
On the Quality of Examples in Introductory Java
Textbooks

JÜRGEN BÖRSTLER and MARIE NORDSTRÖM
Umeå University
and
JAMES H PATERSON
Glasgow Caledonian University

Example programs play an important role in the teaching and learning of programming. Students
as well as teachers rank examples as the most important resources for learning to program. Ex-
ample programs work as role models and must therefore always be consistent with the principles
and rules we are teaching.

However, it is difficult to find or develop examples that are fully faithful to all principles and
guidelines of the object-oriented paradigm and also follow general pedagogical principles and
practices. Unless students are able to engage with good examples, they will not be able to tell
desirable from undesirable properties in their own and others’ programs.

In this paper we report on a study in which experienced educators evaluated the quality of
object-oriented example programs for novices from popular Java textbooks. The evaluation was
accomplished using an on-line checklist that elicited responses on the technical, object-oriented,
and didactic quality of examples.

In total 25 reviewers contributed 215 reviews to our data set, based on 38 example programs
from 13 common introductory programming textbooks. Results show that the evaluation instru-
ment is reliable in terms of inter-rater agreement. Overall, example quality was not as good as one
might expect from common textbooks, in particular regarding certain object-oriented properties.

We conclude that educators should be careful when taking examples straight out of a textbook.

Categories and Subject Descriptors: D.1.5 [Programming Techniques]: Object-oriented Pro-
gramming; K.3.2 [Computers and Education]: Computer and Information Science Educa-
tion—Computer science education

General Terms: Principles, Guidelines, Examples
Additional Key Words and Phrases: Example programs, check list, courseware, textbooks, assess-
ment

1. INTRODUCTION

Although example programs are perceived as one of the most important tools for
the teaching and learning of programming [Lahtinen et al. 2005], there is very little
research regarding their properties and usage. There is a large body of knowledge on

Author’s address: Jürgen Börstler, Department of Computing Science, Umeå University, SE-90187
Umeå, Sweden; email: jubo@acm.org.
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 2003 ACM 0000-0000/2003/0000-0001 $5.00

ACM Journal Name, Vol. 1, No. 2, 04 2003, Pages 1–22.

2 · Jürgen Börstler et al.

program comprehension (e.g., [Brooks 1983; Burkhardt et al. 2002]) and software
quality and measurement (e.g., [Purao and Vaishnavi 2003]), but this is rarely
applied in an educational setting [Börstler et al. 2007; Magel 1982].

In this paper, we describe a checklist-based approach for assessing object-oriented
example programs for novices. The checklist covers technical, object-oriented and
didactic qualities of example programs. The checklist has been used to evaluate
common textbook examples. Our results show that the checklist is reliable and
helps to indicate strengths and weaknesses of example programs.

Although checklist-based assessment is a common approach for quality assurance
in industry [Brykczynski 1999], it has rarely been used in educational contexts.
Sanders and Thomas [2007], for example, have reviewed typical novice misconcep-
tions to develop checklists that educators can use when designing or grading student
programs.

The work presented in the present paper is based on the author’s earlier work on
checklist-based evaluation of example programs [Börstler et al. 2009; Börstler et al.
2008]. In the present work we have extended our detailed analysis to further review-
ers and examples. Furthermore, we also also provide analyses which are different
from those in our previous work. We have identified a set of characteristics and
examined the examples and reviews in detail with reference to these to determine
which characteristics may be influential in defining “good” examples, and we relate
our results to traditional software measures.

2. IMPORTANCE OF EXAMPLES

Examples play an important role in teaching and learning programming. Students
and teachers alike cite examples as the most helpful resource for learning to pro-
gram [Lahtinen et al. 2005]. With respect to LISP programming, for example,
Anderson et al. [1984] showed that all novices needed example programs to com-
plete their first recursive example program. When given a choice, students generally
prefer examples over written instructions for solving problems [Reed and Bolstad
1991]. Even when the example conflicts with written problem solving instructions,
students typically use the example information and disregard the written instruc-
tions [LeFevre and Dixon 1986].

Examples are powerful role models; novices use examples as templates for their
own work.

