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Fixed-mesh curvature-parameterized shape optimization of an
acoustic horn

Fotios Kasolis · Eddie Wadbro · Martin Berggren

Abstract We suggest a boundary shape optimization ap-
proach in which the optimization is carried out on the
coefficients in a boundary parameterization based on a
local, discrete curvature. A fixed mesh is used to numer-
ically solve the governing equations, in which the geom-
etry is represented through inhomogeneous coefficients,
similarly as done in the material distribution approach to
topology optimization. The method is applied to the op-
timization of an acoustic horn in two space dimensions.
Numerical experiments show that this method can calcu-
late the horn’s transmission properties as accurately as a
traditional, body-fitted approach. Moreover, the use of a
fixed mesh allows the optimization to create shapes that
would be difficult to handle with a traditional approach
that uses deformations of a body-fitted mesh. The param-
eterization inherently promotes smooth designs without
unduly restriction of the design flexibility. The optimized,
smooth horns consistently show favorable transmission
properties.

Keywords shape optimization, material distribution
approach, acoustic horns, Helmholtz equation

1 Introduction

Boundary shape optimization is a powerful technique, par-
ticularly useful for the final engineering design of compo-
nents subject to, for instance, mechanical or electromag-
netic performance requirements [15,17,22,25]. Gradient-
based boundary shape optimization, which is what we con-
sider here, typically relies on a calculus of variation with
respect to a set of parameters that governs displacements
of the boundary with respect to a given reference domain.
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We now discuss principles that we believe are important
when constructing such a parameterization.

Unwise parameterization choices may cause the op-
timization algorithm to produce oscillatory or otherwise
ragged shapes. For instance, disastrous results is usually
obtained when individual displacements of the mesh ver-
tices at the boundary are directly used as design variables,
as demonstrated by Bängtsson et al. [3, Figs. 9, 12] for an
acoustics problem of the type considered in this article,
Haftka & Grandhi [16, Fig. 2] for a problem from linear elas-
ticity, and Mohammadi & Pironneau [25, Fig. 5.1] for an
airfoil optimization problem. One reason for the appear-
ance of ragged shapes is that some locations on the design
boundary are typically much more sensitive to local bound-
ary displacements than others. Such differences in sensi-
tivity tend to initiate ragged designs, if individual mesh
vertex displacements are used as design variables. This
problem can be seen in two of the examples mentioned
above, Bängtsson et al. [3, Figs. 9, 12], and Mohammadi &
Pironneau [25, Fig. 5.1].

Another cause of ragged shapes is the often low sensi-
tivity for oscillatory perturbations of the design boundary
in many physically relevant objective functions. That is, the
difference in objective function values can be very small
between a smooth shape and one containing oscillatory
perturbations on the mesh-point level. The low sensitiv-
ity means that the optimization algorithm may not flatten
out oscillatory shapes that may appear in intermediate de-
sign steps. The example by Haftka & Grandhi [16, Fig. 2]
demonstrates the appearance of such wavy shapes.

A common approach to tackle the problem of ragged or
oscillatory boundary shapes is to prevent them by drasti-
cally reducing the number of design variables and optimize
over, say a handful of control points in a spline representa-
tion of the boundary. Although this approach may be useful
in some cases, it somewhat defies the purpose of numerical
boundary shape optimization; searching through a design
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space spanned by a handful of design variables may as well
be done manually by trial and error, and unexpected but
successful shapes can easily be missed.

Another way to adress the problem of ragged bound-
ary shapes, and a better one in our opinion, is through a
smoothing strategy [20], [25, § 5.2]. In this approach, the
boundary displacements are indirectly specified through
the solution of an elliptic differential equation, whose forc-
ing term is the actual design variables. This strategy was
used in the previous horn-optimization studies mentioned
above [3,28,34].

A different viewpoint to the issue of ragged boundary
shapes is to consider the metric that is provided, or implic-
itly assumed, in the optimization problem. The idea be-
hind gradient-based optimization algorithms is to progress
though a sequence of small parameter changes, using local
approximations, typically linear or quadratic, of the objec-
tive function and constraints. The qualifiers “small” and “lo-
cal” indicate the intrinsic reliance on a metric. The metric
used in practical implementations of standard optimiza-
tion algorithms is almost always derived from the norm
associated with the dot product of the parameters. Assume
now that the design variables are individual displacements
of all the boundary mesh nodes. A small-amplitude oscil-
latory perturbation of the boundary constitutes a small
design perturbation in the metric deduced from the sum-
of-squares of the displacements. However, if instead the
fundamental design variables are related to a local curva-
ture, then a small perturbation of the design variables will
necessarily correspond to small changes in curvature and
hence smooth updates in the design. Such a choice of de-
sign variables does not explicitly prevent oscillatory shapes
if the design space is large enough, but more iterations will
be required to reach ragged designs compared to smooth
ones, and the algorithm will be less prone to be caught in
local minima associated with ragged shapes. In this article,
we will use this idea in the context of optimizing the flare
shape of an axially symmetric acoustic horn. We choose as
design variables the angles between successive segments
of constant length. Each such angle divided by the segment
length constitutes a discrete curvature measure. The design
smoothing strategy mentioned in the previous paragraph
can be viewed as such a change of metric [3, § 3.2].

