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Abstract

All finite element methods, as well as much of the Hilbert-space theory for partial differential equa-
tions, rely on variational formulations, that is, problems of the type: find u 2 V such that a.v; u/ D l.v/

for each v 2 L, where V;L are Sobolev spaces. However, for systems of Friedrichs type, there is a sharp
disparity between established well-posedness theories, which are not variational, and the very successful
discontinuousGalerkinmethods that have been developed for such systems, which are variational. In an
attempt to override this dichotomy, we present, through three specific examples of increasing complex-
ity, well-posed variational formulations of boundary and initial–boundary-value problems of Friedrichs
type. The variational forms we introduce are generalizations of those used for discontinuous Galerkin
methods, in the sense that inhomogeneous boundary and initial conditions are enforced weakly through
integrals in the variational forms. In the variational forms we introduce, the solution space is defined as
a subspace V of the graph space associated with the differential operator in question, whereas the test
function space L is a tuple of L2 spaces that separately enforce the equation, boundary conditions of
characteristic type, and initial conditions.

1 Introduction
Many mathematical models in applications are most naturally derived and formulated as systems of

first-order partial differential equations, for instance theMaxwell equations and the linearized Euler equa-
tions of gas dynamics. To analyze broad classes of such systems, Friedrichs [11] introduced the concept
of symmetric, positive systems. One attractive aspect of this concept is that it defies the type classification
of equations as elliptic, parabolic, or hyperbolic. Indeed, the motivation for Friedrichs to develop his ap-
proachwas to find a unified framework that encompasses equations that change type, such as the equations
of transonic flow. Friedrichs’ approach has been developed and extended during the years, for instance by
Lax & Phillips [15] and Rauch [21].

More recently, as demonstrated for instance byHouston et al. [12] and by the extensive investigations in
Jensen’s Ph. D. thesis [13], there have been a renewed interest in the theory of Friedrichs systems, due to the
development of discontinuous Galerkin methods, which have emerged as particularly suitable numerical
methods for systems written in first-order form.

Of particular relevance for our contribution is the reformulation and abstraction of Friedrichs systems
due to Ern, Guermond, and Caplain (EGC) [8], which we now briefly review. Assume we want to solve a
system of differential equations

T u D f; (1.1)

supplemented with suitable side conditions. EGC consider a real Hilbert space L, equipped with inner
product .�; �/L and norm k�kL, and a dense subspace D of L. Typically, L will be an L2 space and D
smooth functions with compact support. In this theory, operator T is assumed to satisfy the bound

k.T C zT /�kL � Ck�kL 8� 2 D ; (1.2)
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where zT is the formal adjoint of T with respect to L, that is, the operator satisfying

.T�; /L D .�; zT /L 8�; 2 D : (1.3)

We may always write T D .T � zT /=2C .T C zT /=2; that is, the operator can always be viewed as a sum
of a formally skew symmetric and a formally symmetric operator. Thus, condition (1.2) means that the
operators that are considered within this theory are those whose symmetric part is bounded inL. No such
requirement is assumed on the other part; in a sense, the operator is required to be “essentially” formally
skew-symmetric. An operator that satisfies condition (1.2) for L D L2.0; 1/ is 1 C @x , and an operator
that does not is 1 � @xx . Thus, condition (1.2) is tailored for equations in first-order form.

Solutions to equation (1.1) are considered in a subspace V of the graph space

W D fu 2 L j T u 2 L g ; (1.4)

chosen so that T W V ! L is an isomorphism. For boundary-value problems, the space V is directly
tied to the choice of boundary conditions. EGC introduce an abstract characterization of these, which is
then verified on a case by case basis as the theory is applied to various boundary-value problems. When
this framework, as well as the classical Friedrichs theory [21], is applied to specific boundary- or initial–
boundary-value problem, it leads to formulations involving what in the finite-element community are
known as essential, or strongly enforced boundary and initial conditions. That is, the boundary conditions
are build into the definition of the solution space V . Inhomogeneous conditions then need to be treated
by a lifting procedure, so that they will be incorporated in the right-hand side f .

A related but more comprehensive framework, in which skewness also is central, is the extensive
Hilbert space solution theory [19, Chapter 6], originating from the work of Picard [18], which consid-
ers so-called evo-systems of the form

@tv C Au D f; (1.5a)
v D Mu; (1.5b)

where @t denotes the time derivative, A typically is a linear skew-selfadjoint spatial differential operator,
andM is a bounded linear operator. One of the merits of the theory for evo-systems is that it incorporates
broad classes of material laws (1.5b), and it allows generalizations to quite complicated initial–boundary-
value problems [20]. Moreover, similarly as the original theory for Friedrichs systems, this theory can
encompass equations of changing type, a property used by Franz et al. [10] to propose a numerical method
for an unsteady equation of changing type.

The theories outlined above are not variational in the sense of the standard Hilbert-space theory for
partial differential equations. In the variational framework, extensively used, for instance, in the book by
Wloka [26], a linear boundary-value problem is reformulated into a problem of the following kind:

Find u 2 V such that
a.v; u/ D l.v/ 8v 2 L;

(1.6)

where a is a continuous bilinear form defined on a pair of suitable Sobolev spaces V and L, and l is a
bounded linear functional on L. The well-posedness of problem (1.6) is characterized by the conditions
of theorem 2.1 below. In the common case of L D V , sufficient conditions are given by the celebrated
Lax–Milgram lemma.
Remark 1.1. Thehistorical use of the term “variational” comes from the calculus of variations, in which the
variational problem constitutes the Euler–Lagrange equations of stationarity of a functional. Here we use
the term in a wider sense, for all equations of the type (1.6), whether they are Euler–Lagrange equations
or not.
Remark 1.2. Note that we here position the test function as the first argument of the bilinear form, a
convention not shared by all authors.

The variational approach can also be generalized to time dependent problems. J. L. Lions general-
ized the Lax–Milgram lemma to make it applicable to parabolic initial–boundary-value problems [25,
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Lemma 41.2]. Otherwise, in combination with Galerkin approximations or by using the semi-group ap-
proach, variational methods can also be used to provide well-posedness results for parabolic as well as for
second-order hyperbolic problems [5, 26].

However, variational forms play a much more limited role in the classical theory for first-order par-
tial differential equations. A variational form involving the formal adjoint operator and a so-called semi-
admissible boundary operator is used by Jensen [13, Thm. 28] to establish existence of weak solutions to
Friedrichs systems. A similar procedure, but with strong enforcement of the semi-admissible boundary
conditions, was used already in the original contribution by Friedrichs [11]. Evans [9, § 7.3] also employs
a variational form in order to prove existence of a weak solution to the pure initial-value problem for a
symmetric hyperbolic system. However, in contrast to the variational theory for second-order problems,
uniqueness and continuous dependency of data do not follow from these variational formulations. These
remaining aspects of well-posedness of the problem need to be demonstrated separately.

The finite-element method always relies on variational techniques, which is why it was initially de-
veloped for partial differential equations that naturally are analyzed as variational problems, such as the
equations of linear elasticity. The discontinuous Galerkin method for Friedrichs-type systems is therefore
unusual, as it introduces a variational problem in the discrete setting, whose solution converges, when
the discretization is refined, to an exact solution that is not constructed using strictly variational means.
The main idea behind discontinuous Galerkin methods is to impose boundary conditions, homogeneous
or inhomogeneous, as well as interelement continuity weakly through integrals added to the variational
form. In contrast, in Friedrichs-type solution theory, boundary conditions, by necessity homogeneous,
are typically imposed in the definition of the solution space. In their article on discontinuous Galerkin
methods for Friedrichs systems, Ern & Guermond [7, § 2.3] show that the solution to the original prob-
lem, constructed by their non-variational approach nevertheless uniquely solves a variational problem of
the type (1.6) with L D V D W and for l given by l.v/ D .f; v/L. However, as demonstrated below
in § 3.2, the variational problem, as given by the authors, will be ill posed due to violation of the inf–sup
condition (2.2). Note that this stability issue does not prevent well-posedness of the finite-dimensional dis-
continuous Galerkin problem. Nor does it prevent convergence to the exact solution as the discretization
is refined! The standard analysis technique only requires the weaker condition of consistency, that is, that
the solution to the original problem satisfies the discrete variational form for each discrete test function.

Through three increasingly complex examples of Friedrichs systems (§ 3–§ 5), the aim of our contri-
bution is to introduce well-posed variational formulations in the sense of (1.6), in which boundary and
initial conditions are imposed weakly, similarly as in discontinuous Galerkin methods. The first example,
steady advection, constitutes something of a blueprint for the other examples, which is why it is treated in
some detail. The analysis of the first example is facilitated by the fact that the solution in this case can be
defined directly in the graph spaceW , in contrast to the second example, an elliptic equation written as a
first order system, which requires a restricted solution space V . However, the analysis of the elliptic prob-
lem is simplified by the fact that the graph space can be characterized as a Cartesian product of standard
Sobolev spaces. This simplification is not available in the last andmost complex example, the acoustic wave
equation, which involves inhomogeneous boundary as well as initial conditions. Moreover, in the first two
examples, the symmetric part of the operator satisfies, in addition to boundedness condition (1.2), also the
following coercivity condition in L,

ck�kL � k.T C zT /�kL 8� 2 D ; (1.7)

for some c > 0. This condition fails to hold in the last example.
Remark 1.3. Although our treatment, as well as our notation, is inspired by EGC [8], we use a slightly
different operator formalism, similar to the one used byWloka [26], for instance. We consistently consider
weak differential operators; that is, a derivative is a distributional derivative that can be represented as
a locally integrable function, and we typically regard differential operators as bounded linear operators
between different spaces instead of as densely-defined unbounded operators. In practice this difference in
formalism is nonconsequential, as pointed out by Antonic and Burazin [1, § 2, p. 1697].

The first two examples are similar to examples treated by Ern andGuermond [7] and Ern, Guermond&
Caplain [8], except that our theory is variational, which means, for instance, that inhomogeneous bound-
ary conditions are straightforward to handle. The third example below is addressed by Burazin & Erceg [4,
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§ 3.3], who treat initial–boundary-value problems using the theory of Ern, Guermond & Caplain [8] for
the spatial operator together with the semigroup approach for the time evolution. Our treatment differs
in that it is variational, and in that we use a space–time formalism, in which time and space directions are
treated on an equal footing. Again, our variational approachmakes it straightforward to handle inhomoge-
neous initial as well as inhomogeneous boundary conditions of characteristic type, also called impedance
boundary conditions, which are imposed weakly in the problem statement.

