11: wDi ← wDi − ηl(wb, xDi
b ). . Local model at

device Di
12: LDi (wDi ) = 1

m

∑m
j=1 l(wj , x

Di
j ) . Empirical local loss

function at device Di
13: wτ ← 1

n′
∑n′

i=1 w
Di
τ . Global model at round τ

14: L(wτ ) ≡ 1
n′

∑n′

i=1 L
Di (wDi ) . Empirical loss at global

round τ
15: n′ ← min(n+ 〈τ, k〉, N) . k devices are added from the

Pareto fronts in every global iteration.
16: w∗ = minw{L(w) ≡

∑G
τ=1 wτL(wτ )} . Optimal global model

17: L(w∗) = minGτ=1 L(wτ ) . L(w∗) is the minimum global
empirical loss among τ global models.

18: return L(w∗)

Algorithm 2 DeviceRank - Algorithm for Ranking Devices
Input: D = {∀Ni=1Di < Dg , Dc, DTMi , DMR

i , DTDi , DDRi , DRWT
i >}

. Server collects meta-data to compute available processing capacity,
memory, and bandwidth from N number of total devices
Output: D′ . List of devices according to the maximum to minimum
domination count.

1: procedure DEVICERANK(D)
2: for i =1 to N do
3: Compute DPA

i (Dg, Dc) . Compute available processing capacity of the
ith device.

4: Compute DAMR
i (DTM

i , DMR
i ) . Compute available memory of the

ith device.
5: Compute DRNB

i (DTD
i , DDR

i , DRWT
i ) . Compute availble bandwidth

of the ith device.
6: Compute ∀Ni=1 Dom(Di(D

PA
i , DAMR

i , DRNB
i )) . Compute

domination count of every devices using NSGA-II. and rank them according to the
Pareto fronts

7: for i = 1 to N do
8: Select the device Di successively from the Pareto fronts.
9: D′ = D′ ∪Di . List of devices according o their Pareto fronts

10: Return D′

the slowest device responds. The computational run-time of
TFed−MOODS is defined below.

Definition 1. For constants N, n, k, G, and E, the time required
to train global model isO(G∗E∗(Tn+Tn+k+. . .+Tn+〈τ,k〉)),
where 0 ≤ τ ≤ G.

Tn+〈τ,k〉 is the maximum unit computation time of the
slowest device at the τ th global round. Tn+〈τ,k〉 can be defined
as, Tn+〈τ,k〉 = max

n+〈τ,k〉
j=1 TClj . From the Figure 5, we

can observe that the computational run-time is exponential
in nature, what we represent as eλ, where λ is a constant.
The average run-time of TFed−MOODS can be written as,
T̄Fed−MOODS = 1

G

∑G
τ=1(max

n + 〈τ,k〉
j=1 TClj ) ≈ O(eλ).

For the same settings, random device participation takes
G′ global rounds to converge. The computational run-time
TRandom as the baseline is defined below.

Definition 2. For constants N, G′, and E, the time required
to train global model is O(G′ ∗ E ∗ (T1 + T2 + . . .+ TG′)).

TG′ is the maximum unit computation time of the slowest
device (select n′ from N ) in random selection for the Gth

global round. Similarly, from the Figure 5, we can observe that
the computational run-time for TRandom is exponential in na-
ture. Therefore, the average run-time for learning by randomly
selecting devices is T̄Random = 1

G′

∑G′

τ=1(maxn
′

j=1 TClj ) ≈
O(eλ

′
), where λ′ is a constant.

In the worst case, λ = λ′, then T̄Fed−MOODS = T̄Random,
otherwise, λ < λ′, and T̄Fed−MOODS < T̄Random. Exper-
imentally, we have shown TFed−MOODS ≤ TRandom and
T̄Fed−MOODS ≤ T̄Random in Section IV-G. To support our
analysis of computational run-time for TFed−MOODS when
compares with Trandom as baseline, we prove a lemma below.

