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Abstract

With the recent advances in graph neural networks, there is
a rising number of studies on graph-based multi-label classi-
fication with the consideration of object dependencies within
visual data. Nevertheless, graph representations can become
indistinguishable due to the complex nature of label relation-
ships. We propose a multi-label image classification frame-
work based on graph transformer networks to fully exploit
inter-label interactions. The paper presents a modular learn-
ing scheme to enhance the classification performance by seg-
regating the computational graph into multiple sub-graphs
based on modularity. Our approach, named Modular Graph
Transformer Networks (MGTN), is capable of employing
multiple backbones for better information propagation over
different sub-graphs guided by graph transformers and convo-
lutions. We validate our framework on MS-COCO and Fash-
ion550K datasets to demonstrate improvements for multi-
label image classification. The source code is available at
https://github.com/ReML-AI/MGTN.

Introduction
Real-world images generally embodies rich and diverse se-
mantic information with multiple objects or actions; there-
fore, multi-label classification has attracted a large number
of recent studies in the artificial intelligence (AI) commu-
nity (Wang et al. 2020a; Yeh et al. 2017; Zhu et al. 2017).
Recognising object labels in images has many applications,
ranging from social tag recommendation (Nam et al. 2019;
Vu et al. 2020) and fashion trend analysis (Inoue et al. 2017)
to functional genomics (Bi and Kwok 2011). The core chal-
lenge in multi-label learning is to understand and model ob-
ject dependencies to exploit attributive knowledge. One of
the early approaches developed by Wang et al. (2016) com-
bined convolutional neural networks (CNN) with recurrent
neural networks (RNN) to learn the semantic relevance and
dependency of multiple labels in order to boost the classi-
fication performance. Nevertheless, this approach is prone
to the high computational cost and the sub-optimal reci-
procity between visual and semantic information. In reality,
objects are inter-connected which reflect as the network na-
ture of object label dependencies. Kipf and Welling (2017)
proposed semi-supervised learning on network data using
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Figure 1: We segregate the graph into sub-graphs to learn
inter-connected dependencies over the object labels to better
model the multi-label image recognition task. In this figure,
“person, chair, umbrella, car” is in one sub-graph, “dining
table, cup, bowl” is in another sub-graph.

graph convolutional network (GCN) unveiled spectral graph
convolutions for classification tasks. The graph-based ap-
proach was adopted with images by Chen et al. (2019b) to
demonstrate the state-of-the-art performance for multi-label
image recognition. Furthermore, Li et al. (2019) and Wang
et al. (2020b) proposed several topological and architectural
changes to enhance the learning capabilities with minor per-
formance improvements.

This paper introduces Modular Graph Transformer Net-
works (MGTN) for multi-label image recognition by in-
tegrating semantic and topological label information in
a harmonious way. Multi-label classification is decom-
posed into the segregated learning of multiple sub-graphs
based on the modularity of object dependencies, lead-
ing to better performance in visual representation learn-
ing. In Figure 1, objects such as bowl, cup, dining ta-
ble, chair, umbrella, car and person may co-occur in
the physical world; nevertheless, the object labels appear
to be clustered into sub-networks in the data. Therefore,
multi-label learning entails better designated visual rep-
resentation understanding as well as to reduce overfit-
ting of the popular labels. In this example, we segregate
the network into sub-graphs: G1(“bowl, cup, dining table”)
and G2(“person, chair, umbrella, car”) to model the multi-



learning recognition task. The information propagation
through sub-networks is guided by graph neural networks
with the use of multiple modular backbones.

Compared with existing multi-label classification studies,
our proposed MGTN establishes a new state-of-the-art with
a number of the following contributions:

• We propose end-to-end graph transformer networks for
the multi-label classification task. In this work, object
label dependencies are transformed with graph trans-
former networks to actively distribute gradient informa-
tion among multiple sub-networks of labels for distin-
guishable representation learning of visual data.

