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LARGE-SCALE THREE-DIMENSIONAL ACOUSTIC HORN
OPTIMIZATION⇤
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Abstract. We consider techniques that enable large-scale gradient-based shape optimization of
wave-guiding devices in the context of three-dimensional time-domain simulations. The approach relies
on a memory e�cient boundary representation of the shape gradient together with primal and adjoint
solvers semiautomatically generated by the FEniCS framework. The hyperbolic character of the
governing linear wave equation, written as a first-order system, is exploited through systematic use of
the characteristic decomposition both to define the objective function and to obtain stable numerical
fluxes in the discontinuous Galerkin spatial discretization. The methodology is successfully used to
optimize the shape of a midrange acoustic horn, described by 1, 762 design variables, for maximum
transmission e�ciency, where the parallel computations involve a total of 3.5⇥ 109 unknowns.
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1. Introduction. Horn-like structures appear in devices for both acoustic and
electromagnetic waves. A horn serves as an interface between a waveguide or a radiation
source and the surrounding space and provides both impedance matching to the source
and directivity control of the transmission. These properties are utilized in a variety of
applications. The bell in brass instruments constitutes a part of a resonator—the air
space within the instrument—and the bell shape is judiciously designed to constrain
the most important resonances to integer frequency ratios. Recently, there have been
some e↵orts to use numerical shape optimization in order to design brass bells so that
the instrument acquires prescribed resonance characteristics [8, 20]. A type of acoustic
inverse horn, that is, a device that possesses a large diameter at the source and a small
one at the outlet, is used in ultrasonic machining, a subtractive manufacturing process
particularly suitable for hard and brittle materials [1]. Horn loudspeakers, which are at
focus here, are routinely used to supply the mid- and high-frequency range in public
address systems for large halls, cinemas, and outdoors, often assembled in the form of
so-called line arrays [34]. A horn dramatically raises the e�ciency of the radiating
source and may be used for precise directional control of the coverage area. In spite of
its advantages, horn-equipped loudspeakers are often viewed as subpar with respect to
sound quality [10, sect. 4.9]. However, some of the sound-quality deficiencies of horns
may be due to suboptimal design and not to inherent limitations of the concept of
acoustical horns.

The use of simple, classical shapes, such as exponentials, and the classical analysis
of wave motion in horns, based on the one-dimensional (1D) Webster horn equation [19],
is rapidly being complemented with more accurate numerical methods, which allow
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analysis of much more complex shapes. During the last decade or so, a number
of studies have appeared that use optimization algorithms together with numerical
solutions of the governing equation to design acoustic horns [3, 4, 6, 13, 16, 31, 32].
It turns out that detailed shaping of the horn flare by the use of numerical shape
optimization methods can produce horns with much more favorable input impedance
properties compared to those associated with classical shapes such as exponentials,
as also has been confirmed by measurements on manufactured prototypes [21]. The
di↵erence in input impedance properties between simple and optimized shapes is quite
large, particularly at the low end of the operational frequency range. Unfavorable input
impedance properties will give rise to acoustic resonances in the horn, and the typical
“honky” megaphone-like sound associated with horns could be due to such resonances.
We believe that there is therefore a great potential in the use of optimization to
design horns with much less of such coloring. Some studies consider the directivity
properties of the horn in the optimization process [18, 30, 33] instead of, or in addition
to, the input impedance. All the above-mentioned studies employ frequency-domain
modeling and are confined to 2D geometries, which means that only cylindrical (or
laterally infinite) horns can be considered. However, in practice, it is important to
be able to separately control the vertical and horizontal directivity properties, which
will necessitate full 3D acoustic models. Moreover, since the radiation properties of
horns ideally should be uniform throughout their operational range, frequency-domain
methods need to be run at a large number of frequencies. It may therefore be beneficial
to consider time-domain methods, where only one equation needs to be solved at each
design cycle. The frequency content for which the horn should be optimized is then
controlled by selecting a suitable input pulse.

In contrast to previous work, our aim here is to apply numerical shape optimization
for detailed design of an acoustic horn in three dimensions using a time-domain model

of the acoustic wave propagation. We consider here only the impedance-matching
aspect, setting the stage for future treatment of more complex problems, such as
optimizing with respect to directivity properties. The linear wave equation written in
first-order form models the wave propagation. The hyperbolic nature of the equations
is respected through the use of a discontinuous Galerkin spatial discretization with
upwinding fluxes based on a characteristic decomposition [14]. The characteristic
decomposition is also used to define the objective function.

Since we rely on gradient-based optimization and the adjoint-variable method for
the sensitivity analysis, the computational complexity for each gradient evaluation is
independent of the number of design variables. We use this property to be able to
control the shape in detail; each mesh point on the horn’s surface is subject to design,
and a smoothing strategy is utilized to promote smooth design updates. For e�ciency,
both computationally and with respect to implementation e↵ort and maintainability
of the software, we make use of the FEniCS [17] suite to generate the primal and dual
solver for acoustic analysis. The gradient expression used by the optimization routine
is assembled from the primal and adjoint solutions using an expression derived from the
equations in integral form. This approach yields a boundary-integral representation for
the objective function gradient, which means that the gradient expression requires only
the time history of the primal and adjoint solutions restricted to the design surface,
and not everywhere in the computational domain, which would be extremely memory
demanding for a time-domain calculation. The necessity to di↵erentiate the mesh
deformation procedure is likewise eliminated by this approach.

The paper is structured as follows. In section 2, we review the governing equations
and the concept of characteristic decomposition, which is central to this application.
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THREE-DIMENSIONAL HORN OPTIMIZATION B919

Sections 3 and 4 introduce the objective function and the resulting first-order optimality
system. The discretization scheme is presented in section 5, and results from cross-
code verification studies are given in section 6. Finally, section 7 presents results of a
large-scale intrinsically 3D horn optimization.

2. Acoustic power balance and the characteristic decomposition. We
use the concept of a characteristic decomposition of the acoustic power flux over
surfaces extensively throughout the following. The concept, which is briefly reviewed
in this section, is used to define physical boundary conditions, lay out the objective
function of optimization, and specify interelement fluxes in the numerical scheme.

Acoustic wave propagation in still air under the conditions of uniform static density
and temperature is governed by the linear wave equation

@u

@t

+rp = 0,(1a)

@p

@t

+ c

2div u = 0,(1b)

where p denotes the acoustic pressure; u the acoustic momentum density vector, that
is, the product of the static air density and the acoustic velocity vector; and c the
speed of sound.

For each open, bounded domain D in space, solutions to system (1) satisfy the
conservation law

(2)
d

dt

1

2

Z

D

kuk2 + 1

c

2

p

2

dx = �
Z

@D

phu, ni d�,

where n is the outward-directed unit normal on @D, h · , · i denotes the Euclidean inner
product, and kuk2 = hu, ui. Conservation law (2) says that the time derivative of the
acoustic energy in D equals the net flux of acoustic power1 into D through boundary
@D. Conservation law (2) is obtained by taking the dot product of equation (1a) with
u, multiplying equation (1b) by p/c

2, summing the equations, integrating, and using
the divergence theorem.