Lemma 1. The average run-time of Fed-MOODS
(T̄Fed−MOODS) is always less than or equal to the
baseline federated learning with random device selection
(T̄Random) iff λ ≤ λ′.

Proof 1. Let eλ
′
< eλ as estimated run-time for Trandom

and TFed−MOODS , respectively. According to the Definition
1 and 2, the following conditions λ ≤ λ′ and λ : λ′ ≤ 1
always hold. Therefore, the assumption is false. Hence, proved
by contradiction.

IV. EXPERIMENTS AND ANALYSIS

A. Simulation setup

We simulate a FL environment in our local machine to
reflect the effect of stragglers. In order to model the device
heterogeneity, we incorporated two different approaches to val-
idate Fed-MOODS. At first, we employ different local rounds
to different devices to incorporate system heterogeneity as we
simulated the federated network in a computer. We allowed
a maximum of 10 local epochs to a non-straggler device and
less than 10 local epochs to stragglers. Assuming that, for a
synchronous federated learning, a straggler will perform less
epoch than the non-straggler device. The simulation setup
is given in Table II. We compared the performance of Fed-
MOODS with the randomly selected devices. Secondly, to
measure the wall clock run-time of Fed-MOODS, we assumed
the run-time of non-straggler devices is in the range of 102 ms
to 103 ms, and for stragglers, it is in the range of 103 ms to 104

ms. All devices complete a fixed set of local rounds in each
global round. For validation of run-time, we only used FedAvg
as a baseline method. We used the early stopping mechanism
to terminate the learning process if there is no improvement
in loss function for 10 consecutive rounds.

B. Datasets & network

We used three benchmark datasets, MNIST [28] (60,000
samples for training and validation, and 10,000 testing sam-



TABLE II
SIMULATION SETUP: PARAMETERS, VALUES, AND THEIR DESCRIPTION

Parameter(s) Value Description

local devices 100 Devices for a local update of the model
Server 1 For performing multi-objective optimization,

model aggregation
Federated algorithm 2 FedAvg [14], FedProx [7]
local device’s participation Adaptive and random Adaptive participation of devices for Fed-

MOODS, by random, frequency of participation
is 10%

Dataset IID and non-IID IID and non-IID division of MNIST, CIFAR-
10, and FMNIST dataset

Local iteration Maximum 10 Number of local iteration at each device for
each global iteration.

Global iteration Maximum 100, 500 100 global iterations for learning on MNIST
and FMNIST dataset. 500 global iterations for
learning model on CIFAR-10 datasets.

Presence of stragglers 10%, 50%, 70%, 90% Presence of stragglers in each global iteration
for different experiments.

Training network 3 Three Convolutional Neural Network (CNN)
having two hidden layers for training on
MNIST, CIFAR-10, and FMNIST datasets, re-
spectively.

Optimizer 1 Stochastic Gradient Descent (SGD)
Performance metrics 2 Test accuracy, F1-score

TABLE III
NEURAL NETWORK ARCHITECTURE

Neural
Network

Number of
Convolutional

layer

In
cha-
nnel

Out
cha-
nnel

Kernel
size

Number of Fully
connected

layer

In
feat-
ures

Out
feat-
ures

Activation
function

CNNMnist 2 1 10 5 2 320 50 softmax

10 20 50 10

192 120

CNNFMnist 2 1 6 5 4 120 60 ReLU

6 12 60 40

40 10

3 6 400 120

CNNCifar10 2 6 16 5 3 120 84 softmax

84 10

ples), CIFAR-10 [29] (50,000 samples for training and valida-
tion, and 10,000 testing samples), and FMNIST [30] (60,000
samples for training and validation, and 10,000 testing sam-
ples) to validate Fed-MOODS. All datasets are distributed to
devices in IID and non-IID manner.

To implement Fed-MOODS, we created a federated network
consisting of 100 heterogeneous devices. Each device trains a
2 layered convolutional neural network (CNN). The details of
the neural network is given in the Table III.