• The study investigates several strategies for integrating se-
mantic and network properties of object labels, including
label embeddings and Eigenvector-based enhancement, to
better support the multi-label classification task.

• We evaluate our method with comprehensive experiments
on benchmarking datasets, including Microsoft COCO
(MS-COCO) and Fashion550K. The experiment results
show significant mAP improvements of 9.7% on MS-
COCO and 6.4% on Fashion550K compared to the base-
lines. MGTN outperforms the most recent state-of-the-art
models by the increment of 0.4% and 3.7% in mAP on
MS-COCO and Fashion550K, respectively.

The structure of the paper is as follows. Firstly, we re-
view the recent studies for multi-label classification in re-
lated work section. Secondly, the approach section describes
our proposed MGTN framework with multiple optimisation
strategies in great details. In our experiments, the new state-
of-the-art results are demonstrated. Lastly, we conclude our
paper with findings and contributions in the final section.

Related Work
Modelling visual data with their associated labels have
drawn great research interest in machine learning and com-
puter vision communities. Multi-tag appears to be a typical
property of Internet media; thus, multi-label classification is
a fundamental task with many real-world applications (Chen
et al. 2019a; Ge, Yang, and Yu 2018; Yeh et al. 2017). Early
approaches were derived from single-label multi-class clas-
sification, which decomposed the multi-label classification
tasks into multiple sub-problems for learning. Tsoumakas
and Katakis (2007) synthesised the multi-label nature of
datasets and suggested the use of multiple binary classi-
fiers. Their approach, however, completely ignored the inter-
relationships among various labels in visual data. Gong et al.
(2013) investigated a number of multi-label loss functions
for training convolutional neural networks, which catered
for the deviation between multiple predicted labels and the
ground truth. Nevertheless, label co-occurrence dependen-
cies were analysed as essential in multi-label classification
problems (Xue et al. 2011). Wang et al. (2016) proposed
a unified framework to model the label dependencies ex-
plicitly. In their experiments, visual features were adapted
based on the previous prediction outcomes by encoding at-
tention models in an integral CNN-RNN framework. As
a result, their probabilistic approach gained a performance

boost on recognising smaller objects after learning the dom-
inant ones; however, its training was not without high com-
putational costs and scalability issues.

To exploit label dependencies, many existing works pro-
posed semi-supervised learning using graph representations
for multi-label classification. Kipf and Welling (2017) en-
coded graph structures using neural networks, or Graph
Convolutional Networks (GCN), to learn representations for
efficient information propagation on multiple labels. Chen
et al. (2019b) adopted this spectral graph convolution ap-
proach to capture object label correlations for recognising
multiple objects in images. Prior knowledge such as seman-
tic label embeddings and data-driven adjacency matrix were
employed to learn inter-dependent object classifiers. Instead
of using the correlation matrix, Li et al. (2019) constructed
it via a plug-and-play label graph module, which takes label
embeddings as input. The module was further enhanced with
a L1-norm regularisation of the inferred matrix and the iden-
tity matrix to avoid the over-smoothing problem on nodes’
features. Likewise, Wang et al. (2020b) proposed a novel la-
bel graph superimposing framework. The framework firstly
transforms the statistical graph (i.e., correlation matrix) into
a superimposing label graph by integrating with a knowl-
edge graph (e.g., ConceptNet of Speer, Chin, and Havasi
(2017)). The superimposed graph was fed into a multi-layer
graph convolution layer to learn the label correlation rep-
resentation, which was later injected with CNN features to
generate label predictions. These mentioned works are con-
sidered as our baselines in the experiment section.

Approach
Multi-label image classification entails learning of visual
and topological information of inter-correlated objects. Al-
though visual representations play a major role, there are
sub-optimal learning outcomes for objects with fewer ob-
servations and limited visual details in the dataset. The se-
mantic and topological structures of objects and their labels,
therefore, furnish ancillary knowledge to surpass these limi-
tations. Integrating structural properties into deep neural net-
works strengthens the learning capability of image recogni-
tion. In this work, we develop modular graph transformer
networks to enhance the information propagation and repre-
sentation learning for multi-labelled visual data.