The contributions discussed above [8,11,13,21] aim for a general theory of Friedrichs systems, which is
not the intention here. Rather, we address specific (initial–)boundary-value problems for operators charac-
terized by property (1.2) and employ closely related variational formulations in order to specify precisely
in what sense the (initial–)boundary-value problem is set and to establish well-posedness in this sense.
We believe that having access to true variational formulations also of Friedrichs-type systems is in itself
of interest and closes a “gap” in the classical Hilbert-space approach to the analysis of partial differential
equations. Moreover, the variational forms presented below constitute variations of the ones used for dis-
continuous Galerkin discretizations, andmay therefore serve as an inspiration for the development of new
numerical methods for Friedrichs systems.

2 Well-posedness of variational problems
The well-posedness of variational problem (1.6) is characterized by the following theorem, attributed

to Nečas [17].

Theorem 2.1. For real Hilbert spaces V and L, let a be a continuous bilinear form on L � V and l a
continuous linear functional on L. The variational problem to find u 2 V such that a.v; u/ D l.v/ 8v 2 L

has a unique solution satisfying

kuk �
1

˛
klk (2.1)

for some ˛ > 0, if and only if the following two conditions hold:

(i) 9˛ > 0 such that, for each u 2 V ,

sup
v2L
v¤0

a.v; u/

kvk
� ˛kuk: (2.2)

(ii) If v 2 L satisfies
a.v; u/ D 0 8u 2 V (2.3)

then v D 0.

The continuous bilinear form defines a bounded linear operator from V to the dual of L. Condi-
tion (2.2) implies that the operator has a trivial null space and a closed range, and condition (2.3) that it is
surjective. Ern and Guermond [6, Thm. 2.6] formulate and prove theorem 2.1 in the more general setting
of Banach spaces.

The analysis of variational problem (1.6) is simplified ifL D V . In particular, a sufficient condition for
properties (2.2) and (2.3) is that the bilinear form is strongly coercive. The theorem for this case is known
as the Lax–Milgram lemma.

3 Example 1: steady advection
A standard model problem for first-order hyperbolic problems is the advection–reaction problem

ˇ � ruC �u D f in�, (3.1a)
u D g on ��, (3.1b)

posed on an open, bounded, and connected Lipschitz domain � � Rd , d D 2 or 3. We assume that
ˇ 2 W 1;1.�/d and, for simplicity of exposition, that r � ˇ D 0 and that 8x 2 x�,

�.x/ � �0 > 0: (3.2)
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The boundary @� comprises the parts

�� D fx 2 @� j n � ˇ < 0 g (inflow), (3.3a)
�C D fx 2 @� j n � ˇ > 0 g (outflow), (3.3b)
�0 D fx 2 @� j n � ˇ D 0 g (tangential flow). (3.3c)

One way to generate a variational formulation of problem (3.1) is by a least-squares approach, through
which problem (3.1) essentially will be reformulated into an equivalent second-order, anisotropic diffusion
problem, as discussed, for instance inAzerad’s Ph.D. thesis [2, Ch. 5]. An analogous approachhas also been
proposed by Bourhrara [3] for the neutron transport equation. However, our aim is to devise variational
formulations for the equations in their original Friedrichs-type form. For this, the starting point will be
the variational forms that are used within the framework of discontinuous Galerkin methods.

3.1 The Discontinuous Galerkin method

The Discontinuous Galerkin (DG) methods for hyperbolic equations was introduced by Reed & Hill [22]
and first analyzed by Lesaint & Raviart [16] for model problem (3.1). We will briefly discuss how the
method is constructed, since the variational formulation (3.4), from which the DG method can be devel-
oped, serves as the starting point also for our approach.

First, let Vh be a finite-dimensional space of weakly differentiable functions—the weak differentiability
will later be relaxed—and define the following variational problem.

Find uh 2 Vh such that
a0.vh; uh/ D l0.vh/ 8vh 2 Vh;

(3.4)

where

a0.vh; uh/ D

Z
�

vh

�
ˇ � ruh C �uh

�
�

Z
��

n � ˇvhuh; (3.5a)

l0.vh/ D

Z
�

vhf �

Z
��

n � ˇvhg: (3.5b)

Remark 3.1. For integrals without “free” variables, like the ones in definitions (3.5), we will in this article
not include a measure symbol (such as dV or dS), since the type of measure will be clear from the domain
of integration.

Note that variational problem (3.4) is consistent, that is, a0.vh; u/ D l0.vh/, where u is a sufficiently
smooth solution (somehow obtained) of boundary-value problem (3.1). Moreover, note that boundary
condition (3.1b) isweakly imposed, that is, it is not incorporated in the definition of the space but assigned
in the variational expression on the same footing as the differential equation in the interior.

The system matrix resulting from problem (3.4) is positive definite since, by choosing vh D uh and
applying integration by parts,

a0.uh; uh/ D

Z
�

uh

�
ˇ � ruh C �uh

�
�

Z
��

n � ˇu2
h

D
1

2

Z
@�

n � ˇu2
h C

Z
�

�u2
h �

Z
��

n � ˇu2
h

D

Z
�

�u2
h C

1

2

Z
@�

jn � ˇju2
h � �0

Z
�

u2
h C

1

2

Z
@�

jn � ˇju2
h > 0 8uh ¤ 0:

(3.6)

It thus follows that system (3.4) is solvable for any data f 2 L2.�/, g 2 L2.��/.
In spite of the solvability, it turns out that the stability property (3.6) is too weak to obtain accurate

approximations. Therefore—and this is the basic feature of DG methods—the continuity of the functions
are relaxed to a space of piecewise polynomials defined on a triangulation of the domain. Through a bilinear
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form aDG, inter-element continuity over the edges of the mesh is imposed weakly in the same way as
boundary condition (3.1b) is assigned in variational problem (3.4). This procedure leads to the improved
stability property

aDG.uh; uh/ D

Z
�

�u2
h C

1

2

X
K2Th

Z
@K�

jn � ˇjJuhK2
C
1

2

Z
�C

jn � ˇju2
h; (3.7)

whereTh is the set of elements in the mesh, @K� the inflow (cf. definition (3.3a)) portion of the boundary
of elementK, and JuhK the local jump of uh over the element boundary.

An observation of relevance for what will follow is that the second term in the right-hand side of ex-
pression (3.7) can be interpreted as a replacement for the second term in the square of the graph norm

kuk
2

D

Z
�

�u2
C

Z
�

.ˇ � ru/2 (3.8)

associated with operator ˇ � r .
3.2 An ill-posed variational formulation

To set the stage for the later development, it is instructive to see what happens when naively generalizing
variational formulation (3.4) to the original, infinite-dimensional boundary-value problem (3.1). Thus,
define operator T D ˇ � r C � and the graph space

W D
˚
u 2 L2.�/ j T u 2 L2.�/

	
; (3.9)

equipped with the norm

kukW D

�Z
�

�
�u2

C .ˇ � ru/2
��1=2

; (3.10)

which is equivalent to the graph norm for T . As in the discrete case, we choose the space of test functions
also asW , which leads to the following variational problem.

Find u 2 W such that
a0.v; u/ D l0.v/ 8v 2 W:

(3.11)

This variational problem is a particular example of a class of variational formulations discussed by Ern &
Guermond [7, Eq. (2.23)], for which they show, in their theorem 2.8, that the solution constructed with
their (nonvariational) method will be a unique solution to the variational problem. However, the problem
is that variational problem (3.11) in itself is notwell posed; the operator defined bya0 does not have a closed
range, which means that condition (2.2) will be violated, and the solution will not depend continuously on
data. Jensen [13, § 1.9, BVP2] introduces a similar variational form, with the difference that the space of test
functions is a subspace ofH 1.�/. This formulation suffers from the same shortcoming as problem (3.11).
Remark 3.2. In their remark 2.3, Ern & Guermond allude to this problem by stressing that the variational
problem does not induce an isomorphism betweenW andW 0.

To demonstrate the ill-posedness of problem (3.11), consider the opposite to statement (2.2) applied
to a0. That is, for each ˛ > 0, there is a u 2 W such that

sup
v2W
v¤0

a0.v; u/

kvkW

< ˛kukW : (3.12)

We will construct such an element u 2 W . Let ˛ > 0 be given and let .un/n2ZC be a sequence in
H 1

0 .�/ � W . Then, using integration by parts and the Cauchy–Schwarz inequality, we find that there is a
constant C > 0 such that for each element un in the sequence and for each v 2 W ,

a0.v; un/ D

Z
�

vˇ � run C

Z
�

�vun D �

Z
�

unˇ � rv C

Z
�

�unv

� kunkL2.�/kˇ � rvkL2.�/ C k�1=2unkL2.�/k�
1=2vkL2.�/

� CkunkL2.�/kvkW ;

(3.13)
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from which it follows that
sup
v2W
v¤0

a0.v; un/

kvkW

� CkunkL2.�/: (3.14)

Now choose the sequence to be bounded inL2.�/ but unbounded inH 1
0 .�/. From inequality (3.14) then

follows that there is aN 2 ZC such that

sup
v2W
v¤0

a0.v; uN /

kvkW

� CkuN kL2.�/ � C sup
n

kunkL2.�/ < ˛kuN kW ; (3.15)

where the last two inequalities follows from the boundedness and unboundedness of the sequence in
L2.�/ andH 1

0 .�/, respectively. The element u D uN thus satisfies inequality (3.12). An example of such
a sequence when� is the unit square and ˇ D .1; 0/ is given by the elements un.x; y/ D sinn�x sin�y.
3.3 A well-posed variational formulation

Thus, the bilinear form a0 is not the right choice for a well-posed variational formulation of problem (3.1).
To arrive at another formulation, the first crucial observation from inspection of the original problem
is that it seems natural to provide the input data .f; g/ in the Cartesian product space L D L2.�/ �

L2.��I jn � ˇj/. This choice suggests that we could identify L0 D L and use L also as the space of test
functions. We thus introduce the test function tuple Ov D .v; v�/ 2 L and equip L with the norm

k OvkL D

�Z
�

�v2
C

Z
��

jn � ˇjv2
�

�1=2

D

�
k�1=2vk

2
L2.�/

C kv�k
2
L2.��Ijn�ˇj/

�1=2

: (3.16)

Moreover, following the framework laid out in § 1, we require the solution space V to be a subspace
of the graph space W in definition (3.9). We will assign the boundary conditions weakly through an in-
tegral, similarly as in a0. Therefore, due to our choice of L, we need to require the solution space V to
possess traces in L2.��I jn � ˇj/. In general, continuous trace maps of functions in W can only be de-
fined intoH�1=2.@�/. However, when dist.��; �C/ > 0, the trace is continuous into L2.@�I jn � ˇj/ [7,
Lemma 3.1]. Thus, for this example we will assume that dist.��; �C/ > 0, which means that we can
choose the space of solutions simply as V D W .