What novices often do, however, is employ a knowledge-lean style of
analogical reasoning, analogical transfer within a domain, not across
domains. For instance, and most important, students use worked-out
examples provided in textbooks, by the teacher, or by their peers when
solving new problems. [Reimann and Schult 1996, p. 123]

Examples must therefore be consistent with the principles and rules being taught
and should not exhibit any undesirable properties or behaviour. In other words, all
examples should follow exactly the same principles, guidelines, and rules we expect
our students to eventually learn. If our examples do not do so consistently, students
will have difficulty in recognizing patterns and distinguishing an example’s surface
properties from those that are structurally or conceptually important. In other
words, it is important to present examples in a way that conveys their “message”, but
ACM Journal Name, Vol. 1, No. 2, 04 2003.

Quality of Examples in Java Textbooks · 3

at the same time be aware of what learners might actually see in an example [Mason
and Pimm 1984].

Trafton and Reiser [1993] note that in complex problem spaces (like program-
ming), “[l]earners may learn more by solving problems with the guidance of some
examples than solving more problems without the guidance of examples”. By con-
tinuously exposing students to “exemplary” examples, important properties are
reinforced. Students will eventually gain enough experience to recognize general
patterns which helps them to distinguish between good and bad designs.

Simply learning to perform procedures, and learning in only a single
context, does not promote flexible transfer. The transfer literature sug-
gests that the most effective transfer may come from a balance of specific
examples and general principles, not from either one alone. [Bransford
et al. 2004, p.77]

With carefully developed examples, we can reduce misinterpretations, premature
generalizations or otherwise unintended conclusions. This helps to prevent mis-
conceptions, which might hinder students in their further learning [Clancy 2004;
Guzdial 1995; Malan and Halland 2004].

3. RELATED WORK

Textbooks are an important component of teaching introductory programming.
They are a major source for example programs and also function as a reference for
how to solve specific problems. Although examples play an important role in the
teaching and learning of programming, there are very few systematic evaluations
of textbook examples.

De Raadt et al. [2005] compared 40 introductory programming textbooks by mea-
suring their amount of content particularly relevant for the textbook’s usefulness as
a learning tool, such as the number of pages covering examples, exercises, bibliogra-
phies, appendices, language reference, index, glossary, and other chapter content.
In the 22 texts covering object-oriented programming (in C++, Java, Eiffel, and
Delphi), examples covered from 0% to 43% of the total page counts (about 17% on
average). About examples, the authors conclude that:

Examples should concisely illustrate a technique. They should include
line numbers for reference, though should preferably be as self-contained
as possible, not requiring the reader to keep referring back to the accom-
panying text discussion. Better examples will often include the author’s
comments maybe accompanied with some lines and arrows like the typ-
ical classroom blackboard example.

Wu et al. [1999] analysed the examples of 16 Taiwanese high school computer
textbooks (using BASIC as a programming language), covering 967 examples. Each
example was categorized according to its problem type and coverage of problem
solving as a process. Their analysis revealed that only 2% of the examples dis-
played a thorough analysis of the problem statement. Testing and debugging was
discussed for only 0.2% of the examples. Only 25% of the examples dealt with real-
life problems, the remaining examples were categorized as Math (27%), Graphics

ACM Journal Name, Vol. 1, No. 2, 04 2003.

4 · Jürgen Börstler et al.

(25%), Syntax (21%) and Miscellaneous (2%). The authors conclude that the mate-
rial should be made “potentially meaningful to the students in order for meaningful
learning to occur”. Furthermore they advise a more thorough coverage of the prob-
lem solving process.

A subsequent analysis of 32 Taiwanese high school computer textbooks found
that most of these problem still persisted [Lin and Wu 2007]. In particular the
authors also criticize “inadequate analogies” and “dry examples”.

Malan and Halland [2004] discussed the potential harm “bad” example programs
might do when learning object-oriented programming. They identified four main
problem areas, based on their own experiences as teachers: examples which are ei-
ther too abstract or too complex and examples which apply concepts inconsistently
or even undermine the concept(s) being introduced.

