
Acoustic boundary layers as boundary conditions

Martin Berggren*, Anders Bernland, Daniel Noreland
Department of Computing Science, Umeå University, Sweden

June 6, 2018

Abstract

The linearized, compressible Navier–Stokes equations can be used to model acoustic wave propaga-
tion in the presence of viscous and thermal boundary layers. However, acoustic boundary layers are no-
torious for invoking prohibitively high resolution requirements on numerical solutions of the equations.
We derive and present a strategy for how viscous and thermal boundary-layer effects can be represented
as a boundary condition on the standard Helmholtz equation for the acoustic pressure. This boundary
condition constitutes an O.ı/ perturbation, where ı is the boundary-layer thickness, of the vanishing
Neumann condition for the acoustic pressure associated with a lossless sound-hard wall. The approxi-
matemodel is valid when thewavelength and theminimum radius of curvature of thewall ismuch larger
than the boundary layer thickness. In the special case of sound propagation in a cylindrical duct, the
model collapses to the classical Kirchhoff solution. We assess themodel in the case of sound propagation
through a compression driver, a kind of transducer that is commonly used to feed horn loudspeakers.
Due to the presence of shallow chambers and thin slits in the device, it is crucial to include modeling
of visco–thermal losses in the acoustic analysis. The transmitted power spectrum through the device
calculated numerically using our model agrees well with computations using a hybrid model, where the
full linearized, compressible Navier–Stokes equations are solved in the narrow regions of the device and
the inviscid Helmholtz equations elsewhere. However, our model needs about two orders of magnitude
less memory and computational time than the more complete model.

Keywords: acoustics; visco–thermal boundary layers; Helmholtz equation; Wentzell boundary
condition, compression driver

1 Background
The classical wave equation and its time harmonic counterpart, the Helmholtz equation, provide accurate
mathematical models for acoustic wave propagation under a wide range of conditions. Effects that are
not accounted for in the linear regime are mainly related to various loss mechanisms, manifested in two
different ways. On the one hand there is bulk loss, which is a consequence of bulk shear, heat conduction
and molecular exchange of energy. Bulk losses are small and have in general an appreciable effect only for
propagation over long distances [11, § 6.4].

Boundary effects, on the other hand, are due to heat exchange with walls and viscous dissipation owing
to the shear motion caused by the contact or non-slip boundary condition at the wall boundary. The
relative importance of the thermal and viscous losses varies with the type of medium, the wavelength,
and the characteristic size of the domain. In air, thermal and viscous boundary effects are of the same
order of magnitude at audio frequencies, since the Prandtl number for air is close to unity. For devices
such as hearing aids, microphones, and micro-loudspeakers, these effects can have a great influence on
the generated or detected sound power level. Another type of devices that often cannot be modeled with
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sufficient accuracywithout a satisfactory dampingmodel aremusical wind instruments. Acoustic damping
is also important when studying the damped vibrations of Micro Electro Mechanical Systems (MEMS)
structures. As we will see in the analysis of § 5.1, a main feature of systems for which visco-thermal
losses need to be taken into account is that the quotient of the total solid-surface area to the air volume is
significant.

All the above-mentioned damping effects may be accounted for by including the appropriate consti-
tutive relations in the linearized, compressible Navier–Stokes equations. There are software packages that
can carry out numerical solutions of the full set of linearized Navier–Stokes equations for acoustic pur-
poses, but the computational cost is generally very high, also for devices that are acoustically small. The
reason for the high computational cost is partly the introduction of four extra variables, three components
for the acoustic velocity and one for temperature (or entropy) fluctuations, compared to the classical wave
equation formulated in terms of the acoustic pressure only. An even more serious problem is the viscous
and thermal boundary layers, which typically are very thin in relation to the free-space wavelength and the
characteristic dimensions of the geometry. Thus, the computational mesh has to be extremely fine in the
vicinity of solid boundaries to resolve the large gradients in the boundary layers. A recommendation from
one of the major software providers [21, Ch. 5] is to hybridize and use the full Navier–Stokes equations
only when absolutely necessary, such as in thin slits, and couple these equations to the pressure Helmholtz
equation for the rest of the domain.

There is a long history of efforts to approximately account for boundary losses, going back at least to
Kirchhoff [7]. One approach has been to consider particular geometries for which exact or approximate
solutions to the linearized Navier–Stokes equations can be established. For waveguides, the solutions is
typically represented in a 1D analysis by a complex propagation constant �, so that the acoustic pressure
at axial position z satisfies p.z; t/ D .Ae��z C Be�z/ei!t , where A and B are amplitudes of waves propa-
gating in the positive and negative z-direction, respectively. For the case of propagation in a circular pipe,
Tijdeman [20] reviews and summarizes a large number of results in terms of four nondimensional param-
eters. With a similar 1D-analysis, Richards [13] covers the case of waves propagating between two infinite
parallel plates and also, approximately, certain non-cylindrical tube geometries. The case of arbitrary cross
sections requires numerical solutions in general [4].

Another approach, alsowith a long history, is to use boundary-layer analysis. Two recent expositions of
the technique are by Rienstra &Hirschberg [14, § 4.5] and Searby et al. [18]. A typical use of the boundary-
layer analysis has been to calculate the propagation constant for waveguides in the limit of a large radii [14,
§ 4.5.3]. As opposed to the approach reviewed by Tijdeman [20], the results of the boundary-layer analysis
will be independent of the cross-section shape, but the results are not valid for small radii in the order of
the boundary-layer thickness. Another use of the boundary-layer analysis is suggested by Searby et al. [18],
who propose a two-step procedure for calculation of the total visco–thermal losses in cavities. The first step
consists of numerically solving the Helmholtz equation for the acoustic pressure in the whole cavity. With
this isentropically calculated pressure at the boundary as input data, the total visco–thermal boundary
losses are then computed in a second step using boundary-layer theory. Bossart et al. [3] takes this idea
one step further in a predictor–corrector manner and propose to recompute the outer problem using the
boundary-layer solution in order to modify the wavenumber and an admittance boundary condition.

The aim of this article is to derive and propose a boundary condition that can be supplied to isentropic
acoustics models, such as the Helmholtz equation for the acoustic pressure, in order to account for visco–
thermal boundary losses in numerical simulations. The derivation is based on a boundary-layer analysis
of the linearized, compressible Navier–Stokes equations. The basic idea is to rewrite the equation of mass
conservation in the boundary layer as an equation with constant acoustic density and pressure, which
would be the case under isentropic conditions, and compensate for the error, to first order, by a modified
wall-normal boundary condition for the acoustic velocity. For the pressure Helmholtz equation, the final
boundary condition turns out to be a so-called Wentzell (or Venttsel’) condition, a generalization of an
impedance (or Robin) boundary condition, including a surface Laplacian of the pressure. The starting
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point of the derivation is a flat-wall boundary-layer analysis, and it therefore assumes that the boundary-
layer thickness is small compared to the isentropic wavelength as well as themaximal radius of curvature of
the wall. Based on the asymptotic analysis by Schmidt et al. [17], and using a different approach than ours,
the viscous–but not the thermal–part of the proposed boundary conditions have previously been derived
in a quite recent report by Schmidt andThöns–Zueva [16].