We use a finite-element discretization of the Helmholtz
equation to model sound propagation in the acoustic horn.
An issue that then has to be addressed is how to represent
changes in the computational domain as the design bound-
ary is changed. There are basically two options. Either we
adapt the mesh to changes in the geometry, or we fix the
mesh and represent the geometry through changing co-
efficients in the equation. The first option is perhaps the
most common approach for boundary shape optimization.
The computational mesh is then regenerated or deformed

at each design cycle in order to prevent the occurrence of
invalid meshes when the boundary shape is modified. A
regeneration of the mesh is perhaps the easiest to imple-
ment, but a drawback is that the objective function and
its gradient are mesh dependant. Thus, the regeneration
creates “numerical noise” [21] that may interfere with the
optimization algorithm. Such effects can be avoided by
using a mesh deformation algorithm [25, Ch. 5]. Moreover,
by using mesh deformations, it is possible to calculate com-
pletely consistent derivatives, that is, derivatives of the dis-
crete objective function that are exact up to roundoff. The
price to pay for the consistency is the inclusion of “mesh
sensitivities”, that is the Jacobian mapping of the mesh de-
formation algorithm, in the evaluation of derivatives. The
computation of such consistent derivatives leads to a chain
of software dependencies between the different parts in
the implementation.

The second option, to keep the mesh fixed and repre-
sent geometry changes through an inhomogeneous coef-
ficient in the governing equations, is the one we employ
here. This is the same method to represent geometries as
used in the material distribution method for topology op-
timization [4]. This varying-coefficient approach is most
commonly used to enforce so-called natural boundary con-
ditions at material interfaces; typical examples are traction-
free boundaries of elastic media or, as here, sound-hard
boundaries in acoustics. The fixed mesh simplifies the im-
plementation and makes the method robust also for large
displacements, and completely consistent derivatives are
straightforward to compute. The price for the generality
and the relative simplicity of the method is the fine meshes
that are needed for a detailed geometry resolution and an
unavoidable staircasing effect at the design boundaries. For
the rather long wavelengths typical in the context of acous-
tic horns, such staircasing is however not so problematic.

The idea of mapping an explicit boundary represen-
tation to a material distribution parameter was exploited
by Norato et al. [27] for the minimum-compliance design
problem of elastic structures, and later for optics applica-
tions by Frei et al. [12–14]. The method is here tested on
an acoustical shape-optimization problem that previously
was addressed with traditional body-fitted meshes together
with a mesh deformation approach [3,28,34].

Instead of relying on an explicit geometry model for the
boundary, as we do here, several researchers instead use
implicit representations through level sets; the boundary is
assumed at the zeros of a scalar function, the level-set sur-
face. This method also allows certain topological changes,
such as the merging of unconnected regions. The level set
surface can either be constructed as a parameterized func-
tion, whose parameters are subject to optimization [12–14,
23,24], or the level set surface itself can be transported
through a Hamilton–Jacobi equation that constitutes a con-



Fixed-mesh curvature-parameterized shape optimization of an acoustic horn 3

Fig. 1 The setup for the acoustic wave propagation problem.

tinuous analogue to the steepest-descent optimization al-
gorithm [1,2,8,36].

Examples of other approaches that have been suggested
in order to utilize fixed meshes for shape optimization are
the Extended Finite Element Method (X-FEM) [10,24], a
method developed to resolve nonsmooth solution features
inside elements, and the element-free Galerkin method [5].

2 Problem statement

We consider the symmetric acoustic device, illustrated in
figure 1, consisting of a horn with a semi-infinite waveguide
attached to its left end. The device extends infinitely in the
direction normal to the plane and consists of sound-hard
walls. We assume that for the frequencies under considera-
tion, all non-planar modes are geometrically evanescent
in the waveguide. Within the waveguide, we consider a
right-going monochromatic planar wave of frequency f
and amplitude A. When the wave reaches the horn, some
portion of its energy is reflected back yielding a left-going
wave.

Under the assumption of time harmonic waves, the
acoustic pressure P can be separated as P (x, t ) =ℜ(u(x)e iωt )
and the wave equation

∂2P

∂t 2 = c2∆P (1)

reduces to the monochromatic steady-state Helmholtz equa-
tion

∆u +k2u = 0, (2)

where k =ω/c is the wave number, ω= 2π f is the angular
frequency, c is the phase velocity, u is the complex-valued
acoustic pressure, and ∆=∇·∇ denotes the Laplacian.

For the purpose of computing, we truncate the infinite
domain and we enforce its non-echoic character with a
perfectly matched layer (PML) [19]. We consider only de-
vices exhibiting mirror symmetry across a plane through
the centerline of the waveguide. We may thus restrict the
computation to the domain shown in figure 2.

