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Abstract. Standard weak solutions to the Poisson problem on a bounded domain have square-
integrable derivatives, which limits the admissible regularity of inhomogeneous data. The concept
of solution may be further weakened in order to define solutions when data is rough, such as for
inhomogeneous Dirichlet data that is only square-integrable over the boundary. Such very weak
solutions satisfy a nonstandard variational form (u, v) = G(v). A Galerkin approximation combined
with an approximation of the right-hand side G defines a finite-element approximation of the very
weak solution. Applying conforming linear elements leads to a discrete solution equivalent to the
text-book finite-element solution to the Poisson problem in which the boundary data is approximated
by L2-projections. The L2 convergence rate of the discrete solution is O(hs) for some s ∈ (0, 1/2)
that depends on the shape of the domain, assuming a polygonal (two-dimensional) or polyhedral
(three-dimensional) domain without slits and (only) square-integrable boundary data.
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1. Introduction. Applications such as optimal control, inverse problems, and
shape optimization sometimes call for boundary data that are rougher than the the-
ory for elliptic or parabolic boundary-value problems routinely assumes. This note
addresses numerical issues in the presence of rough boundary data.

We restrict the discussion to a simple case, the Poisson equation with inhomoge-
neous Dirichlet conditions,

−∆u = f in Ω,(1a)

u = g on Γ,(1b)

where Ω is a bounded domain in R2 or R3, Γ the domain boundary, and f and g are
given data. Integration by parts yields that smooth solutions to (1) satisfy

∫

Ω
∇u ·∇v dx =

∫

Ω
fv dx(2)

for each smooth v vanishing on Γ. The “standard” weak solution to (1), the basis for
finite-element discretizations, satisfies variational expression (2) with u and v being
elements in certain subspaces of H1(Ω), the Sobolev space of order one.

Which type of boundary data g makes sense to specify in (1)? The answer depends
on which type of functions we accept as being solutions. For standard weak solutions,
it is necessary that g can be extended continuously into a function in H1(Ω). Such
extensions are not always possible—there are even continuous functions g on the
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boundary Γ that do not extend continuously. The situation is even worse for non-
smooth data. For instance, no function with jump discontinuities on the boundary
can be extended continuously into a function in H1(Ω).

However, even weaker solutions to system (1) than the standard weak solution
relax the requirements on g. Integrating (2) by parts once more reveals that solutions
to (1) satisfy

−
∫

Ω
u∆v dx = −

∫

Γ
g
∂v

∂n
dΓ +

∫

Ω
fv dx(3)

for each smooth v vanishing on Γ. The boundary integral on the right-hand side of
expression (3) now makes sense for g being merely square-integrable, as long as the
normal derivative of v is also square-integrable on the boundary. Variational expres-
sion (3)—in a version made precise in section 4—is the basis for defining very weak
solutions to the Poisson equation with boundary data being no more than square-
integrable. Compared to the variational form (2), the nonstandard variational form (3)
relaxes the regularity requirement on u and g at the price of higher regularity require-
ments on v, a particular example of the method of transposition, treated in great
generality in the classic three-volume treatise of Lions and Magenes [15].

This note considers a numerical approximation based on the Lions-type variational
expression (3) and proves optimal-order convergence rates for linear, conforming el-
ements. To the best of my knowledge, this approach to discretizing problems with
rough boundary data has not previously been reported in the literature. Previous
analysis of problems with rough data has concerned other discretization approaches.

Babuška [1] defines weak solutions using a generalized Lax–Milgram lemma, a
version that would apply, for instance, to the form (3) in the case of full elliptic
regularity and a smooth boundary. (Because of lack of regularity, we cannot directly
use his method here.) He considers finite-element approximations of the Poisson
problem based on the standard variational form (2) with homogeneous boundary
data and proves error bounds that cover also very weak solutions such as Green’s
functions.

French and King [8] analyze a parabolic initial–boundary-value problem for convex
domains in R2. Using temporal averaging combined with spatial L2-projections for the
boundary data, they prove error estimates for a standard finite-element approximation
in space, combined with the backward Euler scheme in time, of a very weak solution
to the parabolic problem.

In the context of an optimal-control problem for a second-order elliptic equation
on convex domains in R2, French and King [7] introduce a standard finite-element
approximation and show that it converges to the very weak solution defined by trans-
position. Another contribution in this direction is by Bramble and King [2]. They
consider elliptic problems on smooth, curved domains in R2, and their error estimates
hold also for rough boundary data.

In all articles cited above, L2(Γ)-projections approximate the rough boundary
data, which allows the use of the standard variational form (2). In contrast, this arti-
cle uses the Lions-type variational form (3) as the basis for discretization. Thus, the
variational form in the discretization is identical to the one used to define the (very)
weak solution, and projection of the data is not needed. Nonetheless, a perhaps sur-
prising result of this article (Theorem 5.2) is that the discrete solution obtained with
the current approach is equivalent to the standard finite-element approximation com-
bined with L2(Γ)-projections of the inhomogeneous data. This observation removes
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Flow direction

Fig. 1. Wall-normal velocity disturbance levels depicting Tollmien–Schlichting waves in a
boundary layer over a flat plate. The lower picture shows the result after applying boundary control
at a portion of the wall.

some of the arbitrariness of the standard method with data projections, showing its
equivalence with a systematic scheme based on the Lions-type variational form.

Another difference from previous work is that the analysis below covers both
two and three space dimensions with polygonal or polyhedral boundaries, without
assuming convexity of the domain. The analysis in the articles cited above is restricted
to two dimensions and assumes convex, polygonal domains.

Solutions as weak as the ones considered here have interest beyond mathematical
curiosity. Applications in which very weak solutions appear naturally are boundary
control and inverse problems [4, 9, 14]. The rest of the presentation starts with a short
outline of this background in section 2. Section 3 reviews some fundamentals, nota-
tion, and the approximation properties that are needed, setting the stage for a more
precise description in section 4 of the Poisson-equation solution based on transposi-
tion. Section 5 introduces a finite-element approximation of the very weak solution,
proving convergence rates and equivalence with the “standard” approximation with
projection of the data.