This paper proposes a framework with the use of graph
transformer and convolution layers to classify visual data
with multiple backbones in a modular way, as shown in
Figure 2. It is semi-supervised multi-label learning, which
provides the control of information propagation with inter-
connected label information. We employ the concept of di-
vide and conquer in model development, where each back-
bone is responsible for learning a representation of a set
of objects. Such representation yields ample and detailed
signals on different sets of object details. The combination
of multiple bare backbone units lead to better performance
than a single complex backbone. We validate our proposed
approach on multiple public datasets, including MS-COCO
and Fashion550K, to illustrate the effectiveness in compari-
son with existing state-of-the-art algorithms.
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Figure 2: Modular Graph Transformer Network (MGTN) supports multi-label learning over multiple modules of CNNs for
recognising object labels in images. The framework has configurable building blocks to integrate semantic information E and
topological informationA into visual representation learning. MGTN enables information propagation over multiple sub-graphs
guided by graph transformer networks with a modularity-based segregator for highly effective learning of visual data.

Preliminaries
Real-world objects typically are associated with one or more
labels, which appear to be in correlated patterns within the
data observations. We denote the dataset D which consists
of images and their corresponding labels. I is defined as an
input tensor with the dimension of W × H and 3-channel
RGB. The objective is to assign multiple labels out of C ob-
ject classes to a single input. In this work, we use the multi-
label classification loss for the optimisation task without ex-
plicit regularisation:

L = − 1

C

C∑
c=1

yc log(σ(ŷc)) + (1− yc) log(1− σ(ŷc)) (1)

where σ(·) is known as the sigmoid function.
The inter-dependencies of object labels can be integrated

as knowledge to guide information propagation. Moreover,
we define the knowledge graph G based on the topological
structure of inter-connected object labels discovered in the
data sets. Specifically, G = (V,E,A), where V denotes the
object labels, and E is the set of edges with the adjacency
matrix A. We aim to attune every aspect of the graph to pro-
vide compelling results by unfolding the graph transformer
and convolutional networks.

Multi-label classification is performed based on the
dyadic architecture: CNNs for learning the image-level rep-
resentation f and graph neural networks for discovering the
classifier mapping W . It allows the use of label-level word
embedding E and topological information A to support vi-
sual recognition via stacked graph convolution layers. As a
result, the final predicted scores are computed as ŷ =Wf .

Modular Graph Transformer Networks
The integration of the topological information helps to re-
duce the uncertainty in multi-label learning (Chen et al.

2019b; Wang et al. 2020b). However, the existing ap-
proaches tend to strictly favour node pairs with strong re-
lationships, thereby leading to the low diversity in predict-
ing label combinations. Inspired by Graph Transformer Net-
works (Yun et al. 2019), we propose a more flexible way to
leverage label correlations in the matrix for the multi-label
classification task on visual data.

Referring to Chen et al. (2019b), we compute the proba-
bility matrix P as Pij = % ∗ Aij/di, where di =

∑
k Ai,k

is the degree matrix and % is 0.25. With the objective of
removing weak connection edges, i.e., noisy signals, previ-
ous works apply a single cut-off threshold in the normalisa-
tion of the adjacency matrix. It may cause indistinguishable
representations due to the elimination of values below the
threshold. Hence, we propose the use of multiple K real-
value thresholds denoted as T = [t1, t2, ..., tK ], in which
ti ∈ [0, 1] and ti < tj ∀i < j.

