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SHAPE OPTIMIZATION OF A COMPRESSION DRIVER PHASE
PLUG\ast 

ANDERS BERNLAND\dagger , EDDIE WADBRO\dagger , AND MARTIN BERGGREN\dagger 

Abstract. A compression driver is an electro-acoustic transducer with considerably higher
efficiency than direct radiating loudspeakers, thanks to the increased radiation resistance caused by
a large vibrating diaphragm placed in a compression chamber with small openings. The transition
section between compression chamber and output waveguide, the phase plug, must be carefully
designed to avoid irregularities in the output sound pressure level (SPL) as a function of frequency.
Here we present a shape optimization method based on an implicit level-set description and adjoint
sensitivity analysis, which enables a large number of design parameters and vast design freedom. The
CutFEM approach, a fictitious domain finite element method, removes the need for mesh updates
and makes the method robust and computationally inexpensive. Numerical experiments for a generic
annular diaphragm compression driver are presented, with optimized designs showing only minor
frequency irregularities. Two different objective functions are considered: one for maximum SPL
and one where the SPL is fitted to that of a hypothetical ideal design; the latter approach is found
to be more effective in reducing irregularities. Visco-thermal boundary-layer losses are included in a
post-processing step, and, though the influence of losses is clearly noticeable, the overall performance
is similar and the optimized designs still outperform the original design.
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1. Introduction. A compression driver is an electro-acoustic transducer com-
monly used to feed horns to cover the mid- to high-frequency spectra in applications
where high acoustic power is needed, such as public address systems. In a direct ra-
diating loudspeaker, the low radiation resistance at most of its operational frequency
range causes a loading mismatch between the air and the vibrating membrane. This
mismatch limits the maximum achievable efficiency, and in practice it is hard to
achieve more than 1\% efficiency with this setup [31, p. 46]. To increase the radia-
tion resistance, the vibrating membrane, or diaphragm, in a compression driver is
placed in a shallow chamber, from which the sound can exit only through a number
of narrow slits. With a high quotient, typically around 10, of diaphragm area to
total exit area (the compression ratio), a compression driver can achieve far higher
efficiency than direct radiating loudspeakers. The sound exiting the compression
chamber propagates through narrow channels, ending in a circular duct to which an
acoustic horn or waveguide can be mounted. The transition region, the phase plug,
must be carefully designed to avoid response irregularities, which cause poor perceived
sound quality. Phase plug design has been considered in a number of previous stud-
ies [13, 14, 18, 32, 33, 36, 42]; nevertheless, we believe that there is great potential in
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applying numerical optimization algorithms to compression driver phase plug design,
something that appears not to have been investigated properly.

Today, it is more or less standard to use numerical optimization in design problems
within, for example, elasticity, fluid mechanics, electromagnetics, and acoustics [10].
Typically, a combination of geometry discretization, numerical modeling of the under-
lying physics, and optimization algorithms is chosen to efficiently explore the design
space in search of an optimal solution. A clear distinction exists between gradient-
free [28] and gradient-based [35] optimization algorithms, and, for the latter, the
cost of computing the discrete shape sensitivities is crucial. With adjoint methods,
the computational cost does not increase with the number of design parameters (as
long as the computational mesh remains the same), a fact that enables optimization
over a larger set of parameters and in practice makes the difference between merely
improving an already existing design and finding a conceptually new one.

Geometry discretization on fixed background meshes has become increasingly
popular in the last decade, since mesh updates can be costly, can harm the convergence
of the optimization, and are not always robust. Fixed mesh methods, usually labeled
fictitious domain, domain embedding, or immersed boundary methods, are used not
only in design problems, but also when traditional body fitted meshes are computa-
tionally expensive to construct or where the geometry is evolving over time. Finite
element methods on fixed meshes appear under names such as GFEM/XFEM [16],
CutFEM [7], CDFEM [29], and IGFEM [37], to name a few. In a pioneering study
concerning stress minimization in filets, Van Miegroet and Duysinx [40] combined
XFEM with a level-set description, and similar methods were refined in several pub-
lications [24, 26, 41, 43]; see also the reviews in [5, 17, 39].

Shape and topology optimization of acoustic horns, to achieve improved impedance
matching, smoother frequency response, or certain directivity properties, has received
considerable attention [1, 2, 15, 21, 25, 27, 30, 34]. In a previous study [4], we opti-
mized an acoustic horn for impedance matching by using CutFEM and a level-set de-
scription, an approach that was found to be robust and computationally inexpensive.
Furthermore, the optimized horns showed unexpected subwavelength structures, not
seen in previous analyses, that served to improve the matching properties; such fea-
tures could be captured due to the large design freedom given by the parametrization
in terms of the filtered nodal values of the discretized level set. Another advantage of
the fixed-mesh optimization scheme was that the discrete shape sensitivities could be
computed exactly (up to round-off) by boundary integrals; when instead optimizing
with a boundary-fitted mesh and mesh deformations, the discrete sensitivities must be
computed by volume integrals to avoid consistency errors [3]. There does not seem to
be much previous work regarding acoustic shape optimization on fixed finite element
meshes, but Legay's study [22] on noise reduction by optimal placement of structures
within an acoustic cavity should be mentioned.

In this paper, we consider shape optimization of annular channel phase plugs
using CutFEM and a level-set description similar to the approach we used for horn
design in [4]; the starting design of the generic compression driver can be found
in Figure 1. Section 2 gives some more detailed background regarding compression
drivers. Section 3 describes the acoustic modeling with the Helmholtz equation, in
combination with a full electro-mechanical model for the motion of the diaphragm,
as well as the geometry discretization on the fixed mesh and the objective functions
and sensitivity analysis needed for the optimization algorithm. Optimization results
are presented in section 4, and the influence of viscous and thermal boundary-layer
losses are also taken into account. Finally, conclusions can be found in section 5.
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Fig. 1. The original design of the generic compression driver considered.

2. Compression driver phase plugs. The acoustic power in a compression
chamber is generated by a large vibrating diaphragm, typically made of a thin foil
of aluminium or titanium to be light but rigid, and suspended as to allow for axial
motion [31]. To increase rigidity, the diaphragm is commonly curved into a dome
shape, but there are also drivers with cone or flat annular ring diaphragms [42]. The
diaphragm is set in motion by an alternating current in the voice coil, wound onto
a rigid former attached to the diaphragm, and immersed in the radial magnetic field
created by a ring magnet. The diameter of the voice coil, typically 1--4 inches, is used
to denote the size of the driver.

The idea of combining a large diaphragm and a small horn throat to increase radi-
ation resistance and efficiency was first presented in 1924 by Hanna and Slepian [19],
who connected the compression chamber directly to the horn throat. While improving
the impedance match at moderately high frequencies, this simple setup suffers from
radial resonances in the compression chamber, which cause frequency response irregu-
larities and limit the upper operational frequency. Wente and Thuras [44] introduced
a phase plug with one annular channel between the compression chamber and the
horn throat, and could thus partly avoid the radial resonances and push the usable
frequency limit further up.

Smith's 1953 publication [36] has had a profound impact on compression driver
phase plugs; for a cylindrical compression chamber with a rigid piston, he showed that
the use of N annular channels could suppress the first N radial modes in the compres-
sion chamber, and he derived design guidelines for accomplishing this. The Nth radial
mode, given by the Nth cylindrical Bessel function, has N pressure nodes within the
cavity, and Smith argued that the mode will not be excited if the channel entrances
are placed at these locations. Furthermore, the areas of the channel entrances, the
slits, give N more degrees of freedom. Avoiding excitation of modes 1, 2, . . . , N  - 1
gives N  - 1 conditions, which are used to set the relative area of slits. Finally, the
desired compression ratio, defined as the quotient of the diaphragm area and total slit
area, gives an additional condition required to uniquely determine the slit absolute
areas. In addition to Smith's original work, detailed derivations of Smith's guidelines
have been carried out by Dodd and Oclee-Brown [14, 31]. Similar derivations are
therefore omitted here, but the results for a three channel phase plug can be found in
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Table 1.