An important aspect of examples is misconceptions and how to avoid them.
Holland et al. [1997] outlined a number of student problems and how they might
relate to properties in example programs, such as object/class conflation, objects
as simple records, and reference vs. object. Along with each problem they provide
a pedagogical suggestion for avoiding potential misconceptions by choosing suitable
examples.

A similar problem is noted by Fleury [2000], who discussed how students con-
structed their own rules by misapplying correct rules. She described certain cases in
which these student-constructed rules can systematically lead students to incorrect
solutions.

In 2001, a discussion on ‘HelloWorld’-type examples was initiated in Commu-
nications of the ACM [Westfall 2001] which created a series of follow-ups on the
object-orientedness of common introductory programming examples [CACM Fo-
rum 2002; Ourosoff 2002; Dodani 2003; CACM Forum 2005]. Surprisingly, the
main discussion has been centered on how to adjust the ‘HelloWorld’-example to
better fulfil the characteristics of object-orientation, not on whether this is a good
example at all.

Hu [2005] discusses the related problem of data-less objects (of which ‘HelloWorld’
is an instance). Using data-less objects is contradictory to the basic notion of ob-
jects when introducing them to novices. He calls them merely containers holding
(static) methods and simulating a procedural way of programming.

4. METHOD

Data collection and initial analysis started out as an ITiCSE working group [Börstler
et al. 2009] and was based on earlier work by some of the co-authors [Börstler et al.
2008]. In the present work we have extended the pool of analysed reviews by 57%
and also provide different analyses from the previous work.

An electronic checklist (described in Section 4.4) was administered for evaluating
object-oriented example programs from common CS1 textbooks.

In total, we selected 38 examples from 13 introductory programming textbooks
(mainly Java). Examples were nominated by working group participants, who
were given the guidance that examples were preferred from textbooks which were
published in 2007 or later and in the second (or later) edition, the latter being
taken as an indicator of common usage. The examples were grouped into two sets:
ACM Journal Name, Vol. 1, No. 2, 04 2003.

Quality of Examples in Java Textbooks · 5

mandatory and optional. All working group participants were required to review
mandatory examples (16) and to review optional examples (22) if time permitted.
A number of additional reviewers were invited to review as many examples as they
were able to do. In the present paper, we further discuss only those 21 examples
that received ≥3 reviews (191 reviews in total) covering 11 of the 13 textbooks. For
detailed information about the full set of examples and textbooks the interested
reader is referred to [Börstler et al. 2009].

4.1 Textbooks

When selecting source for examples, we aimed at a broad and representative cover-
age with respect to popularity, coverage, presentation style and pedagogic approach.

In order to get comparable examples, we looked for the first example in a source
that exemplified a certain topic or concept. Examples were furthermore required
to be complete and clearly identifiable, where complete means that the full code is
shown together with a discussion or explanation.

Following these requirements, we had to exclude a wide range of sources. For ex-
ample we excluded all sources working mainly with code snippets (incomplete code)
as well as sources introducing examples gradually through successive versions (no
clearly identifiable example). We also had to exclude all online tutorials we looked
at, since they either had no clearly identifiable first example or lacked a discussion
or explanation. Our selection of sources is therefore not fully representative.

This left us with textbooks as the only sources for examples, We classified these
into two main categories: those with a clear and early focus on object-orientation
(category OO) and those with a more traditional imperative first approach (cate-
gory Trad). A first classification was made based on the texts’ titles, back cover
texts, prefaces or web pages. For a second classification, we followed VanDrunen’s
approach [VanDrunen 2006] and looked at each text’s detailed table of contents to
determine when various key concepts were introduced. In addition to that, we also
looked into each text to get a feeling for actual focus and depth of a section and
the style of concept presentation.

The 11 textbooks, from which the examples in the present paper are taken, are
listed in Table I. One can observe a clear discrepancy between the “self-declared”
approach of a text and our classification. Although most texts claim to focus on
object-orientation and follow some kind of object-early or -centric approach, a closer
inspection reveals that the texts in the OO category are actually in a minority. More
information about the textbooks can be found in [Börstler et al. 2009].

4.2 Example Programs

To get down to a manageable but still representative set, we focused on examples
with comparable properties. We considered only complete examples in the sense
that the full source code should be present together with an explanation. Each
example should furthermore be the first one in a text exemplifying certain high
level concepts or ideas. To reach a good balance of varying types of examples, we
categorized all examples according to the concepts they illustrate. Table II gives
an overview of the number of examples per category.