The difficulty with boundary layers whose resolution demands a very fine mesh, thus requiring signif-
icant computational resources, are present also in many turbulent flow simulations. Common approaches
to reduce the computational burden here include modelling the velocity within the boundary layer using
so called wall functions [9], or setting a modified Dirichlet [2] or Robin [5] boundary condition for the
velocity a short distance away from the wall. Although with a similar motivation as in the present study,
the form of the boundary conditions, and their applications to turbulence models outside the boundary
layer, are entirely different.

We show that a typical problem setup for cavity acoustics using the proposed boundary conditions
leads to a well-posed mathematical problem. Moreover, we show that our model yields the same expres-
sion for the total visco–thermal power losses in a cavity as discussed by Searby et al. [18] and, in the special
case of propagation in wave guides, that our model yields the same dispersion relation as derived by Rien-
stra & Hirschberg [14, § 4.5]. The limits of applicability of our model is quantitatively assessed in the case
of propagation in narrow wave guides with a circular cross section, a case in which exact solution of the
linearized Navier–Stokes equations are available. The proposed boundary-condition is straightforward to
implement in an existing finite-element software, which we demonstrate by implementing it using Com-
sol Multiphysics’ so-called Weak Form PDE Interface [22, Ch. 16]. Our model is tested on the case of
wave propagation through a compression driver, a type of transducer used to feed mid-range horns, and
we show that visco–thermal losses are important to account for in this application and that the proposed
model yields essentially the same results on the transmitted power spectrum as a simulation using a hy-
brid Navier–Stokes/Helmholtz approach at a fraction of the computation cost in terms of CPU time and
computer memory usage.

2 Visco–thermal acoustic equations
Since our focus is on acoustics in air under atmospheric conditions, the starting point for the modeling
is the compressible Navier–Stokes equations together with standard constitutive relations. That is, air is
regarded as an ideal gas and aNewtonian fluid with constant viscosity and satisfying the Stokes hypothesis,
and the heat flux satisfies Fourier’s law with a constant thermal conductivity.

Linearizing the compressible Navier–Stokes equations around quiescent air at static pressure, density,
and temperature p0, �0, and T0, we obtain in frequency domain the system

i!� C �0r � U D 0; (1a)

i!U C
1

�0

rp � �
�
�U C

1

3
r.r � U /

�
D 0; (1b)

i!�0cV T C p0r � U � ��T D 0; (1c)

where �, p, U , and T are the complex amplitudes of the acoustic disturbances in density, pressure, veloc-
ity, and temperature, ! the angular frequency, � the kinematic viscosity coefficient, cV the specific heat
capacity at constant volume, and � the thermal conductivity. We use the phase convention ei!t , so that
in time domain, the acoustic pressure, for instance, will be P.x; t / D Rep.x/ei!t , and we assume that
system (1) is driven through an inhomogeneous boundary condition or through a wave originating in the
far field.

The static conditions satisfy the ideal gas law

p0 D r�0T0; (2)
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where the gas constant r is given by the difference of the specific heats at constant pressure and volume,

r D cp � cV ; (3)

Linearizing the ideal gas law, we find that the acoustic disturbances satisfy

p

p0

D
�

�0

C
T

T0

: (4)

Moreover, the speed of sound c satisfies
c2

D 

p0

�0

; (5)

where

 D

cp

cV

: (6)

Since the viscosity and thermal conductivity coefficients are very small, visco–thermal effects may in
most parts of the domain be ignored, which leads to isentropic conditions, and thus that the speed of sound
in these particular regions (but not generally) will satisfy

c2
D

p

�
: (7)

As a consequence, under isentropic assumptions, the variablesp, �, and T will, by equation (4), be propor-
tional to each other, and the system (1a)–(1b) will then reduce to the followingwave equation in first-order,
frequency-domain form,

i!
c2

p C r � �0U D 0; (8a)

i!�0U C rp D 0; (8b)

which, after eliminating U , can be written as a Helmholtz equation solely in the pressure,

��p � k2
0p D 0; (9)

where k0 D !=c is the isentropic wavenumber.
However, the isentropic assumptions break down in the vicinity of solid walls modeled with the non-

slip and isothermal boundary conditions

U D 0; T D 0; (10)

which can be seen by the fact that it is only possible to set a vanishing normal component of the velocity,
n � U D 0, as a boundary condition to system (8). In the vicinity of a solid wall, normal derivatives of
the tangential velocity and the temperature will be large enough so that not all visco–thermal terms can be
ignored in equation (1). In order to account for the wall effects of viscosity and thermal conductivity, the
isentropic system (8) can in a narrow region close to the wall be replaced with a system of boundary-layer
equations.

Assume that there is a flat solid wall located at the plane y D 0, on which the non-slip and isother-
mal boundary conditions (10) should be imposed. In a region close to the wall measured in terms of
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the boundary-layer thicknesses defined below, the full system (1) can be approximated, as derived in ap-
pendix A, with the acoustic boundary layer equations

i!
�

�0

C rT � u C
@v

@y
D 0; (11a)

i!u C
1

�0

rTp � �
@2u

@y2
D 0; (11b)

@p

@y
D 0; (11c)

i!�0cV T C p0

�
rT � u C

@v

@y

�
� �

@2T

@y2
D 0; (11d)

where u D .u; 0; w/ is the projection of the velocity vector U D .u; v; w/ on the wall plane, and rT the
corresponding projection of the operator r , that is,

rT D

�
@

@x
; 0;

@

@z

�
: (12)

In appendix A, we construct exact solutions to system (11) that satisfy the boundary conditions (10)
and that exponentially, as y ! C1, approach the fields u1.r/ and p1.r/, where r D .x; 0; z/, which
are assumed to be solutions to the isentropic equations (8) evaluated at a point close to the wall but outside
of the boundary layer. These boundary-layer solutions can be written

u D u1.r/
�
1 � e�.1Ci/y=ıV

�
; (13a)

�e

�0

D

 � 1




p1.r/

p0

e�.1Ci/y=ıT ; (13b)

where
�e

�0

D
1

�0

.� � �1/ D
1

�0

�
� �

p1

c2

�
; (14)

is called the excess density, and

ıV D

r
2�

!
; ıT D

s
2�

!�0cp

(15)

the viscous and thermal acoustic boundary-layer thicknesses.
Note that the boundary-layer solution as defined above, due to the small values of ıV and ıT quickly

approaches the limit fields u1 and p1, but that these values are not attained at any finite distance from
the wall. It would be possible to alter the approach and define a matched asymptotic expansion, but our
purpose here is different; we will use the form of the boundary-layer solution in order to define an effective
boundary condition to the isentropic equations to account for the boundary-layer effects.
Remark 2.1. The formation of boundary layers is due to the structure of the Navier–Stokes equations (1)
as a singularly-perturbed system. That the thickness of the acoustic boundary layers in expressions (15)
scales as the square root of the coefficients in the governing equations is a property that generally holds for
layers associated with singularly-perturbed equations. For instance, the thickness of the classical Prandtl-
type of viscous boundary layer that develops over a flat plat subject to a steady free-stream flow parallel to
the plate also scales as the square root of the viscosity. However, in the Prandtl layer, the boundary-layer
profile is not exponential like in expression (13a), and its thickness also grows as the square root of the
distance from the leading edge [15].
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3 Boundary layer effects modeled as a boundary condition
Our aim is to approximate the impact of the boundary layer with an effective wall boundary condition,
which will be obtained by manipulations of the mass conservation law.