The integrand on the right-hand side of conservation law (2) can be split up into
a di↵erence of two positive terms as follows:

(3)
�phu, ni = 1

c

✓
1

2
(p� chu, ni)

◆
2

� 1

c

✓
1

2
(p+ chu, ni)

◆
2

=
1

c

�
w

2

� � w

2

+

�
,

where

(4) w± =
1

2
(p± chu, ni)

are called the characteristic variables. By substituting the splitting (3) into conservation
law (2), we find that

(5)
d

dt

1

2

Z

D

kuk2 + 1

c

2

p

2

dx =
1

c

Z

@D

w

2

� � w

2

+

d�,

1To obtain the correct dimensions of power, the terms in equation (2) should be divided by the
static air density.
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B920 STEPHAN SCHMIDT, EDDIE WADBRO, AND MARTIN BERGGREN

Fig. 1. The geometry for the model problem comprises a horn that on one side is mounted in
an infinite ba✏e and on the other side attached to a waveguide. Variable horn flare in light gray,
fixed wave-guide and ba✏e in blue (color online). Surrounding domain ⌦ not shown.

which reveals that the use of characteristic variables yields a splitting of the power
flux over @D into the acoustic power that flows into the domain D (integral of w2

�)
and the the power that flows out of the domain (integral of w2

+

). The plus and the
minus subscripts in the characteristic variables indicate the direction in relation to the
(outward-directed) normal n on @D.

3. The model problem. We consider the 3D setup illustrated in Figure 1. To
reduce the computational cost, we will compute on only a quarter of the domain. This
setup consists of a waveguide attached to the throat of an acoustic horn that is mounted
in an infinite ba✏e. We denote by �

wall

the sound-hard walls of the waveguide, the
acoustic horn, and the ba✏e, and by �

symm

the symmetry boundaries. For numerical
reasons, we truncate the domain and denote the truncated computational domain by
⌦. The boundary @⌦ can be decomposed as the closure of �

wall

[ �
symm

[ �
in

[ �
out

,
where the two latter parts stem from the truncation of the computational domain.
More precisely, �

in

truncates the waveguide, and �
out

is the boundary that truncates
the free-space in front of the horn. The acoustic initial–boundary-value problem we
consider is

(6)

@u

@t

+rp = 0 in ⌦ for t > 0,

@p

@t

+ c

2div u = 0 in ⌦ for t > 0,

1

2
(p� chu, ni) = g on �

in

for t > 0,

1

2
(p� chu, ni) = 0 on �

out

for t > 0,

hu, ni = 0 on �
wall

[ �
symm

for t > 0,

u ⌘ 0 in ⌦ at t = 0,

p ⌘ 0 in ⌦ at t = 0,

where g is a given function with compact support in time. From the discussion in
section 2, we see that the boundary condition on �

in

sets the incoming characteristic
(w�) to be equal to the given function g, and the boundary condition on �

out

ensures
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THREE-DIMENSIONAL HORN OPTIMIZATION B921

that no incoming acoustic power is transmitted into ⌦ from the exterior. The condition
of a sound-hard material is imposed through the boundary condition on �

wall

. The
zero normal velocity condition also imposes the symmetry condition at �

symm

.
Applying the power balance law (5) on solutions to system (6) under the specified

boundary conditions, we find that

(7)
d

dt

1

2

Z

⌦

kuk2 + 1

c

2

p

2

dx =
1

c

Z

�in

g

2 � w

2

+

d�� 1

c

Z

�out

w

2

+

d�,

where we have made use of the characteristic variables as defined in expression (4).
Since we assume that the input g has compact support in time, it holds for an “open”

system like this one that the solution will vanish identically after a su�ciently long time
T , which is consistent with the fact that the right-hand side of conservation law (7)
becomes negative when g ⌘ 0. Thus, integrating expression (7) over a su�ciently
long time interval (0, T ), utilizing the initial condition u(0) = 0 and p(0) = 0 and the
vanishing assumption u(T ) = 0 and p(T ) = 0, we find that

(8)

Z
T

0

Z

�in

g

2

d� =

Z
T

0

Z

�in

w

2

+

d�+

Z
T

0

Z

�out

w

2

+

d�.

Expression (8) states the basic energy balance of system (6): the total acoustic energy
of the input signal (left-hand side) equals the energy of the reflected signal (first term
on the right-hand side) plus the energy transmitted to the surroundings (second term
on the right-hand side). Thus, to maximize the total transmitted energy, we may
equivalently minimize the reflected signal, which will be simpler to do in a numerical
implementation.

Here, we let the shape of boundary �
horn

, colored light gray in Figure 1, be
subject to design. The beginning and the end of the horn flare will be fixed, so that
the optimization can change neither the mouth and throat shapes nor the length of
the horn. Each such admissible horn shape will generate a candidate computational
domain ⌦, for which we solve state equation (6) and evaluate the objective function

(9) J(⌦) =
1

2

Z
T

0

Z

�in

(p+ hu, ni)2 d� dt,

integrated for a su�ciently long time T with respect to the time support of the input
signal g. The optimization problem can then be formulated as

(10)
min J(⌦) subject to

state equation (6).

If the final design is such that the objective function, that is, the reflected signal,
vanishes for the given input signal, then the input impedance at the throat of the
horn is real and constant for each of the frequencies contained in the signal. (For a
discussion of the relation between reflections, which is the measure we use here, and
the concept of acoustic impedance, we refer the reader to the acoustics literature, for
instance Rienstra and Hirschberg’s lecture notes [22, sect. 3.2].) This approach is
appropriate for transmission optimization of a horn in isolation, as here. However,
if a model of the wave source, typically a compression driver in the case of a mid-
or high-frequency horn, is available, it would also be possible to maximize the total
transmitted acoustic power for the coupled system driver–horn.
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B922 STEPHAN SCHMIDT, EDDIE WADBRO, AND MARTIN BERGGREN

4. Domain variations and optimality system. Conceptually, design prob-
lem (10) is a PDE-constrained optimization problem with the added di�culty that
there is a need to associate with the shape of �

horn

a suitable set of decision variables
in the optimization algorithm. There are several possible choices. One possibility is
to introduce an artificial inhomogeneous static density function into the governing
equations, so that regions of sound-hard materials are approximated using a dense
fluid. This approach transforms the problem from one using a varying domain to one
that involves a variable coe�cient in the governing equations [5, 27, 32]. Another
possibility is to use an explicit parameterization of feasible domain shapes through,
for instance, a finite set of smooth ansatz functions [15]. Here, we consider domain
deformations that are assumed to be generated by a su�ciently smooth vector field
V : R3 ! R3. This approach can be exploited to derive a computationally e�cient
boundary representation of the shape derivative, a property related to the so-called
Hadamard–Zolésio structure theorem [11, 28].

A boundary representation of the shape gradient allows for very e�cient numerical
schemes utilizing the maximum degrees of freedom by exercising the position of
every surface vertex as a design parameter. Furthermore, all terms stemming from a
deformation of the mesh and those related to the di↵erentiation of the PDE solution
procedure with respect to the input mesh are treated on an analytic level, thereby
circumventing the need to actually compute them on a discrete level. The resulting
methodology is independent of the actual PDE solver, and the sensitivities can be
computed using any methodology to solve the state equation, provided an adjoint
is also available. The applicability of this approach to large-scale 3D problems in
aerodynamics was, for example, considered previously in [25].

The appendix carries out the shape sensitivity analysis for optimization prob-
lem (10) with state equation (6) written in a suitable integral form. To obtain the
final boundary representation for the shape derivative, quite delicate conditions on
the regularity of the solution have to be assumed, as indicated in the appendix. Such
high regularity does not hold for typical finite-element functions, which means that
the boundary representation of the shape derivative, as derived in the appendix, will
not be fully consistent with a di↵erentiation of the objective function actually used
after discretization [7], [11, Remark 2.3]. However, this gap in consistency is usually
reduced as the mesh is refined, an e↵ect also visible in our finite di↵erence verification
in section 6.2.