LetΩ be the computational domain and let Γin denote
the left boundary of the truncated waveguide (figure 2). We

impose the radiation condition

iku + ∂u

∂n
= 2ik A on Γin, (3)

which imposes a right-going wave with amplitude A and
which absorbs the left-going planar waves; ∂u/∂n denotes
the derivative of the function u in the direction defined by
the outward directed unit normal n on Γin. Moreover, the
boundary condition

∂u

∂n
= 0 (4)

is imposed on the sound-hard walls of the device, on the
symmetry boundary Γsym, and also on Γout, since the effect
of the condition on the PML’s terminating boundary is not
significant [29]. The presence of the PML changes the state
equation (2) to

∇· (D∇u)+k2γu = 0 inΩ, (5)

where D = diag(γ2/γ1,γ1/γ2) and γ= γ1γ2 with γ1 and γ2

complex-valued functions different from unity only within
the PML [35,18].

The variational form of problem (5) with boundary con-
ditions (3) and (4) reads

find u ∈ H 1(Ω) such that∫
Ω
∇q · (D∇u)−k2

∫
Ω
γqu

+ik
∫
Γin

qu = 2ik A
∫
Γin

q, ∀q ∈ H 1(Ω),

(6)

where H 1(Ω) = {q ∈ L2(Ω) | ∂q/∂x j ∈ L2(Ω), j ∈ {1,2}}. Bram-
ble & Pasciak [6] show existence, uniqueness, and exponen-
tial convergence to the infinite exterior Helmholtz problem
for a finite PML approximation of an acoustics problem
very similar to variational problem (6). The shape of the
boundary Γd in figure 2 is subject to design. In the standard
implementation of boundary shape optimization, the com-
putational domain is modified, and it is remeshed, or the
mesh is deformed, at each design cycle. We propose a dif-
ferent approach that does not require remeshing or mesh
deformations. We assume that Γd constitutes a part of the
boundary of a domainΩd that contains a sound-hard ma-
terial, as in figure 2, and we extend the computational do-

mainΩ to Ω̂, which also includesΩd, so that Ω̂=Ω∪Ωd. By
introducing the function α : Ω̂→ {ε,1}, such that α(x) = ε

when x ∈Ωd and α(x) = 1 when x ∈Ω, with 0 ≤ ε¿ 1, we
can formulate the following extended problem:

find p ∈ H 1(Ω̂) such that∫
Ω̂
α∇q · (D∇p)−k2

∫
Ω̂
αγqp

+ik
∫
Γin

qp = 2ik A
∫
Γin

q, ∀q ∈ H 1(Ω̂).

(7)
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By choosing ε= 0 in problem (7), we recover problem (6).
However, by choosing the lower bound ε different from
zero, we will obtain a uniquely solvable problem, with no
ambiguity in the definition of p withinΩd. This strategy is
standard when using the material distribution approach
to topology optimization [4, § 1.2.1]. For strongly elliptic
state equations (in our case that would be for very small
values of k), it is known that pε|Ω → p, where pε is the ε-
perturbed problem on Ω̂ and p the original solution onΩ,
with a convergence rate of ε in H 1(Ω) [37]. We do not know
of any error analysis for the general Helmholtz equation,
but in § 6, we numerically check in a “typical” case that the
errors are reasonably small.

A major difference between topology optimization and
our approach is that in topology optimization, an optimal
distribution of material in a given domain is sought, mean-
ing that the function α is the design variable. Since we
aim for boundary shape optimization, the function α only
serves as an intermediate step that enables the utilization
of the equation’s coefficients to represent the geometry of
the horn.

We are interested in finding the horn shape that mini-
mizes the reflections measured on Γin. Thus we introduce
the function Jk defined as the absolute ratio between the
amplitude of a left and a right-going wave,

Jk (α) = |〈p〉in − A|
|A| , (8)

where k denotes the wave number we optimize for and
〈p〉in denotes the average value of p measured on Γin, that
is

〈p〉in = 1

|Γin|
∫
Γin

p. (9)

Given a generic parameterization of the design boundary
Γd ⊂ ∂Ωd with control variable ϑ, and a setΘ of admissible
designs, the optimization problem is formulated as

min
ϑ∈Θ

J (α(ϑ)) = 1

2

∑
k∈K

J 2
k (α(ϑ))+ µ

2
‖ϑ‖2, (10)

where K denotes the set of the wave numbers subject to
optimization and the term µ‖ϑ‖2/2 with µ≥ 0 introduces a
so-called Tikhonov regularization, which for µ> 0 can be
used to balance the need for small Jk and small values of
the design variables.

3 Discretization

The state equation (7) is discretized using the Finite Ele-
ment Method (FEM). For that purpose we use a structured
grid consisting of M square elements E j of side length h.

Fig. 2 The truncated computational domain.