The boundary-layer analysis described above provided formulas (13) for the tangential velocity and the
excess density within the boundary. Corresponding wall-normal velocity will be an order of magnitude
smaller than the tangential velocity, as can be seen from the scalings (53) used to derive the boundary-layer
equations. Nevertheless, the wall-normal velocity v at an arbitrary position y D Qy within the boundary
layer can be computed from the other variables by integrating equation (11a),

i!
QyZ

0

�

�0

dy C

QyZ
0

rT � u dy C vjyD Qy � vjyD0 D 0 (16)

where vjyD0 D 0 due to the non-slip boundary condition (10), and where � and u exponentially approach
�1 and u1 for increasing Qy. Subtracting and adding �1=�0 (which is a function of wall position r only),
using definition (14) and that vjyD0 D 0, we find that equation (16) can be written

i!
QyZ

0

�e

�0

dy C i!
QyZ

0

�1

�0

dy C

QyZ
0

rT � u dy C vjyD Qy D 0 (17)

An integration of the first term in equation (17), using formula (13b), yields

i!
QyZ

0

�e

�0

dy D ıT

!.
 � 1/.1 C i/
2
p0

p1
�
1 � e�.1Ci/ Qy=ıT

�
: (18)

Moreover, by expression (13a), we find that the third term in equation (17) can be evaluated as

QyZ
0

rT � u dy D

QyZ
0

rT � u1
�
1 � e�.1Ci/y=ıV

�
dy

D

QyZ
0

rT � u1 dy C ıV

1 � i
2

rT � u1
�
e�.1Ci/ Qy=ıV � 1

�
:

(19)

Substituting expressions (18) and (19) into equation (17), we find that

i!
QyZ

0

�1

�0

dy C

QyZ
0

rT � u1 dy C vjyD Qy C ıV

i � 1

2
rT � u1

�
1 � e�.1Ci/ Qy=ıV

�
C ıT

!.
 � 1/.1 C i/
2
p0

p1
�
1 � e�.iC1/ Qy=ıT

�
D 0;

(20)

which can be written

i!
QyZ

0

�1

�0

dy C

QyZ
0

rT � u1 dy C vjyD Qy C f . Qy/ � vW D 0; (21)
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where

f .y/ D �ıV

i � 1

2
rT � u1e�.1Ci/y=ıV � ıT

!.
 � 1/.1 C i/
2
p0

p1e�.iC1/y=ıT ; (22a)

vW D f .0/ D �ıV

i � 1

2
rT � u1

� ıT

!.
 � 1/.1 C i/
2
p0

p1: (22b)

The function f is of O.ıV C ıT / at the wall and decays exponentially with its argument. We thus
find that the integrated mass conservation law under boundary-layer approximation, equation (16), can
be written as equation (21), which, if the term f . Qy/ is ignored, all the effects of the boundary layer has
been pushed into vW. Recall that the solution to the isentropic system (8) will be essentially constant in
the normal direction close to a solid wall due to the lack of boundary layers. Thus, equation (21) is essen-
tially an integral form of the isentropic mass conservation law (8a) (recall that p D c2� under isentropic
assumptions) in which the wall normal velocity (22b) is a perturbation of the non-penetration condition
n � U D 0 with coefficients of O.ıV C ıT /.

The form of equation (21) and expression (22b) suggest that boundary layer effects could be taken into
account by simply solving the isentropic system (8) and replacing the normal isentropic wall boundary
condition n � U D 0 with

n � U D �vW D ıV

i � 1

2
rT � U C ıT

!.
 � 1/.1 C i/
2
p0

p at y D 0, (23)

where we have used that rT � U D rT � u. We thus propose the system

i!
c2

p C r � �0U D 0 for y > 0; (24a)

i!�0U C rp D 0 for y > 0; (24b)

n � U D ıV

i � 1

2
rT � U C ıT

!.
 � 1/.1 C i/
2
p0

p at y D 0. (24c)

as a model for acoustic wave propagation over a wall at y D 0 where thermal and viscous boundary layers
form.

Instead ofworkingwith the first-order system (24), we suggest, for two reasons, to rewrite it as a second-
order equation in p. First, for numerical purposes, the number of unknowns will then be reduced to one
scalar variable that can be treated with standard finite elements. Second, the mathematical analysis of the
boundary-value problem appears more straight-forward in the second-order formulation.

To work out the boundary condition for the second order formulation that corresponds to condi-
tion (24c), we start by evaluating the wall normal component and the tangential divergence of equa-
tion (8b) at the limit values for the boundary-layer,

i!�0n � U 1
C

@p1

@n
D 0; (25a)

i!�0rT � U 1
C �Tp1

D 0: (25b)

Eliminating the velocity from system (24), where expressions (25) are used for the boundary condition (24c),
we obtain the following second-order alternative to (24),

�k2
0p � �p D 0 for y > 0, (26a)

�ıV

i � 1

2
�Tp C ıT k2

0

.i � 1/.
 � 1/

2
p C

@p

@n
D 0 at y D 0. (26b)
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The solid-wall boundary conditions (24c) or (26b) are derived under the assumption of a flat wall,
which makes the splitting in tangential and normal directions particularly easy. However, such a splitting
can also be carried out in the case of a smooth non-flat surface. In that case, the normal field vector n can
be extended into the inside of the domain in the vicinity of the wall using the definition

n.x/ D
rd.x/

jrd.x/j
; (27)

where d.x/ is the wall distance function [8]. Taking derivatives in the directions of this extended normal
field, we can in the vicinity of the wall split the gradient and divergence operators in their normal and
tangential parts, analogously as in the case of a flat wall,

rT D rTT C n
@T

@n
; (28a)

r � U D rT � u C n �
@U

@n
; (28b)

where u D U � .U � n/n and the tangential operators simply are defined through the expressions above.
However, the splitting of the Laplacian operator, needed in the derivation of the boundary-layer equations,
is more complicated in the curved-wall case,

�T D �TT C
@2T

@n2
C H

@T

@n
; (29)

involving an extra term with H D rT � n, the sum of the principal curvatures of the level surface to d that
passes through the point of interest. However, inmany practical situations with a smooth wall, it is reason-
able to assume that the minimal radius of the principal curvatures is much larger than the boundary layer
thicknesses, which is of the order of 20–400 µm in the audio range. We will therefore here apply bound-
ary conditions (24c) or (26b) also for nonplanar smooth boundaries, interpreting the tangential operators
as in definitions (28). Due to the likely scale separation between boundary-layer thickness and the wall’s
radii of curvature, we conjecture that taking wall curvature into account in the boundary conditions would
constitute in many cases at most a second-order correction to the boundary conditions derived above.

4 Example: a cavity with lossy walls
Here we exemplify the use of wall boundary condition (26b) in the context of an acoustic cavity problem.
Let the domain of the cavity, conceptually illustrated in figure 1, be denoted� � R3. The cavity boundary
@� consists of a solid-wall part �w and a part �io where sound waves can enter and exit. We assume
that both boundary parts are smooth and, as discussed in § 3, that the radii of the principal curvatures of
the surface �w everywhere is much larger than ıV and ıT . Possible edges and corners of the cavity can
therefore only be located at the interfaces between �io and �w.