2. Background. Scientific and technical reasons prompt the need for control-
ling the behavior of solutions to partial differential equations, for instance through
boundary action. In fluid-dynamics applications, the object is typically to manage the
evolution of disturbances. Figure 1 depicts a boundary layer with evolving Tollmien–
Schlichting waves, the most unstable disturbance according to linear stability theory.
The pictures are snapshots from numerical solutions of the unsteady, incompressible
Navier–Stokes equations in three space dimensions. A suitable blowing and suction
at a portion of the lower boundary dramatically damps the disturbances, as shown
in the lower picture of Figure 1. Chevalier et al. [4] report details of this and sev-
eral similar computations. The blowing and suction is the numerical solution to a
nonlinear optimization problem that minimizes the disturbances in the domain over
a space of admissible controls. The admissible controls are boundary conditions with
no more regularity a priori than being square-integrable functions on a portion of the
lower boundary and during a finite time interval. This is a weaker regularity require-
ment on the boundary condition than needed for weak solutions of the Navier–Stokes
equations.

The same regularity concern is an issue also for simpler problems that are eas-
ier to analyze. Consider, for instance, the following inverse problem for the Poisson
equation (1). Given a function z defined in a subdomain ω ⊂ Ω, find the boundary
condition g that yields u = z in ω. Thinking of (1) as a model for steady heat con-
duction in a homogeneous, isotropic solid, the inverse problem consists of estimating
the temperature g on the boundary given measurements in the interior (in ω).
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The inverse problem above is only solvable for a very restricted class of targets
z. Perhaps the easiest way of getting around this restriction is to solve a linear
least-squares problem and minimize the objective function

J(g) =
ε

2

∫

Γ
g2 dΓ +

1

2

∫

ω
(u− z)2 dx,

where ε > 0 is a (Tikhonov) regularization parameter, included to prevent g from
becoming unbounded. The classical exposition of optimal control problems of this
sort is the book by Lions [14]. A newer review by Glowinski and Lions [9] covers also
numerical aspects.

To minimize J among all g ∈ L2(Γ), u needs to be well defined and square-
integrable for each g ∈ L2(Γ). However, the standard variational form (2) of the
Poisson equation requires also the derivatives of u to be elements in L2(Ω), a property
that does not hold for all g ∈ L2(Ω). Including also derivatives (possibly fractional) of
g along the boundary in the regularization term of J fixes this problem. However, the
derivatives of g complicate a numerical solution of the control problem and introduce
an extra smoothing, which may be unwanted, of the g that minimizes J .

There are also other reasons to prefer L2 norms. For instance, for studies of
stability and transition in fluid mechanics, the customary measure of the “size” of
velocity quantities is expressed as L2-like norms, because of the connection to the
kinetic energy of the fluid (Schmid and Henningson [16]).

3. Preliminaries.

3.1. Notation, function spaces. Consider an open, bounded, and connected
domain Ω in R2 or R3 with a Lipschitz boundary Γ; that is, the boundary is locally
the graph of a Lipschitz function (for details see Definition 1.2.1.1 in Grisvard [11],
for instance). We denote by Hs(Ω) the Sobolev space of order s on Ω. When s is
a nonnegative integer, Hs(Ω) is the space in which each function and all its (weak)
partial derivatives up to order s are square-integrable over Ω. We use the convention
H0(Ω) = L2(Ω) and H0(Γ) = L2(Γ). Introducing a norm containing integrals over
the domain, as in Definition 1.2.1 in Grisvard [12], generalizes the definition of Hs(Ω)
to any real positive s. An alternative generalization uses interpolation of Hilbert
spaces, as in section 2 of Chapter 1 in Lions and Magenes [15, Volume 1]. Brenner
and Scott [3, Theorem 12.2.7] provide a proof that the spaces generated in these two
ways are equivalent when the boundary is Lipschitz.

The trace γv of a function v ∈ Hs(Ω) generalizes to Sobolev spaces the restriction
v|Γ of a smooth function v to the boundary. Unfortunately, the presence of “edges”
and “corners” on a nonsmooth boundary complicates the trace concept compared to
the case when the boundary is smooth. Nevertheless, it follows from Theorem 1.5.1.2
in Grisvard [11] that for s ∈ (1/2, 1], each function v in Hs(Ω) has a well-defined trace
γv in the Sobolev space Hs−1/2(Γ), and that there exists a C > 0 such that

‖γv‖s−1/2,Γ ≤ C‖v‖s ∀v ∈ Hs(Ω).(4)

Expression (4) uses the notation ‖ ·‖ s,Γ for norms on Hs(Γ). Analogously to Hs(Ω),
integrals over the Lipschitz boundary Γ define a norm on Hs(Γ) as long as s ∈ [0, 1]
(section 1.3.3 in Grisvard [11]). Restricting the domain of integration, we may also
define norms ‖ ·‖ s,Γi on open subsets Γi of Γ.

The closure of C∞
0 (Ω), the infinitely differentiable functions with compact sup-

port in Ω, with respect to the norm in Hs(Ω) forms a subspace denoted Hs
0(Ω). In
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particular it holds that

H1
0 (Ω) =

{
v | v ∈ H1(Ω), γv = 0

}
;

that is, H1
0 (Ω) is the subspace of functions in H1(Ω) with zero trace.

Negative norms are defined by

‖v‖−s = sup
w∈Hs

0 (Ω)\{0}

1

‖w‖s

∫

Ω
vw dx, s > 0.(5)

This norm can be used to define H−s(Ω), a space of distributions on Ω strictly larger
than L2(Ω) (for instance, the space H−1(Ω) can then be identified with the dual
space of H1

0 (Ω)). However, we will need the norm (5) only for estimates of functions
v ∈ L2(Ω).