Table 1
Smith's guidelines for the locations of the channel entrances (relative chamber radius r) and

their relative widths for a phase plug with three annular channels [36].

Location Relative width
0.238r 1
0.543r 1.025
0.853r 1.065

Smith's design guidelines rely on a few assumptions that need to be highlighted.
First, Smith assumes a flat, cylindrical, compression chamber. Dodd and Oclee-
Brown derive modified guidelines for a spherical-cap chamber using a decomposition
in spherical coordinates [14], and a methodology for more general geometries based
on finite element calculation of the chamber eigenvalues [32], results which can also be
found in Oclee-Brown's thesis [31]. Voishvillo derives similar guidelines for an annular
ring compression chamber [42].

Second, the piston is assumed to be rigid, whereas a real compression driver
diaphragm can break up at high frequencies, a phenomenon that results in frequency
irregularities. Christensen and Skov [8] couple structural and acoustic modeling in a
simulation of a 4-inch beryllium diaphragm compression driver. They note that the
break-up occurs at high frequencies and is not critical to the usable bandwidth of the
driver in this case, but predict it to be more critical with an aluminum or titanium
diaphragm. Oclee-Brown [31] uses laser scans to show that break-up does occur for a 3-
inch driver at 12.8 kHz. He argues that the driver response is not limited by the break-
up if the nonrigid structural modes do not excite the acoustic modes of the cavity and
optimizes a cavity shape with the aim of meeting this criterion. Voishvillo [42] shows
laser scan measurements of break-up for a flat annular-ring diaphragm and proposes
a meandering channel entrance to ``smear out"" the irregularities caused by structural
and acoustical modes.

Finally, Smith's design guidelines rely on the assumption that the acoustic ve-
locities are equal at the channel entrances. This is valid for separated channels of
constant area, each infinitely long or terminated with no reflection, but not neces-
sarily for channels joining at the exit in a real compression driver phase plug. The
mounting of a phase plug to the exits, several times longer than the wavelength of the
highest frequency to be used, gives rise to a complex acoustical system, and the phase
plug channel paths need to be carefully designed to avoid internal resonances. Dodd
and Oclee-Brown [12, 14, 31] suggest curving the path of the channels to make them
equal in length and show that such a design creates a smoother frequency response.

Notwithstanding the favorable results that guidelines and engineering know-how
can provide, it is our opinion that compression driver phase plug design is a problem
well suited for boundary shape optimization, and that such a study is timely. We focus
on the shape of the phase plug channel paths and therefore consider a flat, cylindrical
compression chamber and restrict our attention to frequencies where diaphragm break-
up can be expected to be noncritical. The driver is connected to a semi-infinite
waveguide, and the walls of the chamber, phase plug, and waveguide are also assumed
stiff. The starting point is the generic compression driver design in Figure 1, where
Smith's guidelines have been used.

Viscous and thermal boundary-layer losses can have a profound impact on com-
pression driver performance, due to the high surface to volume ratio of the compression
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chamber and phase plug [8]. A model where the acoustic losses are accounted for, by
solving the linearized, compressible Navier--Stokes equations, is computationally much
more expensive than disregarding losses and solving the Helmholtz equation. There-
fore, acoustic losses are neglected during the optimization but taken into account in
a post-processing step.

3. Problem statement.

3.1. Acoustical problem. We assume that the acoustic pressure P satisfies the
linear wave equation, and we consider time-harmonic solutions P (\bfitx , t) = Re(p(\bfitx )ei\omega t).
Here Re denotes the real part, p is the complex amplitude function, \bfitx is the spatial
coordinate, i is the imaginary unit, \omega is the angular frequency, and t denotes time.
The diaphragm \Gamma m separates the compression chamber in front of it from the rear
chamber and thus divides the computational domain in two: the union of compression
chamber, phase plug, and waveguide, denoted \Omega , and the rear chamber, denoted \Omega b.
The boundary problems for p in \Omega and \Omega b are

\Delta p+ k2p = 0 in \Omega and \Omega b,(3.1a)

\partial p

\partial n
= ikc\rho 0um on \Gamma m,(3.1b)

ikp+
\partial p

\partial n
= 0 on \Gamma out,(3.1c)

\partial p

\partial n
= 0 on \Gamma \setminus (\Gamma out \cup \Gamma m),(3.1d)

where k = \omega /c is the (isentropic) wavenumber, c is the (isentropic) speed of sound,
\rho 0 is the static density of air, \partial /\partial n = \^\bfitn \cdot \nabla is the normal derivative, and \^\bfitn is the
unit normal, which is directed outwards with respect to \Omega . For clarity, the acoustic
pressure in the back chamber \Omega b will be denoted pb from now on. Figure 2 shows
a cut through the symmetry plane of the rotationally symmetric geometry, along
with definitions of the boundaries. The waveguide is modeled as infinitely long by
applying boundary condition (3.1c) on its right end \Gamma out; the boundary condition
absorbs planar modes, and nonplanar modes can be neglected for the frequencies
considered here. The boundary condition on the diaphragm \Gamma m is a given velocity
um.

Fig. 2. The symmetry plane of the rotationally symmetric compression driver of Figure 1.
The three-dimensional domains \Omega and \Omega b are obtained by rotation around the symmetry axis. The
design domain \Omega d covers the area where the design boundary \Gamma d is allowed to take its path. Note
that the figure is not to scale.

The diaphragm is set in motion by a coil in a magnetic field, where the coil
and diaphragm velocities are assumed equal and denoted by um. The driver's motor
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system is

BlI  - 
\int 
\Gamma m

JpKd\Gamma  - Zmum = 0,(3.2a)

IZe +Blum = V,(3.2b)

where Bl is the force factor (given by the product of the magnetic flux density B and
coil length l), I is the current through the voice coil, V is the applied electric voltage,
Ze is the electric impedance of the circuit, and the mechanical impedance is given by

(3.3) Zm = Rm + i

\biggl( 
Mm\omega  - 1

Cm\omega 

\biggr) 
,

where Rm is the mechanical resistance, Mm is the moving mass, and Cm is the sus-
pension compliance. The second term in equation (3.2a) is a force on the diaphragm
due to the difference in pressure on its two sides, where JpK = p| \Gamma m  - pb| \Gamma m and p (pb)
denotes the pressure in \Omega (\Omega b), respectively.

Finally, we state the variational formulation of boundary value problem (3.1),
which is

(3.4)

Find p \in H1(\Omega ), um \in \BbbC , and I \in \BbbC , such that

A(p, q) = L(q) \forall q \in H1(\Omega ),

and such that the circuit equations (3.2) are satisfied,

where

A(p, q) =

\int 
\Omega 

\nabla q \cdot \nabla p d\Omega  - k2
\int 
\Omega 

qpd\Omega + ik

\int 
\Gamma out

qpd\Gamma ,(3.5a)

L(q) = ikc\rho 0um

\int 
\Gamma m

q d\Gamma .(3.5b)

The Sobolev space H1(\Omega ) is the space of square integrable functions of \Omega for which
all partial derivatives of first order are also square integrable.

The rear chamber\Omega b can be accounted for by modifying the mechanical impedance
Zm with an additional frequency dependent compliance term. Since we assume that
the piston moves rigidly, the pressure in \Omega b depends only on the distance z from the
rear wall. When the depth lb of \Omega b is less than half a wavelength, there is no axial
resonance in \Omega b and the pressure there is

(3.6) pb = ic\rho 0um
cos(kz)

sin(klb)
,

where z = 0 at the rear wall and z = lb at \Gamma m. A direct differentiation shows that
expression (3.6) satisfies boundary value problem (3.1) in \Omega b. Substituting expres-
sion (3.6) into circuit equation (3.2a), we find that

(3.7) BlI  - 
\int 
\Gamma m

p d\Gamma  - Z \prime 
mum = 0,

where the adjusted mechanical impedance is

(3.8) Z \prime 
m = Zm  - ic\rho 0| \Gamma m| cot(klb),
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in which | \Gamma m| is the area of \Gamma m.
Note that the unknowns in variational formulation (3.4) are p, um, and I, where

um and I, for a given p, are given by the driver's motor system (3.2). If B2l2+ZeZ
\prime 
m \not =

0, however, we can explicitly solve equations (3.2) for the driver motor system to arrive
at the membrane velocity

(3.9) um =
1

B2l2 + ZeZ \prime 
m

\biggl( 
BlV  - Ze

\int 
\Gamma m

p d\Gamma 

\biggr) 
.