The acoustic pressure amplitude in the cavity is then modeled by the boundary-value problem

�k2
0p � �p D 0 in �, (30a)

ik0p C
@p

@n
D 2ik0g on �io. (30b)

�ıV

i � 1

2
�Tp C ıT k2

0

.i � 1/.
 � 1/

2
p C

@p

@n
D 0 on �w, (30c)

nT � rTp D 0 on @�w, (30d)

Boundary condition (30b) is a simple radiation (or impedance) condition, in which function g supplies
an incoming acoustic wave and where outgoing planar waves are absorbed. Since wall boundary con-
dition (30c) in itself constitutes a diffusion problem on the bounded surface �w, an extra condition—“a
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�io

�io

�

�w

Figure 1. Example cavity for problem (30), viewed from the outside. The interior is the domain �. Waves
may enter and exit through the surfaces �io, whereas the rest of the boundary �w consists of solid material,
where thermal and viscous boundary layers form.

boundary condition to the boundary condition”—is needed to close the system. Note that if �w would
constitute the whole boundary, no such condition would be needed. Here we choose perhaps the sim-
plest alternative, the homogeneous Neumann condition (30d), where nT denotes the outward-directed
unit normal on the boundary of the surface �w . (Note that nT is directed in the tangent direction of �w).
Condition (30d) will constitute a “natural condition” in the variational form and the power balance derived
below; the interface @�w will be transparent in both expressions. This case is the one treated in the well-
posedness analysis of Appendix B. It would bemathematically possible instead to specify a Robin condition
like ˛p C nT � rTp D 0. In that case, an integral over @�w would appear in the variational form and the
power balance, indicating a sink or source of power at @�w. However, it is not clear if this condition makes
physical sense, and there is no analysis to guide the choice of coefficient ˛. Assigning a Dirichlet condition
at @�w is problematic, however, since it likely will lead to a jump discontinuity towards the �io side of the
boundary and thus sharp gradients locally around @�w. The well-posedness theory in Appendix B is not
easily extended to the Dirichlet case, and it is not clear for us whether the case is amenable to analysis at
all.

Regardless of these mathematical issues, note that the boundary-layer approximations considered here
breaks down at interfaces such as �w, as well as at sharp corners within �w, so ultimately, how to handle
such interfaces is a modeling issue that is an interesting subject for further studies.

Multiplying equation (30a) with a test function q, integrating by parts, and substituting boundary con-
ditions (30b)–(30d), we find that solutions to the system (30) satisfies the variational expression

� k2
0

Z
�

qp C

Z
�

rq � rp C ik0

Z
�io

qp C ıT k2
0

.i � 1/.
 � 1/

2

Z
�w

qp

C ıV

i � 1

2

Z
�w

rTq � rTp D 2ik0

Z
�io

qg:

(31)

Remark 4.1. In this section, as well as in Appendix B, we do not explicitly specify measure symbols (such
as dV or dS, for instance) in the integrals, since the type of measure will be clear from the domain of
integration.

In Appendix B, we define weak solutions to system (30) using the variational form (31) and show that
the associated variational problem is well posed. Variational expression (31) is also the starting point for
finite-element discretizations, which can be carried out using the same standard elements as employed for
theHelmholtz equation, that is, with finite-element functions that are globally continuous and polynomials
on each element of the triangulation.

Variational expression (31) can also be used to derive a power balance law for system (30), as follows.
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Inserting the test function q D Np (complex conjugate) in expression (31), we find thatZ
�

jrpj
2
�k2

0

Z
�

jpj
2
Cik0

Z
�io

jpj
2
CıT k2

0

.i � 1/.
 � 1/

2

Z
�w

jpj
2
CıV

i � 1

2

Z
�w

jrTpj
2

D 2ik0

Z
�io

Npg: (32)

The imaginary part of equation (32) divided by k0 isZ
�io

jpj
2

C ıT k0


 � 1

2

Z
�w

jpj
2

C
ıV

2k0

Z
�w

jrTpj
2

D 2Re
Z

�io

Npg: (33)

Substituting identity
jp � gj

2
D jpj

2
C jgj

2
� 2Re Npg; (34)

into equality (33) and dividing by 2�0c, to obtain terms in units of power, we obtain

1

2�0c

Z
�io

jgj
2

D
1

2�0c

Z
�io

jp � gj
2

C .
 � 1/
ıT !

4�0c2

Z
�w

jpj
2

C
ıV

4!�0

Z
�w

jrTpj
2: (35)

Expression (35) expresses that the incoming power equals the sum of the reflected power and the power
losses due to the thermal and viscous boundary layers.

5 Comparisons with classical results
5.1 Boundary-layer theory
Searby et al. [18] consider the problem of calculating the visco–thermal boundary-layer damping in acous-
tic cavities. The authors review the boundary-layer theory and propose a two-step procedure in which a
isentropic Helmholtz solver first calculates the pressure distribution on the solid surfaces. In a second
step, the total power loss from the visco-thermal boundary layers is calculated using boundary-layer the-
ory. The loss given by Searby et al. [18, formulas (6) and (10)] agree with the two last terms in the power
balance law (35). Note, however, that the procedure of Searby et al. does not predict, for instance, phase
shift effects of the boundary layers, nor does it provide, as here, an explicit locally-reacting boundary con-
dition, coupled to the interior problem.

Another approach is to consider a one-dimensional analysis, as presented byRienstra&Hirschberg [14,
§ 4.5], who analyze the thermal boundary layer in the case of a plane wave at normal incidence towards an
isothermal wall and the viscous boundary layer in the case of a plane wave propagating parallel to the wall.
The so-called displacement thicknesses that their analysis yield are then applied to the case of a plane wave
propagating in a wave guide. The final result is an expression for the complex wavenumber k that governs
the pressure amplitude, assumed to be of the form p.z/ D e�ikz , where the coordinate z is along the axis
of the wave guide, and in which the imaginary part of k represents the visco–thermal damping. We will
now show that if boundary-value problem (30) in its variational form (31) is applied to such a case of a
narrow waveguide, we obtain the same expression as Rienstra & Hirschberg.

We consider the setup illustrated in figure 2, where� D S � .0; `/ is a cylindrical wave guide of length
`. The wave guide’s cross section S is fixed, of area jS j, and has a smooth boundary @S of circumference
j@S j. In order for the boundary-layer approximations to be valid, we assume that ıV and ıT are small
compared to

p
jS j, and that

p
jS j is of the same order as j@S j, precluding overly flattened geometries.

Otherwise, the shape of S can be arbitrary. Let the waveguide be oriented along the z-axis and let �io be
the two cross section planes located at x D 0 and x D `, respectively. Furthermore, let g.x; 0/ D g0 and
g.x; `/ D 0 for a given number g0. According to boundary-layer theory and since the driving signal g0 is
constant at the inlet, we may make the ansatz that the pressure field is constant in each cross section, that
is, that p D p.z/.
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�io`

�w

Figure 2. Example of a cylindrical wave guide of the type considered in § 5.1

Remark 5.1. The assumption that p D p.z/ also constitutes a Galerkin approximation of variational
form (31) such that p and q are constant over each cross section.