Furthermore, we introduce Dh , γh , and αh , the element-
wise constant representations of D, γ, and α, respectively.
The discretized variational form of problem (7) reads

find ph ∈Vh ⊂ H 1(Ω̂) such that∫
Ω̂
αh∇qh · (Dh∇ph)−k2

∫
Ω̂
αhγh qh ph

+ik
∫
Γin

qh ph = 2ik A
∫
Γin

qh , ∀qh ∈Vh ,

(11)

where the space Vh consists of continuous, element-wise
bi-quadratic functions. The FE solution ph can be written
as

ph =
N∑

j=1
p jϕ j , (12)

where N is the number of degrees of freedom, p j are the
the nodal values, and ϕ j are the basis functions of Vh , that
is Vh = span{φ j }, j = 1, . . . , N . The variational problem (11)
can be written, using matrix notation, in the form(
K(αh)−k2M(αh)+ ikB

)
p = 2ik ABe, (13)

where p = (
p1, . . . , pN

)T and e = (1, . . . ,1)T are vectors of
length N , and

Ki j =
∫
Ω̂
αh∇ϕi · (Dh∇ϕ j ), Mi j =

∫
Ω̂
αhγhϕiϕ j ,

Bi j =
∫
Γin

ϕiϕ j ,
(14)

are the components of the corresponding N ×N matrices.

4 Design boundary parameterization

The choice of parameterization is significant in design op-
timization since the parameterization limits the feasible
shapes. In general, this means that different parameteriza-
tions lead to different optimal shapes. Here, we suggest a
parameterization based on a discrete curvature.

Let Γd be the design boundary illustrated in figures 2
and 3. We assume that the horn flare Γd is a polygon that
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Fig. 3 The back side of the horn is generated by linear interpolation
of the points w(n j +n j+1)/2, where w is a constant and n j and n j+1

are the normals to the segments j and j +1, respectively.

comprises S line segments, all of length `. We assign the
angle differences ϑ j between the segments j and j − 1,
j = 1, . . . ,S, as our design variables; the zeroth segment cor-
responds to the waveguide. The quantity ϑ j /` corresponds
to a local discrete curvature of Γd.

Computational experience suggests that the reflections
at Γin are not sensitive to the shape of the back side ∂Ωd\Γd

of the horn. Thus, the benefit from an independent con-
trol of the back side of the horn is negligible. For that rea-
son, ∂Ωd\Γd is formed by linear interpolation of the points
w(n j +n j+1)/2, where n j and n j+1 are the normals to the
segments j and j +1, respectively, and w is a parameter
guiding the material thickness. Note that, as shown in fig-
ure 3, this construction causes the actual thickness of the
horn to vary slightly depending on the value of the control
variables ϑ j .

In our numerical experiments, we define ∂Ωd such that
∂Ωd ∩En is a straight line segment for all elements such
thatΩd ∩En 6= ;. This will constitute an approximation of
the earlier description of ∂Ωd as a sequence of segments of
length ` for the case when different segments meet at an
angle inside the element. However, since in all numerical
experiments, the segment length ` is much longer than ele-
ment size h, the effects of this approximation will be minor;
only the elements in which two segments meet inside the
element will be (slightly) affected.

Having constructed the design domainΩd, we define
the element-wise constant material function αh over Ω̂ by

αn =αh
∣∣
En

= 1+ (ε−1)
|En ∩Ωd|

|En |
, n ∈ {1,2, . . . , M }, (15)

where En denotes the nth element of the computational
mesh and | · | denotes the area occupied by the correspond-
ing set. To compute the constant values αn according to
expression (15), we first traverse the boundary ∂Ωd and
compute the areas |En ∩Ωd|, as briefly described below, for
each element intersected by the boundary. For elements
En not being intersected by the boundary ∂Ωd, En ∩Ωd is
either En or ;.

Let Er be the reference element [0,1] × [0,1] and as-
sume that ∂Ωd is postively oriented. For each element

Fig. 4 The values of the area |En ∩Ωd| used to find the values αn of
the characteristic function αh for a segment of the design boundary
Γd with slope 2/3 on a grid that consists of elements of side length
h = 1.

En intersected by the boundary, we define an affine map
Tn : En → Er consisting of a scaling, a rotation, and a trans-
lation. There are several possible choices of Tn ; here, we
choose Tn such that Tn∂Ωd is positively oriented and en-
ters Er from the left side. Once, we have Tn , we invoke
a routine that calculates |Er ∩Tn (Ωd) |. When we trans-
verse the boundary, in addition to computing the relative
areas |En ∩Ωd|/|En |, we also record the points at which
the boundary enters and exits the element En . The above
boundary sweep takes case of all elements En such that
En ∩∂Ωd 6= ;. For all other elements, we have that either
En ⊂Ω or En ⊂Ωd and thus by expression (15) αn is either
1 or ε.