The “dual” to definition (5),

‖w‖s = sup
v∈L2(Ω))\{0}

1

‖v‖−s

∫

Ω
vw dx,(6)

holds for any w ∈ Hs
0(Ω). Yosida [18, Chapter III, section 10] provides a detailed

proof for s = 1, but the arguments are unchanged for any s > 0. From definition (6)
one immediately obtains the Cauchy–Schwarz-like inequality

∫

Ω
vw dx ≤ ‖v‖−s‖w‖s.(7)

Similarly,

‖g‖−s,Γi = sup
h∈Hs

0 (Γi)\{0}

1

‖h‖s,Γi

∫

Γi

gh dΓ(8)

defines negative norms on open subsets Γi of Γ. Again, we will apply this norm only
on functions g ∈ L2(Γi). Let g ∈ L2(Γ) and h ∈ C∞

0 (Γi) \ {0} be given. Extending h
by zero on Γ \ Γi, we see that

1

‖h‖s,Γi

∫

Γi

gh dΓ =
1

‖h‖s,Γ

∫

Γ
gh dΓ.

Noting that the extended h is in Hs
0(Γi) as well as in Hs

0(Γ), and taking supremum,
it follows that

‖g‖−s,Γi ≤ ‖g‖−s,Γ.(9)

Throughout the following, C denotes a positive constant, independent of the
choice of functions and, later, of the mesh parameter h. However, adhering to a
customary abuse of notation, the actual value of C may change, even within the same
chain of inequalities.

3.2. Regularity of the Poisson problem with homogeneous boundary
conditions. Let Ω be a polyhedral domain in R3 or a polygonal domain in R2.
We require the domain to be Lipschitz, which excludes domains with slits. Given
v ∈ L2(Ω), there is a unique z ∈ H1

0 (Ω) such that
∫

Ω
∇z ·∇w dx =

∫

Ω
vw dx ∀w ∈ H1

0 (Ω).(10)
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The regularity properties of solutions to (10) are crucial in the development below.
In fact, the possibility of defining the very weak solutions is a consequence of the fact
that the regularity is better than merely z ∈ H1

0 (Ω).
Indeed, if the boundary is smooth, the additional regularity z ∈ H2(Ω) holds.

This is still true for polygonal or polyhedral boundaries if the domain is convex. The
regularity is reduced, however, in the vicinity of nonconvex portions of polygonal or
polyhedral boundaries. Grisvard [12] proves precise regularity results (Theorem 2.4.3
for the two-dimensional case and Corollary 2.6.7 for the three-dimensional case), stat-
ing that there exists an ε ∈ (0, 1/2], which depends on the shape of the domain,
such that solutions to (10) are actually in H3/2+ε(Ω). The following estimate will be
needed.

Theorem 3.1. There exist an ε ∈ (0, 1/2] and a C > 0 such that the solution
z ∈ H1

0 (Ω) to (10) satisfies

‖z‖3/2+ε−s ≤ C‖v‖−s ∀v ∈ L2(Ω)(11)

for each s ∈ [0, 1].
Proof. By the regularity result quoted above, the closed-graph theorem yields

that there exists an ε ∈ (0, 1/2] such that

‖z‖3/2+ε ≤ C‖v‖0 ∀v ∈ L2(Ω).(12)

Using the notation

‖ |∇w| ‖2
0 =

∫

Ω
|∇w|2 dx,

(10) implies that

1

‖ |∇w| ‖0

∫

Ω
∇z ·∇w dx =

1

‖ |∇w| ‖0

∫

Ω
vw dx

for each nonzero w ∈ H1
0 (Ω). Taking the supremum yields that

‖z‖1/2+ε ≤ C‖z‖1 ≤ C‖ |∇z| ‖0

= C sup
w∈H1

0 (Ω)\{0}

1

‖ |∇w| ‖0

∫

Ω
∇z ·∇w dx

= C sup
w∈H1

0 (Ω)\{0}

1

‖ |∇w| ‖0

∫

Ω
vw dx ≤ C‖v‖−1 ∀v ∈ L2(Ω),

(13)

where the second and the last inequality follow from the fact that the seminorm
‖ |∇z| ‖0 is equivalent to ‖z‖1 for z ∈ H1

0 (Ω). Estimates (12) and (13) imply that
the linear mapping v (→ z is bounded from L2(Ω) into H3/2+ε as well as from H−1

into H1/2+ε(Ω). Estimate (11) then follows by operator interpolation of the mapping
v (→ z.

We will also need expressions for the boundary flux associated with the solution
z to (10) and the regularity properties of the boundary flux. Let us first assume full
elliptic regularity, that is, z ∈ H2(Ω) ∩ H1

0 (Ω). Integration by parts of the product
−φ∆z then yields that the boundary flux ∂z/∂n satisfies

−
∫

Γ

∂z

∂n
φ dΓ =

∫

Ω
vφ dx−

∫

Ω
∇z ·∇φ dx ∀φ ∈ H1(Ω).(14)
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If, moreover, the boundary is smooth, the boundary flux is an element in H1/2(Γ).
On polyhedral boundaries, however, the discontinuity of boundary normals compli-
cates the definition of boundary-flux spaces. Nevertheless, the integration-by-parts
property (14) holds also for Lipschitz domains in Rn as long as z ∈ H2(Ω) ∩H1

0 (Ω);
it follows from Proposition 5.1.6 in Brenner and Scott [3], for instance. The following
theorem proves a similar expression for less regular z.