The adjacency tensor A ∈ RK×C×C consists of {Ak ∈
RC×C}, k = {1, ...,K}. We set A1 as the identity matrix I ,
and for all k ≥ 2, we have:

Akij =

{
1 if Pij ∈ [tk−1, tk), i 6= j

0 otherwise
(2)

Similar to Yun et al. (2019), the two softly chosen adja-
cency matrices Q1, Q2 ∈ RC×C are inferred via two 1 × 1
convolutions as follows:
Q1 = φ(A, softmax(W 1

φ)) and Q2 = φ(A, softmax(W 2
φ)) (3)

where φ is the convolution layer, and W 1
φ ,W

2
φ ∈ R1×1×K

are parameters to be learned. The final transformed adja-
cency matrix Â ∈ RC×C is by Â = η(Q1Q2 + I) , where
η(A) = d

−1
2 Ad

−1
2 is the matrix normalisation method as

Kipf and Welling (2017).



MS-COCO

Fashion550K 

Figure 3: Network Analyses on MS-COCO and Fash-
ion550K reveal the partitions of inter-connected object la-
bels. Both datasets consist of two node communities high-
lighted in red and green using the Clauset-Newman-Moore
agglomeration algorithm. The sizes of the nodes reflect the
relative importance of inter-dependent object labels based
on the eigenvector centrality measure.

Furthermore, we decompose the graph learning networks
into multiple sub-units, i.e., modules, for recognising differ-
ent highly inter-connected sets of objects. The breakdown
of these partitions may reveal a-priori unknown knowl-
edge structures of objects in visual data, thereby leading
to better learning of their representations. By segregating
the propagation of unfolded sub-networks, this approach
aims to improve classification performance as well as to
reduce over-fitting towards unpopular object labels due to
their nature of appearances and co-occurrences. Therefore,
V can be divided into multiple modules of vertices, i.e.,
V = {V1,V2, ...,Vm}, where m is the number of modules,
Vk is a set of objects belong to the sub-graph k. The learn-
ing of each Vk can be done in dynamic configurations with
multiple architectural backbones.

The approach entails the discovery and analysis of highly

inter-connected structures in a network; therefore, a hier-
archical agglomeration algorithm (Clauset, Newman, and
Moore 2004) is employed to uncover sub-graphs of the net-
work in a unsupervised manner. It is based on the modularity
Q of a graph which is computed as the following.

Q =
1

2m

∑
i,j

[
Ai,j −

didj

2m

]
δ(ci, cj) (4)

where m = 1
2

∑
i,j Ai,j , di =

∑
k Ai,k is the degree matrix,

and δ(u, v) is 1 if u = v otherwise 0.
The community detection begins with each node, or ob-

ject label, in its own partition and continuously joins differ-
ent partitions in order to maximise the modularity score Q of
the sub-graphs. As a result, m sub-graphs can be discovered
and we derive the sub-graph assignment S ∈ ZC , in which
Si = p with the partition number p. Figure 3 illustrates the
segregation of object labels on MS-COCO and Fashion550K
datasets, in which multiple labels are visually manifested in
a coordinated and meaningful manner.

Our approach employs multiple CNNs with configurable
backbones for the m sub-graphs. Each CNN module aims
to learn the visual representations of each highly inter-
connected set of object classes. The image-level representa-
tion, denoted as fp ∈ Rlp , has lp number of features which
are then concentrated into a long feature F ∈ RL.

The integration of segregated learning happens with gra-
dient distribution based on graph convolutions, in which
classifier mappings are deployed to divide and conquer in-
formation propagation into the multiple CNNs. We define a
control tensor M ∈ RC×L with a threshold τ as the follow-
ing.

Miv =

{
τ if Si = p and v ∈ fp
1−τ
m−1

otherwise
(5)

The threshold τ ∈ [0, 1] provides MGTN with a way to
manipulate information sharing among multiple sub-graphs.
The classifier mappings are computed as W = G �M be-
fore inferring the learning prediction scores as ŷ = WF.
MGTN leverages on the concept of decomposing multiple
sub-graphs first, then linking and combining them to form a
complete learning framework for multi-label classification.