Under this approximation, rp D rTp D ezp0, where ez is a unit vector in the z direction, and
variational form (31) reduces toZ `

0

q0

�
jS j C ıV

i � 1

2
j@S j

�
p0 dz � k2

0

Z `

0

q

�
jS j � ıT

i � 1

2
.
 � 1/j@S j

�
p dz

C ik0jS j
�
q.`/p.`/ C q.0/p.0/

�
D 2ik0q.0/g0:

(36)

Variational expression (36) holds for each test functions such that itself and its derivative is square inte-
grable. In particular, for smooth test functions that vanish at x D 0 and x D ` (that is, q 2 C 1

0 .0; `/),
variational expression (36) reduces toZ `

0

q0

�
jS j C ıV

i � 1

2
j@S j

�
p0 dz � k2

0

Z `

0

q

�
jS j � ıT

i � 1

2
.
 � 1/j@S j

�
p dz D 0: (37)

Integration by parts yield that

�

�
jS j C ıV

i � 1

2
j@S j

�
p00

� k2
0

�
jS j � ıT

i � 1

2
.
 � 1/j@S j

�
p D 0 (38)

in .0; `/. The assumed boundary conditions imply that solutions of equation (38) are of the form p.z/ D

Ae�ikz , which after substitution into equation (38) implies that

k2
D k2

0

2jS j � ıT .i � 1/.
 � 1/j@S j

2jS j C ıV .i � 1/j@S j
; (39)

which is the same expression as obtained by Rienstra & Hirschberg [14, § 4.5.3]. Note that expression (39)
reveals that in order for k to differ considerably from k0, the surface-area to air-volume ratio j@S j=jS j

should be large.
5.2 Solutions for special geometries
Instead of relying on boundary-layer analysis, it is possible to obtain exact or approximate solutions to the
linearized Navier–Stokes equations for a few special geometries. Keefe [6], among others, presents results
based on Kirchhoff ’s classical solution for propagation of the first mode inside an isothermal cylinder with
a circular cross section. The analysis is made in terms of the pressure and volume velocity over cross
sections in the cylinder. The wavelength is assumed to be sufficiently long for only the fundamental mode
to propagate. Note that, as opposed towhat was the case in § 5.1, no assumption ismade regarding the ratio
between the tube radius and the boundary layer thickness. For a circular tube of radius a, expression (9)
given by Keefe [6] implies the complex wavenumber

k2
D k2

0

1 C .
 � 1/Ft

1 � Fv

; (40)
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where

Fv D
2

rv

p
�i

J1.rv

p
�i/

J0.rv

p
�i/

;

Ft D
2

rt

p
�i

J1.rt

p
�i/

J0.rt

p
�i/

;

(41)

in which J0 and J1 are the Bessel functions of order 0 and 1 and

rv D a
p

!=� D
p

2a=ıV ; (42)

rt D rv

q
��0cp=� D

p
2a=ıT : (43)

We will now show that expression (40) approaches the boundary layer expression (39) in the large
radius or high frequency limit. Such an analysis requires consideration of the behavior of the Bessel func-
tions in expressions (41) in the limit of large arguments [1, Eq. 9.2.1]. For the Bessel functions of a complex
argument, asymptotic expansions are meaningful only for a constant phase angle. For such a complex ar-
gument w, �� < arg.w/ < 0,

J0.w/ D
1

p
2�w

ei.w��=4/
C O.1=w/ (44)

and
J1.w/ D

1
p

2�w
ei.w�3�=4/

C O.1=w/: (45)

We can thus use the large-radius/high-frequency approximation
J1.w/

J0.w/
� e�i�=2

D �i (46)

and find that
Fv � .1 � i/ıV =a;

Ft � .1 � i/ıT =a;
(47)

whence

k2
D k2

0

1 C .
 � 1/Ft

1 � Fv

� k2
0

1 C .
 � 1/.1 � i/ıT =a

1 � .1 � i/ıV =a
D

D k2
0

2�a2 C .
 � 1/.1 � i/2�aıT

2�a2 � .1 � i/2�aıV

D k2
0

2jS j C .
 � 1/.1 � i/j@S jıT

2jS j � .1 � i/j@S jıV

;

(48)

which means that expression (40) yields in the large-radius/high-frequency limit the same expression (39)
as when using the boundary-layer approximations.
5.3 Limits of applicability
The dispersion relation (39) was derived from our approach of taking visco–thermal losses into account
through boundary condition (30c). Corresponding expression (40) holds only for circular cross sections,
but it holds also for tubes that are so narrow that the boundary-layer analysis ceases to be valid. By com-
paring expressions (39) and (40) for typical parameter values, it will therefore be possible to assess limits
of applicability of our boundary-condition approach.

Figure 3 shows two examples, for tubes of radii 1 mm and 0.1 mm, respectively, of applying the “exact”
formula (40) and the boundary-layer approximation (39). For the 1mm tube, the agreement is almost per-
fect, whereas the plot for the 0.1 mm tube reveals that the asymptotics for low frequencies differ, so that the
boundary-layer approximation will be inaccurate for frequencies below, say, 2 kHz. Thus, the boundary-
layer approximations do break down, starting at low frequencies, for narrow enough tubes. However,
capillary tubes need to be very long and narrow in order for these inaccuracies to be noticeable.
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Table 1. Air properties used for evaluation of damping models

Density �0 1:204 kg � m�3

Kinematic viscosity � 1:506 � 10�5 m2 � s�1

Speed of sound c0 343:20 m � s�1

Prandtl number NPr 0:708

Specific heat, constant pressure cP 1:0054 � 103 J�kg�1
� K�1

Ration of specific heats 
 1:4

102 103 104
10�2

10�1

100

101

radius 1 mm

f (Hz)

jRe kj=k0 (exact)
jRe kj=k0 (BL)

jIm kj=k0 (exact)
jIm kj=k0 (BL)

102 103 104
10�1

100

101

radius 0.1 mm

f (Hz)

jRe kj=k0 (WG)
jRe kj=k0 (BL)

jIm kj=k0 (WG)
jIm kj=k0 (BL)

Figure 3. The real (blue) and imaginary (red) part of the relativewavenumber for lossy propagation in circular
tubes of radii 1 mm (left) and 0.1mm (right). Dashed: “exact” wavenumber (40) according to Keefe [6]. Solid:
boundary layer approximation (39). Air property parameters as in table 1.
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6 Numerical case study: a generic compression driver
This section attempts to demonstrate the usefulness of the above model in practical numerical computa-
tions. As have been alluded to in § 5.1, acoustic devices for which visco–thermal boundary-layer losses
need to be taken into account are typically characterized by a large ratio of the area of solid surfaces to the
air volume. One example of such a device is the compression driver. Due to the demands of high acoustic
power, such drivers are commonly used in public address systems to feed mid-to-high-frequency horns.
In a compression driver, a stiff vibrating membrane is placed in a very shallow chamber, from which the
sound exits typically through a number of narrow slits in the radial or circumferential directions. The quo-
tient of the membrane area to the sum of the slits’ area constitutes the compression ratio of the driver. A
high compression ratio improves the acoustic loading of the membrane, particularly at higher frequencies,
and substantially increases the efficiency of the driver. A so-called phase plug collects the acoustic output
from the slits of the compression chamber and expands it to a circular waveguide, on which the throat of
the horn will be mounted. The design of the slits and the phase plug is delicate in order to minimize the
effects of internal resonances [12]. The presence of a shallow chamber and several thin slits means that
visco–thermal boundary-layer losses are potentially important to account for in a numerical simulation of
a typical compression driver. However, as we will see, even a hybrid strategy, where the full Navier–Stokes
equations are solved only in the narrow passages of the domain, whereas the pressure Helmholtz equation
is used for the rest of the system, tends to lead to large problems and simulations which are expensive in
terms of memory and CPU time.