The assumption B2l2+ZeZ
\prime 
m \not = 0 is related to a lack of resonances in the motor system

and holds if, for example, there are losses, namely, ReZe > 0 or ReZm = Rm > 0.
Variational formulation (3.4) can then be rewritten as

(3.10)
Find p \in H1(\Omega ) such that

A\prime (p, q) = L\prime (q) \forall q \in H1(\Omega ),

where

A\prime (p, q) =

\int 
\Omega 

\nabla q \cdot \nabla p d\Omega  - k2
\int 
\Omega 

qpd\Omega + ik

\int 
\Gamma out

qpd\Gamma +
ikc\rho 0
Zeff

\int 
\Gamma m

q d\Gamma 

\int 
\Gamma m

p d\Gamma ,

(3.11a)

L\prime (q) = ikc\rho 0
Bl

ZeffZe
V

\int 
\Gamma m

q d\Gamma ,

(3.11b)

in which we have introduced the effective impedance

(3.12) Zeff =
B2l2 + ZeZ

\prime 
m

Ze
.

Well-posedness of problem (3.10) is shown in Appendix A.

3.2. Optimization problem. Our aim is to design the phase plug to avoid
irregularities and achieve a favorable output power over the frequency spectrum of
operation. To this end, the shapes of the channels in the phase plug are optimized. A
level-set function \phi is used to define the edges of the channels, the design boundary
\Gamma d, as the points \bfitx where the level-set function vanishes, that is,

(3.13) \Gamma d = \{ \bfitx : \phi (\bfitx ) = 0\} .

The level-set function is defined in the design domain \Omega d around the phase plug
(see Figure 2) and such that \bfitx is in the interior of the domain \Omega if \phi (\bfitx ) < 0. A
straightforward choice of \phi that fulfills (3.13) is the signed distance function, which
for each \bfitx in \BbbR 3 equals the minimum distance from \bfitx to a point on the boundary \Gamma d.

The output power in the waveguide is determined from the acoustic pressure p at
the right end of the waveguide, \Gamma out, and, since there are no reflections, it is given by

(3.14) Pout(\phi , k) =
1

2\rho 0c

\int 
\Gamma out

| p(k)| 2 d\Gamma =
1

2\rho 0c
| \Gamma out| | pout(k)| 2.

In the second equality we use that the pressure p for planar modes is constant on
the boundary \Gamma out and denote this constant pout. Note that the pressure and output
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power depend on the geometry of the phase plug, given by the level-set function \phi ,
as well as on the wavenumber k and the electrical and mechanical parameters.

A straightforward goal is to maximize the sum of the output power over a discrete
set of frequencies, in which case the objective function to be minimized can be defined
as

(3.15) Jmax(\phi ) =
1

2Nk

Nk\sum 
n=1

1

| pout(kn)| 2
.

Another approach is to try to match the output power as a function of frequency to
the function obtained with a reference solution, in this case chosen as the hypothetical
ideal design with straight channels illustrated in Figure 3. Such a design, although
useless for most practical purposes, does not exhibit any resonances and therefore
serves well as a reference solution. The objective function to be minimized for this
case is defined as

(3.16) Jdiff(\phi ) =
1

2Nk

Nk\sum 
n=1

| pout(kn) - poutref (kn)| 2.

Fig. 3. The restriction of the computational domain to the symmetry plane for the driver with
straight channels, used to compute the reference solution poutref in objective function (3.16). Here the
output boundary is not connected, and the output power poutref is defined as the sum of the power in
each of the channels. Note that the figure is not to scale.

Smoothing, filtering, and regularization approaches, which modify the optimiza-
tion problem in one form or another, are routinely used in shape and topology opti-
mization to counteract mesh dependence, improve the convergence rate, and promote
smooth designs [39]. In our previous study of the acoustic horn [4], it was seen that
a smoothing algorithm that served all three purposes was to optimize over the Lapla-
cian of the level-set function. The method, which is similar to the one employed by
B\"angtsson, Noreland, and Berggren [1], is used in this paper as well. That is, the
level-set function \phi is given by the solution to the equation

(3.17)

\left\{     
 - \Delta \phi = \^\phi in \Omega d,

\phi = \phi 0 on \partial \Omega d,D,
\partial \phi 
\partial n = 0 on \partial \Omega d,N.

In the formulation of the optimization problem, the set \^Uad of admissible functions \^\phi 
is chosen as the space of rotationally symmetric, square integrable functions, which
implies that \phi is in H2(\Omega d) \subset C0(\Omega d) for smooth or convex \Omega d.
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The position and relative area of the channel entrances are chosen according to
Table 1, in order not to excite the radial modes of the compression chamber, as
discussed in section 2. The total area of the channel entrances is chosen according
to the desired compression ratio. These channel positions and opening areas are kept
constant throughout the optimization, enforced by the constant level-set boundary
values \phi 0. To give more design freedom near the interface to the waveguide, the
homogeneous Neumann boundary condition \partial \phi /\partial n = 0 is applied there.

Tikhonov regularization is sometimes used in level-set based optimization meth-
ods [39] to control the norm of the solution and was found in [4] to result in optimized
acoustic horns with lower curvature. The addition of Tikhonov regularization also
improved the convergence rate of the optimization algorithm more than just using
the level-set smoothing (3.17). In this study, the Tikhonov term

(3.18) J\epsilon ( \^\phi ) =
1

2

\int 
\Omega d

( \^\phi  - \^\phi 0)
2 d\Omega 

is added to yield the objective function

(3.19) J( \^\phi ) = Jobj(\phi ( \^\phi )) + \epsilon rJ\epsilon ( \^\phi ).

Here \^\phi 0 denotes the auxiliary function for the starting design, and the unregularized
objective function is Jobj = Jmax (given by expression (3.15)) or Jobj = Jdiff (given
by expression (3.16)).

With objective function (3.19) and parametrization defined as above, the opti-
mization problem can be formulated as

(3.20)
Find \^\phi \ast \in \^Uad such that

J( \^\phi \ast ) \leq J( \^\phi ) \forall \^\phi \in \^Uad.

Recall that the auxiliary function \^\phi gives a level-set function \phi through smoothing
(3.17), and that \phi in turn determines the design boundary \Gamma d through (3.13) and
with it the acoustic pressure pout at the right end of the waveguide, which is used in
expressions (3.15) and (3.16).

3.3. Discretization with CutFEM. The fixed-mesh finite element method
CutFEM is used to discretize and solve variational problem (3.4) for the acoustic
pressure p. Because the mesh is fixed and independent of the design, no remeshing or
mesh deformation is needed between design updates. Instead, the design boundary
\Gamma d is allowed to cut through the elements. The CutFEM approach employed here is
similar to the one in [4], and a more detailed description can be found there. Here we
take advantage of the rotational symmetry and solve a two-dimensional problem.

The two-dimensional finite element mesh consists of a Cartesian grid of squares,
chosen such that the union of elements \Omega h covers the union \Omega \cup \Omega d. In other words,
the mesh domain \Omega h covers the two-dimensional symmetry plane of any admissible
design of the compression driver; see Figure 4.