C. Baseline algorithms

We consider FedAvg [10] and FedProx [7] as federated
algorithms integrated with Fed-MOODS to compare the per-
formance of adaptive device selection with random partial
participation of devices. We evaluated the performance of Fed-
MOODS with these baselines, both with respect to global
rounds and wall clock time simulations.

D. Rank devices based on NSGA-II

In Phase-I of the Fed-MOODS, we attempt to maximize
three objective functions (see Fig. 2(a)) mentioned in subsec-
tion III-B1 to characterize each device and obtain the rank
of devices (see Fig. 2(b)) based on their domination counts.
A device with the highest domination count is the strongest
device. Similarly, a device with the lowest domination count
is the weakest device concerning its system heterogeneity.
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Fig. 2. (a) Device characteristics - devices based on the three objective
functions: available processing capacity, memory, and bandwidth. (b) Devices
with the domination counts.

E. Comparison with random device participation

1) Convergence comparison: We verified the convergence
of Fed-MOODS integrated with FedAvg [10] and FedProx
[7] separately with random device selection (selecting 10%
of the total devices in each global round) in the presence of
different fractions of stragglers (10%, 50%, 70%, and 90%) in
Fig. 3 (left to right). The convergence curves are similar for
the IID datasets (see Fig. 3(a), 3(c), and 3(e)). Fed-MOODS
converges quickly; therefore, it maintains the model’s fairness
without involving all stragglers in the learning process. But for
non-IID (see Fig. 3(b), 3(d), 3(f)), Fed-MOODS takes more
global rounds to converge, but it is faster than random device
selection. The convergence curves are more stable compared
to learning with random device selection.

2) Fairness in terms of performance: We compared the
performance (see Table IV) of Fed-MOODS with baseline
models with partial device selection based on the F1-score at a
frequency of 90% stragglers in both IID and non-IID settings.

We compared the performance of Fed-MOODS both in-
volving stragglers and without involving stragglers for the IID
data. Here, without incorporating stragglers imply that we first
divide data into 100 devices and then remove stragglers. We
only kept 10 non-straggler devices for learning. We observed
that Fed-MOODS gives a 97.6% F1-score for the MNIST IID
dataset even if we do not incorporate stragglers. Similarly, for
CIFAR-10 (51.79%) and FMNIST (78.16%), the performance
is almost equivalent to the models incorporating stragglers.
Even though we omit 90% of the devices, Fed-MOODS still
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Fig. 3. Convergence comparison of Fed-MOODS and baseline models with
random device participation across (a) MNIST-IID, (b) MNIST-non-IID, (c)
CIFAR-10 IID, (d) CIFAR-10 non-IID (e) FMNIST IID, (f) FMNIST non-IID,
with different straggler fractions (sf).

maintains model fairness by giving an equivalent performance
with baselines.

For non-IID division of data, the performance of Fed-
MOODS (94.27% for MNIST, 49.33% for CIFAR-10, and

70% for FMNIST) is also better than the baseline models
with randomly selected devices ((93% for MNIST, 9.37% for
CIFAR-10, and 50% for FMNIST) at 90% straggler frequency.
Even with high frequency of stragglers, Fed-MOODS can of-
ten achieve maximum performance. It also maintains fairness,
as Fed-MOODS allows every device to contribute. Here, the
performances of the models on CIFAR-10 and FMNIST are
deficient because we used a simple 2-layer CNN for training
and used the early stopping mechanism to terminate. However,
since the main purpose of the experiment is to examine
the behaviour of Fed-MOODS and the baselines regarding
stragglers, the simple architecture suits the needs as well.

TABLE IV
PERFORMANCE (F1-SCORE) COMPARISON BETWEEN FED-MOODS AND
BASELINE MODELS WITH RANDOM DEVICE PARTICIPATION IN PRESENCE

OF 90% STRAGGLERS. ♥ AND ♦ DENOTE involving stragglers AND without
involving stragglers, RESPECTIVELY.