The computational complexity of the boundary sweep
described above is linear in the number of elements in-
tersecting the boundary. Thus, the overall complexity of
computing or updating the pixel values αn is at most linear
in number of elements inΩd. In our implementation, the
time spend to compute and update these pixel values is
negligible in comparision to the time required to assemble
and solve the linear system (13).

5 Sensitivity analysis

Our optimization problem, the discrete version of prob-
lem (10), is a non-linear least-squares problem, which we
solve using a gradient-based method with a Gauss–Newton
Hessian approximation [26, Ch. 10]. Such a Hessian ap-
proximation requires gradients of each component of the
objective function. The objective function in problem (10)
comprises a Tichonov regularization term plus a sum of
functions J 2

k , where k represents a wave number we op-
timize for and Jk measures, as defined in expression (8),
the relative amplitude of the reflected wave. The square
amplitude of the reflected wave can be written

J 2
k (αh) = |〈ph〉in − A|2

|A|2 = 1

|A|2
(

f 2
1,k (αh)+ f 2

2,k (αh)
)

, (16)

where

f1,k (αh) =ℜ(〈ph〉in − A
)

(17)
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and

f2,k (αh) =ℑ(〈ph〉in − A
)
, (18)

respectively. Here, ph is the solution of discrete state prob-
lem (11) with the current design αh and wave number k.
That is, our objective function can be written as the sum
of squares of functions of the type f1,k and f2,k above plus
the Tichonov term. The gradient of the Tichonov term with
respect to the design variables is immediate. The real and
imaginary part of the complex amplitude 〈ph〉in − A of the
reflected wave depend on the design variable ϑ j through
the function αh . Let fi ,k (θ j ) = fi ,k (αh(θ j )). By the chain
rule, we have that

∂fi ,k

∂ϑ j
=

M∑
n=1

∂ fi ,k

∂αn

∂αn

∂ϑ j
for i = 1,2. (19)

5.1 Variations with respect to material changes

Let αh be a given, element-constant, positive function in
problem (11) representing the current design, and let δαh

be an arbitrary variation of αh . The first variation of f1,k

and f2,k are given by

δ f1,k (αh) = δℜ(〈ph〉in − A) =ℜ(〈δph〉in),

δ f2,k (αh) = δℑ(〈ph〉in − A) =ℑ(〈δph〉in),
(20)

where δph is the first variation of ph corresponding to δαh .
To compute 〈δph〉in, we take the variations of the discrete
state equation (11) with respect to δαh and get that∫
Ω̂
δαh∇qh · (D∇ph)+

∫
Ω̂
αh∇qh · (D∇δph)

−k2
∫
Ω̂
δαhγqh ph −k2

∫
Ω̂
αhγqh δph

+ik
∫
Γin

qh δph = 0

(21)

holds for all qh ∈ Vh . In particular, the above expression
holds for qh = ph . Taking into consideration that the matrix
D is diagonal, setting qh = ph , and rearranging the terms
yields that∫
Ω̂
αh∇ph · (D∇δph)−k2

∫
Ω̂
αhγphδph + ik

∫
Γin

phδph

= k2
∫
Ω̂
δαhγp2

h −
∫
Ω̂
δαh∇ph · (D∇ph).

(22)

The left side of the above expression is the same as the left
side of the discrete state equation (11) with the particular
choice qh = δph . Moreover, by construction all admissible
design changes δαh ≡ 0 within the PML (No part of the
design boundary will be located in the PML.). Hence, we
conclude that

2ik A
∫
Γin

δph = k2
∫
Ω̂
δαh p2

h −
∫
Ω̂
δαh∇ph ·∇ph . (23)

Using the definition of 〈·〉in in expression (9), we may from
expressions (20) and (23) identify the partial derivatives
of f1,k and f2,k with respect to changes in αn (defined in
expression (15)) as

∂ f1,k

∂αn
=ℜ

(
1

2ik A|Γin|
∫

En

(
k2p2

h −∇ph ·∇ph
))

, (24)

and

∂ f1,k

∂αn
=ℑ

(
1

2ik A|Γin|
∫

En

(
k2p2

h −∇ph ·∇ph
))

, (25)

respectively.

5.2 Variations with respect to angle changes

To calculate the derivative (19) of the objective function
with respect to design variables ϑ j , we also need the Jaco-
bian matrix ∂αn/∂ϑ j . Recall from § 4 that the design vari-
ables ϑ1, . . .ϑS are the angles between successive segments
in the inside of the horn, and that the horn outside is pas-
sively displaced. Thus, when applying an angle variation
δϑ1 of the first design variable and keeping all other design
variables constant, all segments, on the inside as well as
on the outside of the horn, will be displaced. Moreover, all
segments (with two exceptions detailed below) will be sub-
ject to a solid body rotation around an axis at the start of
the first segment. The exceptions are the two last segments
(on the horn back side). Since the last segment is fixed at
its end point at the waveguide, the two last segments will
be displaced in a more complicated motion than the solid
body rotation that all other segments will experience. When
applying an angle variation δϑ2, the first segment will not
move, but all other segments, (except, again, the last two)
will experience a solid body rotation around an axis located
at the start of the second segment. This patterns continues
for all the design variables.