Theorem 3.2. There are an ε ∈ (0, 1/2] and a C > 0 such that, associated with
any v ∈ L2(Ω) and corresponding solution z ∈ H1

0 (Ω) to (10), there exists a unique
λ ∈ L2(Γ) satisfying

−
∫

Γ
λφ dΓ =

∫

Ω
vφ dx−

∫

Ω
∇z ·∇φ dx ∀φ ∈ H1(Ω)(15)

and the estimates

‖λ‖0,Γ ≤ C‖v‖0,

‖λ‖ε−s,Γi ≤ C‖v‖−s for i = 1, . . . , I and ∀s ∈ [0, ε).
(16)

Proof. By assumption, the boundary of Ω can be written Γ = ∪I
i=1Γi, where each

(open and bounded) Γi is a planar polygon or a line segment embedded in R3 and R2,
respectively. Let ni denote the (constant) outward-directed unit normal associated
with each polygonal surface (or line segment) Γi. By Theorem 3.1, we know that there
is an ε ∈ (0, 1/2] such that, for each v ∈ L2(Ω) supplied to (10), the solution satisfies
z ∈ H3/2+ε−s ∀s ∈ [0, 1]. Differentiation is a continuous operator from Hα(Ω) into
Hα−1(Ω) as long as α ,= 1/2 [11, Theorem 1.4.4.6]. Thus, for each i = 1, . . . , I,

∂z

∂ni
= ni ·∇z

resides in H1/2+ε−s(Ω) since 3/2 + ε − s ,= 1/2 for any ε ∈ (0, 1/2] and s ∈ [0, 1].
By further restricting s, we can apply the trace theorem for Lipschitz boundaries
(Grisvard [11, Theorem 1.5.1.2]) to obtain the bounds, for s ∈ [0, ε), i = 1, . . . , I,

∥∥∥∥
∂z

∂ni

∥∥∥∥
ε−s,Γ

≤ C

∥∥∥∥
∂z

∂ni

∥∥∥∥
1/2+ε−s

≤ C ‖z‖3/2+ε−s ,(17)

where the second inequality follows from the above-mentioned continuity of differen-
tiation.

Now, for i = 1, . . . , I, we define λi ∈ L2(Γ) as

λi =






∂z

∂ni
on Γi,

0 on Γ \ Γi,

and λ ∈ L2(Γ) as

λ =
I∑

i=1

λi.(18)

The definition of λ, together with inequality (17) and Theorem 3.1, yields esti-
mate (16).
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Noting that λ in effect is a weak representation for ∂z/∂n, we will prove the
integration-by-parts formula (15) by approximating z by smooth functions. Indeed,
since C∞

0 (Ω) is dense in H3/2+ε(Ω)∩H1
0 (Ω), there exists a sequence {ζn}∞n=1 ⊂ C∞

0 (Ω)
such that

ζn → z in H3/2+ε(Ω)(19)

as n → ∞. It follows from inequality (17) that

∂ζn
∂ni

→ λi in L2(Γi)(20)

as n → ∞.
Forming −∆ζn, multiplying by w ∈ H1

0 (Ω), integrating by parts, and noting that
strong convergence in H3/2+ε(Ω) ∩ H1

0 (Ω) implies convergence in H1
0 (Ω), it follows

from (19) and (10) that

∫

Ω
w(−∆ζn) dx =

∫

Ω
∇w ·∇ζn dx →

∫

Ω
∇w ·∇z dx

=

∫

Ω
wv dx ∀w ∈ H1

0 (Ω)
(21)

as n → ∞. Since H1
0 (Ω) is dense in L2(Ω), expression (21) yields that

−∆ζn → v weakly in L2(Ω).(22)

Let φ ∈ H1(Ω). Integration by parts yields

∫

Ω
φ(−∆ζn) dx = −

∫

Γ

∂ζn
∂n

φ dΓ +

∫

Ω
∇φ ·∇ζn dx

= −
I∑

i=1

∫

Γi

∂ζn
∂ni

φ dΓ +

∫

Ω
∇φ ·∇ζn dx.

(23)

Letting n → ∞, it follows from (18), (20), (21), and (22) that expression (23) con-
verges to

∫

Ω
φv dx = −

∫

Γ
λφ dΓ +

∫

Ω
∇φ ·∇z dx,

which proves that the λ defined in expression (18) satisfies expression (15). Finally,
since λ depends linearly on v ∈ L2(Ω), estimate (16) also provides uniqueness of λ for
each given v ∈ L2(Ω).

3.3. Approximation properties. Let us now triangulate the polygonal or
polyhedral domain Ω and introduce a mesh parameter h > 0 that characterizes the
triangulation. We assume nondegenerate meshes [3, Def. 4.4.13]; that is, there is a
limit to how “thin” the tetrahedral may become as the mesh is refined. Denote by V h

the space of continuous functions that are linear on each triangle or tetrahedron in
the mesh, and denote by V h

0 the subspace of functions in V h vanishing on Γ. We have
V h ⊂ H1(Ω) and V h

0 ⊂ H1
0 (Ω). The restriction to Γ of functions in V h is denoted

γV h. We also define Mh as the space of all functions vh ∈ V h that vanish at each
mesh point in the strict interior of the domain. We have that V h = Mh ⊕ V h

0 ; that
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is, each function in V h is the sum of unique functions in Mh and V h
0 . Also note

that each function gh ∈ γV h uniquely extends to a function ĝh ∈ Mh that equals
gh at the boundary but vanishes at all nodes in Ω. This extension property is use-
ful when solving inhomogeneous boundary-value problems: Given an approximation
gh ∈ γV h of the boundary data g, extend gh to ĝh ∈ Mh, write the solution uh ∈ Vh

as uh = uh,0 + ĝh, where uh,0 ∈ V h
0 , and solve for uh,0.

An interpolation operator Πh from Hs(Ω) into V h characterizes the approxima-
tion properties of V h. If s > d/2, where d is the space dimension, it follows from
the Sobolev embeddings that Πh can simply be chosen as the linear interpolator of
function values at the nodes of the triangulation. However, we need to consider small
values of s, so pointwise values may not be well defined. It is therefore appropriate to
choose the Scott and Zhang interpolator [17], which uses a local averaging to generate
nodal values. This interpolator yields optimal-order estimates, and the averaging is
constructed to preserve piecewise-polynomial boundary conditions, a property that
Lemma 5.3 exploits.