For the studied problem, the admissible shape changes of �
horn

are generated
through a smooth vector field V : R3 ! R3 that vanishes everywhere on @⌦ except on
�
horn

. After a sensitivity analysis, as outlined in the appendix, we find that the shape
derivative of objective function (9) with respect to V has the boundary representation

(11) dJ(⌦)[V ] = 2c

Z
T

0

Z

�horn

hV, ni div (up⇤) d� dt,

where u solves system (6) and p

⇤ the adjoint system

�@u

⇤

@t

+rp

⇤ = 0 in ⌦ for t < T ,

�@p

⇤

@t

+ c

2div u

⇤ = 0 in ⌦ for t < T ,

1

2
(p⇤ � chu⇤

, ni) = 1

2
(p+ chu, ni) on �

in

for t < T ,(12)
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THREE-DIMENSIONAL HORN OPTIMIZATION B923

1

2
(p⇤ � chu⇤

, ni) = 0 on �
out

for t < T ,

hu⇤
, ni = 0 on �

wall

[ �
symm

for t < T ,

u

⇤ ⌘ 0, p

⇤ ⌘ 0 in ⌦ at t = T .

We note that the adjoint system (12) after the variable change t 7! T � t equals
the state equation (6) with w

+

(T � t)|
�in instead of g(t) as source. That is, the state

and adjoint systems are the same, but the state equation is driven by the given source
function g, and the adjoint equation by the time convolution of the reflected signal at
the inlet.

5. Spatial discretization. To introduce the variational form that is the basis
for our discontinuous Galerkin discretization, we consider an open, bounded, and
connected set K ⇢ ⌦, representing what later will be an element in our triangulation.
Assume that u and p satisfy system (6). Multiplying the first and second equations in
system (6) with arbitrary smooth test functions v and q, respectively, integrating over
K, and integrating by parts in space, we find that u(t)|

K

and p(t)|
K

satisfy

(13)

Z

K

hv, @
t

ui � p div v + q @

t

p� c

2hu,rqi dx+

Z

@K

hv, nip+ c

2hu, niq d� = 0

for each pair of smooth test functions v and q with support in K. Next, we introduce
the flux functions

(14)
f

1

(u, p, n) := np = n(w
+

+ w�),

f

2

(u, p, n) := chu, ni = (w
+

� w�),

which, as we see above, can be written in terms of sums and di↵erences of the
characteristic variables (4), a property that will be exploited below to define the
numerical flux functions. Using definitions (14), equation (13) can be written as

(15)

Z

K

hv, @
t

ui � p div v + q @

t

p� c

2hu,rqi dx+

Z

@K

hv, f
1

i + c qf

2

d� = 0.

Now introduce a triangulation T
h

of the domain ⌦ consisting of nonoverlapping
open tetrahedrons K such that ⌦ = [

K2ThK. The numerical scheme is defined by
requiring p(t) and the components of vector u(t) to be functions whose restrictions on
each K are polynomials that satisfy a modified version of variational expression (15) for
all polynomial test functions v and q. Since p and u will then in general possess jump
discontinuities over each interface between two neighboring elements, the question is
what values to use in the flux functions f

1

, f
2

, since they are evaluated exactly where
the functions are discontinuous. A standard choice that leads to a consistent and
stable scheme is upwinding. This method exploits the directivity information in the
characteristic variables and uses the local values in K in the outgoing characteristic
variable w

+

and the remote values—from neighboring cells or from the boundary
conditions—in the incoming characteristic variable w�. More precisely, let P

r

define the
space of polynomials of maximum degree r. For each K 2 T

h

we require u(t)|
K

2 P

3

r

,
p(t)|

K

2 P

r

such that for each v 2 P

3

r

, q 2 P

r

,

(16)

Z

K

hv, @
t

ui � p div v + q @

t

p� c

2hu,rqi dx+

Z

@K

hv, f⇤
1

i + c qf

⇤
2

d� = 0,
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B924 STEPHAN SCHMIDT, EDDIE WADBRO, AND MARTIN BERGGREN

where the upwind numerical flux functions are defined by

(17)
f

⇤
1

:= n(wL

+

+ w

R

�) = n


1

2

�
p

L + p

R

�
+

c

2

�
huL

, ni � huR

, ni
��

,

f

⇤
2

:= w

L

+

� w

R

� =
1

2

�
p

L � p

R

�
+

c

2

�
huL

, ni+ huR

, ni
�
,

where the superscripts L and R denote local and remote values. The local values are
given by the values of u|

K

and p|
K

on @K. The remote values are given either in order
to assign boundary conditions, if @K coincides with the boundary, or by the values
of u|

K

0 and p|
K

0 , if there is a neighboring K

0 2 T
h

such that K 0 \K ⇢ @K, that is,
we are at a face that is shared between K and K

0. The term “upwind” for the flux
function (17) is borrowed from fluid mechanics and is motivated by the fact that the
characteristic variables are evaluated according the direction of power transport across
@K.

By imposing the remote states

(18)
u

R :=� 1

c

gn, p

R := g on �
in

,

u

R :=0, p

R := 0 on �
out

,

we see that the incoming characteristic w

R

� on �
in

and �
out

will be set to the correct
values as specified by system (6).

Since we compute on only a quarter of the horn, we impose that the solution
should be symmetric across planes �

symm

. The symmetry and sound-hard boundary
condition hu, ni = 0 is here imposed by the custom numerical flux function

(19) f

⇤
1,ws

= np

L

, f

⇤
2,ws

= 0,

which can be motivated by substituting condition hu, ni = 0 into the exact flux
functions (14). An alternative strategy to impose condition hu, ni = 0 is to use the
upwind flux (17) and specify a remote state that mirrors the local state according to
the formula u

R := u

L � 2huL

, nin and p

L := p

R on �
symm

. However, in the numerical
experiments below, we have chosen the explicit wall flux function (19), since this choice
will lead to a boundary integral over �

horn

in the variational form whose integrand is
linear in the wall normal. This property is consistent with the choice made to enforce
the wall boundary condition in the integral form used for sensitivity analysis, equation
(40), and leads to a much simpler expression for the shape gradient compared to the
case when mirroring the local state; see the discussion in Appendix A.1.

To specify the complete scheme, based on the discussion above, we need a number
of definitions. Let S =

S
M

k=1

S

m

be the union of all open triangular element faces
S

m

that are shared between two elements, that is, the set of element faces that are
not part of the boundary. For each such internal element face S

m

, it holds that
S

m

= @K

m1
\ @K

m2
for some distinct neighboring elements K

m1
, K

m2
2 T

h

. We
denote by n

m1 , nm2 = �n

m1 the outward-directed unit normals to K

m1 and K

m2 on
S

m

. For each piecewise-polynomial f , we define f

1

= f |
Km1

, f
2

= f |
Km2

, and the
face-sum and face-jump operators

(20)

{{ f }} := f

1

|
Sm

+ f

2

|
Sm

,

JfK :=
(
n

m1f1|
Sm

+ n

m2f2|
Sm

if f 2 R,
hn

m1 , f1|
Sm

i+ hn
m2 , f2|

Sm
i if f 2 R3.
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THREE-DIMENSIONAL HORN OPTIMIZATION B925

Moreover, we define ⌦
0

:= ⌦ \ S and the function

(21) ĝ :=

(
g on �

in

,

0 on �
out

.

Now we sum equation (16) over all K 2 T
h

, utilizing the upwind flux (17) over the
element interfaces, imposing the remote states (18) and the wall/symmetry fluxes (19).
We then obtain that u(t) 2 P

3

r

(T
h

), p(t) 2 P

r

(T
h

) satisfy

(22)

Z

⌦0

hv, @
t

ui � p div v + q @

t

p� c

2hu,rqi dx+

Z

�wall[�symm

hv, npi d�

+

Z

�in[�out

⌧
v, n


ĝ +

1

2
(p+ chu, ni)

��
+ cq


1

2
(p+ chu, ni)� ĝ

�
d�

+
1

2

Z

S

JvK
�
{{ p }}+ cJuK

�
d�+

1

2

Z

S

c

⌦
JqK,

�
JpK + c{{u }}

�↵
d� = 0

for each v 2 P

3

r

(T
h

), q 2 P

r

(T
h

).