After discretization, variational problem (3.4) takes the form

(3.21)

Find ph \in Vh, um \in \BbbC , and I \in \BbbC , such that

A(ph, qh) + \epsilon sSh(ph, qh) = L(qh) \forall qh \in Vh,

and such that the circuit equations (3.2) are satisfied.
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Fig. 4. An illustration of the mesh, which is structured and fixed. The design boundary \Gamma d is
allowed to cut arbitrarily through the elements. The domain \Omega h equals \Omega \cup \Omega d, so that it covers
the computational domain \Omega for all admissible designs. Note that the domains \Omega and \Omega d are the
same as in Figure 2, and that the figure is not to scale. Furthermore, note that the rear chamber
\Omega b is excluded here, since its effect is accounted for by modifying the mechanical impedance Zm as
detailed in equation (3.7). The discrete level-set function \phi and auxiliary function \^\phi are defined in

the design domain \Omega d, and the inner nodes of \Omega d are design nodes: the values \^\phi i at these nodes
are the design variables in optimization problem (3.26).

Here, A and L are given by (3.5a) and (3.5b), respectively, and Sh is a stabilization
term discussed below, with the parameter \epsilon s \geq 0 setting the amount of stabilization.
The space of discrete solutions is Vh = span\{ wi\} Ni=1, where N is the number of nodes,
and the nodal basis functions wi reduce to the standard two-dimensional biquadratic
Lagrange nodal basis functions on each symmetry plane. The finite element solution
of the acoustic pressure ph belongs to Vh and is given by

(3.22) ph(\bfitx ) =

N\sum 
i=1

piwi(\bfitx ),

where pi is the acoustic pressure at the node located at the point \bfitx i.
It is important to note that the nodal value pi for any node with a neighboring

element at least partly inside \Omega affects the solution ph inside \Omega , and that, as a conse-
quence, these nodal values are determined by equation (3.21). A consequence of the
above is that unfortunate cuts of the elements by the boundary can cause the system
matrix to become ill-conditioned. The reason is that the extent to which a nodal
value pi affects the solution ph inside the domain \Omega vanishes as the fraction inside \Omega 
of neighboring elements vanishes. The ill-conditioning is a well-known problem of cut
finite element methods, and there are ways to address it [7]. Here we choose to add
the stabilization term Sh to discrete variational form (3.21) and define it according to
equation (11) in [4]; compare to Burman [6]. The nodal values pi for nodes with no
neighboring element inside \Omega can be chosen arbitrarily, and here we simply change
the corresponding equations in (3.21) to pi = 0.

3.4. Discrete optimization problem. We follow an approach similar to that
in the study on horn optimization in [4] and define a discrete form of optimization
problem (3.20). First, the discrete level-set function is defined as

(3.23) \phi h(\bfitx ) =

Nd\sum 
i=1

\phi iw
[1]
i (\bfitx ),

where the nodal basis functions w
[1]
i (\bfitx ) reduce to bilinear Lagrange nodal basis func-

tions on each symmetry plane and Nd denotes the number of nodes in the design
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domain \Omega d; see Figure 4. Furthermore, the discrete design boundary \Gamma h
d in each

symmetry plane is defined by linear interpolation between the points where the zero
contour of \phi h intersects the mesh edges.

Smoothing (3.17) is also carried over to the discrete setting, where the discrete

level-set function \phi h is given by the discrete auxiliary function \^\phi h, discretized in the
same way as \phi h, by solving the following variational problem:

(3.24)
Find \phi h \in V d

h such that \phi h = \phi 0 on \partial \Omega d,D and

Ad(\phi h, \psi h) = Ld(\psi h) \forall \psi h \in V d,0
h ,

where

Ad(\phi h, \psi h) =

\int 
\Omega d

\nabla \psi h \cdot \nabla \phi h d\Omega ,(3.25a)

Ld(\psi h) =

\int 
\Omega d

\psi h
\^\phi h d\Omega .(3.25b)

Here the space of solutions is V d,0
h = \{ \psi h \in V d

h : \psi h = 0 on \partial \Omega d,D\} and V d
h =

span\{ w[1]
i \} Nd

i=1.
We are now ready to formulate the discrete optimization problem:

(3.26)
Find \^\phi \ast h \in V d,0

h such that

J( \^\phi \ast h) \leq J( \^\phi h) \forall \^\phi h \in V d,0
h .

Note that the number of design variables equals the number of nodes in the interior
of the design domain \Omega d; see Figure 4.

The problem of finding the optimal shape of the channels in the compression
driver phase plug has now been reformulated as a problem of finding the discrete
auxiliary function \^\phi h (that is, to find its nodal values \^\phi i) that maximizes objective

function (3.19). By smoothing (3.24), the function \^\phi h is mapped to the discrete level-
set function \phi h, which, by linear interpolation as described above, gives the discrete
design boundary \Gamma h

d and thus the design of the phase plug. The design boundary \Gamma h
d

affects the solution to state equation (3.1) and therefore also the acoustic pressure
pouth at the right end of the waveguide and the objective functions Jmax and Jdiff .

The mapping from the nodal values of \^\phi i, from now on referred to as the design
parameters, to objective functions Jmax and Jdiff is thus a composite mapping, whereas
the mapping from \^\phi i to regularization term J\epsilon is a quadratic function.

Note that smoothing (3.24) only constitutes a change of variables and that the
use of it in itself does not provide any regularization, compared to optimizing over
the level-set nodal values \phi i directly. It is the inclusion of Tikhonov term (3.18) that
provides regularization. However, the change of variables affects the norm, which in
turn can affect the steps taken by the optimization algorithm. With smoothing (3.24),
one can expect faster convergence when the optimal design is smooth, but possibly
slower convergence when, for example, the optimal design is zigzagging. Therefore,
the use of smoothing can be viewed as a preconditioning.

3.5. Sensitivity analysis. We use a gradient-based optimization algorithm to
solve optimization problem (3.26), since the number of design parameters, the nodal

values of the discrete auxiliary function \^\phi i, is large. Consequently, the derivatives
of objective function (3.19) with respect to \^\phi i need to be determined. The central
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part of the composite mapping \^\phi i \mapsto \rightarrow J is the mapping of the level-set function \phi h
to the acoustic pressure pouth , and the derivatives of this function can be determined
using standard tools of shape sensitivity analysis [11, 38]. Though the derivation is
similar to the corresponding analysis in the study of the acoustic horn in [4], there
are a couple of essential differences, which are specified below.

The starting point in deriving the discrete derivative \partial pouth /\partial \phi m is to consider a
perturbation of the mth nodal value of the level-set function \phi h, namely

(3.27) \phi h(t) = \phi h + tw[1]
m .

Here the perturbation is parametrized by t \geq 0, and it induces a family of perturbed
domains \Omega m(t), where t = 0 gives the unperturbed case.1 To describe the domain
deformation, let us consider a point \bfitx = \bfitx (0) \in \Omega = \Omega (0), mapped into \Omega m(t) by
t \mapsto \rightarrow \bfitx (t), and define the velocity field

(3.28) \bfitV m(\bfitx ) = lim
t\rightarrow 0+

\bfitx (t) - \bfitx 

t
.

The same level-set parametrization is used in the present study and in the previous
study on the acoustic horn in [4], and hence the expression for the velocity field
derived there [4, equation (A6)] is valid here as well. However, the mesh is defined
on the two-dimensional symmetry plane in this paper, and therefore the velocity field
is a rotationally symmetric function. The acoustic pressure ph is also affected by
perturbation (3.27), and the shape derivative is defined for each \bfitx \in \Omega h as

(3.29) p\prime h(0,\bfitx ) = lim
t\rightarrow 0+

ph(t,\bfitx ) - ph(0,\bfitx )

t
,

where ph(t,\bfitx ) denotes the solution to state equation (3.1) with \Omega replaced by \Omega m(t).
An essential aspect of the sensitivity analysis when a fixed-mesh finite element

method is used (already mentioned in [4]) is that the boundary integral formulation
of the discrete derivatives is exact (up to round-off) in this case; when a traditional
boundary conforming mesh and mesh deformation are used, however, a domain inte-
gral, containing the mesh deformation, must be used to avoid consistency errors [3, 20].
The crucial point is that the shape derivative p\prime h belongs to the same finite element
space as the discrete solution ph in the fixed-mesh approach, whereas it does not when
mesh deformations are used; in the latter case, it is the so-called material derivative
that conforms with the finite element space instead, and the sensitivity analysis must
therefore be carried out differently. More details can be found in [4].