The bilinear form and the linear functional will then become, for Ov D .v; v�/ 2 L, u 2 V ,

a. Ov; u/ D

Z
�

vT u �

Z
��

n � ˇv�u; l. Ov/ D

Z
�

vf �

Z
��

n � ˇv�g; (3.17)

where, as before, T D ˇ � r C �. The variational formulation of boundary-value problem (3.1) can then
be stated as follows.

Find u 2 V D W such that
a. Ov; u/ D l. Ov/ 8Ov 2 L:

(3.18)

The well-posedness proof of problem (3.18) will also refer to the formal adjoint operator zT u D �ˇ �

ruC �u. We note that the graph space associated with zT is alsoW . Complementary toL, we also define
the space L� D L2.�/ � L2.�CI jn � ˇj/. Functions Ov D .v; vC/ 2 L� are provided with the norm

k OvkL� D

�
k�1=2vk

2
L2.�/

C kvCk
2
L2.�CIjn�ˇj/

�1=2

: (3.19)

The bilinear form
a�. Ov; u/ D

Z
�

v zT uC

Z
�C

n � ˇvCu (3.20)

is continuous on L� � V , and is the adjoint of a in the sense that, for each u; v 2 V ,

a�
�
Ou; v

�
D a

�
Ov; u

�
; (3.21)

where Ou D .u; trC u/ and Ov D .v; tr� v/, and where trC and tr� are the trace maps into L2.��I jn � ˇj/

and L2.�CI jn � ˇj/, respectively, that is,

tr� 2 L
�
V;L2.��I jn � ˇj/

�
; trC 2 L

�
V;L2.�CI jn � ˇj/

�
: (3.22)

Now, we are prepared to establish the following well-posedness result.
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Theorem 3.3. With a and l as in definition (3.17), assuming bound (3.2) and that dist.��; �C/ > 0, the
variational problem to find u 2 V D W such that

a. Ov; u/ D l. Ov/ 8Ov 2 L (3.23)

has a unique solution satisfying
kuk � 2klk: (3.24)

Proof. Since dist.��; �C/ > 0, the trace maps (3.22) are well defined [7, lemma 3.1]. From the Cauchy–
Schwarz inequality follows then that the bilinear forms a, a� and the linear functional l are continuous.
Thus, in order to apply theorem 2.1, we need to show that conditions (2.2) and (2.3) are satisfied.

Condition (2.2): The condition is satisfied foru D 0. Foru 2 V nf 0 g, choose Ov D Ou D .u; tr� u/ 2 L.
Integrating by parts, we then find

a. Ou; u/ D

Z
�

u
�
.ˇ � r/uC �u

�
�

Z
��

n � ˇu2
D
1

2

Z
@�

jn � ˇju2
C
1

2

Z
�

�u2
C
1

2

Z
�

�u2

� k OukLk�1=2ukL2.�/;

(3.25)

from which follows that
sup

Ov2Lnf0g

a. Ov; u/

k OvkL

� k�1=2ukL2.�/: (3.26)

An analogous calculation (now choosing Ov D .u; trC u/ 2 L�) reveals the same bound for a�,

sup
Ov2L�nf0g

a�. Ov; u/

k OvkL�

� k�1=2ukL2.�/: (3.27)

Moreover, for each u 2 V such that T u ¤ 0, choosing Ow D .T u; 0/ 2 L, we find that

sup
Ov2Lnf0g

a. Ov; u/

k OvkL

�
a. Ow; u/

k OwkL

D kT ukL2.�/: (3.28)

From bounds (3.26) and (3.28) it follows that for each u 2 V n f 0 g,

2 sup
Ov2Lnf0g

a. Ov; u/

k OvkL

� k�1=2ukL2.�/ C kT ukL2.�/ � kukV ; (3.29)

We have thus verified condition (2.2) in theorem 2.1 with ˛ D 1=2.
Condition (2.3): Let Ov D .v; v�/ 2 L such that

a. Ov; u/ D

Z
�

v
�
ˇ � ruC �u

�
�

Z
��

n � ˇv�u D 0 8u 2 V: (3.30)

Choosing u D .�; 0/ in equation (3.30), where � 2 C 1
0 .�/, we find thatZ

�

vT� D 0 8� 2 C 1
0 .�/: (3.31)

That is, by the definition of weak derivative,

zT v D 0; (3.32)

so that, in particular, v 2 W , which means that v admits L2.@�/ traces. We may therefore, for any
u 2 C 1.x�/, integrate expression (3.30) by parts to obtain

0 D

Z
�

v
�
ˇ � ruC �u

�
�

Z
��

n � ˇv�u D

Z
@�

n � ˇvuC

Z
�

u zT v‘
D0

�

Z
��

n � ˇv�u

D

Z
�C

jn � ˇjuv C

Z
��

jn � ˇju.v� � v/ D 0:

(3.33)
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Choosing u as functions whose trace on @� has compact support in �C and ��, respectively, and by
density, we conclude that

trC v D 0; (3.34a)
tr� v D v�: (3.34b)

Expressions (3.32) and (3.34a) substituted in definition (3.20) yield that a�.w; v/ D 0 8w 2 L�,which
means that v D 0 by inequality (3.27). Expression (3.34b) implies then that also v� D 0, which finally
shows that Ov D .v; v�/ D 0, which verifies also condition (2.3) and thereby, by theorem 2.1, shows well-
posedness of variational problem (3.18).

4 Example 2: an elliptic model problem
Our second example concerns the following boundary-value problem for a vector field u and a scalar

field p,

uC rp D f1 in�, (4.1a)
p C r � u D f2 in�, (4.1b)

1

2
.1 � ˛/p �

1

2
.1C ˛/n � u D g on @�, (4.1c)

which constitutes a first-order-system formulation of the scalar second-order elliptic problem

��p C p D f in�, (4.2a)
1

2
.1 � ˛/p C

1

2
.1C ˛/

@p

@n
D g on @�. (4.2b)

We assume the domain � to be open, bounded, connected, and Lipschitz. Moreover, the function ˛ 2

L1.@�/ is assumed to satisfy, for some ˛M 2 Œ0; 1/,

ess: im˛ � Œ�˛M ; ˛M �: (4.3)

That is, the interpolation in the Robin-type boundary condition (4.1c) is not allowed anywhere to reduce
to a pure Dirichlet (˛ D �1) or Neumann (˛ D 1) condition on p.
Remark 4.1. The reason for the restriction in ˛ is that the inf–sup constant of the variational formulation
will in our proof turn out to be proportional to 1 � ˛M .
Remark 4.2. Homogeneous pure Dirichlet and Neumann conditions can be handled, due to the character-
ization in lemma 4.3 of the graph space, by incorporating these strongly in the components of the solution
vector. We choose to ignore this case for simplicity of exposition.

Equations (4.1a) and (4.1b) can be written in the block operator form

TŸ D f (4.4)

where
Ÿ D

�
�1

�2

�
; T D

�
I r

r� 1

�
; f D

�
f1

f2

�
: (4.5)

Note the blocking of the rows in Ÿ and f in a vector �1 (in the sense of a first-order tensor of dimension
d D 2 or 3, the space dimension) and a scalar �2. Consequently, the first column of matrix T contains
operators acting on vector fields and the second column operators that act on scalar fields.

Proceeding similarly as for the first example, we introduce the graph space associated with block op-
erator T from which a solution space will be extracted,

W D

n
Ÿ 2 L2.�/dC1

j TŸ 2 L2.�/dC1
o
: (4.6)

However, for this particular example, there is a more elementary characterization ofW .
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Lemma 4.3. It holds that

W D

n
Ÿ D Œ�1; �2�

T
2 L2.�/dC1

j �1 2 H.divI�/; �2 2 H 1.�/
o

(4.7)

Proof. Definition (4.7) corresponds to the graph norm of A D
� 0 r

r� 0

�
. Since T D I C A, the conclusion

follows from that the graph norm of A and I C A are equivalent.

Characterization (4.7) enables the integration-by-parts formulaZ
�

˜T TŸ D

Z
�

�
�1 � .�1 C r�2/C �2.�2 C r � �1/

�
D

˝

n�1; �2

˛
C

˝

n�1; �2

˛
C

Z
�

ŸT zT˜ 8˜; Ÿ 2 W;

(4.8)

where
zT D

�
I �r

�r� 1

�
(4.9)

is the formal adjoint of T, where h�; �i denotes the duality pairing onH�1=2.@�/�H 1=2.@�/, and where

n 2 L

�
H.div; �/;H�1=2.@�/

�
is the continuous extension of the trace operator that for u 2 C 1.x�/d

satisfies 
nu D n � uj
@�

. In particular, for ˜ D Ÿ, formula (4.8) reduces toZ
�

ŸT TŸ D

Z
�

jŸj2 C
˝

n�1; �2

˛
; 8Ÿ 2 W: (4.10)

Remark 4.4. The graph space corresponding to operator zT is identical toW . That is, in addition to defini-
tion (4.6), it holds that

W D

n
Ÿ 2 L2.�/dC1

j zTŸ 2 L2.�/dC1
o
: (4.11)

In order to generalize the approach of § 3.3 to system (4.1), we first notice that it seems reasonable to
provide data to system (4.1) as a tuple .f; g/ of interior data f D Œf1; f2�

T 2 L2.�/dC1 and boundary
data g 2 L2.@�/. Consequently, we therefore define the space of test functions as the Cartesian product
space

L D L2.�/dC1
� L2.@�/: (4.12)

For elements in L, we will use the same tuple notation as for the data, that is, Õ D .˜; �R/, where ˜ D

Œ�1; �2�
T 2 L2.�/dC1 and �R 2 L2.@�/, and provide the norm

k˜kL D

�Z
�

�
j�1j

2
C �2

2

�
C

Z
@�

j�Rj
2

�1=2

: (4.13)

Note that the first element ˜ in the test-function tuple will have the same block structure as the elements
in W and correspond to the interior data vector f. The second element �R in the test-function tuple cor-
respond to the scalar boundary data g. Associated with the boundary condition, we introduce the trace
map

tr˛ Ÿ D
1

p
2

�
.1 � ˛/�2 � .1C ˛/n � �1

�ˇ̌
@�
; (4.14)

defined for Ÿ 2 C 1.x�/dC1. For Õ D .˜; �R/ 2 L and Ÿ 2 V , where V � W is a suitable solution space,
below defined so that tr˛ can be continuously extended to L .V;L2.@�//, we define

a. Õ ; Ÿ/ D

Z
�

˜T TŸC

Z
@�

�R tr˛ Ÿ; (4.15a)

l. Õ / D

Z
�

˜T f C
p
2

Z
@�

�Rg: (4.15b)

The issue is now to define a suitable space of solutions V � W to render a well-posed variational
formulation. By characterization (4.7), we see that a restriction of �1 is needed to admit traces tr˛ in
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L2.@�/, since H.divI�/-functions generally admits normal traces only in H�1=2.@�/. Therefore, we
introduce the following strict subspace ofH.divI�/

U D
˚
u 2 H.divI�/ j 
nu 2 L2.@�/

	
; (4.16)

equipped with the inner product

.u; v/U D

Z
�

.u � vC r � ur � v/C

Z
�


nu 
nv: (4.17)

To show that U , as well as the solution space of example 3 in § 5, is a Hilbert space, we will rely on the
following general result.