The following approximation properties hold for V h: There exists a constant
C > 0 such that, for all h > 0,

‖v − Πhv‖1 ≤ Chs‖v‖1+s ∀v ∈ H1+s(Ω), s ∈ [0, 1],(24a)

‖v − Πhv‖0 ≤ Chs‖v‖s ∀v ∈ Hs(Ω), s ∈ [0, 2].(24b)

Standard textbooks, such as Ciarlet [5], prove these properties for integral values of s.
Scott and Zhang [17] supply a proof for the particular case of the above-mentioned Πh.
Operator-interpolation arguments, discussed by Brenner and Scott [3, Chapter 12],
for instance, extend the estimates to intermediate real numbers s.

We also need to approximate functions defined on the boundary. Recall that the
domain is polyhedral or polygonal, so Γ = ∪I

i=1Γi, where each Γi is an open planar
polygon or an open line segment that does not overlap any other Γi. The space γiV h

of traces of function in V h on Γi is a space of continuous, piecewise-linear functions
on the triangles (or intervals) of Γi. We may thus define an interpolation operator
Πγi

h from Hs(Γi) into γiV h with properties analogous to Πh,

‖g − Πγi

h g‖0,Γi ≤ Chs‖g‖s,Γi ∀g ∈ Hs(Γi), s ∈ [0, 2].(25)

Another type of approximation in V h, γV h, and γiV h are the L2-projections, that
is, the functions Phv ∈ V h, P γ

h g ∈ γV h, and P γi

h g ∈ γiV h satisfying

∫

Ω
Phv wh dx =

∫

Ω
vwh dx ∀wh ∈ V h,(26a)

∫

Γ
P γ
h g ϕh dΓ =

∫

Γ
gϕh dΓ ∀ϕh ∈ γV h,(26b)

∫

Γi

P γi

h g ϕh dΓ =

∫

Γi

gϕh dΓ ∀ϕh ∈ γiV
h, i = 1, . . . , I,(26c)

which are well defined for each v ∈ L2(Ω) and g ∈ L2(Γ). The L2-projections produce
the discrete functions that minimize the L2 error.
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For any g ∈ L2(Γi) and ψ ∈ Hs
0(Γi), we have

(27)

∫

Γi

(g − P γi

h g)ψ dΓ =

∫

Γi

(g − P γi

h g)(ψ − P γi

h ψ) dΓ

≤ ‖g − P γi

h g‖0,Γi‖ψ − P γi

h ψ‖0,Γi ≤ ‖g − Πγi

h g‖0,Γi‖ψ − Πγi

h ψ‖0,Γi

≤ C‖g‖0,Γih
s‖ψ‖s,Γi ∀s ∈ [0, 2],

where the first equality follows from definition (26c), the second inequality from the
fact that the L2(Γi)-projection is optimal, and the third from estimate (25). Dividing
expression (27) by ‖ψ‖s,Γi and taking the supremum over all ψ ∈ Hs

0(Γi) \ {0} yields,
by definition (5),

‖g − P γi

h g‖−s,Γi ≤ Chs‖g‖0,Γi ∀s ∈ [0, 2].(28)

We will also need the inverse estimate

‖vh‖s,Γ ≤ Ch−s‖vh‖0,Γ, s ∈ [0, 1].(29)

In contrast to an approximation estimate like (25), the inverse estimate requires quasi-
uniform mesh refinements [3, Definition 4.4.13]. That is, the quotient between the
largest and smallest diameter of any triangle or line segment should stay uniformly
bounded as the mesh is refined. Brenner and Scott [3, Theorem 4.5.11], for instance,
prove inverse estimates for integral s and domains in Rn. Local bi-Lipschitz change
of variables, partition of unity, and operator interpolation extend these estimates to
estimate (29).

4. The variational form. We will make precise the idea of a solution to the
Poisson equation based on the Lions-type variational expression (3). Let us define a
linear form G : L2(Ω) → R by the following procedure.

1. Given an element v ∈ L2(Ω), find z ∈ H1
0 (Ω) such that

∫

Ω
∇z ·∇w dx =

∫

Ω
vw dx ∀w ∈ H1

0 (Ω).(30)

2. From v and z, find λ ∈ L2(Γ) such that

−
∫

Γ
λφ dΓ =

∫

Ω
vφ dx−

∫

Ω
∇z ·∇φ dx ∀φ ∈ H1(Ω).(31)

3. Set, for given g ∈ L2(Γ) and f ∈ L2(Ω), uniquely associated with each G,

G(v) = −
∫

Γ
gλ dΓ +

∫

Ω
fz dx.(32)

Theorem 4.1. The form G is a bounded linear functional on L2(Ω).
Proof. From Theorem 3.2 it follows that λ and the boundary integral involved in

the definition of G are well defined for each g ∈ L2(Γ). The form G is linear in v since
λ and z are linear in v. From (30) follows the estimate

‖z‖1 ≤ C‖v‖−1.(33)

Thus,

|G(v)| ≤‖ g‖0,Γ ‖λ‖0,Γ + ‖f‖−1‖z‖1 ≤ C (‖g‖0,Γ‖λ‖0,Γ + ‖f‖−1‖v‖−1)

≤ C(‖g‖0,Γ + ‖f‖0)‖v‖0,
(34)
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where estimates (7), (33), and (16) are used in the first, second, and third inequality,
respectively.

By Theorem 4.1 and Riesz representation, the following problem thus has a unique
solution:

Find u ∈ L2(Ω) such that
∫

Ω
uv dx = G(v) ∀v ∈ L2(Ω).