FUDC: First user defined class. These examples reflect the first occurrence of a
ACM Journal Name, Vol. 1, No. 2, 04 2003.

6 · Jürgen Börstler et al.

Table I. Summary of textbooks. Column Ex. pp. refers to the page numbers of the examples re-
viewed. Entries in column Self declared as are quotes from the texts’ back cover texts, prefaces
or web pages.

Category
Text Pages Edition Ex. pp. Self declared as Self Our

[Barnes and Kölling 2009] 516 4th 18–22,
56–71

Objects first OO OO

[Bravaco and Simonson 2010] 1210 1st 404–408 Fundamentals first Trad Trad
[Deitel and Deitel 2007] 1596 7th 86–103 Early classes and objects

pedagogy
OO Trad

[Farrell 2010] 870 5th 370–375 — — Trad

[Horstmann 2008] 1204 3rd 85–90,
236–241,
438–442

Objects gradual ? OO

[Lewis and Loftus 2009] 832 6th 190–194,
241–243,
515–527

True object-orientation OO Trad

[Malik and Burton 2009] 1018 1st 185–192 Objects early but gently OO Trad
[Niño and Hosch 2008] 1040 3rd 85–92,

123–135
Objects first OO OO

[Riley 2006] 769 2nd 263–265,
386–395

Object centric OO OO

[Roberts 2008] 587 2nd 190–198,
332–338

Modern objects first ap-
proach; class hierarchies
from the beginning

OO Trad

[Wu 2008] 987 5th 156–162,
309–310

Objects first OO Trad

user defined class in a text. We consider these examples particularly important,
since they “set the stage” for how students are expected to think about object-
oriented class design.
OOD: Multiple user defined classes. Examples in this group exemplify some kind

of design decision/strategy. They show how existing classes can be “used” for defin-
ing new classes (inheritance, composition) or how designs can be made flexible
(interfaces, polymorphism). Examples in this group can be considered role models
for determining relationships between classes.
CS: Control structures. The main purpose of the examples in this group is to ex-

emplify the usage of control structure (selection and repetition). One could argue
that object-orientedness does not matter in this category, since this is not the pur-
pose of the example. However, these examples are interesting as they demonstrate
the authors’ approach to teaching language syntax within the context of OOP.

Note that for the OOD and CS categories examples generally reflected the first
occurrence of a particular topic, for example loops, and not necessarily the first
example within the category, to avoid skewing the selection towards particular
topics within each category.

4.3 Reviewer Demographics

The reviews were performed by experienced educators from a diverse range of insti-
tutions in five countries (Denmark, Germany, Sweden, UK, and USA). On average
reviewers have more than 10 years of experience with teaching object-orientation
specifically. In addition to that, several reviewers also have considerable profes-
ACM Journal Name, Vol. 1, No. 2, 04 2003.

Quality of Examples in Java Textbooks · 7

Table II. Number of Examples chosen per book category.
Text category

Example Category OO Trad
∑

First user defined class (FUDC) 4 5 9

Multiple user defined classes (OOD) 4 4 8
Control structures (CS) 2 2 4∑

10 11 21

Table III. Characterization of reviewers. Years of Practical OO experience refers to work
experience such as “professional trainer”, “researcher”, “professional programmer” or “sys-
tems/software engineer”. Novice courses are the number of OOP classes for novices taught in
the last 10 years.

Y ears of OO experience Novice
Reviewer Practical Teaching courses Comments

R1 0 5 1− 3 Works in teacher education
R2 3 9 7− 9

R23 11 10 7− 9
R4 4 15 4− 6 Dealt with OOD in PhD

R41 17 15 ≥ 10
R5 0 8 ≥ 10 Textbook author (OOP/Java)
R6 5 20 7− 9 Dealt with OO notation in PhD
R7 0 11 ≥ 10

R71 0 2 1− 3
R72 4 12 7− 9 Background as professional programmer
R8 > 0 9 ≥ 10 20+ years of professional programming

sional experience with object-orientation, for example as a researcher or a pro-
fessional programmer. Most reviewers teach or have taught object-orientation to
novices many times, some of them are doing so more than once a year. This work
is focussed on the quality of examples for teaching object-oriented programming to
novices and among other things reviewers were asked specifically to rate examples
for object-oriented quality. A summary of the background data of the 11 reviewers
contributing ≥ 4 reviews can be found in Table III.