Eigenvector-based Embedding Transformation
This paper further examines a fine tuning strategy based on
the connections among object labels in the network, where
not all connections are equal (Bonacich 1987). We employ
the concept of eigenvector-based transformation (EV) to en-
hance the computation of graph convolution networks. It
aims to model and strengthen the learning of the complex re-
lationships of object labels with their importance rankings.
In Figure 3, the sizes of the nodes reflect the importance
of the object labels, which may enhance crucial signals on
their inter-relational dependencies. Instead of regularisation
of the loss function, we propose the transformation of label
embeddings as pre-convolutional graph processing to adjust
for their relative importance in learning.

We define the eigenvector centrality Ci of the label i by:

Ci =
1

λ

∑
k

ak,i Ck (6)



where λ 6= 0 is the largest eigenvalue. As the result
of Perron-Frobenius theorem, the eigenvector centrality Ci
can be found as unique and positive if the graph is con-
nected. We implement the calculation using the power it-
eration method, in which the C(k) = C(k−1)A is repeat-
edly computed for k ≥ 1. The solution is then normalised
with the signed component of maximal magnitude m(x) as
C(k) = C(k)/m(C(k)). The calculation is stopped after 100
iterations or reaching an error tolerance of N ∗ 10−6. The
importance matrix, then, is blended into label embeddings
to support the multi-label learning process. In this work, the
transformed E (E = E · CT ) information is then convolved
with the use of multiple stacks of GCN units. The graph
traversal over multiple layers allows MGTN to learn an op-
timal embedding-to-classifiers mapping W with the aggre-
gated length of visual features from multiple CNNs.

Language Embeddings
Label information plays an important role in reinforcing
the learning capabilities of GCN. Based on the pre-trained
language models that one uses to extract label-level word
embeddings, the label information may impact differently
to the initial point of the model in the optimisation space.
Here we explore the use of two types of pre-trained embed-
dings including (1) static embeddings (e.g., FastText) and
(2) contextual embeddings (e.g., BERT). Regarding con-
textual embeddings, instead of using word-level pre-trained
embeddings, one can use character, sub-words, or byte-pair-
encoding (Sennrich, Haddow, and Birch 2016) based pre-
trained language models to capture contextual information.
To name a few, BERT (Devlin et al. 2018), RoBERTa (Liu
et al. 2019) are helping many language related tasks to
achieve new state-of-the-art results. FastText and GloVe
were tested by Chen et al. (2019b), Char2Vec and BERT
were experimented by Vu et al. (2020). Here we investigate
more into these following language models:
• Char2Vec (Kim et al. 2015) is a deep language model that

learns at character-level inputs. Similar to Vu et al. (2020),
the Char2Vec model was trained on English Wikipedia
corpus with embedding dimension of 300.

• BERT (Devlin et al. 2018) learns contextual relations be-
tween words (or sub-words) in a text using by Trans-
former (Vaswani et al. 2017). Here, we use BERT Base
(12 layers) to get the label embeddings. For a given label,
we average all vectors of its subwords from the last layer
provided by Akbik, Blythe, and Vollgraf (2018), hereafter
BERTavg last.

• RoBERTa (Liu et al. 2019) is a new improved language
model based on BERT with improved training methodol-
ogy, such as they removed next sentence prediction task
from BERT’s model and replaced by dynamic masking.
Since RoBERTa is a better version of BERT, therefore, we
seek to test how extracted information from different pre-
trained layers works on a downstream task among Trans-
former’s variants. We use an average vector of 12 layers
in RoBERTabase’s pre-trained model provided by Akbik,
Blythe, and Vollgraf (2018) to extract label embeddings
for the task, hereafter RoBERTaavg 12.

Experiments
This section describes our implementation details and
benchmarking metrics. Experiments are exhaustively con-
ducted, and we report the relevant empirical results on two
public datasets: MS-COCO and Fashion550K.