Theorem 4.5. Let X , Y , and Z be Banach spaces such that Y � Z with continuous embedding, and let
A W X ! Z be a bounded linear operator. Then the space

XY D f x 2 X j Ax 2 Y g ; (4.18)

with norm
kxkXY

D
�
kxk

2
X C kAxk

2
Y

�1=2
; (4.19)

is a Banach space continuously embedded in X .

Proof. Since kxkX � kxkXY
, XY embeds continuously into X . It remains to show that XY is complete.

Let the sequence .xn/n2ZC be Cauchy in XY . By the continuous embedding, .xn/n2ZC is Cauchy also in
X , so there is an x� such that xn ! x� in X . Moreover, .Axn/n2ZC is Cauchy in Y , so there is a y� 2 Y

such thatAxn ! y� in Y . Thus,XY will be complete ifAx� D y. By the continuous embedding Y � Z,
Axn ! y� also in Z. Since also Axn ! Ax� in Z, by continuity of A, uniqueness of limits yields that
Ax� D y and XY is thus complete.

Choosing X D H.divI�/, Y D L2.�/, Z D H�1=2.@�/, XY D U , and A D 
n, theorem 4.5
implies following result.

Lemma 4.6. The space U is a Hilbert space continuously embedded inH.divI�/.

Now we are ready to define the solution space as the Hilbert space

V D
˚
Ÿ D .�1; �2/ 2 W j �1 2 U

	
; (4.20)

equipped with norm

kŸkV D

�
kŸk2

W C k
nŸ1k
2
L2.@�/

�1=2

: (4.21)

Since 
n maps functions in U into L2.@�/, integration-by-parts formula (4.8) can, in the particular case
of ˜ 2 W; Ÿ 2 V be simplified and writtenZ

�

˜T TŸ D
˝

n�1; �2

˛
C

Z
@�


n�1�2 C

Z
�

ŸT zT˜; (4.22)

and, in particular, for Ÿ 2 V , Z
�

ŸT TŸ D

Z
�

jŸj2 C

Z
@�


n�1�2: (4.23)

The variational problem corresponding to boundary-value problem (4.1) can then be formulated in
standard form.

Find Ÿ 2 V such that
a. Õ ; Ÿ/ D l. Õ / 8 Õ 2 L:

(4.24)

We will also utilize the bilinear form

a�. Õ ; Ÿ/ D

Z
�

˜T zTŸC

Z
@�

�R tr�
˛ Ÿ; (4.25)
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where the trace operator

tr�
˛ Ÿ D

1
p
2

�
.1 � ˛/�2 C .1C ˛/n � �1

�ˇ̌
@�

(4.26)

also extends continuously to a bounded operator from V into L2.@�/. The form a� is adjoint to a in the
sense that for Ÿ 2 V and ˜ 2 V ,

a
�
Õ ; Ÿ

�
D a�

�
OŸ;˜

�
(4.27)

where
Õ D

�
˜; tr0 ˜

�
; OŸ D

�
Ÿ; tr�

0 Ÿ
�
: (4.28)

To prove the inf-sup condition (2.2), we first establish the following bounds.

Lemma 4.7. For each Ÿ 2 V , it holds that

sup
Õ 2Lnf0g

a. Õ ; Ÿ/

k Õ k
�
1 � ˛M

2

�
kŸk2

L2.�/dC1 C k
n�1k
2
L2.@�/

�1=2

; (4.29a)

sup
Õ 2Lnf0g

a�. Õ ; Ÿ/

k Õ k
�
1 � ˛M

2

�
kŸk2

L2.�/dC1 C k
n�1k
2
L2.@�/

�1=2

: (4.29b)

Proof. Due to the bilinearity of a and a�, the conditions hold for Ÿ D 0. Thus, let Ÿ 2 V be nonzero and
define

OŸ D .Ÿ; tr0 Ÿ/ 2 L: (4.30)

The conclusion (4.29a) then follows from the calculation

a.OŸ; Ÿ/ D

Z
�

ŸT TŸC
1

2

Z
@�

h�
�2 � 
n�1

��
.1 � ˛/�2 � .1C ˛/
n�1

�i
D

Z
�

jŸj2 C

Z
@�

�2 
n�1 C
1

2

Z
@�

�
.1 � ˛/�2

2 C .1C ˛/.
n�1/
2
�

�

Z
@�

�2 
n�1

�

Z
�

jŸj2 C
1 � ˛M

2

Z
@�

�
�2

2 C .
n�1/
2
�

D

�Z
�

jŸj2 C
1 � ˛M

2

Z
@�

�
�2

2 C .
n�1/
2
�� 1

2
�Z

�

jŸj2 C
1 � ˛M

2

Z
@�

�
�2

2 C .
n�1/
2
�� 1

2

�

�Z
�

jŸj2 C
1 � ˛M

2

Z
@�

.
n�1/
2

� 1
2

�Z
�

jŸj2 C
1 � ˛M

2

Z
@�

1

2
.�2 � 
n�1/

2

� 1
2

�
1 � ˛M

2

�
kŸk2

L2.�/dC1 C k
n�1k
2
L2.@�/

�1=2

kOŸkL;

(4.31)

where the second equality follows from integration-by-parts formula (4.23), the first inequality from the
bound (4.3) on ˛, and where in the second inequality, we have neglected �2

2 in the first factor and used

a2
C b2

D
1

2

�
.a � b/2 C .aC b/2

�
�
1

2
.a � b/2 (4.32)

for a D �2 and b D 
nŸ1 in the second factor. The dual conclusion (4.29b) follows by an analogous
calculation on a� using test function

OŸ D
�
Ÿ; tr�

0 Ÿ
�

2 L: (4.33)

With the help of lemma 4.7, the required inf–sup condition is straightforward to show.

Lemma 4.8. For each Ÿ 2 V , it holds that

sup
Õ 2Lnf0g

a. Õ ; Ÿ/

k Õ k
�
1 � ˛M

3
kŸkV : (4.34)
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Proof. Let Ÿ 2 V . If TŸ D 0, then the conclusion follows from lemma 4.7. We may thus assume that
TŸ ¤ 0. Define z̃ D .TŸ; 0/ 2 L. Then

kz̃kL D kTŸkL2.�/dC1 ; (4.35)

and
a.z̃; Ÿ/ D

Z
�

.TŸ/T TŸ D kTŸk2
L2.�/dC1 ; (4.36)

which implies that

sup
Õ 2Lnf0g

a. Õ ; Ÿ/

k Õ k
�
a.z̃; Ÿ/

kz̃k
D kTŸkL2.�/dC1 : (4.37)

Inequalities (4.29a) and (4.37) imply that�
2

1 � ˛M

C 1

�
sup

Õ 2Lnf0g

a. Õ ; Ÿ/

k Õ k
�

�
kŸk2

L2.�/dC1 C k
n�1k
2
L2.@�/

�1=2

C kTŸkL2.�/dC1

� kŸkV ;

(4.38)

from which the conclusion follows.

What is now left is to show surjectivity.

Lemma 4.9. If Õ 2 L such that
a. Õ ; Ÿ/ D 0 8Ÿ 2 V; (4.39)

then Õ D 0.

Proof. By definition (4.15a), condition (4.39) reads Õ D .˜; �R/ 2 L, where ˜ D Œ�1; �2�; such thatZ
�

˜T TŸC

Z
@�

�R tr˛ Ÿ D 0 8Ÿ D Œ�1; �2�
T

2 V; (4.40)

from which it follows that Z
�

˜T T� D 0 8� 2 C 1
0 .�/

dC1
I (4.41)

that is,
zT˜ D 0 (4.42)

by the definition of weak derivative. We conclude thus that, trivially, ˜ 2 W (Remark 4.4), which means
that we may integrate the first term in equation (4.40) by parts, using formula (4.22), to obtain

˝

n�1; �2

˛
@�

C

Z
@�


n�1 �2 C
1

p
2

Z
@�

�R
�
.1 � ˛/�2 � .1C ˛/
n�1

�
D 0 8Œ�1; �2�

T
2 V: (4.43)

In particular, for �1 D 0, �2 2 H 1.�/, we find thatD

n�1 C

1 � ˛
p
2
�R; 
�2

E
D 0 8�2 2 H 1.�/; (4.44)

where 
 is the trace map ofH 1.�/ ontoH 1=2.@�/. Since 
 is surjective, it follows that


n�1 C
1 � ˛
p
2
�R D 0; (4.45)

and, in particular, that 
n�1 2 L2.@�/ (since �R is in L2.@�/).
Choosing �2 D 0, �1 2 C1.x�/d in equation (4.43), we find thatZ

@�


n�1

�
�2 �

1C ˛
p
2
�R

�
D 0 8�1 2 C1.x�/d ; (4.46)
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from which it follows that
�2 �

1C ˛
p
2
�R D 0: (4.47)

Multiplying expressions (4.45) and (4.47) with .1C˛/ and .1�˛/, respectively, and adding, it follows
that

1
p
2

�
.1C ˛/
n�1 C .1 � ˛/�2

�
D tr�

˛ ˜ D 0: (4.48)

Due to expressions (4.42) and (4.48), and by definition (4.25), we see that a�. O™;˜/ D 0 for each
O™ 2 L. Property (4.29b) then implies that ˜ D 0. Finally, equation (4.47) yields that also �R vanishes;
hence Õ D 0.

With these results, well-posedness of the variational problem is straightforward to show.

Theorem 4.10. With a and l as in definitions (4.15), where function ˛ satisfies bound (4.3), with space V as
in definition (4.20), and with L D L2.�/dC1 � L2.@�/, the variational problem to find Ÿ 2 V such that

a. Õ ; Ÿ/ D l. Õ / 8 Õ 2 L (4.49)

has a unique solution satisfying

kŸk �
3

1 � ˛M
klk: (4.50)

Proof. By the Cauchy–Schwarz inequality, a and l are continuous on L � V and L, respectively. Well-
posedness then follows from theorem 2.1 together with lemmas 4.8 and 4.9.