(35)

Problem (35) defines a weak solution to the Poisson problem (1), in which the
boundary data g needs only to be square-integrable. The price to pay for the reduced
regularity requirement on g is that u ,∈ H1(Ω) in general and that the meaning of
boundary condition u = g will be weak; it will be satisfied only in a distributional
sense acute a la Theorem 6.5 in Chapter 2 of Lions and Magenes [15, Volume 1].

Similar to solutions to (10), solutions to problem (35) have higher regularity than
asked for.

Theorem 4.2. For each f ∈ L2(Ω) and g ∈ L2(∂Ω) associated with defini-
tion (32) of G, there exists an ε ∈ (0, 1/2] so that the solution to problem (35) resides
in Hs(Ω) for each s ∈ [0, ε).

Proof. First, note that Hs
0(Ω) = Hs(Ω) for s ∈ (0, 1/2], which follows from

the fact that C∞
0 (Ω) is dense in Hs(Ω) for s ∈ (0, 1/2] [11, Theorem 1.4.2.4]. This

equivalence allows the use of expression (6) to estimate ‖u‖s.
To estimate the boundary-integral term in the definition (32) of G, write the

L2(Γ)-norm of λ as a sum over contributions from each polygonal surface and utilize
estimate (16) in Theorem 3.2. It then follows that there exists an ε ∈ (0, 1/2] such
that, for each s ∈ [0, ε),

(∫

Γ
gλ dΓ

)2

≤ ‖λ‖2
0,Γ‖g‖2

0,Γ =
I∑

i=1

‖λ‖2
0,Γi

‖g‖2
0,Γ

≤ C
I∑

i=1

‖λ‖2
ε−s,Γi

‖g‖2
0,Γ ≤ C‖v‖2

−s‖g‖2
0,Γ ∀v ∈ L2(Ω).

(36)

We also estimate the second integral in the definition (32) of G as
∫

Ω
fz dx ≤ ‖f‖−1‖z‖1 ≤ ‖f‖−1‖z‖3/2+ε ≤ C‖f‖−1‖v‖−s ∀v ∈ L2(Ω),(37)

where the last inequality follows from Theorem 3.1. Equation (35), the definition (32)
of G, and estimates (36) and (37) yield that, for some ε ∈ (0, 1/2],

∫

Ω
uv dx ≤ C‖v‖−s(‖g‖0,Γ + ‖f‖−1) ∀v ∈ L2(Ω), ∀s ∈ [0, ε).(38)

Dividing expression (38) by ‖v‖−s, taking the supremum over all v ∈ L2(Ω) \ {0},
and using property (6) yields the conclusion.

5. Numerical approximations. Recall the standard Galerkin approximation
of the Poisson problem with inhomogeneous boundary data: If gh ∈ γVh approximates
the boundary data, we solve the problem:

Find uh ∈ V h such that uh|Γ = gh and
∫

Ω
∇uh ·∇vh dx =

∫

Ω
fvh dx ∀vh ∈ V h

0 .
(39)
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The error in this approximation depends on how the boundary data is approximated.
For homogeneous boundary data, gh = 0, standard error estimates and the regularity
according to Theorem 3.1 yield that there exists an ε ∈ (0, 1/2] such that

‖uh − u‖1 ≤ Ch1/2+ε‖f‖0,(40)

where the estimate holds for ε = 1/2 when the domain is convex.
Since V h ⊂ L2(Ω), we can apply a Galerkin approximation to problem (35):

Find ũh ∈ V h such that
∫

Ω
ũhvh dx = G(vh) ∀vh ∈ V h.

(41)

Subtracting (35) with v = vh from (41), we obtain
∫

Ω
(ũh − u)vh dx = 0 ∀vh ∈ V h,

implying that the Galerkin approximation is optimal in L2(Ω),

‖ũh − u‖0 = inf
vh∈V h

‖u− vh‖0 ≤ ‖u− Πhu‖.(42)

Approximation (41) is useless as a numerical method, however, since to compute
G(vh), we need the exact solutions z and λ to problems (30) and (31) for each vh ∈ V h.
A natural alternative is to use numerical approximations zh and λh instead, which
pertains to a modification of G—a so-called variational crime. For this, define the
linear form Gh : L2(Ω) → R as follows:

1. Given v ∈ L2(Ω), find zh ∈ V h
0 such that

∫

Ω
∇zh ·∇wh dx =

∫

Ω
vwh dx ∀wh ∈ V h

0 .(43)

2. From v and zh, compute λh ∈ γV h such that

−
∫

Γ
λhφh dΓ =

∫

Ω
vφh dx−

∫

Ω
∇zh ·∇φh dx ∀φh ∈ Mh.(44)

3. Set, given g ∈ L2(Γ) and f ∈ L2(Ω),

Gh(v) = −
∫

Γ
gλh dΓ +

∫

Ω
fzh dx.(45)

A second approximation to (35) is as follows:

Find uh ∈ V h such that
∫

Ω
uhvh dx = Gh(vh) ∀vh ∈ V h.

(46)

At first glance, approximation (46) appears unreasonably costly to implement,
since the computation of each component of the vector Gh(vh) requires the solution
of (43) and (44)! However, a remarkable property of approximation (46), shown in
Theorem 5.2, is its equivalence to the standard Galerkin approximation (39), pro-
vided that the L2(Γ) projection is used to approximate the inhomogeneous boundary
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conditions. Thus, in practical computations, approximation (46) can be implemented
as a standard Galerkin approximation combined with L2-projections of the bound-
ary data. The equivalence of Theorem 5.2 is a consequence of the properties of the
mapping vh (→ (zh,λh) involved in the definition of Gh.