Experimental Procedure
With the objective of providing a fair comparison to the
current state-of-the-art models (e.g., ML.GCN (Chen et al.
2019b), A-GCN (Li et al. 2019), and KSSNet (Wang et al.
2020b)); we select MS-COCO (Lin et al. 2014) and Fash-
ion550K (Inoue et al. 2017) datasets for evaluation.

• MS-COCO (Lin et al. 2014) is the most popular multi-
label image dataset. It has several main features: object
segmentation, recognition in context, five captions per im-
age among others. In total, it contains 2.5M labelled ob-
ject instances in 328K images, in which 82,783 training,
40,504 validation, and 40,775 test images.

• Fashion550K (Inoue et al. 2017) is a multi-label fash-
ion dataset. It contains 66 unique weakly-annotated tags
with 407,772 images. These images are called as noisy-
labelled data since it was created with minimal human su-
pervision. Moreover, a clean collection was manually ver-
ified to improve the task with cleaning neural networks in
their noisy+clean dataset. This clean set has 3K, 300, 2K
images for training, validation, and testing respectively.

Implementation. Our proposed MGTN framework is de-
veloped using PyTorch (version 1.3.1). The segregation of
learning with any number of sub-networks of object labels is
fully implemented. We utilise the NetworkX library to inves-
tigate the community structure using the Clauset-Newman-
Moore greedy modularity maximisation in multiple runs.
Based on our network analyses shown in Figure 3, both MS-
COCO and Fashion550K are consistently segregated into
two sub-graphs for multi-label learning. We employ dual
ResNeXt-50 32x4d backbones (Xie et al. 2017) for visual
feature extraction with a semi-weakly supervised pre-trained
model on ImageNet (Yalniz et al. 2019). The concentration
of visual presentations amounts to a tensor F of 2 × 2048
features.

We configure our model with two GCN layers and the
output dimensionality of 2048 and 4096 to match our dual
backbones. We employ the threshold τ is 0.999 in the Eq(5)
to manipulate the information sharing in our gradient dis-
tribution. For the graph transformer layer, without other-
wise stated, we set T = [0.2, 0.4, 1.0] for MS-COCO and
T = [0.1, 0.3, 1.0] for Fashion550K. The negative slope of
0.2, which is similar to Chen et al. (2019b), is set for image
representation learning using LeakyReLU (Maas, Hannun,
and Ng 2013) as the non-linear activation function.

For label embeddings, we explore different language
models and GloVe (Pennington, Socher, and Manning 2014)
is chosen to assure the reproducibility of our results for fu-
ture comparison. Our data augmentation during training pro-
cess is similar to Chen et al.; Wang et al. (2019b; 2020b), in
which we resize images to 512× 512 and randomly crop re-
gions of 448 × 448 with random horizontal flips. We adopt



METHOD MAP CP CR CF1 OP OR OF1

CNN-RNN (WANG ET AL. 2016) 61.2 - - - - - -
SRN (ZHU ET AL. 2017) 77.1 81.6 65.4 71.2 82.7 69.9 75.8

BASELINE(RESNET101) (HE ET AL. 2016) 77.3 80.2 66.7 72.8 83.9 70.8 76.8
MULTI-EVIDENCE (GE, YANG, AND YU 2018) – 80.4 70.2 74.9 85.2 72.5 78.4

ML-GCN (CHEN ET AL. 2019B) 82.4 84.4 71.4 77.4 85.8 74.5 79.8
A-GCN (LI ET AL. 2019) 83.1 84.7 72.3 78.0 85.6 75.5 80.3

KSSNET (WANG ET AL. 2020B) 83.7 84.6 73.2 77.2 87.8 76.2 81.5
ML-GCN (RESNEXT50 SWSL) 86.2 85.8 77.3 81.3 86.2 79.7 82.8
SGTN (OUR) (VU ET AL. 2020) 86.6 77.2 82.2 79.6 76.0 82.6 79.2

MGTN(BASE) 86.9 89.4 74.5 81.3 90.9 76.3 83.0
MGTN(FINAL) 87.0 86.1 77.9 81.8 87.7 79.4 83.4

Table 1: Performance comparisons on MS-COCO. Our MGTN outperforms all previous approaches with large margins.