5 Example 3: the acoustic wave equation
Here we consider the equations of linear acoustics in a still, ideal gas under isentropic conditions. The

two previous exampleswere idealizedmodel problem, templates for basic hyperbolic and elliptic equations,
respectively, without the inclusion of appropriate dimensional coefficients thatwould occur in applications.
In contrast, the equations and the spaces discussed here will be presented in a form that respects relevant
physical units.

The gaseousmedium is characterized by its static density�0 and speed of sound c0. In simple situations,
the static density and the speed of sound are constant, but in the presence of temperature gradients in the
gas, the density and speed of sound will vary spatially. However, typically the medium’s static pressure as
well as the quantity �0c

2
0 , can be regarded as constant, also in the presence of temperature gradients. The

constancy of these quantities follows from the linearization of the Euler equations of gas dynamics in the
case when body forces acting on the system can be neglected. Motivations for these assumptions andmore
details on the modeling are given by Rienstra & Hirschberg [23, § 2.4].

The boundary-value problem under consideration here will be

�0

@u

@t
C rp D f1 inQ D � � .0; �/, (5.1a)

@p

@t
C �0c

2
0r � u D f2 inQ D � � .0; �/, (5.1b)

1

2
.p � �0c0n � u/ �

˛

2
.p C �0c0n � u/ D g on† D @� � .0; �/, (5.1c)

u D us p D ps onQ0 D � � f 0 g. (5.1d)

The unknown quantities are the acoustic velocity and pressure fields u and p, and data to the system is
provided through the right-hand forcing in equations (5.1a), (5.1b), boundary condition (5.1c), and initial
conditions (5.1d). The system (5.1a), (5.1b) constitutes a first-order-systems formulation of the scalar wave
equation

@2p

@t2
� r � c2

0rp D f in� � .0; �/. (5.2)

We assume the domain� to be open, bounded, and connected with a smooth boundary @�, and that the
domain locally is located on one side of its boundary.
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Remark 5.1. The smoothness property that is assumed of @� in the analysis below is that it is C 1, due to
theorem 5.10, with a normal field n that is is Lipschitz, due to the application of the Kirszbraun theorem.

As can be noted already in the formulation (5.1), we adopt a “space–time” formalism: the function
spaces will be defined on the space–time cylinderQ, a Lipschitz domain whose boundary @Q is naturally
partitioned as

@Q D x† [ xQ0 [ xQ� : (5.3)

Moreover, the interpolation function ˛ 2 L1.†/ in boundary condition (5.1c) is assumed, analogously
as in § 4, to satisfy, for some ˛M 2 Œ0; 1/,

ess: im˛ � Œ�˛M ; ˛M �: (5.4)

Remark 5.2. Note that restriction (5.4) means that boundary condition (5.1c) cannot reduce to a pure
Dirichlet condition on p or n � u.

Exploiting that �0c
2
0 is constant and that media properties �0 and c0 have no time dependency, equa-

tions (5.1a) and (5.1b) can be rewritten in the block operator form

TŸ D f; (5.5)

in which
Ÿ D

�
�1

�2

�
D

�
�0c0u

p

�
; T D

�
@tI c0r

rc0� @t

�
; f D

�
c0f1

f2

�
; (5.6)

with the same blocking of the d C 1 rows of Ÿ and f as in § 4. The Cartesian components of operator T in
d D 3 are

ŒT� D

0BBBB@
@
@t

0 0 c0
@

@x1

0 @
@t

0 c0
@

@x2

0 0 @
@t

c0
@

@x3

@
@x1
c0

@
@x2
c0

@
@x3
c0

@
@t

1CCCCA : (5.7)

The formal adjoint of T is zT D �T.
Under the assumptions discussed above, equation (5.5) holds also for a spatially varying speed of sound

c0, generated by temperature gradients in the medium. However, from now on, in order to simplify the
analysis, we will assume that c0 is constant and positive. The graph space associated with block operator
T will be

W D

n
Ÿ 2 L2.Q/dC1

j TŸ 2 L2.Q/dC1
o
; (5.8)

equipped with norm

kŸkW D

�
kŸk2

L2.Q/dC1 C �2
kTŸk2

L2.Q/dC1

�1=2

; (5.9)

and we note that the graph space associated with zT is alsoW . Note that we scale the velocity unknowns so
that all components of Ÿ will have the same dimension (pressure). Moreover, by the inclusion of constants
c0 and � in the definition of T and the norm on W , all terms that are summed will possess the same
dimension. Consequently, in this section, it will be convenient also to equipH 1.Q/with the dimensionally
consistent norm

kukH 1.Q/ D

h
kuk

2
L2.Q/

C �2
�
k@tuk

2
L2.Q/

C kc0ruk
2
L2.Q/

�i1=2

: (5.10)

By the inequality

jŸj2 C �2
jTŸj2 D jŸj2 C �2

j@t�1 C c0r�2j
2

C �2
j@t�2 C r � c0�1j

2

� jŸj2 C 2�2
�
j@t�1j

2
C jc0r�2j

2
C j@t�2j

2
C jc0r�1j

2
�
;

(5.11)

we conclude that
kŸkW �

p
2kŸkH 1.Q/dC1 ; (5.12)
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and thus that H 1.Q/dC1 � W . However, in this case, as opposed to the elliptic case of § 4, there is no
characterization ofW as simple as in lemma 4.3.

To introduce a variational formulation of system (5.1), we will proceed similarly as in previous sections
and consider data to the problem as being given in the form of the tuple�

f; g; Ÿs
�

2 L2.Q/dC1
� L2.†/ � L2.Q0/

dC1; (5.13)

where f D Œf1; f2�
T and Ÿs D Œus; ps�

T . This form of the data suggests a space of test functions of the
same form,

Õ D
�
˜; �†;˜s

�
2 L2.Q/dC1

� L2.†/ � L2.Q0/
dC1

D L; (5.14)

which we equip with the norm

k Õ kL D
�
k˜k

2
L2.Q/dC1 C �k�†k

2
L2.†/

C �k˜sk
2
L2.Q0/

�1=2
: (5.15)

The components of the test function tuple will be used to enforce the equation system, the boundary con-
ditions, and the initial conditions, respectively.

Associated with the boundary and initial conditions, we introduce the trace maps

tr˙
† Ÿ D

r
c0

2

�
�2 ˙ n � �1

�ˇ̌
†
; trQ0

Ÿ D Ÿ
ˇ̌
Q0
; trQ�

Ÿ D Ÿ
ˇ̌
Q�
; (5.16)

defined for Ÿ 2 C 1. xQ/dC1. For Õ 2 L and Ÿ 2 V , where below we will define V � W so that the ranges
of the trace operators (5.16) continuously extend into L2 spaces, we define

a. Õ ; Ÿ/ D

Z
Q

˜T TŸC

Z
†

�†

�
tr�

† Ÿ � ˛ trC

† Ÿ
�

C

Z
Q0

˜T
s

�
trQ0

Ÿ
�
; (5.17a)

l. Õ / D

Z
Q

˜Tf C
p
2c0

Z
†

�†g C

Z
Q0

˜T
s �s: (5.17b)

We also define, complementary to the space L, the space L� D L2.QdC1/ � L2.†/ � L2.Q� /,
equipped with norm

k Õ kL� D
�
k˜k

2
L2.Q/dC1 C �k�†k

2
L2.†/

C �k˜sk
2
L2.Q� /

�1=2
; (5.18)

and the adjoint bilinear form, to be used in the surjectivity proof,

a�. Õ ; Ÿ/ D �

Z
Q

˜T TŸC

Z
†

�†

�
trC

† Ÿ � ˛ tr�
† Ÿ

�
C

Z
Q�

˜T
s

�
trQ�

Ÿ
�
; (5.19)

which satisfies a�.OŸ;˜/ D a. Õ ; Ÿ/ for ˜; Ÿ 2 C 1. xQ/dC1 and

Õ D
�
˜; tr�

† ˜; trQ0
˜

�
; OŸ D

�
Ÿ; trC

† Ÿ; trQ�
Ÿ
�
: (5.20)

The basic integration-by-parts formula for operator T, repeatedly used in the following, is as follows.
Let ˜, Ÿ 2 C 1. xQ/dC1. ThenZ

Q

˜T TŸ D

Z
Q

Œ�1; �2�

�
@t�1 C c0r�2

@t�2 C r � c0�1

�
D

Z
Q

�
�1 � @t�1 C c0�1 � r�2 C �2@t�2 C c0�2r � �1

�
D

Z
Q�

˜T Ÿ �

Z
Q0

˜T ŸC

Z
†

c0

�
n � �1�2 C �2n � �1

�
C

Z
Q

ŸT zT˜‘
D�T˜

D

Z
@Q

˜T T�Ÿ �

Z
Q

ŸT T˜;

(5.21)
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where

T�Ÿ D

8̂̂<̂
:̂
c0

�
n�2;n � �1

�T on†,

Ÿ onQ� ,
�Ÿ onQ0.

(5.22)

As proven by Jensen [13, Thm. 4], for instance, the following density property holds for domains (like
Q) that possess the segment property.

Theorem 5.3. The space C1. xQ/dC1 is dense inW .

Due to this property, we show next that the basic integration-by-parts formula (5.21) extends to ˜ 2

H 1.Q/dC1 and Ÿ 2 W .

Lemma 5.4. Assume that Q is a space-time cylinder satisfying the segment property. The trace map T� ,
defined in expression (5.22) for functions Ÿ 2 C 1. xQ/dC1, extends continuously toL

�
W;H�1=2.@Q/dC1

�
,

and integration-by-parts formula (5.21) extends to ˜ 2 H 1.Q/dC1 and Ÿ 2 W , so thatZ
Q

˜T TŸ D hT�Ÿ; 
˜iH 1=2.@Q/dC1 �

Z
Q

ŸT T˜; (5.23)

where 
 2 L
�
H 1.Q/;H 1=2.@Q/

�
denotes the boundary trace map. Moreover, the bound

hT�Ÿ;§iH 1=2.@Q/dC1 �
4

�
k
�kk§kH 1=2.@Q/dC1kŸkW (5.24)

holds for Ÿ 2 W and§ 2 H 1=2.@Q/dC1, and where 
� 2 L
�
H 1=2.@Q/dC1;H 1.Q/dC1

�
denotes a right

inverse of 
 .

Remark 5.5. Analogously as in § 4, h�; �iH 1=2.@Q/ denotes the duality pairing onH�1=2.@Q/�H 1=2.@Q/.