Lemma 5.1. The mapping vh (→ (zh,λh), defined by solving (43) and (44), is
bijective as a mapping V h → V h

0 × γV h. Moreover, the functions vh, zh, and λh

satisfy

∫

Ω
vhψh dx = −

∫

Γ
λhψh dΓ +

∫

Ω
∇zh ·∇ψh dx ∀ψh ∈ V h.(47)

Proof. Let vh ∈ V h be given, and let zh ∈ V h
0 and λh ∈ γV h be the unique

solutions to (43) and (44) for v = vh.
Expression (43) with v = vh can be written

0 =

∫

Ω
vhwh dx−

∫

Ω
∇zh ·∇wh dx ∀wh ∈ V h

0 .(48)

Adding (48) to (44) with v = vh yields

−
∫

Γ
λhφh dΓ =

∫

Ω
vh(φh + wh) dx−

∫

Ω
∇zh ·∇(φh + wh) dx(49)

for each φh ∈ Mh and each wh ∈ V h
0 . Since V h = V h

0 ⊕Mh, and since functions in
V h

0 vanish on Γ, it follows that vh, zh, and λh are related through expression (47).
Conversely, let zh ∈ V h

0 and λh ∈ γV h be given. Expression (47) defines an
equation for vh corresponding to a square linear system with a positive-definite matrix.
Equation (47) thus has a unique solution vh ∈ V h. The mapping vh (→ (zh,λh) is
thus bijective, since the mapping itself as well as its inverse are one-to-one.

With the aid of the mapping of Lemma 5.1, we can transfer between the “new”
approximation (46) and the traditional (39), as follows.

Theorem 5.2. The function uh ∈ V h is a solution to problem (46) if and only
if

uh ∈ V h such that
∫

Ω
∇uh ·∇zh dx =

∫

Ω
fzh dx ∀zh ∈ V h

0 ,(50a)

uh = P γ
h g on Γ,(50b)

where P γ
h g is the L2(Γ)-projection of g on γV h, that is,

P γ
h g ∈ γV h such that
∫

Γ
P γ
h g rh dΓ =

∫

Γ
g rh dΓ ∀rh ∈ γV h.

(51)

Proof. (i) Let uh be the solution to problem (50). Let vh ∈ V h be given, and
compute zh ∈ V h

0 and λh ∈ γV h by solving (43) and (44) with v = vh. By Lemma 5.1,
vh, zh, and λh are related through the expression

−
∫

Γ
λhψh dΓ +

∫

Ω
∇zh ·∇ψh dx =

∫

Ω
vhψh dx ∀ψh ∈ V h.
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Choosing ψh = uh, it follows that

−
∫

Γ
λhuh dΓ +

∫

Ω
∇zh ·∇uh dx =

∫

Ω
vhuh dx.(52)

Using (50a) to replace the second term in expression (52), we obtain
∫

Ω
uhvh dx = −

∫

Γ
λhuh dΓ +

∫

Ω
fzh dx = −

∫

Γ
λh P

γ
h g dΓ +

∫

Ω
fzh dx

= −
∫

Γ
λhg dΓ +

∫

Ω
fzh dx = Gh(vh),

(53)

where we have used (50b) in the second equality, definition (51) of P γ
h g in the third,

and definition (45) of Gh in the fourth equality. Since vh ∈ V h was arbitrary, we have
shown that if uh solves (50), it also solves (46).

(ii) Conversely, let uh be the solution of problem (46), and let λh ∈ γV h and
zh ∈ V h

0 be given. By Lemma 5.1, there is a unique vh ∈ V h satisfying
∫

Ω
vhψh dx = −

∫

Γ
λhψh dΓ +

∫

Ω
∇zh ·∇ψh dx ∀ψh ∈ V h.(54)

Choosing ψh = uh, we find

−
∫

Γ
λhuh dΓ +

∫

Ω
∇zh ·∇uh dx =

∫

Ω
vhuh dx.(55)

Since uh is a solution of problem (46), the right-hand side of expression (55) satisfies
∫

Ω
vhuh dx = −

∫

Γ
gλ̂h dΓ +

∫

Ω
fẑh dx,(56)

where ẑh and λ̂h are the solutions to (43) and (44) with v = vh. However, since by

Lemma 5.1, ẑh and λ̂h are uniquely defined by vh, we have ẑh = zh and λ̂h = λh.
Substituting expression (56) into expression (55), we obtain

∫

Ω
∇uh ·∇zh dx =

∫

Γ
λh(uh − g) dΓ +

∫

Ω
fzh dx

=

∫

Γ
λh(uh − P γ

h g) dΓ +

∫

Ω
fzh dx,

where in the last equality we introduce P γ
h g ∈ γV h as the solution of (51). Since

the choices of zh and λh were arbitrary, it follows that both (50a) and the boundary
condition (50b) must be satisfied.

The difference between problems (41) and (46) lies in the use of an approximated
linear form Gh in problem (46). It is therefore crucial to analyze the error that the
use of Gh introduces. Lemma 5.4, which estimates (G − Gh), needs the following
discrete extension result.

Lemma 5.3. There exists a C > 0, independent of h > 0, such that for each
gh ∈ γV h, a uh ∈ V h exists satisfying uh|Γ = gh and

‖uh‖1 ≤ C‖gh‖1/2,Γ.
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Proof. Let gh ∈ γV h be given. The functions in γV h are continuous and piece-
wise linear on the boundary, so γV h ⊂ H1/2(Γ) (in fact, γV h ⊂ H1(Γ)). By The-
orem 1.5.1.3 of Grisvard [11], the trace map γ : H1(Ω) → H1/2(Ω) has a right
continuous inverse E. The Scott and Zhang interpolator Πh, discussed in section 3.3,
continuously maps functions in H1(Ω) into V h. Composing Πh and E, we define
uh ∈ V h such that uh = ΠhEgh. Note that γuh = gh since the Scott and Zhang in-
terpolator preserves piecewise-polynomial boundary conditions. Moreover, since both
E and Πh are continuous, we find that

‖uh‖1 ≤ C‖gh‖1/2,Γ.

Remark 1. Similar results are reported in the estimate (5.5) of Scott and Zhang [17]
and in Lemma 11 of Gunzburger and Hou [13].