Now consider an arbitrary design-variable variation
δϑj, and let En be an element with a nonvanishing inter-
section with any of the segments affected by δϑj, according
to the above discussion. We exclude the case when En in-
tersects any of the last two segments and discuss this case
separately below.

Recall from section 4 that the value αn of the function
αh in element En is computed by using an affine mapping
taking En to the reference element Er such that Tn∂Ωd is
positively oriented and enters the left side of Er. Hence,
it is sufficient to consider only this case. We consider the
geometry under the affine map Tn , which yields a situation
as illustrated in figure 5. Let xc be the point at the beginning
of the mapped segment j , that is, the axis of rotation when
changing ϑ j . Moreover, let xin and xout denote the points
where Tn∂Ωd enters and exits element Er, respectively. We
also define the line `c = {x | x = xc+tn, t ∈R}, where n is the
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Fig. 5 Changing the design variable ϑ j results in a solid body rotation.
We compute the first variation of the area fraction |En ∩Ωd|/|En | by
mapping the complete design using the affine mapping Tn , taking
En to the unit size reference element Er.

normal to the boundary Tn∂Ωd in Er. The normal offset
distances δin and δout are to first order given by rinδϑj

and routδϑj, where rinand rout, illustrated in figure 5, are
the distances from the line `c to xin and xout, respectively.
Moreover, the change of |Er ∩TnΩd| is to first order equal
to the negative area of the trapezoid with corners marked
with circles in figure 5, that is

δ|Er ∩TnΩd| = −1

2
(δin +δout)(rout − rin)

=−1

2

(
r 2

out − r 2
in

)
δϑ j .

(26)

Combining expressions (15) and (26) and using that area
quotients are invariant under affine mappings yields

∂αn

∂ϑ j
= 1−ε

2h2

(
r 2

out − r 2
in

)
. (27)

As noted above, the assumption of a solid body rotation
around the initial point of segment j that underlies the
reasoning above does not hold for elements En that inter-
sects the two last segments (at the backside of the horn). A
finite-difference approximation is therefore used for these
elements instead of formula (27).

In the particular case when a segment coincides with
an element boundary, the derivative ∂αn/∂ϑ j is not well
defined in that the left and the right derivatives differs for
the elements bordering this segment. However, in this case,
the right derivative will coincide with the left derivative for
the neighboring element. Since it can be expected that the
different ∂ fi ,k /∂αn associated with neighboring cells will
be very close, it follows from expression (19) that the left
and right derivatives of the objective function with respect
to the design variable ϑ j will be the same up to the dif-
ference in ∂ fi ,k /∂αn between neighboring cell. Thus, the
discontinuities of ∂αn/∂ϑ j will only have a minor effect on
the total derivative (19) as long as we consistently choose
either the right or left derivative when computing ∂αn/∂ϑ j

(we choose the right).
Another way of handling this non-differentiability issue

is to use a filtering procedure that resulting in a smooth

transaction between the left and right derivative. Yet an-
other alternative is to replace the volume fraction in ex-
pression (15) by a filtered version in which αn is defined
through the convolution of the characteristic function with
a continuous piecewise smooth and compact kernel. For
a more detailed discussion on such strategies, we refer to
Norato et al. [27].

6 Numerical experiments

6.1 General setup

In the numerical experiments, we set the complex ampli-
tude of the right-going wave in equation (7) to A = 1 and
the sound speed to c = 345 m/s. The computational mesh
consists of M = nx ·ny square bi-quadratic elements of side
length h = 0.1 ·2−5 m, where nx = 1/h and ny = 0.6/h. Addi-
tional dimensional characteristics include the width of the
material that forms the waveguide w = 0.025 m, the width
of the truncated waveguide boundary |Γin| = 0.05 m, and
the width of the PML δ= 0.1 m. Moreover, the length ` of
each of the S segments that constitute the design boundary
Γd are chosen so that |Γd| = S`= 0.4 m.

Optimization problem (10) is supplemented with the
constraints |ϑ j | ≤ C`, where the constant C = 20 rad/m.
This constant is chosen to admit the formation of back-
folded and even spiral horns; if the horn curves as much
as possible, the maximum angle change is SC` = 8 rad.
Due to the nature of the parameterization, the enforced
constraints provide bounds on the local curvature and con-
sequently affects the smoothness of the feasible designs.

The purpose of the following experiment is to investi-
gate the effect of the lower bound ε on the accuracy of the
solution ph . In other words, we study the effect of represent-
ing the horn through varying coefficients of the state equa-
tion. We select the fixed horn shape with corresponding
raster representation shown in figure 6. The shape is con-
structed by selecting the constant design variables ϑ j = 2`
for each j = 1, . . . S. This polygonal shape approaches, as
S →∞, a segment with length 0.4 m of a circle with radius
R = 1/2. (Recall that ϑ j /` = 2 = 1/R represents a discrete
curvature).