Proof. Let Ÿ 2 C 1. xQ/dC1. By density ofC 1. xQ/dC1 inH 1.Q/dC1, continuity of theH 1.Q/dC1 bound-
ary trace, and estimate (5.12), we find that integration-by-parts formula (5.21) extends to ˜ 2 H 1.Q/dC1,
so that Z

Q

˜T TŸ D

Z
@Q

.
˜/T T�Ÿ �

Z
Q

ŸT T˜; (5.25)

from which it follows thatZ
@Q

.
˜/T T�Ÿ D

Z
Q

˜T TŸC

Z
Q

ŸT T˜ �
2

�
k˜kW kŸkW �

4

�
k˜kH 1.Q/dC1kŸkW ; (5.26)

using inequality (5.12) in the last step.
Let § 2 H 1=2.@Q/dC1 and 
� a continuous right inverse of 
 . Then inequality (5.26) gives thatZ

@Q

§T T�Ÿ D

Z
Q

.
�§/
T TŸC

Z
Q

ŸT T.
�§/

�
4

�
k
�§kH 1.Q/dC1kŸkW �

4

�
k
�kk§kH 1=2.@Q/dC1kŸkW :

(5.27)

By inequality (5.27), we find that

kT�ŸkH �1=2.@Q/dC1 D sup
§2H 1=2.@Q/dC1

§¤0

R
@Q
§T T�Ÿ

k§kH 1=2.@Q/dC1

�
4

�
k
�kkŸkW : (5.28)

By density theorem 5.3, it follows that T� extends continuously to L
�
W;H�1=2.@Q/dC1

�
. Integration-

by-parts formula (5.25) therefore extends to formula (5.23) and bound (5.27) to bound (5.24).
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The following technical lemma will be used in the trace theorems below. We suspect this lemma or
variants thereof to be known. However, we have failed to find a suitable reference and therefore provide a
proof in the appendix.

Lemma 5.6. Let h 2 C 0;�.@Q/n be a Hölder continuous function with exponent � 2 .1=2; 1�. Then there
is a constant C such that for any u 2 H 1=2.@Q/,

khukH 1=2.@Q/n � CkukH 1=2.@Q/: (5.29)

More precisely, lemma 5.6 will be applied with h D h˙ 2 Lip.@Q/dC1 defined by

h˙ D
1

p
2c0

�
n�

˙1

�
; (5.30)

where n� denotes the Lipschitz extension to @Q of the normal field n on †, which exists due to the
Kirszbraun theorem [14, Thm. 5.2.2]. Note that the multiplier h˙ is defined so that, for Ÿ 2 C 1. xQ/dC1,
hT

˙
T�Ÿ D tr˙

† Ÿ on† (recall definitions (5.22) and (5.16)).
Now we are ready to prove that trace maps (5.16) are well defined also for arguments in W . Each of

these traces turns out to be definablewith ranges in the dual of the so-called Lions–Magenes space [24, § 33]
H

1=2
00 .�/, where � isQ0, Q� , or †. This space can be defined as follows. For g 2 L2.�/, denote by g�

the extension by zero of g to all of @Q. Then

H
1=2
00 .�/ D

˚
g 2 L2.�/ j 9u 2 H 1.Q/ such that 
u D g�

	
; (5.31)

provided with the quotient norm

kgk
H

1=2
00

.�/
D inf

u2H 1.Q/

vDg�

kukH 1.Q/: (5.32)

It holds thatH 1=2
00 .�/ � H 1=2.�/, with continuous embedding. The typical use case for this space is, like

here, to characterize boundary conditions on � as residing in the dual spaceH 1=2
00 .�/0.

Lemma 5.7. The trace maps trQ0
, trQ�

, and tr˙
† , defined in expression (5.16) for Ÿ 2 C 1. xQ/dC1, extend

continuously to L
�
W; .H

1=2
00 .Q0/

dC1/0
�
, L

�
W; .H

1=2
00 .Q� /

dC1/0
�
, and L

�
W;H

1=2
00 .†/0

�
, respectively.

Moreover,

(i) for Ÿ 2 W and § 2 H
1=2
00 .Q0/

dC1,

htrQ0
Ÿ;§i

H
1=2
00

.Q0/dC1 D hT�Ÿ;�§�iH 1=2.@Q/dC1 ; (5.33)

where,§� 2 H 1=2.@Q/dC1 denotes the extension by zero of§ , 
 the trace map ofH 1.Q/ ontoH 1=2.@Q/

and 
� a continuous right inverse of 
 .

(ii) for Ÿ 2 W and § 2 H
1=2
00 .Q� /

dC1,

htrQ�
Ÿ;§i

H
1=2
00

.Q� /dC1 D hT�Ÿ;§�iH 1=2.@Q/dC1 ; (5.34)

where §� 2 H 1=2.@Q/dC1 denotes the extension by zero of § .

(iii) for Ÿ 2 W and  2 H
1=2
00 .†/,

htr˙
† Ÿ;  i

H
1=2
00

.†/
D hT�Ÿ;h˙ �iH 1=2.@Q/dC1 ; (5.35)

where  � 2 H 1=2.@Q/ denotes the extension by zero of  , and h˙ 2 Lip.@Q/dC1 is defined in expres-
sion (5.30).

18



Proof. (i): Let§ 2 H
1=2
00 .Q0/

dC1, and let§� 2 H 1=2.@Q/dC1 be its extension by zero. Then there exist
positive constants C1 D 4k
�k=� and C2 such that, for Ÿ 2 C 1. xQ/dC1,Z

Q0

§T trQ0
Ÿ D �

Z
@Q

§T
� T�Ÿ � C1k§�kH 1=2.@Q/dC1kŸkW D C1k§kH 1=2.Q0/dC1kŸkW

� C2k§k
H

1=2
00

.Q0/dC1kŸkW ;

(5.36)

where definition (5.22) is used in the first equality, the bound (5.24) in the first inequality, and the contin-
uous embeddingH 1=2

00 .Q0/
dC1 � H 1=2.Q0/

dC1 in the last. Inequality (5.36) implies that

ktrQ0
Ÿk�

H
1=2
00

.Q0/dC1
�0 D sup

§2H
1=2
00

.Q0/dC1

§¤0

R
Q0
§T trQ0

Ÿ

k§k
H

1=2
00

.Q0/dC1

� C2kŸkW ; (5.37)

from which it follows that trQ0
extends to L

�
W; .H

1=2
00 .Q0/

dC1/0
�
by density theorem 5.3, and thus that

the first equality in expression (5.36) extends to identity (5.33).
(ii): The conclusions follows by analogous arguments as in (i) by considering § 2 H

1=2
00 .Q� /

dC1.
(iii): Let  2 H

1=2
00 .†/ and let  � 2 H 1=2.@Q/ be its extension by zero. By lemma 5.6, h˙ � 2

H 1=2.@Q/dC1 and there exists a constant Ch such that kh˙ �kH 1=2.@Q/dC1 � Chk �kH 1=2.@Q/, where
h˙ 2 Lip.@Q/dC1 is defined by expression (5.30) so that, for Ÿ 2 C 1. xQ/dC1, hT

˙
T�Ÿ D tr˙

† Ÿ on †.
Then there are positive constants C1 D 4k
�k=�; C2, and C3 such that, for Ÿ 2 C 1. xQ/dC1,Z

†

 tr˙
† Ÿ D

Z
@Q

.h˙ �/
T T�Ÿ � C1kh˙ �kH 1=2.@Q/dC1kŸkW

� C2k �kH 1=2.@Q/kŸkW D C2k kH 1=2.†/kŸkW � C3k k
H

1=2
00

.†/
kŸkW ;

(5.38)

where the bound (5.24) is used in the first inequality, lemma (5.6) in the second, and, in the last inequality,
the continuous embedding H 1=2

00 .†/ � H 1=2.†/. Inequality (5.38), together with the definition of the
dual norm and density theorem 5.3 implies that tr˙

† extends to L
�
W;H

1=2
00 .†/0

�
, which in turn implies

that the first equality in expression (5.38) extends to identity (5.35).

Since L2.Q0/ �
�
H

1=2
00 .Q0/

�0 and L2.†/ �
�
H

1=2
00 .†/

�0, lemma 5.7 implies that the space

V D

n
Ÿ 2 W j trQ0

Ÿ 2 L2.Q0/
dC1 and tr�

† Ÿ 2 L2.†/
o
; (5.39)

equipped with the norm

kŸkV D
�
kŸk2

W C �ktr�
† Ÿk

2
L2.†/

C �ktrQ0
Ÿk2

L2.Q0/

�1=2
; (5.40)

is well defined. Note that the norm also can be written

kŸkV D
�
k.�; tr�

† Ÿ; trQ0
Ÿ/k2

L C �2
kTŸk2

L2.Q/dC1

�1=2
; (5.41)

a form that will be utilized in the proof of the inf–sup condition of a. We will see that V is a suitable
solution space. First we establish that V is a Hilbert space.

Lemma 5.8. The space V is a Hilbert space continuously embedded inW .

Proof. Since the norm (5.40) can be derived from a inner product, it remains just to show that V is com-
plete. In order to use theorem 4.5, we identify X D W , Y D L2.†/ � L2.Q0/, Z D .H

1=2
00 .†/dC1/0 �

H
1=2
00 .Q0/

0, XY D V , and A D tr† � trQ0
. Lemma 5.7 shows the required properties of A, and the fact

thatH 1=2
00 .�/ � H 1=2.�/ � L2.�/, for � D † orQ0, with continuous embeddings, implies by duality

the continuous embedding Y � Z. Completeness then follows from theorem 4.5.
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The proof of the “extended” trace property in lemma 5.11 below uses density theorem 5.10, whose
proof in turn relies on the following density theorem due to Rauch [21, Theorem 8].

Theorem 5.9.

(i) The space C 1. xQ/dC1 \ V0 is a dense subspace of V0 D
˚
Ÿ 2 W j trQ0

Ÿ D 0 and tr�
† Ÿ D 0

	
.

(ii) The space C 1. xQ/dC1 \ zV0 is a dense subspace of zV0 D
˚
Ÿ 2 W j trQ�

Ÿ D 0 and trC

† Ÿ D 0
	
.

A prerequisite for theorem 5.9 is that † is a characteristic surface of constant multiplicity; that is, the
dimension of f˜ 2 RdC1 j T�.x/˜ D 0 g is independent of x on †, which is true for T� in expres-
sion (5.22).

Theorem 5.10. The space C 1. xQ/dC1 is a dense subspace of V .