METHOD MAP

BASELINE(RESNET50) (INOUE ET AL. 2017) 58.68
STYLENET (SIMO-SERRA AND ISHIKAWA 2016) 53.24

ML-GCN (CHEN ET AL. 2019B) 60.85
A-GCN (LI ET AL. 2019) 61.35

MGTN(FINAL) 65.10

Table 2: Performance comparisons on Fashion550K.
MGTN’s models are selected based on the best pre-trained
weights on the validation set. Then the final performance
is reported based on the test set. For other metrics, MGTN
archived 77.7, 35.16, 48.42, 81.36, 41.24, 54.74 for CP, CR,
CF1, OP, OR, and OF1 accordingly.

SGD as the optimiser with the momentum is set to be 0.9.
Weight decay is 10−4. The initial learning rate is 0.03 and
0.01 for without and with EV-enhancement label embed-
dings, respectively. The learning rate decays by a factor of
10 for every 20 epochs, and the network is trained for 60
epochs in total. The experiments were run on two Nvidia
Tesla V100, each card has 16GB memory.

Evaluation metrics. We evaluate mAP - mean average
precision, CP - average per-class precision, CR - average
per-class recall, CF1 - average per-class F1 score, OP - over-
all precision, OR - overall recall, and OF1 - overall F1 score
for benchmarking with baseline models (Chen et al. 2019b).

Experiment Results
In this sub-section, we present our comparisons with the ex-
isting state-of-the-arts on MS-COCO and Fashion550K re-
spectively to demonstrate the effectiveness of our proposed
approach for the multi-label classification task.

Results on MS-COCO. We compare several configura-
tions of MGTN with recent state-of-the-arts including the
baseline of ResNet101 (He et al. 2016), CNN-RNN (Wang
et al. 2016), SRN (Zhu et al. 2017), ML-GCN (Chen et al.
2019b), A-GCN (Li et al. 2019), KSSNet (Wang et al.

2020b), ML-GCN (ResNeXT50), and SGTN (Vu et al.
2020). In Table 1, we report our quantitative results based on
the graph transformer networks MGTN (Base) and the fine-
tuned model with eigenvector-based transformation MGTN
(Final). We observed three insights. Firstly, MGTN out-
performs different baselines that do not use GTN in their
architectures. Specifically, MGTN shows significant mAP
improvements of 9.4% from the ResNet101 baseline and
3% from KSSNet. In our final model, the experiment re-
sults establish new state-of-the-art with substantial improve-
ments of 9.7%, 4.58%, and 3.3% in mAP compared to the
baseline (ResNet101), ML-GCN, and KSSNet, respectively.
Secondly, MGTN gets better performance in comparison to
SGTN (Vu et al. 2020), which incorporated GTN in its learn-

Figure 4: 3D t-SNE visualisation of MGTN’s predicted re-
sults on the test set of MS-COCO. Each point is a label of
MS-COCO dataset. Identical shape, either a ‘circle’ (#) or a
‘multiplier’(×), manifests two labels belong to the same sub
network based on modularity. For colourful fading variants,
similar level of fading illustrates that two shapes are seman-
tically closed and might belong to the same super-category.
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Figure 6: The EV-enhancement for label embedding helps
the MGTN’s model learn faster, even MGTN with the setting
using the RoBERTaavg 12 now learns faster. Note that y-axis
here is ranged in [70, 100] for visibility.

ing model. Lastly, we experimented with ML-GCN using
ResNeXt50 (Xie et al. 2017) as a visual backbone. MGTN
shows better performances for all metrics, which again con-
firms the effectiveness of the novel modular graph trans-
former networks.