For this horn shape, we generate the reflection spectra
using the varying coefficient approach discussed in sec-
tions 3 and 4 as well as by discretizing equation (6) with the
finite-element method using an unstructured body-fitted
mesh. The first illustration in figure 7 presents the results
from three numerically generated reflection spectra for the
geometry shown in figure 6. The thick light-colored line
represents the reference spectrum J ref

k obtained using the
body-fitted approach, implemented in FreeFem++ (www.
freefem.org/ff++/), using an unstructured mesh em-
ploying triangular, second-order Lagrange elements (P 2)
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Fig. 6 The horn for which reference spectra are generated and com-
pared.
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Fig. 7 Top: reflection spectra generated by using body-fitted and
variable-coefficient representation of the horn in figure 6. Bottom:
absolute value of difference between the spectra generated by using
the body-fitted and variable-coefficient representation.

and a piecewise linear boundary representation. In this
experiment, we numerically solve (6) on a semi-disk with
radius 2 m employing the lowest-order Engquist–Majda
radiation boundary condition [11] on the outer boundary.
The two other spectra have been generated using the vary-
ing coefficient method with ε= 10−3 and 10−8. Visually, the
three spectra in the first illustration in figure 7 are indistin-
guishable. The second illustration in this figure shows the
difference |J ref

k − Jk |, where Jk refers to the spectra gener-
ated with the varying coefficient method, as a function of
frequency. The difference tends to be larger at low frequen-
cies, but for ε = 10−8, this difference is almost uniformly
small in the studied frequency range. For the remainder of
our numerical experiments, we set ε= 10−8.

Fig. 8 Optimized horns for 600 Hz using (from left to right) S = 16,
S = 32, and S = 64 segments.
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Fig. 9 Reflection spectra for the horns in figure 8.

6.2 Studies with respect to the number of segments

We numerically solve the non-linear least-squares prob-
lem (10) using the Matlab function lsqnonlin, with the
large scale option and default termination conditions. The
algorithm employs an interior trust-region method for glob-
alization and to account for the bound constraints on the
design variables [9]. As we will see, the values of all terms
in the objective function are small at optimum, hence the
Gauss–Newton method is expected to show a rapid local
convergence (quite similar to that of Newton’s method [26,
§ 10.2]). For all experiments we use a so-called continua-
tion approach, known to prevent trapping at a local mini-
mum in certain cases [32]. That is, we solve a sequence of
optimization problems starting by the problem with µ= 1.
The solution of that problem is then used as an initial guess
to the next problem, which is solved with regularization pa-
rameter µ/10. We continue decreasing µ with a factor 1/10
until we solve the weakly regularized problem for µ= 10−8.

In the following experiments, we study how the optimal
shapes depend on the number S of segments that consti-
tute the design boundary Γd. We minimize the reflections
for both single and multi-frequency objectives; for each
objective, we generate optimal designs with S = 16, S = 32,
and S = 64 segments representing Γd, respectively.

Figures 8 and 10 show horns optimized for 600 Hz and
1000 Hz, respectively. We note that in those cases the raster
representations are almost identical; it is even hard to visu-
ally decide upon the number S of segments used to repre-
sent the design boundary Γd.
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Fig. 10 Optimized horns for 1000 Hz using (from left to right) S = 16,
S = 32, and S = 64 segments.
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Fig. 11 Reflection spectra for the horns in figure 10.

Fig. 12 Optimized horns for 200 Hz using (from left to right) S = 16,
S = 32, and S = 64 segments.

In figure 12, we present devices optimized for 200 Hz,
whereas the corresponding spectra are shown in figure 13.
We note that the length of the device here is less than one
quarter of the wavelength (|Γd| = 0.4 m andλ= 1.725 m). As
indicated by figure 7, this length is in general too short for a
horn to function as an efficient transmitter. The optimized
devices starts acquiring a resonator-like shape, and their
transmission properties are generally quite bad, except at
the design frequency. For this more difficult optimization
problem, we also see a certain dependency on the number
of line segments. Nevertheless, the shapes of the optimized
horns do not show extreme differentiations with respect
to the number of line segments S, and the horns appear to
be regular in the sense that the design parameters ϑ j do
not change rapidly from segment to segment. The later is
mainly due to the parameterization and the imposed cur-
vature constraints in the formulation of the minimization
problem, which do not allow large variations. An additional
smoothing effect comes from the raster representation of
the horn that introduces a one pixel ambiguity regarding
the exact boundary shape [31,7].
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Fig. 13 Reflection spectra for the horns in figure 12.

Fig. 14 Optimized horns for 466–1480 Hz using (from left to right)
S = 16, S = 32, and S = 64 segments.
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Fig. 15 Reflection spectra for the horns in figure 14.