6. Implementation and verification.

6.1. Verification of the forward solver. Variational problem (22) is imple-
mented numerically using the FEniCS environment [17], which contains a domain-
specific language for variational problems. After postulating the variational expression
in Python, a C/C++ discontinuous Galerkin solver of the desired spatial order is auto-
matically generated and compiled by the FEniCS environment. Time derivatives are
discretized by the trapezoidal method. (A completely explicit low storage fourth-order
Runge–Kutta scheme is also implemented, but this scheme behaves problematically
if the mesh quality degrades too much during shape optimization when the mesh is
deformed.) The implicit equation to solve for each time-step is linear. Depending
on available compute power, spatial order, and mesh refinement, we first attempt to
factorize the system once and store this factorization for all time-steps. If this is not
tractable, for example due to excessive storage requirements, we solve the implicit
equation for each time-step using restarted GMRES with ILU preconditioning, a
functionality provided by PETSc and Hypre.

In the frequency domain, a horn’s radiation e�ciency can be characterized by its
reflection coe�cient at the throat, which for each frequency measures the (complex-
valued) quotient between the pressure amplitude of an incoming single frequency wave
and the reflected wave’s pressure amplitude. To verify our implementation, we compute
the reflection coe�cient spectrum with our code as well as with Comsol Multiphysics
on the cylindrically symmetric domain illustrated in Figure 2. Here, the width and
length of the waveguide are set to a = 19.3 mm and d = 100 mm, respectively. The
length of the conical horn flare is l = 150 mm, and the half width of the horn mouth
is b = 100 mm. For all simulations, the speed of sound is c = 345 m/s.

The baseline for the verification computations is carried out with Comsol in
the frequency domain. That is, we consider single-frequency wave propagation with
angular frequency ! = 2⇡f , where f is the ordinal frequency. We use the ansatz
p(x, t) = Re{p̃

!

(x)ei!t} and solve the following boundary-value problem [30] for the
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R

zld

a

b

R

r

r

z

Fig. 2. Cross section of the cylindrically symmetric geometry used for the initial computations.

complex amplitude function p̃

!

:

(23)

@

@r

✓
1

r

@p̃

!

@r

◆
+

@

@z

✓
1

r

@p̃

!

@z

◆
+ k

2

rp̃

!

= 0 in ⌦(2D)

,

✓
ikp̃

!

+
1

R

◆
p̃

!

+
@p̃

!

@n

= 0 on �(2D)

out

,

ikp̃+
@p̃

!

@n

= 2ikA on �(2D)

in

,

@p̃

!

@n

= 0 on �(2D)

horn

[ �(2D)

symm

,

where k = !/c. The boundary conditions on �(2D)

in

and �(2D)

out

are frequency-domain
analogues of characteristic boundary conditions used in the discontinuous Galerkin

code at corresponding boundaries. The condition on �(2D)

in

imposes a planar right-

going wave with amplitude A while absorbing planar left-going waves. At �(2D)

out

, the
boundary condition absorbs any outgoing waves propagating in the normal direction
with respect to the boundary. The reflection coe�cient is given by

(24) R

(2D)

!

=
2

a

2

A

Z

�

(2D)
in

r(p̃
!

�A) d�.

For the 3D time domain discontinuous Galerkin computation, we use a truncated
sinc pulse as input signal,

(25) g(t) =
sin

�
2⇡f

s

(t� t

c

)
�

2⇡f
s

(t� t

c

)
sin

�
2⇡f

c

(t� t

c

)
�
w(t, t

c

),

where t

c

is the time around which the pulse is centered, f

c

is the desired center
frequency, f

s

is the half bandwidth of the signal, and w(t, t
c

) is a window function.
Here, we set t

c

= 3/(2f
s

) and use the Hamming window function

(26) w(t, t
c

) =

(
0.54 + 0.46 cos

⇣
⇡(t�tc)

tc

⌘
for t 2 [0, 2t

c

],

0 otherwise.

Without a window function, the spectrum of the time-infinite sinc pulse is flat within
[f

c

� f

s

, f

c

+ f

s

] and zero outside. The use of a window function converts the infinite
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Fig. 3. Left: The input signal as a function of time. Right: The magnitude spectrum of the
input signal for fc = 5.3 kHz, fs = 3.7 kHz, and tc = 3/7400 s. The solid vertical lines mark the
frequencies fc ± fs that limit the frequency range in the following figures showing the reflection
spectra.

signal to a signal of finite duration but also impacts the spectrum. In all numerical
experiments using the time domain solver, we use an input signal with parameters
f

c

= 5.3 kHz and f

s

= 3.7 kHz. Figure 3 illustrates the input signal as a function of
time (left diagram) and its normalized magnitude spectrum computed by the discrete
Fourier transform (DFT) (right diagram).

For the baseline 2D Comsol simulations, the radius of the computational domain
is R = R

z

= R

r

= 1500 mm, and we use continuous piecewise-quadratic elements on
a triangular mesh with maximum side length 10 mm, which yields 97,769 unknowns
for the linear system. We carry out the 3D time domain verification simulations
on a cylindrical symmetric horn model in quarter symmetry, using discontinuous
piecewise-linear elements on two di↵erent unstructured tetrahedral meshes, a fine and
a crude resolution mesh.

The fine resolution mesh uses R

z

= 240 mm, R

r

= 220 mm and consists of
114, 417 elements, which yields a total of (3 + 1) · 4 · 114, 417 = 1, 830, 672 unknowns
per time-step. The shortest edge in the mesh is 0.78 mm, the longest is 29.65 mm, and
the average is 5.46 mm. As a comparison, note that the wavelength at 9 kHz is about
38 mm. For the fine resolution mesh, we use the end time T = 18 ms and the time-step
dt = 5.0 · 10�7. The crude resolution mesh uses R

z

= 80 mm and R

r

= 140 mm
and consists of 8,356 elements, which yields 133,696 unknowns per time-step. The
shortest edge in this mesh is 2.51 mm, the longest edge is 36.16 mm, and the average
is 9.22 mm. Here, the end time T = 4.5 ms, and the time-step dt = 2.5 · 10�6.

The initial 3D experiments focus on studying the transient behavior of the wave
propagation and the decay of energy inside the domain. For our input signal, these
experiments confirm that the acoustic energy inside the domain is exponentially
decreasing, and we conclude that after about 4 ms—corresponding approximately to
10 t

c

—the energy inside the computational domain is less then 10�6 of the energy of
the input pulse. (Here, the energy inside the computational domain is evaluated as
the di↵erence between the numerically evaluated left- and right-hand sides of energy
balance (8).) We also experimented with di↵erent time-steps for the implicit time
stepper and found that the above mentioned dt = 2.5 · 10�6 provides a good trade-o↵
between computational e↵ort and accuracy for the standard resolution mesh.

During the time domain simulations, we record the outgoing signal at �
in

. After
the simulation is completed, we compute the spectrum of the outgoing signal using the
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Fig. 4. Magnitude reflection spectra in the range 1.6–9.1 kHz for the cylindrical symmetric horn
depicted in Figure 2 with parameters a = 19.3 mm, b = d = 100 mm, and l = 150 mm. Solid black
line: Comsol Multiphysics using FD-FEM in 2D cylindrical symmetry, 10 Hz frequency spacing.
Line with asterisks: our 3D TD-DG code, fine resolution. Circular markers: our 3D TD-DG code,
standard resolution.

DFT. The reflection coe�cient spectrum at the horn’s throat can then be computed by
pointwise division of the Fourier coe�cients of the input signal and the reflected signal.
Figure 4 shows the magnitude of the reflection coe�cient versus frequency computed
by Comsol Multiphysics for the cylindrically symmetric frequency domain setup (solid
line) and by our discontinuous Galerkin 3D time domain method on the two di↵erent
meshes. The spectrum computed using the fine-mesh fully 3D time domain method
agrees well with the reference computation, and we note that the use of a too-crude
mesh tends to overestimate variations in the reflection coe�cient, which is likely due
to a too-crude and nonsmooth approximation of the horn geometry.