Lemma 5.4. Assume a quasi-uniform triangulation, characterized by the mesh
parameter h, of the polyhedral (or polygonal) domain Ω having a Lipschitz boundary.
There are an ε ∈ (0, 1/2] and a C > 0 such that, given g ∈ L2(Γ) and f ∈ L2(Ω), the
linear forms G and Gh, defined in expressions (32) and (45), satisfy, for each h > 0,

(G−Gh)(v) ≤ C
(
hε‖g‖0,Γ + h1/2+ε‖f‖−1

)
‖v‖0 ∀v ∈ L2(Ω).

Proof. Let v ∈ L2(Ω) be given, and let z and λ be the solutions to (30) and (31)
associated with the given v. Likewise, let zh and λh be the solutions to (43) and (44)
associated with v. By definitions (32) and (45), we find that

(G−Gh)(v) = −
∫

Γ
g(λ− λh) dΓ +

∫

Ω
f(z − zh) dx

= −
∫

Γ
(λ− λh)P γ

h g dΓ −
∫

Γ
λ(g − P γ

h g) dΓ +

∫

Ω
f(z − zh) dx,

(57)

introducing P γ
h g, the L2(Γ) projection of g on γV h, defined as in (26b).

We will estimate each of the terms in the right-hand side of expression (57),
starting with the first. Let ϕh ∈ γV h be given. Choose φh ∈ Vh so that φh|Γ = ϕh

and so that the estimate of Lemma 5.3 is satisfied. From (31) and (44) it follows that

−
∫

Γ
(λ− λh)ϕh dΓ = −

∫

Ω
∇(z − zh) ·∇φh dx

≤ ‖zh − z‖1‖φh‖1 ≤ C‖zh − z‖1‖ϕh‖1/2,Γ

≤ C‖zh − z‖1 h
−1/2‖ϕh‖0,Γ ≤ Ch1/2+ε‖v‖0 h

−1/2‖ϕh‖0,Γ

= Chε‖v‖0‖ϕh‖0,Γ,

(58)

where the second inequality follows from Lemma 5.3 and the third from inverse esti-
mates (29) (the inverse estimate needs the assumption of quasi-uniform mesh refine-
ments); expression (40) yields the existence of an ε ∈ (0, 1/2] such that the fourth
inequality holds.

Next we estimate the second term in the right-hand side of expression (57) as
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follows:

∫

Γ
λ(g − P γ

h g) dΓ =
I∑

i=1

∫

Γi

λ(g − P γ
h g) dΓ ≤

I∑

i=1

‖λ‖ε,Γi‖g − P γ
h g‖−ε,Γi

≤ C‖v‖0

I∑

i=1

‖g − P γ
h g‖−ε,Γi ≤ C‖v‖0‖g − P γ

h g‖−ε,Γ

≤ Chε‖v‖0‖g‖0,Γ,

(59)

where the second, third, and fourth inequalities use estimates (16), (9), and (28),
respectively. The third term in the right-hand side of expression (57) is estimated by
expression (40),

∫

Ω
f(z − zh) dx ≤ ‖f‖−1‖z − zh‖1 ≤ Ch1/2+ε‖f‖−1‖v‖0.(60)

Substituting estimates (58) (with ϕh = P γ
h g), (59), and (60) into expression (57)

yields the required estimate

(G−Gh)(v) ≤ C
(
hε‖P γ

h g‖0,Γ + hε‖g‖0,Γ + h1/2+ε‖f‖−1

)
‖v‖0

≤ C
(
hε‖g‖0,Γ + h1/2+ε‖f‖−1

)
‖v‖0,

where in the second inequality we have used the bound ‖P γ
h g‖0,Γ ≤ ‖g‖0,Γ that holds

for an L2-projection.
The final result of this article is that the solution to (46) converges to the solution

of (35) at a rate that depends, through ε, on the shape of the domain, where ε = 1/2
corresponds to a convex domain.

Theorem 5.5. Assume a quasi-uniform triangulation, characterized by the mesh
parameter h, of the polyhedral (or polygonal) domain Ω having a Lipschitz boundary.
There are an ε ∈ (0, 1/2] and a C > 0 such that, given g ∈ L2(Γ) and f ∈ L2(Ω), the
solutions u and uh to problems (35) and (46) satisfy, for each h > 0,

‖u− uh‖0 ≤ C
(
hs‖u‖s + hε‖g‖0,Γ + h1/2+ε‖f‖−1

)

for each s ∈ [0, ε).
Proof. The solution error may be decomposed as u− uh = (u− ũh) + (ũh − uh),

where ũ is the solution to problem (41). Thus,

‖u− uh‖0 ≤ ‖u− ũh‖ + ‖ũh − uh‖.(61)

By estimate (42), approximation property (24b), and Theorem (4.2), there exists an
ε ∈ (0, 1/2] so that

‖u− ũh‖0 ≤ Chs‖u‖s ∀s ∈ [0, ε).(62)

Equations (41) and (46) yield that

∫

Ω
(ũh − uh)vh dx = G(vh) −Gh(vh) ∀vh ∈ V h,
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so choosing vh = ũh − uh means that

‖ũh − uh‖2
0 = (G−Gh)(ũh − uh).(63)

Using Lemma 5.4 in expression (63) implies that

‖ũh − uh‖0 ≤ C
(
hε‖g‖0,Γ + h1/2+ε‖f‖−1

)
.(64)

Substituting estimates (62) and (64) into expression (61) provides the required esti-
mate.

Remark 2. Theorem 5.5 only provides convergence rates for boundary data in
L2(Γ). By the equivalence proven in Theorem 5.2, smoother data will improve the
convergence rate, since error estimates for the standard approach then apply. Fix,
Gunzburger, and Peterson [6], French and King [7, 8], and Bramble and King [2] prove
various error estimates that apply for smoother data.
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