Proof. By lemma 5.8, V is a Hilbert space. The inner product generating the norm (5.40) is, for ˜; Ÿ 2 V ,

.˜; Ÿ/V D .˜; Ÿ/W C �

Z
†

tr�
† ˜ tr

�
† ŸC �

Z
Q0

trQ0̃
trQ0

Ÿ; (5.42)

where
.˜; Ÿ/W D

Z
Q

˜T ŸC �2

Z
Q

.T˜/T TŸ: (5.43)

The space C 1. xQ/dC1 is dense in V if and only if the only Ÿ 2 V that satisfies

.˜; Ÿ/V D 0 for all ˜ 2 C 1. xQ/dC1 (5.44)

is Ÿ D 0. Let us therefore assume that Ÿ 2 V satisfies equation (5.44) and demonstrate that Ÿ D 0. In
particular, equation (5.44) implies that for all ¥ 2 C 1

0 .Q/
dC1 � C 1. xQ/dC1,

0 D .¥; Ÿ/V D .¥; Ÿ/W D

Z
Q

¥T ŸC �2

Z
Q

.T¥/T TŸ; (5.45)

which by the definition of weak derivatives implies that Ÿ satisfies the equation

Ÿ � �2T2Ÿ D 0 inQ: (5.46)

The next step is to determine, in addition to equation (5.46), the space–time boundary conditions that Ÿ
must satisfy. Equation (5.46) shows that �TŸ 2 W (since Ÿ 2 L2.Q/dC1). Multiplying equation (5.46)
with ˜T 2 H 1.Q/dC1, integrating, and applying integration-by-parts formula (5.23) (in which we sub-
stitute Ÿ with �2TŸ), we obtain

0 D

Z
Q

˜T
�
Ÿ � �2T2Ÿ

�
D

Z
Q

˜T ŸC �2

Z
Q

.T˜/T TŸ � �2
hT�TŸ; 
˜iH 1=2.@Q/dC1

D .˜; Ÿ/W � �2
hT�TŸ; 
˜iH 1=2.@Q/dC1 for all ˜ 2 H 1.Q/dC1:

(5.47)

SinceC 1. xQ/dC1 is a dense subspace ofH 1.Q/dC1 and the boundary trace operator 
 onH 1.Q/dC1

is continuous, equation (5.44) can be extended so that

0 D .˜; Ÿ/V

D .˜; Ÿ/W C �

Z
†

tr�
† ˜ tr

�
† ŸC �

Z
Q0

.trQ0
˜/T trQ0

Ÿ for all ˜ 2 H 1.Q/dC1:
(5.48)

Note that for ˜ 2 H 1.Q/dC1 the trace maps are given by

tr˙
† ˜ D

r
c0

2

�

�2 ˙ n � 
�1

�ˇ̌
†
; trQ0

˜ D 
˜
ˇ̌
Q0
; trQ�

˜ D 
˜
ˇ̌
Q�
: (5.49)
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Subtracting equation (5.47) from equation (5.48), we find that

�2
hT�TŸ; 
˜iH 1=2.@Q/dC1 D ��

Z
†

tr�
† ˜ tr

�
† Ÿ � �

Z
Q0

.trQ0
˜/T trQ0

Ÿ (5.50)

for all ˜ 2 H 1.Q/dC1. To reveal the space–time boundary conditions satisfied by Ÿ on @Q from equa-
tion (5.50), we proceed similarly as in the proof of lemma 5.7. We start with the boundary conditions on†.
Let Õ ˙ D 
�h˙ � 2 H 1.Q/dC1, where � 2 H 1=2.@Q/ is the extension by zero of some 2 H

1=2
00 .†/,

and h˙ is defined by expression (5.30). Then, by expressions (5.49), tr�
† Õ � D � , tr�

† Õ C D 0, and
trQ0

Õ ˙ D 0. Moreover, by identity (5.35) (with �2TŸ 2 W in place of Ÿ), �2hT�TŸ; 
 Õ ˙iH 1=2.@Q/dC1 D

�2htr˙
† TŸ;  i

H
1=2
00

.†/
. Substituting these equalities into equation (5.50)with˜ D Õ � and Õ C, respectively,

we find that

htr�
† Ÿ � � tr�

† TŸ;  i
H

1=2
00

.†/
D 0 for all  2 H

1=2
00 .†/; (5.51)

htrC

† TŸ;  i
H

1=2
00

.†/
D 0 for all  2 H

1=2
00 .†/: (5.52)

That is,

tr�
†.Ÿ � �TŸ/ D 0 on†; (5.53)

trC

† �TŸ D 0 on†: (5.54)

Analogously, by letting, in equation (5.50), ˜ D 
�§� 2 H 1.Q/dC1, where §� 2 H 1=2.@Q/dC1 is the
extension by zeros of some § 2 H

1=2
00 .Q0/

dC1, and recalling identity (5.33) (with TŸ in place of Ÿ), we
find that

trQ0
.Ÿ � �TŸ/ D 0 onQ0; (5.55)

while Õ D 
�§� 2 H 1.Q/dC1, where §� 2 H 1=2.@Q/dC1 is the extension by zero of some § 2

H
1=2
00 .Q� /

dC1, in equation (5.50) implies (recall identity (5.34)) that

trQ�
�TŸ D 0 onQ� : (5.56)

Let idW denote the identity operator onW , that is, idW § D § for any § 2 W . Note that

.idW C�T/.idW ��T/Ÿ D Ÿ � �2TŸ; (5.57)

so by introducing§ D .idW ��T/Ÿ D Ÿ��TŸ 2 W , wemay reformulate the 2nd-order problem formed
by equation (5.46) and conditions (5.53), (5.54), (5.55), and (5.56) as the coupled 1st-order system

§ C �T§ D 0 inQ, (5.58a)
tr�

†§ D 0 on†, (5.58b)
trQ0

§ D 0 onQ0, (5.58c)

and

Ÿ � �TŸ D § inQ, (5.59a)

trC

† �TŸ D 0 on†, (5.59b)
trQ�

�TŸ D 0 onQT . (5.59c)

Recall that Ÿ; �TŸ, and§ belong toW . Thus, by applying trC

† to equation (5.59a) and invoking bound-
ary condition (5.59b), we find that

trC

† � D trC

†.�TŸC§/ D trC

† § on†: (5.60)
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Analogously, by applying trQ�
to equation (5.59a) and invoking final condition (5.59c), we find that

trQ�
� D trQ�

.�TŸC§/ D trQ�
§ onQ� : (5.61)

Thus, system (5.59) translates to the system

Ÿ � �TŸ D § inQ, (5.62a)

trC

† Ÿ D trC

† § on†, (5.62b)
trQ�

Ÿ D trQ�
§ onQT . (5.62c)

Note that § 2 V0, so by theorem 5.9 there exists .§k/k2ZC , where §k D Œ k;1;  k;2�
T 2 C 1. xQ/dC1

such that tr�
†§k D 0, trQ0

§k D 0, and k§k � §kW ! 0 when k ! 1. Integration-by-parts
formula (5.21) yieldsZ

Q

§T
k �T§k D

�

2

Z
@Q

§T
k T�§k

D �
�

2

Z
Q0

j trQ0
§kj

2
C
�

2

Z
Q�

j trQ�
§kj

2
C �

Z
†

c0 n � k;1 k;2

D �
�

2

Z
Q0

j trQ0
§k˜

D0

j
2

C
�

2

Z
Q�

j trQ�
§kj

2
C
�

2

Z
†

�
j trC

† §kj
2

� j tr�
†§k–
D0

j
2
�

� 0:

(5.63)

where identity

2ab D
.aC b/2 � .a � b/2

2
(5.64)

with a D
p
c0=2n � k;1 and b D

p
c0=2 k;2 is used in the third equality. Thus,

k§kk
2
L2.Q/dC1 D

Z
Q

j§kj
2

�

Z
Q

§T
k .§k C �T§k/ � Ck§k C �T§kkL2.Q/dC1 ; (5.65)

where the bound (5.63) is used in the first inequality, and second inequality follows from the Cauchy–
Schwarz inequality and by choosing a constantC such that k§kkL2.Q/dC1 � C for all k 2 ZC. Passing to
the limit in estimate (5.65), recalling that§ satisfies equation (5.58a), demonstrates that§ D 0. Therefore,
problem (5.62) reads

Ÿ � �TŸ D 0 inQ, (5.66a)

trC

† Ÿ D 0 on†, (5.66b)
trQ�

Ÿ D 0 onQT . (5.66c)

Proceeding similarly as for § above, we note that Ÿ 2 zV0, so by theorem 5.9 there exists .Ÿk/k2ZC , where
Ÿk D Œ�k;1; �k;2�

T 2 C 1. xQ/dC1 such that trC

† Ÿk D 0, trQ�
Ÿk D 0, and kŸk � ŸkW ! 0 when k ! 1.

Integration-by-parts formula (5.21) yields
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� j tr�
† Ÿkj

2
�

� 0;

(5.67)

where also here identity (5.64) is used to obtain the last term after the second equality. Thus, similarly as
in expression (5.65), also here we arrive at the analogous bound
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Q
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ŸT
k .Ÿk � �TŸk/ � CkŸk � �TŸkkL2.Q/dC1 ; (5.68)
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where constant C is such that kŸkkL2.Q/dC1 � C for all k 2 ZC. Passing to the limit in estimate (5.68),
recalling that Ÿ satisfies equation (5.66a), finally demonstrates that Ÿ D 0.

Although only trace operators trQ0
and tr�

† are involved in the definition of the space V , it turns out
that the remaining trace operators also map continuously into L2 spaces.

Lemma 5.11. The trace operators trQ�
and trC

† , defined in expression (5.16) for functions in C 1. xQ/dC1,
extend continuously to L

�
V;L2.Q� /

dC1
�
and L

�
V;L2.†/

�
, respectively.

Proof. Integration-by-parts formula (5.21) implies that for Ÿ 2 C 1. xQ/dC1,Z
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�
;

(5.69)

again using identity (5.64) in the second equality, which implies that
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V ;

(5.70)

by definition (5.40) of the norm on V , from which the conclusion follows by density theorem 5.10.

By lemma 5.11, we conclude that bilinear forms a and a� are well defined for Ÿ 2 V , and we are ready
to show well-posedness for the variational problem in standard form:

Find Ÿ 2 V such that
a. Õ ; Ÿ/ D l. Õ / 8 Õ 2 L:

(5.71)

The first step to acquire the inf–sup condition is the following bounds.