6.2. Finite di↵erence verification of the shape derivative. Following the
previous verification of the solver, we next verify the shape derivatives computed
by (51) and (52) against finite di↵erence approximations. The geometry is as in
the previous section, and we again perform the test using two di↵erent meshes and
far-field locations. For each vertex x

i

on the design boundary, we define a vector-valued
perturbation function V

i

: �
horn

! R3 by

V

i

(x) = �

i

(x)n
vertex

(x
i

),

where �

i

is the linear Lagrangian basis function (the standard “hat” function centered
at x

i

). Thus, V
i

equals the vertex normal at vertex x

i

; it has support only within
Patch(x

i

), the surface patch formed around x

i

, and it vanishes outside this patch. We
compute each component of the adjoint-based directional derivative via (51) and (52)
by integrating

dJ

1

:= dJ(�
horn

)[V
i

] = 2c

Z
T

0

Z

Patch(xi)

hV
i

, n

facet

i div (up⇤) d� dt,

dJ

2

:= dJ(�
horn

)[V
i

] = 2c

Z
T

0

Z

Patch(xi)

hV
i

, n

facet

i div (u⇤
p) d� dt.

Note that for the adjoint-based directional derivative, the primal and dual states need
to be computed only once on the unperturbed geometry. To compute the adjoint,
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THREE-DIMENSIONAL HORN OPTIMIZATION B929

we restrict the storage of the primal state to a tubular neighborhood of two cells
around �

wall

, which reduces the memory demand for the primal trajectory considerably
yet still allows for a correct computation of the source term in the adjoint and the
divergence operator constituting the gradient. Due to the similarity of the primal and
dual equations, we can easily re-use most components of the primal solver. The same
strategy is used during optimization.

For the finite di↵erence computation used for verification purposes, we extend a
damped perturbation ⌧ · V

i

into the domain by solving a noncoupled componentwise
Laplace equation for the displacement of the mesh vertices, as we also do during the
optimization to deform the volume mesh. We use ⌧ = 10�4 as the constant finite
di↵erence step length. The objective function (9) is evaluated on both the perturbed
and original grids in order to calculate a one-sided finite di↵erence.

As in the preceding section, we verify both formulas on two di↵erent meshes, the
crude resolution mesh with a close far-field boundary (R

z

= 80 mm and R

r

= 140 mm)
and a fine resolution mesh with the far-field boundary further away (R

z

= 240 mm and
R

r

= 220 mm). However, the fine resolution mesh is here derefined once, compared to
the mesh used in previous section, to keep the compute time for the finite di↵erence
verification manageable. Thus, we consider either 698 design variables on the crude
mesh (“mesh 1”) or 1, 236 design variables on a finer mesh (“mesh 2”). The results
are shown in Table 1. As expected, the di↵erence between dJ

1

and dJ

2

is marginal;
we thus focus on dJ

1

here. As discussed in section 4, there are quite restrictive
regularity assumptions necessary for a consistent shape derivative. Nevertheless, the
higher resolution of the finer mesh shows a direct increase in consistency under mesh
refinement, and the results indicate that the quality of the gradient more than su�ces
to compute reasonable descent directions if the mesh is fine enough.

Table 1
Finite di↵erence (FD) verification of the shape derivative (SD).

Mesh 1 Mesh 2
Cells 8, 356 49, 648
Vertices 2, 337 11, 232
Variable vertices 698 1, 236

`
2

-norm SD 0.01404 0.01315
`
2

-norm FD 0.01353 0.01276
`
2

-norm error 0.00125 0.00062
`1-norm SD 0.00378 0.00408
`1-norm FD 0.00365 0.00376
`1-norm error 0.00050 0.00032
`
1

-norm SD 0.11000 0.11293
`
1

-norm FD 0.10821 0.11109
`
1

-norm error 0.00821 0.00499

7. Optimization.

7.1. Preliminaries. When using a boundary representation for the shape deriv-
ative, a steepest descent algorithm for the shape optimization problem at hand can
simply be implemented by

(27) �k+1

horn

= {x� ✏ ·G(x) · n(x) : x 2 �k

horn

},

where ✏ is the step length of the gradient descent scheme, k denotes the iteration
counter, and the normal derivative of the objective with respect to shape perturbations
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B930 STEPHAN SCHMIDT, EDDIE WADBRO, AND MARTIN BERGGREN

can be identified from expression (52), that is,

(28) G(x) =

Z
T

0

2c div (p(t, x)u⇤(t, x)) dt.

Due to the boundary formulation, no additional calculations, such as the potentially
computationally costly derivative of the mesh deformation process, are necessary. Any
mesh deformation or remeshing approach can be used, and they are interchangeable
without the need to consider additional derivatives.

However, there are some geometric considerations that have not been addressed
so far. First, we would like to steer the optimization towards smooth updates in order
not to be trapped in local optima with bad performance [3] and in order to obtain
manufacturable shapes. Second, we would like the horn to attach properly to the
waveguide and end at a prescribed mouth shape. The latter condition prevents the
optimization from gradually elongating the horn; generally, the longer the horn is, the
easier it is to reduce the reflections, particularly in the low end of the target spectrum.
Both these conditions can be addressed simultaneously by calculating a smoothed
descent direction G

s

through the solution of

(29)
(���

�

+ I) ·G
s

= G on �
horn

,

G

s

= 0 on @�
horn

,

where �
�

denotes the surface or tangential Laplacian, I is the identity, and � = 0.1 is
a parameter controlling the amount of gradient smoothing. Since the left-side operator
in equation (29) is positive definite, G

s

is a descent direction if G is. More details on
the e↵ect of this gradient smoothing procedure can be found, for example, in [2, 26, 29].
The zero Dirichlet boundary condition in problem (29) is applied for nodes on the
throat interface between horn and waveguide as well as for nodes on edges constituting
the mouth, fixing those edges as discussed above.

Although the use of G
s

in the optimization algorithm yields smooth updates and
forces the horn to attach to the throat and the mouth, it does not necessarily lead to
a good discretization of the unknown surface, meaning that very often surface nodes
start to cluster, thereby creating a poor discretization and low quality discontinuous
Galerkin mesh, possibly with inverted surface elements. The descent direction (52)
is invariant under tangential modifications of V . Therefore, we can use the excess
degree of freedom in the tangent plane to reparametrize the discretization of the
surface by moving nodes in tangential direction r

1

(x) · ⌧
1

(x)+ r

2

(x) · ⌧
2

(x), where ⌧
i

(x)
describes a consistent choice of basis vectors of the tangent plane at x and r

i

(x) 2 R,
such that a locally even spacing of vertices is achieved in each optimization iteration.
Such a tangential reparameterization is achieved by successively moving the surface
vertices to the centroid of the corresponding Voronoi cell of the dual mesh, projected
into the tangent plane. Because the centroidal Voronoi tessellation (CVT) can be
interpreted as the dual of the Delaunay triangulation [9, 12], this approach can be
thought of as turning the Delaunay remeshing procedure into a mesh deformation
scheme by only relocating nodes but not changing connectivity. More information on
the reparameterization and mesh deformation approach can be found in [24]. After
ensuring the quality of the surface tessellation, the volume mesh is made to match
the new horn boundary by solving a noncoupled componentwise Laplace equation
for the mesh node displacements with a dampening coe�cient of 0.1. Deforming the
volume mesh o↵ers several advantages over remeshing, because element connectivities
and consequently the memory structure and adjoint data flow remain unchanged.
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THREE-DIMENSIONAL HORN OPTIMIZATION B931

Summarizing the above, we conduct a gradient descent by first computing the new
discretized boundary via the new node positions

(30) �k+1

horn

: = {x� ✏ ·G
s

(x) · n(x) + r

1

(x) · ⌧
1

(x) + r

2

(x) · ⌧
2

(x) : x 2 �k

horn

},

and we afterwards make the volume mesh match this boundary by solving uncoupled
Laplace equations for the mesh node displacements in the volume. Thus, based on the
current surface mesh �k

horn

, we apply a descent step in the normal direction together
with a tangential reparameterization, such that the nodes of �k+1

horn

adhere to the CVT
criterion, making equation (30) partly implicit with respect to determining r

i

(x). This
procedure works without an analytic description of the surface, such as B-splines or
NURBS, which would be necessary for a redistribution via remeshing, and our scheme
works completely on the discretized level.