Here, for the generic 3-inch compression driver design shown in figure 4, we compare such a hybrid
strategy to a strategy where the boundary losses are modeled by the proposed boundary condition (30c).
The membrane diameter is 84 mm, the depth of the compression chamber is 0.5 mm, and the area of each
of the 9 radial slits is 51 mm2, which yields a compression ratio of 12. The length of the phase plug is
25 mm and the diameter of the final wave guide is 38 mm. The geometry of this driver is much simplified
compared to actual commercially available devices, but the dimensions above are representative for real-
life drivers [12]. The air properties of table 1 are used also here.

With the hybrid strategy, theNavier–Stokes equations (1) are used in the compression chamber and the
phase plug, and these equations are coupled to Helmholtz equation (30a) in the waveguide. The sound-
hard walls are modeled with isothermal and no-slip boundary conditions in the Navier–Stokes region
and with a homogeneous Neumann condition in the Helmholtz region. Finite-element approximations of
these equations are provided in the AcousticsModule (“Thermoviscous Acoustics, FrequencyDomain”) of
ComsolMultiphysics, which we use for the numerical experiments. The use of a hybrid strategy is strongly
recommended by the software provider to reduce the computationally cost, compared to using the Navier–
Stokes equations everywhere [21]. For the alternative strategy derived in this article, Helmholtz equation
(30a) is used throughout the whole domain, and with boundary conditions (30c)–(30d) on the walls of the
compression chamber and phase plug. We implement these equations also in Comsol Multiphysics, using
the software’s so-calledWeak Form PDE Interface, in which variational forms like expression (72) directly
can be specified [22, Ch. 16]. A homogeneous Neumann bundary condition is used in the waveguide, as in
the hybrid strategy. A lossless model, with the homogeneous Neumann boundary condition on all walls, is
used for comparison. Themembrane is regarded as a rigid piston oscillating with a fixed amplitude. There
are nine slits in the phase plug, and thus, due to its symmetry, it suffices to consider a 20ı segment with
appropriate symmetry boundary conditions.

In all three models, the waveguide is terminated at a planar cross section �out supplied with boundary
condition (30b) (with g � 0) to model an infinite waveguide. This condition, equivalent to imposing
the acoustic impedance condition Z0 D �0c, absorbs plane waves, and the acoustic power exiting the
waveguide may then simply be computed as

Po D
1

2
Re

Z
�out

n � Nup D
1

2�0c

Z
�out

jpj
2: (49)
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Figure 4. Left and middle: The generic compression driver geometry used to compare the hybrid Navier–
Stokes/Helmholtz strategy with our boundary-approximation approach. The circular membrane and the thin
compression chamber is to the left, the phase plug in the middle consists of nine radial slits that expand into a
circular wave guide. Right: The rotationally symmetric compression driver geometry used to tune the mesh.

boundary layer elements

Figure 5. Left: the mesh used in the hybrid strategy solution. Middle: close up of a cut through a part of
the chamber and phase plug, where the boundary layer elements can be seen. Right: the same close up, but
showing the mesh used in the boundary approximation solution. Note that this mesh, apart from the absence
of boundary layer elements, is very similar to the mesh used for the hybrid strategy solution.

Note that non-planar modes does not propagate for the frequencies considered. At 10 kHz, at the upper
end of the frequency interval, the first non-planar mode decays with a factor of about 10�4 over the length
of the waveguide, and therefore contributes a smaller error than the discretization.

A good resolution of the rapidly varying velocity and temperature fields in the very thin boundary
layers of the Navier–Stokes model requires a very finemesh near the solid walls. (The pressure, however, is
essentially constant across the boundary layer.) Anisotropic boundary-layer elements that are elongated in
the tangential direction of thewall reduces the number of elements, compared to a uniform refinement, but
the presence of the boundary layer will nevertheless lead to a large number of degrees of freedom. We use
quadratic elements for the acoustic pressure in all models, and cubic elements for the velocity components
and the temperature in the solution of Navier–Stokes equations, relying on Comsol’s choice of Taylor–
Hood-like element orders. To tune the mesh and estimate the accuracy of the solutions, we considered
first a rotationally symmetric compression driver design in which the slits are annular rather than radial;
see the right part of figure 4. In this reference design there are three slits, placed according to Smith’s
guidelines [19], as further described in Ref. [12], and the compression ratio and other physical dimensions
are identical to the design with the radial slits. This geometry possesses axial symmetry and allows thus a
2D solutionwith an extremely finemesh to be computed and used as a reference. The chosenmesh settings
for the 3Dmodel are as follows. The maximum element length in interior of the model is 3:43 mm, which
corresponds to one tenth of the wavelength at 10 kHz. At the boundaries of the compression chamber
and phase plug, there are six layers of elongated boundary elements, each with thickness 36:6 µm and
maximum length 1:27 mm tangential to the boundary. The boundary layer element thickness is chosen to
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Hybrid N–S/Helmholtz
Boundary approximation
Lossless

Figure 6. Output power Po for the compression driver in figure 4, computed with the Navier–
Stokes/Helmholtz hybrid strategy, our boundary approximations, and when ignoring visco–thermal losses.
The 0-dB reference power is the output power at f D 625 Hz.

Table 2. Details from theComsol log-files for the simulations of the compression driver in figure 4, onmeshes
tuned to give a relative accuracy of around 0:01.
�The solution time is the total wall clock time excluding I/O. Two computer cores were used for the boundary-
approximation solution, while all 24 available cores were used for the hybrid solution.

Degrees of freedom Memory used Solution time�

per frequency
Hybrid strategy 1 033 276 101 613 MB 2 111 s
Boundary approximation 63 725 1 242 MB 12 s
Quotient Hybrid/Boundary 16.21 81.8 180
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resolve the viscous and thermal boundary layer effects, and should be compared to the viscous and thermal
acoustic boundary-layer thicknesses ıV and ıT . These are ıV D 21:9 µm (87:6 µm) and ıT D 26:0 µm
.104 µm) at 10 kHz (625 Hz), which is the upper (lower) end of the frequency interval considered. Recall
that the velocity and temperature, which are changing rapidly close to the boundaries, are discretized by
polynomials of degree three. The maximum relative difference in output power Po between the fine mesh
2D model and a 20ı-segment 3D model on the chosen mesh is � 0:01. The same 3D mesh settings are
then used for the design to the left in figure 4, resulting in the mesh in figure 5, and it seems reasonable to
expect an accuracy in the same order� 0:01 as for the axially-symmetric case. A similar procedure is used
to tune a coarser mesh, without elongated boundary layer elements, to use in our boundary approximation
model. Also in this case the mesh is chosen so that the estimated accuracy for the output power is � 0:01,
to obtain a fair comparison between the hybrid and boundary approximation strategies. In this model,
the maximum element length is 0:40 mm in the compression chamber, 1:27 mm at the boundaries of the
phase plug, and 3:43 mm in the interior of the phase plug and waveguide.

The results can be found in figure 6. First of all, we note that the output power is radically different
when boundary effects are ignored, especially around the resonance at about 6.5 kHz. Moreover, the
agreement between the hybrid strategy and our proposed boundary-approximation model is very good:
the maximum relative difference in output power Po is less than 0:01, and thus in the same order as the
estimated relative numerical accuracy. Both the CPU time and memory consumption are radically lower
for the boundary approximation model; the details can be found in table 2.