Dataset
Fed-MOODS +

FedAvg
Fed-MOODS +

FedProx

Random
device

selection
+

FedAvg ♥

Random
device

selection
+

FedAvg ♦

Fed-
MOODS +
+ FedAvg
♦

MNIST IID 94.7 93.5 94.00 96.28 97.00

CIFAR-10 IID 48.65 52.92 49.51 49.67 51.79

FMNIST IID 78.66 78.48 80.48 79.01 78.19

MNIST non-IID 93.41 94.27 93.00 NA NA

CIFAR-10 non-IID 49.33 48.79 9.37 NA NA

FMNIST non-IID 63.12 65 50.25 NA NA

3) Fairness of probability of devices’ appearance (PoA):
We assumed that N heterogeneous devices are available in
the FL system, and all participate in learning. For random
selection, if we select n′ devices randomly from N devices
in each global round, then the PoA of a device p(Di) for
the G global rounds is (1 − (N−1

N )n
′
)G. Even though the

straggler devices are present, random selection gives an equal
PoA to each device. Fed-MOODS is biased toward non-
straggler devices and does not assign equal PoA to every
device. According to Algorithm 1, the PoA of a device in
training rounds is 0 ≤ P (Di) ≤ 1, where P (Di) = Ḡ

G . Here,
Ḡ is the number of appearances of a device (Di) in total
global rounds, and G is the total global rounds. Fed-MOODS
adaptively incorporates devices in each training round, so that
the PoA of a non-straggler device is always greater than the
PoA of a straggler. For example, the first n devices appear in
every global round (Ḡ = G). Therefore, the PoA = 1 for the
first n devices. Fed-MOODS is adding k devices adaptively
in each round, so that the following k devices appear in G−1
global rounds. Therefore, PoA = 1− 1

G . Similarly, the devices
added in the (G − 1)th global round, the PoA will be 1

G . If
N = n + 〈G, k〉, i.e., for Gth global round, all devices are
participating in learning. If converging round G∗ > G, then
for the G∗ −G rounds, all devices participate in training. As
Fed-MOODS considers the participation of every device until
convergence (G∗), every device will get a chance to contribute
its information to maintain high statistical accuracy. Therefore,



TABLE V
COMPARISON OF MODELS AMONG TEST ACCURACY

Dataset SF %
Fed-MOODS

+
FedAvg

Fed-MOODS
+

FedProx

Random
+

FedAvg

Random
+

FedProx

MNIST IID 90 97.2 96.31 97.2 96.89

70 97.54 97.49 97.61 97.5

50 97.94 97.76 97.74 97.61

10 98.11 98.39 98.05 98.11

Non-IID 90 92.31 91.93 92.04 91.47

70 93.91 92.79 89.18 93.43

50 94.69 93.47 93.05 89.61

10 95.74 93.59 93.17 93.86

CIFAR-10 IID 90 53.43 50.20 49.15 48.86

70 46.3 47.15 48.62 47.17

50 43.59 49.42 46.25 48.9

10 46.71 47.33 45.48 44.72

Non-IID 90 49.23 49.55 15.84 10

70 48.75 47.68 33.99 29.75

50 46.56 45.93 24.98 38.44

10 45.86 47.81 33.75 34.0

FMNIST IID 90 78.66 78.48 80.48 79.44

70 82.63 82.81 83.04 77.63

50 83.32 83.89 85.17 82.59

10 85.39 85.22 84.44 84.68

Non-IID 90 63.22 65.33 50.26 58.18

70 67.16 65.54 56.92 64.07

50 70.0 70.97 55.56 61.81

10 71.76 67.58 58.18 59.26

fairness in device selection is maintained here in the presence
of stragglers. If n + 〈G∗, k〉 < N , i.e., partial participation
of devices can produce an equivalent model performance to
that of total involvement of devices. Therefore, Fed-MOODS
is straggler-resilient as well as maintains fairness.