As a stopping criterion, we use the size of the L2(�
horn

)-norm of the smoothed gra-
dient, a condition that yields a first-order necessary condition, including the geometric
constraints at throat and mouth, and that also measures the actual deformation not
including the tangential repair.

7.2. Numerical results. We demonstrate the feasibility of our methodology by
an application to a large-scale horn optimization problem of practical relevance and
of a kind that cannot be substituted by a 2D problem. To this end, we consider a
horn that blends a circular throat of 19.3 mm radius (same as in the verification)
into an elliptic mouth with half-axes 100 mm and 60 mm, respectively. The throat
dimension is suitable for mounting a standard 1.5 inch compression driver, a type of
sound source that is standard for midrange acoustic horns, and the elliptic mouth is
chosen to obtain a priori directivity di↵erences in the horizontal and vertical directions.
The blending between throat and mouth is linear for the starting geometry. The sinc
pulse—and therefore the spectrum to optimize for—is the same as for the validation
calculations above.

We use a high density mesh surpassing the quality of the finest mesh, “Mesh 2,”
from the finite di↵erence and the forward solver verification tests by using 121, 631 cells
and a total of 25, 118 vertices for a physically smaller geometry. Thus, the shortest edge
is 1.1984 mm, the longest edge is 19.9922 mm, and the average edge length is 5.8856
mm. Physical dimensions are again the same as in “Mesh 2” from the finite di↵erence
validation, except that the mouth of the horn is not circular but ellipsoidal, with the
vertical radius of the opening scaled to 60%. This leads to the optimization of 1, 762
node positions constituting the mantle surface. Using a time-step of 2.5 · 10�6 seconds,
we operate at roughly 40% of the maximum step length allowed by the CFL criterion.
Each simulation then conducts 1, 798 time-steps until an end time of 4.4975 · 10�3

seconds. This amounts to 1, 946, 096 quarter domain state unknowns per time-step, or
3, 499, 080, 608 unknowns to be determined in total. To compute the adjoint forcing
and the shape derivative, we reduce this data to 437, 992, 800 unknowns by utilizing
the boundary representation of the shape derivative, not storing unnecessary volume
data. Thus, for each optimization step, we have to be able to handle at least 3.26 GB
of double precision data instead of 26 TB for the full trajectory, excluding additional
RAM necessary for the preconditioned Krylov solvers needed to solve the implicit
system at each time-step. The optimization is conducted fully parallel on 48 cores of
a four-node Intel Xeon E5-2630 workstation running at a clock speed of 2.30 GHz,
which results in roughly 40 minutes total wall clock time per optimization iteration.
Beginning from an objective function value of J = 5.875 · 10�7 and an initial L2-norm
of the smoothed gradient of 2.889 · 10�5, we need 1, 789 optimization steps until the
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B932 STEPHAN SCHMIDT, EDDIE WADBRO, AND MARTIN BERGGREN

Fig. 5. Isoperimetric, top, and side views of the elliptic test-case. Starting guess to the left,
and final shape to the right.
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Fig. 6. Left: Magnitude reflection spectra of the initial (dashed lines) as well as the optimized
(solid lines) horn. Right: E↵ective radii of the initial (dashed lines) as well as the optimized (solid
lines) horn.

L

2-norm of the smoothed gradient falls below 1.5 · 10�8, terminating at an objective
function value of J = 6.048 ·10�9. In total, the optimization required a total of roughly
57, 248 CPU hours, including parallel overhead. Figure 5 shows the initial (left) as
well as the optimized (right) horn shapes.

Magnitude reflection spectra are shown in Figure 6. The spectrum of the optimized
horn with its nonintuitive shape is a substantial improvement over the initial geometry
over the whole frequency band prescribed by the incoming sinc pulse, with some
frequencies actually having a reflection coe�cient of almost zero. Figure 6 also shows
the e↵ective radii, that is, the radii that would give cylindrically symmetric horns
of the same cross-sectional area as the one considered here. The optimized horn’s
cross-sectional area grows in the axial direction and avoids the sharp edge at the throat,
which the initial horn exhibits. The behavior of the e↵ective radii changes character
a few centimeters from the horn mouth (approximately at z = 0.13 m) where the
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THREE-DIMENSIONAL HORN OPTIMIZATION B933

e↵ective radius quickly increases and then levels out. This is most likely an interesting
end e↵ect that stems from the imposed fixed rim of the horn mouth.

8. Discussion and outlook. To the best of our knowledge, this is the first time
that numerical shape optimization has been used for detailed design of an acoustic
horn using full 3D time domain modeling. The characteristic decomposition of the
acoustic power density is a key ingredient in our approach; it is used both to define
the objective function for the optimization and to obtain stable numerical fluxes in
the numerical method. Another key ingredient is the surface representation of the
objective function gradient, which limits the need for storage of time histories of the
primal and adjoint variables to layers of the design and inlet boundary. The alternative,
to rely on exact gradients to the discrete objective function, would involve the time
history of the fields throughout the domain, which would require excessive storage
and would also necessitate access to derivatives of the mesh deformation scheme. In
particular, for the mesh used here, our use of a surface representation of the gradient
implies a data reduction from 26 TB to 3.26 GB. Smoothness requirements on the
design updates as well as the fixed throat and mouth geometries are imposed through
use of the Laplace–Beltrami operator.

Being able to optimize complex 3D geometries in a time-domain formulation will
enable the consideration of more challenging objective functions in the future, such as
impedance matching to a specific source and requirements on the far-field radiation
pattern.

Appendix A. Sensitivity analysis.

A.1. Basic formulas. Let ⌦ denote an open and bounded domain in R3, and
let � ⇢ @⌦. We will di↵erentiate integrals of the types

(31) J

1

(⌦) =

Z

⌦

f dx, J

2

(⌦) =

Z

�

h d�

with respect to domain variations generated by a smooth vector field V : R3 ! R3. A
family of deformed domains ⌦✏ and surfaces �✏, parametrized by ✏ � 0, are generated
by the formula x

✏

= x+ ✏V (x) for x 2 ⌦ or x 2 �. We consider families of functions f
✏

and h

✏

defined on ⌦✏ and �✏, where f = f

0

and h = h

0

, and define shape derivatives
of integrals (31) as

dJ

1

(⌦)[V ] = lim
✏!0

+

1

✏

✓Z

⌦

✏

f

✏

dx�
Z

⌦

f dx

◆
=:

d

+

d✏

Z

⌦

✏

f

✏

dx

✏=0

,(32a)

dJ

2

(⌦)[V ] = lim
✏!0

+

1

✏

✓Z

�

✏

h

✏

d��
Z

�

h d�

◆
=:

d

+

d✏

Z

�

✏

h

✏

d�
✏=0

(32b)

if the limits exist. The material derivative of function families f
✏

and h

✏

at ✏ = 0 is
defined as

ḟ [V ](x) = lim
✏!0

+

f

✏

�
x+ ✏V (x)

�
� f(x)

✏

,(33a)

ḣ[V ](x) = lim
✏!0

+

h

✏

�
x+ ✏V (x)

�
� h(x)

✏

,(33b)

if the limits exist, and the shape derivative of the families is defined as

f

0[V ] = ḟ [V ]�
⌦
V,rf

↵
,(34a)

h

0[V ] = ḣ[V ]�
⌦
V,rh

↵
.(34b)
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B934 STEPHAN SCHMIDT, EDDIE WADBRO, AND MARTIN BERGGREN

Remark 1. An often used alternative characterization of the shape derivative is
the partial derivatives with respect to ✏; that is, for fixed x, we have

f

0[V ](x) = lim
✏!0

f

✏

(x)� f(x)

✏

,(35a)

h

0[V ](x) = lim
✏!0

h

✏

(x)� h(x)

✏

,(35b)

which can be obtained by a Taylor expansion of f
✏

and h

✏

in definitions (33). However,
a complicating factor with characterizations (35) is that the arguments of f

✏

of h
✏

in
expressions (35) are not necessarily in the domains of definition ⌦✏, �✏ of the functions.