7 Discussion
Our proposed approach to account for visco–thermal boundary losses takes the form of theWentzell con-
dition (26b) for the acoustic pressure. The acoustical effects on both the amplitude and the phase of the
thin viscous and thermal boundary layers, which are in the order of 20–400 µm in the audio range, are
taken into account by this boundary condition. Thus, these layers do not need to be explicitly resolved
by the mesh in numerical simulations, and the computational cost becomes essentially the same as for
the lossless case. Therefore, we believe that this approach is a very attractive alternative to full or hybrid
solutions to the linearized Navier–Stokes equations for many—maybe most—cases when visco–thermal
boundary losses need to be taken into account.

The boundary-layer approximations break down for extremely thin capillaries or slits. However, as can
be seen from figure 3, the break down starts at long wavelengths, which means that errors in our model
will only be noticeable for devices with extreme geometries, such as very long submillimeter capillaries.
We also saw in the numerical experiments of § 6 that in the frequency range where the boundary-layer
approximation becomes questionable, the losses were anyway very small.

The boundary-layer analysis presented here assumes that the radii of the principal curvatures of the
wall is much larger than the boundary-layer thickness. In particular, the effects of corners and edges along
solid walls are not accounted for. Supported by the numerical experiments in § 6, it seems reasonable to
assume that the effects of such geometric featuresmay often only be of second order at low amplitudes. The
situation may be quite different, however, if the geometry includes a very large number of such features,
or if significant wall roughness or microscale patterns in the order of the boundary-layer thickness are
present. The proposed boundary condition will likely not be a good model for such situations. Out of
scope for the present investigation is also nonlinear effects such as flow separation at edges, which will
become significant at high amplitudes.
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Appendix

A Boundary-layer equations
Here we outline the procedure to obtain the boundary layer approximation of system (1) in the vicinity
of a wall at y D 0 on which boundary conditions (10) should be imposed. We use the classical Prandtl
approach of rescaling the equations and keeping only leading terms [15]. The analysis here is inspired by
and constitutes a generalization of the 1D analysis presented by Rienstra & Hirchberger [14, § 4.5]. The
first step is to split in the wall normal and tangential directions all relevant quantities: the position vector;
the velocity field; the nabla and the Laplacian operators; and the momentum balance equation (1b). The
purpose of this splitting is to prepare a rescaling of the variables in the different directions.

The splitting of the spatial points x and the velocity vector U in their tangential and wall normal parts
will be denoted

x D .r; y/, where r D .x; z/ is tangential and y normal,
U D .u; v/ , where u D .u; w/ is tangential and v normal.

(50)

Likewise, corresponding splitting of the nabla and Laplacian operators will be written

r D

�
rT;

@

@y

�
; where rT D

�
@

@x
;

@

@z

�
;

� D �T C
@2

@y2
; where �T D rT � rT:

(51)

With these definitions, system (1) can now be split in normal and tangential parts with respect to the wall,

i!� C �0

�
rT � u C

@v

@y

�
D 0; (52a)

i!u C
1

�0

rTp � �

�
�Tu C

@2u

@y2
C

1

3
rT

�
rT � u C

@v

@y

��
D 0; (52b)

i!v C
1

�0

@p

@y
� �

�
�Tv C

@2v

@y2
C

1

3

@

@y

�
rT � u C

@v

@y

��
D 0; (52c)

i!�0cV T C p0

�
rT � u C

@v

@y

�
� �

�
�TT C

@2T

@y2

�
D 0; (52d)

Note that the single vector momentum equation (1b) has been split to yield the two equations (52b)
and (52c).

Now we introduce the length scale L D c=! D 1=k0, where k0 is the isentropic wavenumber, in
the tangential direction; the length scale ı, to be determined later, in the wall-normal direction; and we
nondimensionalize coordinates and functions as follows:

r 0
D

r

L
; y0

D
y

ı
;

u0.r 0; y0/ D
1

L!
u.Lr 0; ıy0/; v0.r 0; y0/ D

1

ı!
v.Lr 0; ıy0/;

p0.r 0; y0/ D
1

�0L2!2
p.Lr 0; ıy0/; �0.r 0; y0/ D

1

�0

�.Lr 0; ıy0/;

T 0.r 0; y0/ D
�0cV

po

T .Lr 0; ıy0//:

(53)
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Nondimensionalization by rewriting equations (52b) and (52c) in these variables yields

i�0
C r

0
T � u0

C
@v0

@y0
D 0; (54a)

iu0
C r

0
Tp0

�
�0

ı02

�
ı02�0

Tu0
C

@2u0

@y02
C ı02 1

3
r

0
T

�
r

0
T � u0

C
@v0

@y0

��
D 0; (54b)
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� �0
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ı02�0

Tv0
C

@2v0

@y02
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1

3
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0
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�
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0
T � u0

C
@v0

@y0

��
D 0; (54c)

iT ´ C r
0
T � u0

C
@v0

@y0
�

�0

ı02

�
ı02�0

TT 0
C

@2T 0

@y02

�
D 0; (54d)

where
ı0

D
ı

L
; �0

D
�

!L2
; �0

D
�

L2!�0cV

D



NPr
�0 (55)

are the nondimensional vertical scaling, and the nondimensional viscosity and conductivity coefficients,
respectively, and where the last equality follows from the definition of the Prandtl number

NPr D cP �0

�

�
D 


�0

�0
: (56)

Substituting the small parameter � D �0 D ı02 into system (54) (this will fix the vertical length scale)
and ignoring O.�/ terms, the system reduces to

i�0
C r

0
T � u0

C
@v0

@y0
D 0; (57a)

iu0
C r

0
Tp0

�
@2u0

@y02
D 0; (57b)

@p0

@y0
D 0; (57c)

iT ´ C r
0
T � u0

C
@v0

@y0
�




NPr

@2T 0

@y02
D 0; (57d)

which after transforming back to dimensional coordinates becomes

i!
�

�0

C rT � u C
@v

@y
D 0; (58a)

i!u C
1

�0

rTp � �
@2u

@y2
D 0; (58b)

@p

@y
D 0; (58c)

i!�0cV T C p0

�
rT � u C

@v

@y

�
� �

@2T

@y2
D 0: (58d)

These are the acoustic boundary-layer equations, which, for small values of !� (corresponding to small
�0) and for NPr D O.1/, approximate system (52) in the vicinity of the wall; that is, for wall-normal length
scales of order

p
�=! (corresponding to ı0 D

p
�0). Recall that for air, as for many other gases, the Prandtl

number is about unity.
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Outside of a thin layer close to the wall, the terms involving the viscosity and thermal conductivity pa-
rameter become small, and it becomes reasonable to replace system (58) with the isentropic equations (8).