Figures 14 and 15 show optimal horns and correspond-
ing spectra when optimizing over a relatively wide frequency
band, 466–1480 Hz. More precisely, the horns are optimized
for minimal reflections at the frequencies fn = 440 ·2n/12

for n = 1,2, . . . ,21. The reflection spectra in figure 15 are
practically identical. The folding at the end of the horn and
the almost straight part immediately after the vertical line
(that indicates the starting point of the design boundary
Γd) suggest that the full length |Γd| = 0.4 m is not needed
to achieve a design that performs as desired.

The resulting horns and the corresponding spectra from
our final experiment are presented in figures 16 and 17.
Here, we optimize for the frequency range 293–392 Hz,
that is, we minimize the reflections at the frequencies fn =
220·2n/12 for n = 5,6, . . . ,10. We observe that the spectra are
almost independent of the number of segments used, espe-
cially close to the optimization frequency band. It is worth
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Fig. 16 Optimized horns for 293–392 Hz using (from left to right)
S = 16, S = 32, and S = 64 segments.
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Fig. 17 Reflection spectra for the horns in figure 16.

mentioning that the resulting designs are far from what is
considered a typical horn shape, similarly as discussed in
the single-frequency optimization for 200 Hz.

For all experiments, the optimization was able to gen-
erate designs that almost perfectly transmit at the target
frequencies independent of the number of line segments S
representing Γd. By increasing S, the obtained raster rep-
resentations appears to converge to particular designs in
all studied cases. An overall conclusion is that the parame-
terization is well-behaved, meaning that the formation of
oscillatory boundaries is avoided.

7 Discussion

The standard implementation of boundary shape optimiza-
tion involves deformations of the computational mesh so
that it conforms to the modified boundary. In contrast, the
geometry representation used here does not need mesh
deformations or remeshing, which allows the use of a pa-
rameterization that is able to curve the design boundary in
ways that would be more difficult to admit in an implemen-
tation that relies on mesh deformations. The chosen pa-
rameterization has the advantage of inherently promoting
smooth design updates. The optimal horns generated here
perform remarkably well even for waves of wavelengths
that are long compared to the size of the horn.

The horns generated for the same objective but with
different number of line segments have surprisingly sim-
ilar raster representations. In figure 18, we plot the angle
formed by each segment and the horizontal axis as a func-
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Fig. 18 Angle with respect to the horizontal axis as a function of
arc length for different number S of segments comprising the de-
sign boundary. The top illustration refers to the horns optimized for
200 Hz, whereas the lower to the horns optimized for the frequency
band 466–1480 Hz.

tion of the arc length of the design boundary for two of our
experimental setups. The top diagram refers to the design
optimized for 200 Hz, whereas the bottom one corresponds
to the horns optimized for the frequency band 466–1480 Hz.
The three different line styles in each plot refer to the num-
ber S of line segments comprising the design boundary
Γd. For the 200 Hz case, we conclude that the design ob-
tained using S = 16 and S = 32 are relatively close to each
other, while there is a more intense change regarding the
S = 64 case. By comparing the horn flares in figure 12, all
three flare shapes suggest a concave design, in particular,
these features are more pronounced in the 64-segment
horn. The diagram for the frequency band 466–1480 Hz
illustrates that the three optimal designs in figure 14 are
nearly identical. The rest of the experiments performed in
our study are similar to the latter case.

Future work includes studies where a hybrid shape–
topology optimization approach is adopted, meaning that
the boundary shape optimization is combined with topol-
ogy optimization [35]. According to our experience, such an
approach may resolve the problem of designing an efficient
transmittor for low frequencies. A hybrid shape–topology
optimization approach would also be beneficial in order
to design, over a substantial frequency band, a true con-
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stant directivity horn that also shows ideal transmission
properties.

There are various ways in which the current parame-
terization could be generalized to more general surfaces in
three space dimensions. One way is to start with a curve γd,
parameterized as in § 4, and generate the design surface
by extruding straight lines perpendicular to each segment.
The twist angles of the extruded lines, or perhaps rather
the angle change from one segment to the next, would con-
stitute a second set of design variables, in addition to those
generating the curve γd. This approach would generate (as
the segment length `→ 0) intrinsically flat developable sur-
faces, a type of surface that can be unrolled onto a flat plate.
Such surfaces can be constructed from flat sheets of mate-
rial without stretching, and are often used in the design of,
for instance, ship hulls and aircraft fuselages and wings [33,
§ 8.17]. Another possibility would be general ruled sur-
faces [33, § 8.17]. (Developable surfaces are special cases of
ruled surfaces). Ruled surfaces are generated by linear in-
terpolation between two design curves γd1 and γd2. A third
possibility would be Coons surfaces, that is, bilinear inter-
polation between four connected boundary curves γd1, . . . ,
γd4, or higher-degree generalizations of Coons surfaces [30,
§ 3.7]. Extensions of the curvature-based parameterization
to completely general smooth surfaces would, however, be
challenging. Such a generalization would involve param-
eterization of the two principal curvatures as well as the
orientation of the principal directions. Whether such an ap-
proach would be feasible or practical is an open question.
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