Sokolowski and Zolésio [28, sect. 2.31] prove the following formula for shape
derivative (32a) under the assumptions that ⌦ is of class Ck, k � 1, and that f , f 0[V ],
and krfk are all in L

1(⌦):

(36) dJ

1

(⌦)[V ] =

Z

⌦

f

0[V ] + div (V f) dx =

Z

⌦

f

0[V ] dx+

Z

@⌦

hV, nif d�.

We will consider shape derivative (32b) in the following three cases:
(i) hV, ni ⌘ 0 on � ⇢ @⌦.
(ii) h(x) =

⌦
h̃(x), n(x)

↵
, � = @⌦, n is the outward-directed normal field on �, and

h̃ is the trace of a vector-valued function in ⌦ whose divergence satisfies the
conditions for f assumed for formula (36).

(iii) Conditions as for case (ii), but � ⇢ @⌦ such that hV, ni ⌘ 0 on @⌦ \ �.
For these cases, the formula

(37) dJ

2

(⌦)[V ] =

8
>>><

>>>:

Z

�

h

0[V ] d� in case (i),

Z

�

⌦
h̃

0[V ], n
↵
+ hV, ni div h̃ d� in cases (ii) and (iii)

holds, where div h̃ inside the boundary integral denotes the trace on � of the divergence
of h̃ in ⌦. In case (i), �✏ = �, so the formula follows immediately by definitions (33b)
and (34b) as long as h0[V ] exists and is integrable. In case (ii), the divergence theorem
and the substitution f = div h̃ turn integral J

2

into a domain integral of J
1

type.
Formula (37) then follows from expression (36) using the divergence theorem and the
fact that the shape derivative and the spatial gradient commute. The formula for case
(iii) follows from cases (i) and (ii).

Remark 2. Due to the particular integral form of the state equation used in
Appendix A.2, the conditions of cases (i) and (ii) will be satisfied, and shape derivative
formulas (36) and (37) are all that are needed. However, if the hard wall boundary
condition on �

horn

is imposed in a di↵erent way, for instance through an upwinding flux
together with a remote mirrored state, as discussed in section 5, the linear structure
assumed in cases (ii) and (iii) does not hold, and a formula admitting a more general
form of the integrand h in integral J

2

is needed. A more general form is obtained
by considering a family, parameterized by ✏, of functions ĥ

✏

defined on ⌦
✏ ⇥ ⌦

✏

, and
defining the integrand in J

2

to be h

✏

(x
✏

) = ĥ

✏

(x
✏

, n

✏

(x
✏

)) for x

✏

2 �✏. The shape
derivative formula then becomes

(38) dJ

2

(⌦)[V ] =

Z

�

ĥ

0[V ] + hV, ni
⇣⌦
rĥ, n

↵
+ 

�
ĥ� hr

y

ĥ, ni
�
+ div

�

�
r

y

ĥ

�⌘
d�,
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THREE-DIMENSIONAL HORN OPTIMIZATION B935

where  is the local mean curvature, r and div
�

the gradient and the tangential
divergence with respect to the first argument of ĥ, and r

y

the gradient with respect
to the second argument. Formula (38) is a special case of Lemma 3.3.14 in the first
author’s Ph. D. thesis [23]. To the best of our knowledge, this formula does not appear
anywhere else in the open literature.

A.2. Shape derivatives and the adjoint system. We consider the objective
function (9), where u, p satisfy initial–boundary-value problem (6). We require that
the vector field V that generates the domain variations, as described above, vanishes
on @⌦ \ �

horn

. This field V will generate a family of perturbed domains ⌦✏ for which
the horn boundary �✏

horn

is perturbed. However, the rest of the boundary, @⌦ \ �✏

horn

,
will be fixed independent of ✏.

Di↵erentiating objective function (9), using formula (37), and utilizing that V

vanishes on �
in

, we get

(39) dJ(⌦)[V ] =

Z
T

0

Z

�in

�
p+ chu, ni

��
p

0[V ] + chu0[V ], ni
�
d� dt.

In order to continue, we need to determine how the shape derivatives p0[V ], u0[V ]
in expression (39) depend on V . We will therefore di↵erentiate the state equation with
respect to domain perturbations. To prepare for the use of formulas (36) and (37), we
first rewrite state equation (6) in the integral form

(40)

c

Z

⌦

hv, @
t

u+rpi dx+
1

c

Z

⌦

q(@
t

p+ c

2div u) dx� c

Z

�s

qhu, ni d�

+
1

2

Z

�inout

(q � chv, ni)(p� chu, ni) d� =

Z

�in

(q � chv, ni)g d�,

where �
s

= �
wall

[ �
symm

and �
inout

= �
in

[ �
out

, and where v and q are arbitrary
smooth test functions.

Remark 3. It is immediate, by inspection, that integral form (40) is consistent

with system (6); that is, solutions to system (6) satisfy expression (40) for any smooth
test functions. Moreover, integral form (40) is designed to satisfy a stability property,
namely that the acoustic energy decreases with time when no input is provided to the
systems. That is, for g = 0,

(41)
c

2

d

dt

Z

⌦

|u|2 dx+
1

2c

d

dt

Z

⌦

p

2

dx+
1

2

Z

�inout

�
p

2 + c

2hu, ni2
�
d� = 0,

which can be seen by substituting v = u, q = p into equation (40), using the product
rule, and integrating by parts.

Let v = u

⇤, q = �p

⇤ in (40) for some arbitrary smooth functions u⇤ and p

⇤ (these
will later be chosen to satisfy the adjoint equation). Integrating in time over an interval
(0, T ) yields

(42)

0 = c

Z
T

0

Z

⌦

hu⇤
, @

t

u+rpi dx dt� 1

c

Z
T

0

Z

⌦

p

⇤(@
t

p+ c

2div u) dx dt

+ c

Z
T

0

Z

�s

p

⇤hu, ni d� dt� 1

2

Z
T

0

Z

�inout

(p⇤ + chu⇤
, ni)(p� chu, ni) d� dt

+

Z
T

0

Z

�in

(p⇤ + chu⇤
, ni)g d� dt.
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B936 STEPHAN SCHMIDT, EDDIE WADBRO, AND MARTIN BERGGREN

Now assume that the domain ⌦ is perturbed by domain variations generated by a
vector field V , chosen as described above. We denote by subscript ✏ on the state and co-
state variables the solutions associated with the perturbed domain ⌦✏. Di↵erentiating
equation (42) with respect to a domain variation generated by V results in

(43)

0 = c

d

+

d✏

Z
T

0

Z

⌦

✏

hu⇤
✏

, @

t

u

✏

+rp

✏

i dx dt
✏=0

� 1

c

d

+

d✏

Z
T

0

Z

⌦

✏

p

⇤
✏

(@
t

p

✏

+ c

2div u

✏

) dx dt
✏=0

+ c

d

+

d✏

Z
T

0

Z

�

✏
s

p

⇤
✏

hu
✏

, ni d� dt

✏=0

� 1

2

d

+

d✏

Z
T

0

Z

�inout

(p⇤
✏

+ chu⇤
✏

, ni)(p
✏

� chu
✏

, ni) d� dt

✏=0

+
d

+

d✏

Z
T

0

Z

�in

(p⇤
✏

+ chu⇤
✏

, ni)g d� dt

✏=0

.