To explore the predicted outputs on the test set of MS-
COCO. We employed t-SNE (van der Maaten and Hinton
2008) to visualise the modularity of the outputs as in Fig-
ure 4. We can intuitively analyse how good MGTN un-
derstands the correlation between labels on unseen images.
There are only two shapes which mean MGTN learnt the
modularity information (i.e., two modularities) from the
training data and predicted that information on unseen data.
Similar to the motivation example in Figure 1, ‘person,
chair, umbrella’ are in one modularity, ‘cup, bowl, dining
table’ are in another modularity. Moreover, MGTN under-
stands the correlation information between labels by result-
ing ‘sink’ and ‘toilet’ in the same colour, which means they
are very closed as well.

In the same way, ‘car, truck, bus, traffic light, stop sign’
stay closed to each other and have the same colour since they
fall under transportation. Generally, MGTN could learn and
predict both modularity information as well as understand-
ing the label correlations to improve the muti-label classifi-
cation performance.

Results on Fashion550K. We compare the final model of
MGTN with state-of-the-art models on Fashion550K dataset
including the baseline of ResNet50 (Inoue et al. 2017),
StyleNet (Simo-Serra and Ishikawa 2016), ML-GCN (Chen
et al. 2019b), and A-GCN (Li et al. 2019). The learning ca-
pabilities of our approach are asserted on the noisy dataset;

because manual verification and cleaning neural networks
introduced in the noisy+clean dataset may not reflect the
true impact of our assessment. Also, the use of MGTN on
noisy data is already shown to be superior to the fine-tuned
model with clean labels in Inoue et al. (2017). The exper-
iment results demonstrate the effectiveness of MGTN with
significant improvements of 6.4%, 4.2%, and 3.7% in mAP
from the baseline (ResNet50), ML-GCN, and A-GCN, re-
spectively.

Ablation Study on Label Embeddings
We attempt answer two questions on the MS-COCO dataset:
(1) do different ways of extracting label embeddings af-
fect the final performance of MGTN? and (2) how EV-
enhancement on label embeddings affect the learning?

Label Embeddings and Learning Patterns. This study
tests with different language models be used to extract la-
bel representations. Figure 5 shows that different label em-
beddings affect to the learning speed of the downstream task
significantly. Generally, this result is consistent to Chen et al.
(2019b) in the sense that, after a certain number of training
epochs, the model would achieve performance similarly. For
RoBERTaavg 12 label embedding, it was averaged from 12
layers, therefore, the label representation was not closed to
actual meaning of word-level representation. Thus, its learn-
ing progress was almost started from scratch. This result
suggests that, for label representation, it is probably better
to use information from a few last layers (e.g., the last layer
as in the BERTavg last setting) for this task. In summary, this
ablation shows that, with different ways of extracting these
label embeddings, one could get “two birds with one stone”
- i.e., saving compute power and getting high performances
at the same time.

Effects of EV-Enhancement on Different Label Embed-
dings. The goal of this ablation study is to address that,
with EV-enhancement, the MGTN model could even learn
faster and hence, save more computing power. More im-
portantly, the effects are consistent across all tested label
embeddings. Figure 6 shows that EV-enhancement helps
MGTN with different label embeddings learn faster and
achieve optimal performance in less than 20 epochs.

Conclusion
This paper presents an end-to-end framework, named Mod-
ular Graph Transformer Networks (MGTN), to solve the
multi-label classification task on visual data. The frame-
work integrates multiple CNN backbones on unfolded sub-
networks that are segregated from the original one based on
the graph modularity. Additionally, it also exploits topologi-
cal and semantic properties among labels via the graph trans-
former and eigenvector-based embedding layers respectively
to enhance the label correlation representation in GCN. This
work unveils new opportunities to surpass the limitations
of single backbone systems for better learning of network
niches and reduced overfitting potentials. Extensive experi-
ments on two benchmark datasets manifest the advantages
of MGTN via significant improvements against state-of-the-
art algorithms in classifying images with multiple labels.
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