In contrast to [4], the solution of an adjoint system of equations is necessary since
the output power in the phase plug optimization (at the right end of the waveguide
\Gamma out) and the excitation (at the diaphragm \Gamma m) are not co-located. The adjoint
variational problem is given by
(3.30)

Find padjh \in Vh, u
adj
m \in \BbbC , and Iadj \in \BbbC , such that

A(padjh , qh) = Ladj(qh) + \epsilon sSh(p
adj
h , qh) \forall qh \in Vh,

and such that circuit equations (3.2) are satisfied with um = uadjm and V = 0,

1The dependence of \phi h(t) on m has been suppressed for simplicity of notation.
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where

(3.31) Ladj(qh) = ikc\rho 0u
adj
m

\int 
\Gamma m

qh d\Gamma + 2ik

\int 
\Gamma out

qh d\Gamma .

Note that the voltage in the adjoint problem is zero and that a plane wave source of
unit amplitude at \Gamma out is imposed by the last term in equation (3.31). The driver's
motor system (3.2) gives rise to a few additional steps in the derivation in Appendix B,
compared to [4].

The expression for the derivative of the acoustic power pouth at the right end of
the waveguide with respect to the level-set function \phi h, derived in Appendix B, is
(3.32)
\partial pouth

\partial \phi m
:= lim

t\rightarrow 0+

pouth (\phi h(t)) - pouth (\phi h)

t
=

1

2ik| \Gamma out| 

\int 
\Gamma h
d

\^\bfitn \cdot \bfitV m

\Bigl( 
k2padjh ph  - \nabla padjh \cdot \nabla ph

\Bigr) 
d\Gamma ,

where \^\bfitn is the outwards directed unit normal. The derivative of the objective function
J with respect to the design variable \^\phi i is given by

(3.33)
dJ

d \^\phi i
=

d\phi m

d \^\phi i

dJobj
d\phi m

+ \epsilon r
dJ\epsilon 

d \^\phi i
,

where the Einstein summation convention is used. In the discrete case, smoothing
(3.17) is a linear function and regularization term (3.18) is a quadratic form, so the

corresponding derivative contributions d\phi m/d \^\phi i and dJ\epsilon / d \^\phi i are straightforward to
compute [4]. As before, the unregularized objective function is Jobj = Jmax (given by
expression (3.15)) or Jobj = Jdiff (given by expression (3.16)); the derivatives of these
functions are

\partial Jmax

\partial \phi m
=  - 1

Nk

Nk\sum 
n=1

1

| pouth | 2
Re

\biggl[ 
\partial pouth

\partial \phi m

1

pouth

\biggr] 
and(3.34a)

\partial Jdiff
\partial \phi m

=
1

Nk

Nk\sum 
n=1

Re

\biggl[ 
\partial pouth

\partial \phi m

\bigl( 
pouth  - poutref

\bigr) \ast \biggr] 
,(3.34b)

respectively.
The derivative expressions (3.32)--(3.34) have been compared to finite difference

approximations, with excellent agreement: the maximum absolute relative difference
is in the interval [10 - 8, 10 - 6] for the different cases. Here, the maximum is taken

over the design parameters \^\phi i or level-set nodal values \phi m, as appropriate, and also
over wavenumbers k for expression (3.32). Derivatives both for the original design in
Figure 4 and a selection of optimized designs have been considered.

It is clear from derivative expression (3.32) that the derivative \partial pouth /\partial \phi m is only
nonzero for nodesm for which the design boundary crosses a neighboring element. The
same observation applies also to expressions (3.34) for \partial Jmax/\partial \phi m and \partial Jdiff/\partial \phi m.

However, thanks to the inner derivative d\phi m/ d \^\phi i of discrete smoothing (3.24), deriva-

tive \partial J/\partial \^\phi m is in general nonzero for all nodes m (also without Tikhonov regulariza-
tion, that is, with \epsilon r = 0).

The procedure for solving optimization problem (3.26) can be summarized as
follows:

\bullet Set the nodal values \^\phi i of the discrete auxiliary function \^\phi h according to
the starting design shown in Figure 1. These nodal values \^\phi i are the design
variables.
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\bullet In each iteration, do the following until convergence:
-- Compute the level-set function \phi h by solving system (3.24).
-- Determine the design boundary \Gamma h

d .
-- Compute the acoustic pressure ph by solving (3.21).
-- Compute objective function (3.19) and derivatives (3.33).

-- Update the design variables \^\phi i.

4. Results. The starting point in the optimization is the simplified compression
driver design in Figure 1, with three annular channels with positions and relative
opening areas as described in section 2. We choose geometrical parameters consistent
with a 3-inch compression driver, but with slightly larger diameter to account for
the fact that most commercial compression drivers have a domed diaphragm. The
diaphragm diameter is 83mm, the depth of the compression chamber is 0.5 mm,
the depth of the rear chamber is 15mm, the length of the phase plug is 25mm,
the compression ratio is 12, and the diameter of the final waveguide is 38mm. The
mechanical parameters used are suspension compliance Cm = 20 \mu m/N, moving mass
Mm = 1.3 g, and damping Rm = 4Ns/m. The electrical impedance Ze is given by
a resistance Re = 4\Omega and an inductance Le = 55\mu H in series, and the force factor
is Bl = 8N/A. These values, with the exception of Cm, are chosen to be identical
to those measured by Makarski [25, p. 10]. However, a larger compliance Cm is used
here in order to be able to study low frequencies also.

The cut finite element code is implemented in MATLAB. COMSOL Multiphysics
is used for verification of the implementation (as described in the last paragraph of
subsection 4.1), and we use material parameters for air at equilibrium pressure 1 atm
and temperature 20\circ C from the COMSOL material library for all simulations; this
means density \rho 0 = 1.204 kg/m3 and speed of sound c = 343.20m/s.

The frequency interval considered is chosen to be the four octave band
[0.625, 10] kHz. The upper frequency bound is chosen so that diaphragm break-up
can be considered noncritical. For the waveguide to model an infinite waveguide, it
needs to be long enough to let the nonplanar modes decay sufficiently; we choose
the length of the waveguide to be 0.5m, which means that the first nonplanar mode,
with cutoff frequency 11.0 kHz, decays with a factor 2 \cdot 10 - 4 over twice the length
of the waveguide at 10 kHz, and even more for lower frequencies. Note that half a
wavelength at 10 kHz is 17.16mm, which is more than the depth of the rear chamber;
consequently, the rear chamber may be accounted for by modifying the mechanical
impedance Zm as described in equation (3.7). The lower-frequency bound is chosen so
that optimization is at least partly successful, which seems to require the phase plug
to be at least one wavelength long; this occurs roughly at 625Hz when the length of
the phase plug is 25mm.

The discrete geometry is piecewise linear on the finite element mesh, which means
that the length of the square mesh elements needs to be small enough to achieve a
detailed geometry description. In the numerical experiments reported here, the mesh
length is chosen to be 0.25mm, which is still large enough to keep time and memory
consumption low. The stabilization parameter \epsilon s in variational formulation (3.21) is
set to 0.0025.

To update the geometry, we first tried a quasi-Newton method with the BFGS
Hessian update, as implemented in the MATLAB function fminunc. However, in the
numerical experiments carried out, this algorithm showed poor convergence. Luckily,
as the problem considered is of least-squares type (regardless of whether objective
function (3.15) or (3.16) is used), the Levenberg--Marquardt algorithm, implemented
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in lsqnonlin in MATLAB, can also be used. This algorithm gives much better conver-
gence for the cases studied here, possibly due to its search direction, which is a mix
of the Gauss--Newton and steepest descent directions: The Hessian approximation
in the Gauss--Newton method approaches the exact Hessian as the sum of squares
approaches zero (that is, close to the optimum), while the steepest descent direction
is used to guarantee a descent direction in each step. In the numerical experiments,
we noted that smoothing (3.24) did indeed counteract mesh dependence, improve the
convergence rate, and promote smooth designs, just as it did in our previous study [4].
All results presented here have been obtained with smoothing (3.24).