Applying formulas (36) and (37), where case (i) applies to �
inout

and �
in

and case (iii)
to �

s

, together with the product rule of di↵erentiation and the fact that the shape
derivative commutes with time and spatial di↵erentiation, yields that expression (43)
expands to

0 = c

Z
T

0

Z

⌦

hu⇤0
, @

t

u+rpi dx dt� 1

c

Z
T

0

Z

⌦

p

⇤0(@
t

p+ c

2div u) dx dt

+ c

Z
T

0

Z

�s

p

⇤0hu, ni d� dt� 1

2

Z
T

0

Z

�inout

(p⇤0 + chu⇤0
, ni)(p� chu, ni) d� dt

+

Z
T

0

Z

�in

(p⇤0 + chu⇤0
, ni)g d� dt

(44)

+ c

Z
T

0

Z

⌦

hu⇤
, @

t

u

0 +rp

0i dx dt� 1

c

Z
T

0

Z

⌦

p

⇤(@
t

p

0 + c

2div u

0) dx dt

+ c

Z
T

0

Z

�s

p

⇤hu0
, ni d� dt� 1

2

Z
T

0

Z

�inout

(p⇤ + chu⇤
, ni)(p0 � chu0

, ni) d� dt

+ c

Z
T

0

Z

�horn

hV, nihu⇤
, @

t

u+rpi d� dt

� 1

c

Z
T

0

Z

�horn

hV, nip⇤(@
t

p+ c

2div u) d� dt+ c

Z
T

0

Z

�horn

hV, ni div (up⇤) d� dt,

where the dependency on V of the shape derivatives has been suppressed for brevity.
The first five terms in expression (44) vanish identically since u, p satisfy expression

(42). Moreover, provided that u, p, and �
horn

are regular enough, terms 10 and 11 in
expression (44) will also vanish identically, due to state equation (6). (A su�cient
regularity condition is that u and p as well as their derivatives can be continuously
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THREE-DIMENSIONAL HORN OPTIMIZATION B937

extended up to �
horn

.) Reducing these terms from expression (44) yields

(45)

0 = c

Z
T

0

Z

⌦

hu⇤
, @

t

u

0 +rp

0i dx dt� 1

c

Z
T

0

Z

⌦

p

⇤(@
t

p

0 + c

2div u

0) dx dt

+ c

Z
T

0

Z

�s

p

⇤hu0
, ni d� dt� 1

2

Z
T

0

Z

�inout

(p⇤ + chu⇤
, ni)(p0 � chu0

, ni) d� dt

+ c

Z
T

0

Z

�horn

hV, ni div (up⇤) d� dt.

By integrating hu⇤
, @

t

u

0i by parts in time and integrating hu⇤
,rp

0i by parts in space,
we can write the first term in expression (45) as

(46)

c

Z
T

0

Z

⌦

hu⇤
, @

t

u

0 +rp

0i dx dt = c

Z

⌦

hu0(T ), u⇤(T )i dx� c

Z
T

0

Z

⌦

hu0
, @

t

u

⇤i dx dt

+ c

Z
T

0

Z

@⌦

p

0hu⇤
, ni d� dt� c

Z
T

0

Z

⌦

p

0 div u

⇤
dx dt,

where we have used that u

0|
t=0

and p

0|
t=0

vanish due to the homogeneous initial
conditions for state equation (6). Similarly, by integrating p

⇤
@

t

p

0 by parts in time and
integrating p

⇤div u

0 by parts in space, the second term in expression (45) becomes

(47)

1

c

Z
T

0

Z

⌦

p

⇤(@
t

p

0 + c

2div u

0) dx dt =
1

c

Z

⌦

p

0(T )p⇤(T ) dx� 1

c

Z
T

0

Z

⌦

p

0
@

t

p

⇤
dx dt

+ c

Z
T

0

Z

@⌦

hu0
, nip⇤ d� dt� c

Z
T

0

Z

⌦

hu0
,rp

⇤i dx dt.

Substituting expressions (46) and (47) into expression (45) and recombining the terms
using that @⌦ = �

s

[ �
inout

, we find that

0 = c

Z

⌦

hu0(T ), u⇤(T )i dx+ c

Z
T

0

Z

⌦

hu0
,�@

t

u

⇤ +rp

⇤i dx dt

� 1

c

Z

⌦

p

0(T )p⇤(T ) dx� 1

c

Z
T

0

Z

⌦

p

0(�@

t

p

⇤ + c

2div u

⇤) dx dt

+ c

Z
T

0

Z

�s

p

0hu⇤
, ni d� dt� 1

2

Z
T

0

Z

�inout

�
p

⇤ � chu⇤
, ni

��
p

0 + chu0
, ni

�
d� dt(48)

+ c

Z
T

0

Z

�horn

hV, ni div (up⇤) d� dt.

So far functions p⇤, u⇤ have been arbitrary. However, if we assume that they satisfy
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the adjoint system

(49)

�@u

⇤

@t

+rp

⇤ = 0 in ⌦ for t < T ,

�@p

⇤

@t

+ c

2div u

⇤ = 0 in ⌦ for t < T ,

1

2
(p⇤ � chu⇤

, ni) = 1

2
(p+ chu, ni) on �

in

for t < T ,

1

2
(p⇤ � chu⇤

, ni) = 0 on �
out

for t < T ,

hu⇤
, ni = 0 on �

wall

[ �
symm

for t < T ,

u

⇤ ⌘ 0 in ⌦ at t = T ,

p

⇤ ⌘ 0 in ⌦ at t = T ,

expression (48) reduces to

(50)
1

2

Z
T

0

Z

�in

�
p+ chu, ni

��
p

0 + chu0
, ni

�
d� dt = c

Z
T

0

Z

�horn

hV, ni div (up⇤) d� dt,

which, combined with expression (39), means that the shape derivate can be given by
the integral representation

(51) dJ(�
horn

)[V ] = 2c

Z
T

0

Z

�horn

hV, ni div (up⇤) d� dt.

Remark 4. The shape derivative representation can also be written as

(52) dJ(�
horn

)[V ] = 2c

Z
T

0

Z

�horn

hV, ni div (u⇤
p) d� dt.

This alternative expression can be derived as follows:

Z
T

0

Z

�horn

hV, ni div (up⇤) d� dt =

Z
T

0

Z

�horn

hV, ni (hu,rp

⇤i+ p

⇤div u) d� dt

=

Z
T

0

Z

�horn

hV, ni
✓
hu, @

t

u

⇤i � 1

c

2

p

⇤
@

t

p

◆
d� dt

= �
Z

T

0

Z

�horn

hV, ni
✓
h@

t

u, u

⇤i � 1

c

2

@

t

p

⇤
p

◆
d� dt(53)

=

Z
T

0

Z

�horn

hV, ni (hrp, u

⇤i+ p div u

⇤) d� dt =

Z
T

0

Z

�horn

hV, ni div (pu⇤) d� dt,

where the state (6) and adjoint (49) equations have been used in the second and
fourth equalities, and integration by part in time in the third equality, where also the
homogeneous initial (or terminal) conditions for u, u⇤, p, and p

⇤ have been exploited.
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