System (58) can be solved exactly, subject to boundary conditions (10) and matching conditions for all
variables as y ! C1 to an exterior isentropic solution to system (8) evaluated at a position y D yı close
to the wall but outside the boundary layer. We will denote these limiting values by u1.r/, p1.r/, �1.r/

and so on.
Equation (58c) simply implies that the pressure is constant in the vertical direction across the boundary

layer,
p.r; y/ D p1.r/ 8y > 0: (59)

Moreover, the tangential components of equation (8) evaluated at y D yı are

i!�0u1
C rTp1

D 0: (60)

Substituting equations (59) and (60) into equation (58b), we can formulate the boundary-value problem

i!u � �
@2u

@y2
� i!u1

D 0; (61a)

ujyD0 D 0; (61b)
lim

y!C1
u D u1; (61c)

which has the solution
u D u1.r/

�
1 � e�.1Ci/y=ıV

�
; (62)

where

ıV D

r
2�

!
; (63)

is the viscous boundary-layer thickness.
The remaining two equations (58a) and (58d) combine into

i!�0cV T � i!
p0�

�0

� �
@2T

@y2
D 0: (64)

Dividing equation (64) with T0 and rewriting it in several steps, we find that

0 D i!
�

�0cV

T
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�
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T0�0

�
� �
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� �
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�
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�
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�
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�
�

�0

�
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p0

�
� �

@2

@y2

�
�

�0

�
p


p0

��
;

(65)

where ideal gas law (2) has been used in the second equality, expressions (6) and (3) in the third equal-
ity, equation (4) in the fourth equality, definition (6) in the fifth equality, and equation (58c) in the sixth
equality.

Expression (65) is an equation in the relative excess density

�e

�0

def
DD

�

�0

�
p


p0

D
1

�0

�
� �

p

c2

�
D

1

�0

�
� �

p1

c2

�
D

1

�0

.� � �1/ ; (66)
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where expression (5) has been used in the second, property (59) in the third, and the isentropic property (7)
in the fourth equality. The excess density is the difference between the actual density in the boundary layer
and the limiting density outside the boundary layer. The excess density thus vanishes when y ! C1,
that is, when approaching the exterior isentropic conditions. At y D 0, it holds that

�e D
�

�0

�
p


p0

D
�

�0

�
p

p0

C

 � 1




p

p0

D �
T

T0

C

 � 1




p

p0

D

 � 1




p

p0

; (67)

where the gas law (4) and boundary condition (10) are used in the third and fourth equality, respectively.
Altogether, the boundary-value problem for the excess density then becomes

i!�0cp

�e

�0

� �
@2

@y2

�e

�0

D 0 for y > 0, (68a)

�e

�0

! 0 as y ! C1, (68b)

�e

�0

D

 � 1




p1

p0

at y D 0. (68c)

The solution to problem (68) is

�e

�0

D

 � 1




p1.r/

p0

e�.1Ci/y=ıT ; (69)

where

ıT D

s
2�

!�0cp

: (70)

is the thermal boundary-layer thickness.

B Well-posedness
Here we establish well-posedness of weak solutions to boundary-value problem (30), using variational
expression (31) as the starting point. This section assumes familiarity with the Hilbert space approach to
the analysis of elliptic partial differential equations [23].

We assume that domain � � R3 is open, bounded, connected, and provided with a Lipschitz bound-
ary. Moreover, we assume that the closure of two nonempty, relatively open, smooth surfaces �io and �w
comprise the boundary @�. The assumption of a Lipschitz boundary implies that possible nonsmooth
portions of the boundary will be located at the interfaces between �io and �w.

The standard Sobolev space used to define weak solutions to the pressure Helmholtz equations is
H 1.�/, the space of square integrable functions in which all partial derivatives are also square integrable.
However, in variational expression (31), there is also a tangential gradient operator in the boundary inte-
gral over �w. Therefore, we will also require square integrability of the tangential derivatives over �w. A
natural norm on the space of functions considered for weak solutions to problem (30) is defined by

k pk
2
W D k2

0

Z
�

jpj
2

C

Z
�

jrpj
2

C ıT .
 � 1/k2
0

Z
�w

jpj
2

C ıV

Z
�w

jrTpj
2; (71)

in which the constants are chosen to make the various terms dimensionally consistent and to conveniently
conform to the terms in variational form (31). (Note that all terms are non negative since 
 > 1 for all
gases.) The closure of the space of functions C 1.�/ in this norm generates a strict subspace W of H 1.�/

in which the solutions will be defined.
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The variational problem under consideration will then be the following:

Find p 2 W such that
a.q; p/ D `.q/ 8q 2 W;

(72)

where

a.q; p/ D �k2
0

Z
�

qp C

Z
�

rq � rp C ik0

Z
�io

qp (73a)

C ıT k2
0

.i � 1/.
 � 1/

2

Z
�w

qp C ıV

i � 1

2

Z
�w

rTq � rTp;

`.q/ D 2ik0

Z
�io

qg: (73b)

To analyze the properties of problem (72), we establish first a coercivity estimate and a uniqueness
property in the following two lemmas.

Lemma B.1 (Coercivity). For any p 2 W ,

ˇ̌
a. Np; p/ C 2k0kpk

2
L2.�/

ˇ̌
�

1

2
p

13
kpk

2
W (74)

Proof. Choose q D Np (complex conjugate) in bilinear form (73a), multiply with .1 � 3i=2/, and take the
real part to obtain

Re
��

1 �
3
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�
1

4
kpk

2
W ;

(75)

which together with inequality

Re
��

1 �
3

2
i
� �

a. Np; p/ C 2k0kpk
2
L2.�/

��
�

ˇ̌̌̌
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i
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a. Np; p/ C 2k0kpk
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ˇ̌̌
D

p
13

2

ˇ̌̌
a. Np; p/ C 2k0kpk

2
L2.�/

ˇ̌̌ (76)

yields the conclusion.

Lemma B.2 (Injectivity). For each k0 > 0, if p 2 W such that

a.q; p/ D 0 8q 2 W; (77)

then p � 0.

Proof. If p 2 W satisfies equation (77), then

Im a. Np; p/ D k0

Z
�io

jpj
2

C ıT k2
0


 � 1

2

Z
�w

jpj
2

C ıV

1

2

Z
�w

jrTpj
2

D 0; (78)
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which means that the trace of p on @� vanishes, that is, p 2 H 1
0 .�/. Let O� be an open extension of �

in which � is compactly embedded; that is, O� 2 R3 is open, bounded, and connected such that � � O�.
Since p 2 H 1

0 .�/ � W and satisfies equation (77), we may extend it by zero into a p 2 H 1. O�/ that, for
each open set K compactly embedded into O� (K � O�), satisfies

�k2
0

Z
�

qp C

Z
�

rq � rp D 0 8q 2 C 1
0 .K/; (79)

which implies that
�k2

0p � �p D 0 almost everywhere in K. (80)

Since the extended p satisfies property (80) and vanishes identically in the open set O� n �, the unique
continuation principle [10, Ch. 4.3] implies that p � 0 in �.

Lemma B.1 and B.2 then imply that

Theorem B.3. Problem (72) has a unique solution for each k0 > 0.

Proof. Continuity and coercivity of bilinear form (73a) follows from the Cauchy–Schwarz inequality and
Lemma B.1, respectively. The trace theorem on H 1.�/ [23, Th. 8.7] yields that linear form (73b) is
bounded on H 1.�/ and thus on W � H 1.�/. Moreover, the natural injection of W into L2.�/ is
compact due to compactness of the injection of H 1.�/ into L2.�/. The solution theory for general vari-
ational problems, as stated for instance by Wloka [23, Th. 17.11], then yields that that a is Fredholm; that
is, either the homogeneous problem, equation (72) with ` D 0 has a nontrivial solution, or the inhomoge-
neous problem has a unique solution for each `. However, Lemma B.2 says that the homogeneous problem
only has the trivial solution for each k0 > 0. Thus, variational problem (72) has a unique solution for each
k0 > 0.
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