4.1. Optimization results. Figure 5 shows optimized phase plug designs and
the corresponding sound pressure levels (SPLs) in the waveguide as functions of fre-
quency. The SPL is normalized to an excitation voltage V = 2

\surd 
2V = 2V RMS in

circuit equation (3.2b) and presented in dB-scale, where 0 dB corresponds to 20\mu Pa,
to comply with the standard in compression driver data sheets. Here, no regular-
ization was added (that is, \epsilon r = 0), so objective function (3.19) reduces to (3.15)
and (3.16), respectively, both of which are considered. To produce these results, 53
discrete frequencies, logarithmically placed in the interval [0.625, 10] kHz, were used.
The optimization algorithm successfully decreased the considered objective function;
that is, the output power for the discrete set of frequencies is maximized when ob-
jective function (3.15) is considered, while the difference to the reference solution is
minimized when objective function (3.16) is considered.

For both optimized solutions there are still frequencies in between those used in
the optimization where the output power is low. In an attempt to counteract this,
the optimization was carried out also using more frequency points, still in the same
frequency interval [0.625, 10] kHz; the results for the case with 209 frequency points
can be found in Figure 6. For these optimized designs, the low-power resonance
phenomena are less pronounced, though still present. To alleviate these phenomena,
the experiments suggest that it is better to optimize with objective function (3.16),
that is, minimize the difference to the ideal solution. The number of iterations needed
for the optimization algorithm to converge can also be found Figures 5 and 6. More
frequency points in the optimization does not necessarily mean more iterations, but
each function evaluation is costlier, since the system of equations must be solved for
each frequency. The optimization algorithms terminate when the maximum norm of
the discrete gradient is less than 10 - 5 times its initial value, or if the absolute relative
change in the objective function between two iterations is less than 10 - 5.

The phase plug designs in Figures 5 and 6 all show more or less peculiar shapes.
Tikhonov regularization is applied in an attempt to control the shape irregularities,
since it proved useful in this regard in the study on horn optimization in [4]. A
selection of resulting designs, where the difference to the ideal solution is minimized
by using objective function (3.19) with Jobj = Jdiff , can be found in Figure 7. We
observe that a small amount of regularization, \epsilon r = 10, results in a design that is
similar to the unregularized case, but without some of the short bends. Adding more
regularization, \epsilon r = 100, simplifies the shape of the optimized phase plug even more,
which causes the output power to suffer from more pronounced resonance phenomena.
The same trend continues as the regularization parameter \epsilon r is increased further.

The cut finite element code is verified by importing the optimized designs into
COMSOL Multiphysics and solving the same problem using a very fine boundary-
fitted mesh and quadratic elements. The comparison for the two rightmost designs
in Figure 7 can be found in Figure 8. The overall agreement is very good, but small
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Fig. 5. Compression driver designs optimized using objective function Jmax in (3.15), and
Jdiff in (3.16), respectively, with 53 frequency points. Cuts through the symmetry plane of the
optimized drivers are shown to the right, and a graph depicting the sound pressure levels (SPL)
in the waveguide is shown to the left. The SPL is normalized to 20\mu Pa, for an excitation voltage
V = 2

\surd 
2V = 2V RMS, and evaluated at 417 frequency points. In the graph, the SPL of the original

design in Figure 1, as well as the hypothetical ideal driver in Figure 3, are also shown.

Fig. 6. Same as Figure 5, but using 209 frequency points in the optimization.

Fig. 7. Compression driver designs optimized with Tikhonov regularization, that is parameter
\epsilon r \not = 0 in objective function (3.19), with Jobj = Jdiff given by (3.16). As in Figure 6, 209 frequency
points were used in the optimization, and the SPL is evaluated at 417 frequency points. In the graph,
the sound pressure level of the original design and the design found in Figure 6, optimized without
regularization (\epsilon r = 0), are also shown.

differences can be observed around the most sensitive frequencies close to the reso-
nance phenomena. These differences are larger for the design with less regularization
(\epsilon r = 10), probably because this design has more small features, which are better
resolved by the boundary-fitted mesh than the uniform cut finite element mesh. The
same observations are made also for the other optimized designs, but, for brevity, the
results are not shown explicitly here.
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Fig. 8. The sound pressure level (SPL) computed with the cut finite element code (lines) and
Comsol Multiphysics (triangles), respectively, for the two rightmost designs found in Figure 7, that
is regularization parameter \epsilon r \not = 0 in objective function (3.19), with Jobj = Jdiff given by (3.16).
Note that only the two higher octaves of the frequency interval, that is [2.5, 10] kHz, are shown here.
In the graph, the SPL was evaluated at 209 frequency points.

4.2. Influence of visco-thermal losses. Acoustic losses caused by viscous and
thermal boundary-layer effects are negligible in many applications, but for compres-
sion drivers, the high surface to volume ratio due to the narrow chamber and channels
means that boundary effects may have a significant impact on the performance [8].
The acoustic losses can accurately be accounted for by solving the linearized Navier--
Stokes equation for the pressure, temperature, and velocity fluctuations, rather than
the Helmholtz equation (3.1a) for the acoustic pressure only. The extra degrees of
freedom, in combination with the fine mesh needed close to the boundary to resolve
the high gradients, make the solution computationally much more expensive.

The visco-thermal boundary losses have so far been neglected here, since the
computational time for each design iteration would otherwise make optimization in-
feasible. In this section, however, we present numerical results including losses for
some of the optimized designs. With the assumptions that air is an ideal gas with
constant viscosity and zero bulk viscosity and that the thermal conductivity is con-
stant, the compressible Navier--Stokes equations, linearized around zero velocity and
static pressure, density, and temperature p0, \rho 0, and T0, are

i\omega 

\biggl( 
p

p0
 - T

T0

\biggr) 
\rho +\nabla \cdot \bfitu = 0,(4.1a)

i\omega \rho 0\bfitu +\nabla p - \mu 

\biggl[ 
\Delta \bfitu +

1

3
\nabla (\nabla \cdot \bfitu )

\biggr] 
= 0,(4.1b)

i\omega \rho 0cpT  - i\omega p - \kappa \Delta T = 0,(4.1c)

where the fluctuations in pressure, temperature, and velocity are denoted p, T , and
\bfitu , respectively. These equations were solved by using COMSOL Multiphysics, ``Ther-
moviscous Acoustics, Frequency Domain""; compare with the equations on page 439 in
COMSOL's Acoustics Module, User's Guide [9]. To somewhat reduce the computa-
tional burden, we solved the full Navier--Stokes equations in the compression chamber
and phase plug and coupled to a solution of the Helmholtz equation in the waveguide,
where the losses are negligible. As in the lossless approximation considered previ-
ously in the paper, we again used material properties for air at equilibrium pressure
p0 = 1atm and temperature T0 = 20\circ C from the COMSOL material library, which
means density \rho 0 = 1.204 kg/m3, dynamic viscosity \mu = 1.8140 \cdot 10 - 5 Pa \cdot s, spe-
cific heat at constant pressure cp = 1.0054 \cdot 103 J/(kg \cdot K), and thermal conductivity
\kappa = 2.5768 \cdot 10 - 2 W/(m \cdot K).
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Numerical results when losses are included for the designs in Figure 7 can be
found in Figure 9. As expected, it is seen that the output power for most frequencies
is reduced compared to the lossless case. The frequency irregularities are somewhat
alleviated by the losses; the dips in output power are wider, less deep, and slightly
shifted down in frequency. Furthermore, the optimized designs clearly outperform the
original design.

Fig. 9. The sound pressure level (SPL) computed by solving the linearized, compressible Navier--
Stokes equations (4.1) to account for viscous and thermal boundary-layer losses, for the optimized
designs found in Figure 7, that is using objective function (3.19) with varying regularization param-
eter \epsilon r and with Jobj = Jdiff given by (3.16). The sound pressure level for the original design, also
including losses, and the lossless hypothetical ideal design are also shown for reference. The SPL
is normalized as in the previous figures, that is with excitation voltage V = 2

\surd 
2V = 2V RMS and

with 0 dB corresponding to 20\mu Pa, and evaluated at 417 frequency points.