F. Test accuracy

In Table V, we compared the test accuracy of the models for
a different fraction of stragglers. Fed-MOODS produces simi-
lar results with a random selection of devices for IID datasets.
Accordingly, in non-IID settings, Fed-MOODS outperforms
the random selection approach by a maximum of 1.88% for
MNIST, 34% for CIFAR-10, and 15% for FMNIST datasets,
respectively.

G. Wall-clock time comparison

We compared the wall clock learning time of a neural
network model using Fed-MOODS and baseline models on the
MNIST and FMNIST datasets. We compared two cases (See
Fig. 4 and 5) where the straggler frequency is very high (90%),
and the straggler frequency is low (10%). From Fig. 4 we see
that Fed-MOODS gradually involve straggler devices in each
global round. Whereas in random partial device participation,
the effect of randomness is clearly visible. From table VI, to
complete 100 global rounds, Fed-MOODS is 1.8× and 1.48×
faster than the baseline model (FedAvg) with random device
participation on the MNIST and FMNIST non-IID dataset,

respectively. In Fig. 5, we measured validation loss with wall
clock time to train a federated model. We observed that Fed-
MOODS takes less time to converge than any baseline model
with random device participation for the MNIST and FMNIST
non-IID datasets.
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Fig. 4. Compare wall-clock time vs global iterations between Fed-MOODS
and baseline model with random device participation in the presence of 90%
(left top and bottom) and 10% (right top and bottom) stragglers on MNIST-
nonIID (top) and FMNIST-nonIID (bottom) datasets, respectively.

TABLE VI
TOTAL AND AVERAGE WALL CLOCK TIME COMPARISON BETWEEN

FED-MOODS AND BASELINE MODEL WITH RANDOM DEVICE SELECTION
AT PRESENCE OF 90% STRAGGLERS ON NON-IID DATA.

Datasets Random
Device selection Fed-MOODS

TRandom(ms) T̄Random(ms) TFed−MOODS(ms) T̄Fed−MOODS(ms)

MNIST 9× 105 9× 103 4.9× 105 4.9× 103

FMNIST 8.9× 105 8.9× 103 6× 105 6× 103
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Fig. 5. Training loss vs wall-clock time comparison of Fed-MOODS and
baseline model with random device participation in presence of 90% stragglers
on MNIST non-IID (left) and FMNIST non-IID (right) datasets, respectively.

H. Effect of adaptiveness

In Fig. 6, we compared the convergence of Fed-MOODS
by adapting devices from the Pareto front in each round in



the presence of 90% stragglers for the MNIST, FMNIST,
and CIFAR-10 non-IID datasets, respectively. We observed
a significant increase performance in adaptiveness, making
the model converge quickly, but it also incorporates more
stragglers in the learning process.
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Fig. 6. Convergence comparison of different adaptiveness level in presence
of 90% stragglers on MNIST non-IID dataset (top left), FMNIST non-IID
(top right) and, CIFAR-10 non-IID (bottom) dataset, respectively.

V. CONCLUSION AND FUTURE WORK

In this work, we proposed Fed-MOODS, a multi-objective
optimization-based adaptive device selection approach to min-
imize the effect of stragglers in federated learning. We formu-
lated every device’s available processing capacity, memory,
and bandwidth as a multi-objective optimization problem. We
generate the rank of devices from the Pareto fronts by solving
the multi-objective functions. The algorithm adaptively selects
devices for training according to their ranking. We verified the
Fed-MOODS on three baseline datasets (MNIST, CIFAR-10,
and FMNIST), considering both IID and non-IID divisions
of data among 100 devices. Fed-MOODS is straggler-resilient
with the ability to maintain the model’s fairness and reduce
overall training time by 1.8× and 1.48× faster than the base-
line model (FedAvg) with random device participation on the
MNIST and FMNIST non-IID dataset, respectively. Our work
suggests several exciting directions, including the theoretical
convergence analysis of Fed-MOODS, and understanding the
trade-off between fairness and robustness issues in device
selection in scalable FL.
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