Lemma 5.12. For each Ÿ 2 V ,

sup
Õ 2L
Õ ¤0

a. Õ ; Ÿ/

k Õ kL

� ˇkOŸkL; (5.72a)

sup
Õ 2L�

Õ ¤0

a�. Õ ; Ÿ/

k Õ kL�

� ˇkOŸ
�
kL� ; (5.72b)

where
ˇ D
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4�e
�
1 � ˛M

�
;

OŸ D
�
Ÿ; tr�

† Ÿ; trQ0
Ÿ
�
; OŸ

�
D

�
Ÿ; trC

† Ÿ; trQ�
Ÿ
� (5.73)

Proof. Due to density theorem 5.10, it is enough to show the inequalities for Ÿ 2 C 1. xQ/dC1. Since the
statements are immediate for Ÿ D 0, let Ÿ 2 C 1. xQ/dC1 be nonzero, define

z̃ D
�
e�t=�Ÿ; e�t=� tr�

† Ÿ; trQ0
Ÿ
�
; (5.74)

and note that
kz̃kL � e�1

kOŸkL: (5.75)
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Choosing Õ D z̃ in definition (5.17a), we find that
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† Ÿ
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tr�

† Ÿ � ˛ trC
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Applying integration-by-parts formula (5.21), the first term in expression (5.76) can be writtenZ
Q

e�t=�ŸT TŸ D

Z
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from which it follows, after substituting the identity

T
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(5.79)

where definition (5.22) is used in the second equality. Substituting equality (5.79) into expression (5.76),
we find that
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Now, since
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the last two integrals in expression (5.80) can be written as
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(5.82)

where the first inequality follows from setting a D tr�
† Ÿ, b D trC

† Ÿ and observing that
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(5.83)

Substituting inequality (5.82) into equality (5.80), we arrive at the bound
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(5.84)

where the last inequality follows from bound (5.75). Dividing by kz̃kL and taking supremum yields in-
equality (5.72a).

Inequality (5.72b) is shown analogously.
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Remark 5.13. The use of the exponential weighting in time for the test functions, introduced in expres-
sion (5.74), is crucial to obtain the “L-coercivity” property (5.72a), and compensates for the lack of prop-
erty (1.7) in this example. An alternative would be to employ an exponentially weighted Hilbert space in
time, as done by Franz et al. [10].

With the help of lemma 5.12, the inf–sup condition is straightforward to achieve.

Lemma 5.14. For each Ÿ 2 V ,

sup
Õ 2L
Õ ¤0

a. Õ ; Ÿ/

k Õ kL

�
ˇ

2
kŸkV : (5.85)

Proof. ForTŸ D 0, the conclusion follows from lemma 5.12. Thus, assumeTŸ ¤ 0 and let z̃ D .TŸ; 0; 0/.
Then
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Writing the norm on V as in expression (5.41), we reach the conclusion from the estimates
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where the second inequality follows from lemma 5.12 and bound (5.86), and the third since �ˇ < 1.

Surjectivity is shown in a manner very similar to the previous two examples.

Lemma 5.15. If Õ 2 L such that
a. Õ ; Ÿ/ D 0 8Ÿ 2 V; (5.88)

then Õ D 0.

Proof. Let Õ D .˜; �†;˜s/ 2 L satisfy
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We will show that all components of the tuple Õ then vanish. The strategy is to choose various subspaces
of V for Ÿ in equation (5.89) in order to uncover information of Õ .

First, from equation (5.89) it follows that
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˜T T¥ D 0 8¥ 2 C 1
0 .Q/
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and thus that
zT˜ D �T˜ D 0 (5.91)

by the definition ofweak derivative. Hence, trivially,˜ 2 W . Applying integration-by-parts-formula (5.23),
with Ÿ 2 H 1.Q/dC1 � V and ˜ 2 W , to equation (5.89), we obtain
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As before, we denote by 
 the trace operator fromH 1.Q/ ontoH 1=2.@Q/ and by 
� a continuous right
inverse of 
 . Let Ÿ� 2 H

1=2
00 .Q� /

dC1, and let Ÿ�� 2 H 1=2.@Q/dC1 be its extension by zero. Then

�Ÿ�� 2 H 1.Q/dC1 and, since Ÿ�� vanishes on† [Q0, by equation (5.92) and identity (5.34), we find
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for any Ÿ� 2 H
1=2
00 .Q� /

dC1, that is,
trQ�

˜ D 0: (5.94)

An analogous procedure (recall identity (5.33)) shows that, for any Ÿ0 2 H
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and thus that
trQ0

˜ � ˜s D 0; (5.96)

which means, in particular, that trQ0
˜ 2 L2.Q0/

dC1. Finally, let  2 H
1=2
00 .†/,  � 2 H 1=2.@Q/ its

extension by zero, and define Ÿ˙
† D 
� �h˙, where h˙ 2 Lip.@Q/dC1 is defined by expression (5.30). By

lemma 5.6, we have that Ÿ˙
† 2 H 1.Q/dC1. Moreover, expressions (5.49) reveal that trQ0
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† D ˙ . Thus, by equation (5.92) and identity (5.35), for any  2 H
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and
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that is,

tr�
† ˜ � �† D 0; (5.99)

trC

† ˜ � ˛�† D 0: (5.100)

In particular, expressions (5.99) and (5.100) demonstrate that tr˙
† ˜ 2 L2.†/, and that

trC

† ˜ � ˛ tr�
† ˜ D 0: (5.101)

Properties (5.91), (5.94), and (5.101) imply that a�. O™;˜/ D 0 8O™ 2 L�, and thus, by lemma 5.12, that
˜ D 0. Since ˜ vanishes, also �† and ˜s vanish, due to expressions (5.99) and (5.96), which finally proves
the claim.

We then finally arrive at the well-posedness result for our variational formulation of initial–boundary-
value problem (5.21).

Theorem 5.16. With a and l as in definitions (5.17), where function ˛ satisfies bound (5.4), with space V
as in definition (5.39), and with L D L2.Q/dC1 � L2.†/ � L2.Q0/

dC1, the variational problem to find
Ÿ 2 V such that

a. Õ ; Ÿ/ D l. Õ / 8 Õ 2 L (5.102)
has a unique solution satisfying

kŸk �
8�e

1 � ˛M
klk: (5.103)

Proof. By the Cauchy–Schwarz inequality and trace lemma 5.11, a and l are continuous onL� V andL,
respectively. Theorem 2.1 together with lemmas 5.14 and 5.15 then yields well-posedness of variational
problem (5.102) and the bound (5.103).
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Appendix
The proof of lemma 5.6
Lemma 5.6. Let h 2 C 0;�.@Q/n be a Hölder continuous function with exponent � 2 .1=2; 1�. Then there
is a constant C such that for any u 2 H 1=2.@Q/,

khukH 1=2.@Q/n � CkukH 1=2.@Q/: (A.104)

Proof. Recalling the definition of the norm onH 1=2.@Q/n (note thatQ � RdC1), we have that

khuk
2
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Z
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jhuj
2

C

Z
@Q�@Q

jh.x/u.x/ � h.y/u.y/j2

jx � yjdC1
: (A.105)

The inequality

jh.x/u.x/ � h.y/u.y/j2 D jh.x/u.x/ � h.y/u.x/C h.y/u.x/ � h.y/u.y/j2

� 2
�
ju.x/j2jh.x/ � h.y/j2 C jh.y/j2ju.x/ � u.y/j2

� (A.106)

implies that
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Z
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ju.x/j2jh.x/ � h.y/j2

jx � yjdC1
:

(A.107)

Since @Q is compact (closed and bounded) and h is (Hölder) continuous, there is a xh such that

jhj � xh on @Q; (A.108)

which substituted into inequality (A.107) yields that

khuk
2
H 1=2.@Q/n � xhkuk

2
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C xh

Z
@Q�@Q

ju.x/ � u.y/j2
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Z
@Q�@Q

ju.x/j2jh.x/ � h.y/j2

jx � yjdC1
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(A.109)

Note that, if I W @Q ! xR, defined by

I.x/ D 2

Z
@Q

jh.x/ � h.y/j2

jx � yjdC1
dSy ; (A.110)

is essentially bounded, the conclusion follows by Fubini’s theorem.
By assumption, there is a constant Ch and some � 2 .1=2; 1� such that

jh.x/ � h.y/j � Chjx � yj
� for all x;y 2 @Q: (A.111)

Thus,
I.x/ � 2C 2

h

Z
@Q

jx � yj
2��d�1 dSy : (A.112)

By assumption, @Q � RdC1 is bounded, so

jx � yj � diam @Q < 1; (A.113)

for any x;y 2 @Q.
We will estimate the integral on the right side of inequality (A.112) by dividing @Q into two parts,

inside and outside a ı neighborhood of x, respectively. For this, since Q lies locally on one side of its
Lipschitz continuous boundary @Q, there are ı > 0 and L such that, for any x 2 @Q, we have the bound

jx � yj � ı for any y 2 @Q n Bı.x/; (A.114)
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where Bı.x/ � RdC1 denotes the open ball with radius ı centered at x. Moreover, there is a local coor-
dinate system and an L-Lipschitz continuous map � W !

def
DD

˚
� 2 Rd j j�j < 1=2

	
! R such that

each point on @Q \ Bı.x/ has a coordinate representation .�; �.�// for some � 2 !, and

Z
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j.�0; �.�0// � .�; �.�//j2��d�1
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dX
iD1

�
@�

@�i

.�/

�2

d� (A.115)

in which .�0; �.�0//, �0 2 ! is the coordinate representation of x in the local coordinate system.
Now, considering first y 2 @Q n Bı.x/, by the bounds (A.113) and (A.114), it follows that

jx � yj
�

� maxfdiam @Q; 1=ıg�; (A.116)

for any � 2 R, which implies thatZ
@QnBı.x/

jx � yj
2��d�1 dSy � j@Qjmax

˚
diam @Q; 1=ı

	2��d�1
< 1; (A.117)

where j@Qj denotes the surface area (measure) of @Q.
In the case complementary to bound (A.117), we need to estimate the right side of inequality (A.115).

Since � is L-Lipschitz, it holds thatvuut1C
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for almost any � 2 !, and

j�0
� �j �

p
j�0 � �j2 C j�.�0/ � �.�/j2 �

p
1C L2j�0
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for any � 2 !. Since
p
1C L2 � 1, the bound (A.119) implies that
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for any � 2 R and � 2 !. By introducing the bounds (A.118) and (A.120) into expression (A.115), we
find that Z
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(A.121)

where Cd;�;L D
p
1C dL2

p
1C L2

2��d�1
, Ad denotes the surface area of the d -dimensional Eu-

clidean unit ball, we used that! �
˚
� 2 Rd j j�0��j < 1

	
in the second inequality, and that� 2 .1=2; 1�

in the last inequality.
Introducing the bounds (A.121) and (A.117) into expression (A.112), we find that
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jx � yj
2��d�1 dSy

D 2C 2
h
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@Q\Bı.x/

jx � yj
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Z
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� 2C 2
h

�
Cd;�;LAd

2� � 1
C j@Qjmaxfdiam @Q; 1=ıg2��d�1

�
def

DD Cd;�;h;@Q < 1;

(A.122)
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for any x 2 @Q; that is, I is bounded on @Q. We may therefore apply Fubini’s theorem to the second
integral in inequality (A.109), invoke the bound (A.122) (recall definition (A.110)), and conclude that
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C 2

Z
@Q�@Q
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jx � yjdC1

� xhkuk
2
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Z
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Z
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:

(A.123)
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