5. Conclusions. We propose using a level-set based optimization procedure for
compression driver phase plug design, where the filtered nodal values of the discrete
level-set function are used as design variables to provide a large design freedom. The
shapes of the optimized phase plugs in the numerical experiments are, as far as we
know, not similar to any existing design, and would have been hard to find by a manual
design process or optimization methods constrained to a geometry parametrization
with a few parameters. The output sound pressure levels (SPLs) of the optimized
designs contain only minor frequency irregularities and are very close to the SPL
of the hypothetical ideal design with separated output channels. Moreover, we find
that minimizing the difference in output to the ideal design is more successful in
achieving a smooth frequency response, compared to maximizing SPL. The proposed
method is robust and computationally cheap, thanks to the CutFEM discretization
on a fixed mesh; apart from removing the need for mesh modification during the
design iterations, the fixed-mesh method also implies that the discrete design shape
sensitivities are given by boundary integrals rather than volume integrals, which are
computationally more expensive to evaluate.

The numerical experiments show that the introduction of visco-thermal boundary-
layer losses in the model makes the dips in output SPL wider, less deep, and slightly
shifted down in frequency. The optimized designs clearly outperform the original
design also when these losses are accounted for, but it is not clear whether the opti-
mized designs would differ significantly should these mechanisms be included during
the optimization. Thin air gaps, which are where the boundary-layer losses primarily
originate, might then become less common. The addition of Tikhonov regularization
in the numerical experiments reduces the prevalence of thin gaps somewhat, though
with little effect on the computed SPL; the boundary-layer losses in the compression
chamber itself probably exceed the losses in the phase plug.
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The focus of our study is phase plug design, and our analysis is therefore con-
strained to the frequency range where diaphragm break-up can be assumed to have
negligible effect. Optimizing compression drivers for higher frequencies, where di-
aphragm break-up is likely to occur, is a very challenging multiphysics problem where
the phase plug and diaphragm need to be co-optimized. Finally, it should be men-
tioned that there are no conceptual differences in applying the proposed method to
optimize phase plugs for compression drivers with noncylindrical compression cham-
bers. Phase plugs lacking rotational symmetry can also be optimized with the method,
although this inevitably makes the solution computationally more expensive.

Appendix A. Well-posedness. The arguments below rely on standard Fred-
holm theory, and traces on parts of the boundary are needed for Lemma A.2 and
Theorem A.3, which is why we here make the explicit assumption that the domain is
open, bounded, connected, and provided with a Lipschitz boundary. Throughout this
appendix, Re and Im denote the real and imaginary parts, respectively, and an asterisk
(\ast ) denotes the complex conjugate. For convenience, we define the effective admit-
tance Yeff = Z - 1

eff , where Zeff is given by (3.12). Note that ReYeff > 0 \leftrightarrow ReZeff > 0.
We show coercivity and injectivity in the following two lemmas, and with these results
we show well-posedness in Theorem A.3.

Lemma A.1 (coercivity). Assume that ReYeff > 0. Then, for any p \in H1(\Omega ),

\bigm| \bigm| \bigm| \bigm| A\prime (p, p\ast ) + 2k2
\int 
\Omega 

| p| 2 d\Omega 
\bigm| \bigm| \bigm| \bigm| \geq 

\Biggl[ 
1 + 4

\biggl( 
| ImYeff | 
ReYeff

\biggr) 2
\Biggr]  - 1

2 \biggl( \int 
\Omega 

| \nabla p| 2 d\Omega + k2
\int 
\Omega 

| p| 2 d\Omega 
\biggr) 
.

Proof.\sqrt{} 
1 + 4

\biggl( 
| ImYeff | 
ReYeff

\biggr) 2 \bigm| \bigm| \bigm| \bigm| A\prime (p, p\ast ) + 2k2
\int 
\Omega 
| p| 2 d\Omega 

\bigm| \bigm| \bigm| \bigm| 
\geq Re

\biggl[ \biggl( 
1 - i2

| ImYeff | 
ReYeff

\biggr) \biggl( 
A\prime (p, p\ast ) + 2k2

\int 
\Omega 
| p| 2 d\Omega 

\biggr) \biggr] 
=

\int 
\Omega 
| \nabla p| 2 d\Omega + k2

\int 
\Omega 
| p| 2 d\Omega + 2

| ImYeff | 
ReYeff

k

\int 
\Gamma out

| p| 2 d\Gamma + (2| ImYeff |  - ImYeff)kc\rho 0

\bigm| \bigm| \bigm| \bigm| \int 
\Gamma m

p d\Gamma 

\bigm| \bigm| \bigm| \bigm| 2
\geq 

\int 
\Omega 
| \nabla p| 2 d\Omega + k2

\int 
\Omega 
| p| 2 d\Omega .

Lemma A.2 (injectivity). Assume that ReYeff \geq 0. Then, for each k > 0, if
p \in H1(\Omega ) such that

(A.1) A\prime (p, q) = 0 \forall q \in H1(\Omega ),

it holds that p = 0.

Proof. Assume that p satisfies (A.1), and consider

(A.2) 0 = ImA\prime (p, p\ast ) = k

\int 
\Gamma out

| p| 2 d\Gamma + kc\rho 0 ReYeff

\bigm| \bigm| \bigm| \bigm| \int 
\Gamma m

p d\Gamma 

\bigm| \bigm| \bigm| \bigm| 2 .
Since ReYeff \geq 0, expression (A.2) implies that p vanishes on \Gamma out, which implies that
it can be continuously extended by zero into a region with positive measure outside
of \Gamma out. Denote the extended domain \^\Omega . It holds for the extended function that
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p \in H1( \^\Omega ). Since p satisfies equation (A.1), vanishes on \^\Omega \setminus \Omega , and is continuous
across \Gamma out, it follows that

(A.3)

\int 
K

\nabla p \cdot \nabla q  - k2
\int 
K

qp = 0 \forall q \in C\infty 
0 (K),

for each open set K compactly embedded in \^\Omega , which implies, by the definition of
weak derivative, that almost everywhere in K,

(A.4) \Delta p+ k2p = 0.

Since p satisfies equation (A.4) and vanishes on \^\Omega \setminus \Omega , the unique continuation prin-
ciple [23, section 4.3] implies that p vanishes on \^\Omega .

Theorem A.3. Problem (3.10) is well-posed for each k > 0 under the assumption
that ReZeff > 0.

Proof. The Cauchy--Schwarz inequality and Lemma A.1 imply that bilinear form
(3.11a) is continuous and coercive. Since the domain \Omega is bounded, the natural in-
jection of H1(\Omega ) into L2(\Omega ) is compact. The solution theory for elliptic variational
problems, as formulated, for instance, by Wloka [45, Thm. 17.11], then yields that
either the homogeneous problem, equation (3.10) with L\prime = 0, has a nontrivial solu-
tion, or A\prime constitutes an isomorphism of H1(\Omega ) onto its dual. However, Lemma A.2
shows that the homogeneous problem only has the trivial solution. Since L\prime is bounded
on H1(\Omega ) by the trace theorem on H1(\Omega ) [45, Thm. 8.7], problem (3.10) is well-
posed.

Appendix B. Details on the sensitivity analysis. Here, expression (3.32)
for the discrete derivative of the pressure pouth with respect to the level-set nodal

values \^\phi i is derived. The shape derivative p\prime h(t) of the acoustic pressure ph(t) was
defined in expression (3.29), and the shape derivative of any family of functions \psi (t)
on the perturbed domain \Omega m(t) is defined analogously. We will also need the following
classical result for the derivative of a domain integral Fm(t;\psi ) =

\int 
\Omega m(t)

\psi (t) d\Omega :

(B.1)

dFm(0;\psi )
def
= lim

t\rightarrow 0+

1

t

\Biggl( \int 
\Omega m(t)

\psi (t) d\Omega  - 
\int 
\Omega 

\psi (0) d\Omega 

\Biggr) 
=

\int 
\Omega 

\bigl[ 
\psi \prime (0)+\nabla \cdot (\bfitV m\psi (0))

\bigr] 
d\Omega ,

where the second equality holds, for example, if \psi , \psi \prime , and \nabla \psi are in L1(\Omega ), and if
\bfitV m is in C1(\Omega ) [11, Ch. 9, section 4.1].

To derive expression (3.32) for the derivative

(B.2)
\partial pouth

\partial \phi m
=

1

| \Gamma out| 

\int 
\Gamma out

p\prime h d\Gamma ,

we study the perturbation of variational form (3.21) with respect to the velocity \bfitV m

corresponding to perturbation (3.27). For simplicity, the case without stabilization
(that is, \epsilon s = 0) is treated first, but including stabilization makes no major difference in
the derivations. As we will see, the case when the level set vanishes at the considered
node, \phi m = 0, is special, and therefore we start by considering the case \phi m \not = 0.
All integrals over the domain \Omega h are written as sums over the elements T in the
mesh \scrT h, to make use of the fact that the restriction of ph and \bfitV m on each such
intersection are polynomials, so that the classical derivative expression (B.1) can be
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used. Let Am(t; \cdot , \cdot ) and Lm(t; \cdot ) denote bilinear form (3.5a) and linear form (3.5b),
respectively, with \Omega replaced by \Omega m(t). After reordering, the derivative of variational
form (3.21) can be written

0 =dAm(0; ph, qh) - dLm(0; qh)

=
\sum 
T\in \scrT h

\int 
T\cap \Omega 

\bigl( 
\nabla q\prime h \cdot \nabla ph  - k2q\prime hph

\bigr) 
d\Omega + ik

\int 
\Gamma out

q\prime hph d\Gamma  - ikc\rho 0um

\int 
\Gamma m

q\prime h d\Gamma 

+
\sum 
T\in \scrT h

\int 
T\cap \Omega 

\bigl( 
\nabla qh \cdot \nabla p\prime h  - k2qhp

\prime 
h

\bigr) 
d\Omega + ik

\int 
\Gamma out

qhp
\prime 
h d\Gamma  - ikc\rho 0u

\prime 
m

\int 
\Gamma m

qh d\Gamma 

+
\sum 
T\in \scrT h

\int 
T\cap \Omega 

\nabla \cdot 
\bigl( 
\bfitV m\nabla qh \cdot \nabla ph  - \bfitV mk

2qhph
\bigr) 
d\Omega ,(B.3)

where, in the second equality, we have used the product rule and that shape differen-
tiation commutes with the gradient operator. Moreover, since q\prime h belongs to Vh and
ph satisfies variational problem (3.21), we find that the terms containing q\prime h sum up
to zero.

Remark B.1. As mentioned in section 3.5, that the shape derivative q\prime h of a func-
tion qh \in Vh remains in Vh is a consequence of our use of a fixed mesh. This property
does not hold when traditional boundary-conforming mesh and mesh-deformation
strategies are used.

Since the solution padjh to adjoint variational problem (3.30) belongs to the finite
element space Vh, it can be used in place of qh in (B.3) to get

(B.4)

\sum 
T\in \scrT h

\int 
T\cap \Omega 

\nabla \cdot 
\Bigl( 
\bfitV mk

2padjh ph  - \bfitV m\nabla padjh \cdot \nabla ph
\Bigr) 
d\Omega 

= A(p\prime h, p
adj
h ) - ikc\rho 0u

\prime 
m

\int 
\Gamma m

padjh d\Gamma .

Now, make the choice qh = p\prime h \in Vh in adjoint variational problem (3.30) to get

(B.5) ikc\rho 0u
adj
m

\int 
\Gamma m

p\prime h d\Gamma + 2ik

\int 
\Gamma out

p\prime h d\Gamma = Ladj(p\prime h) = A(p\prime h, p
adj
h ).

Combining expressions (B.4) and (B.5) gives

(B.6)

\sum 
T\in \scrT h

\int 
T\cap \Omega 

\nabla \cdot 
\Bigl( 
\bfitV mk

2padjh ph  - \bfitV m\nabla padjh \cdot \nabla ph
\Bigr) 
d\Gamma 

= ikc\rho 0u
adj
m

\int 
\Gamma m

p\prime h d\Gamma + 2ik

\int 
\Gamma out

p\prime h d\Gamma  - ikc\rho 0u
\prime 
m

\int 
\Gamma m

padjh d\Gamma .

Circuit equation (3.2a) followed by (3.2b) gives\int 
\Gamma m

JphK\prime d\Gamma = BlI \prime  - Zmu
\prime 
m =

\biggl( 
B2l2

Zm
 - Zm

\biggr) 
u\prime m and(B.7a) \int 

\Gamma m

Jpadjh K d\Gamma = BlIadj  - Zmu
adj
m =

\biggl( 
B2l2

Zm
 - Zm

\biggr) 
uadjm .(B.7b)
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Here JphK = ph| \Gamma m
 - pb| \Gamma m

, and ph (pb) denotes the pressure in \Omega (\Omega b), and likewise

for padjh . Note that the geometry of the back chamber is fixed, which implies that
there is a constant C \in \BbbC such that

(B.8)

\int 
\Gamma m

p\prime b d\Gamma = Cu\prime m and

\int 
\Gamma m

padjb d\Gamma = Cuadjm .

Equations (B.7a) and (B.7b) therefore imply that the first and last terms on the right-
hand side of equation (B.6) cancel; by using expression (B.2) on the remaining term,
we find that

(B.9)
1

2ik| \Gamma out| 
\sum 
T\in \scrT h

\int 
T\cap \Omega 

\nabla \cdot 
\Bigl( 
\bfitV mk

2padjh ph  - \bfitV m\nabla padjh \cdot \nabla ph
\Bigr) 
d\Omega =

\partial pouth

\partial \phi m
.

Finally, the divergence theorem can be used to rewrite each integral in the sum on
the left-hand side as a boundary integral, since the integrand is a polynomial and the
restriction of each intersection T \cap \Omega to any symmetry plane is a polygon. In [4], it
is shown that the velocity field vanishes or is tangent to the polygon edges that are
not part of the design boundary \Gamma h

d , so expression (B.9) simplifies to

(B.10)
\partial pouth

\partial \phi m
=

1

2ik| \Gamma out| 

\int 
\Gamma h
d

\^\bfitn \cdot \bfitV m

\Bigl( 
k2padjh ph  - \nabla padjh \cdot \nabla ph

\Bigr) 
d\Gamma ,

which proves expression (3.32).
It remains to consider the case when \phi m = 0, in which case the function t \mapsto \rightarrow pouth

is not differentiable; its right and left derivatives do not coincide. There are two cases
to consider: The first occurs when the design boundary crosses node m, that is, when
there are both neighboring nodes where the level set is positive and those where it is
negative. In this case, we choose the right derivative, as indicated in equation (3.32).
The other case could occur in the rare instance when the level-set function vanishes at
node m and is positive at all neighboring nodes or negative at all neighboring nodes.
In this case, the right (left) derivative is zero when the neighboring nodes are positive
(negative), whereas the left (right) derivative takes into account the insertion of an
island of material (void). We do not aim for topological changes here and therefore
consider these derivatives to be equal to zero.

Including the stabilization term \epsilon sSh(ph, qh) in state equation (3.21) does not
change expression (3.32) as long as the design boundary \Gamma h

d does not cross any mesh
node, as described in [4]. However, when \Gamma h

d does cross the mth mesh node, the
function t \mapsto \rightarrow Sh(ph, qh) will not be continuous at zero. Nonetheless, we use equation
(3.32) also when the design boundary crosses a mesh node, since the effect of the non-
differentiability of the stabilization term is expected to be negligible for moderate
amounts of stabilization.
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