4.4 The Checklist

Our checklist comprises 10 quality factors that we grouped into three quality cate-
gories; technical quality, object-oriented quality, and didactic quality.

Technical qualities (T1–T2) capture properties that are independent of a particular
programming paradigm, such as correctness and readability:

—Correctness and Completeness (T1): The code is bug free and the example is
sufficiently complete.

—Readability and Style (T2): The code is easy to read and follows a consistent
formatting and style.

Object-oriented qualities (O1–O5) capture commonly accepted principles, guidelines
and heuristics of object-oriented design and programming:

—Reasonable Abstractions (O1): Abstractions are plausible from an OO modelling
perspective as well as from a novice perspective.

ACM Journal Name, Vol. 1, No. 2, 04 2003.

8 · Jürgen Börstler et al.

OO Example Assessment (WG2 ITiCSE09)

General technical quality of the code of Example E1 (T1-T2)

A good example’s code must be technically sound and easy to read.

*T1: Correctness and Completeness: The code is bug free and the example is

sufficiently complete.
Examples of problems that might affect quality negatively: Actual syntactical errors; actual or potential run-time
errors; code that does not adhere to the problem statement or requirements; etc.

extremely

poor: -3 -2 -1 0 +1 +2

excellent:

+3

Correctness and

completeness

*T2: Readability and Style: The code is easy to read and follows a consistent formatting

and style.
Examples of problems that might affect quality negatively: Non-intuitive identifiers; inconsistent naming
schemes; inconsistent or insufficient indentation; trivial comments (not adding information); excessive comments

(making it difficult to discern code); etc.

extremely

poor: -3 -2 -1 0 +1 +2

excellent:

+3

Readability and

style

0% 100% << Previous Next >>

OO Example Assessment (WG2 ITiCSE09) http://www.cs.umu.se/proj/limesurvey/index.php

1 of 1 09/11/04 10:09

Fig. 1. Example survey screen (Technical quality).

—Reasonable State and Behaviour (O2): State and behaviour make sense in the
presented software world context.

—Reasonable Class Relationships (O3): Class relationships are modelled properly
(the “right” class relationships are applied for the “right” reasons).

—Exemplary OO code (O4): The example is free of “code smells”.
—Promotes “Object Thinking” (O5): The example supports the notion of an OO
program as a collection of collaborating objects.

Didactic qualities (D1–D3) capture properties related to the understandability of
the example, its discussion and development:

—Sense of Purpose (D1): Students can relate to the example’s domain and com-
puter programming seems a reasonable way to solve the problem.

—Process (D2): An appropriate programming process is followed/described.
—Well Balanced Cognitive Load (D3): Explanations and supporting materials pro-
mote comprehension; they are neither simplistic, nor do they impose extraneous
cognitive load.

For each quality factor we also provided a list of typical problems, which were dis-
tilled from the literature on student problems or misconceptions and object-oriented
design principles, guidelines and rules (see for example [Fowler 1999; Nordström
2009; Riel 1996]).

Each quality factor was assessed on a 7-point Likert-type scale from −3 (ex-
tremely poor) to +3 (excellent) using the electronic survey instrument LimeSur-
vey [LimeSurvey]. Figure 1 shows an example screen for the questions in the cat-
egory Technical Quality. The interested reader is invited to test the instrument at
http://www.cs.umu.se/proj/limesurvey/.

In addition to the 10 quality factors described above, we also asked reviewers for
their overall impression of example quality before and after the actual assessment.
In two final open questions, reviewers could provide additional comments regarding
ACM Journal Name, Vol. 1, No. 2, 04 2003.

Quality of Examples in Java Textbooks · 9

Table IV. Number of reviews per reviewer.
Reviewer Reviews in%

R1 16 7.44
R2 38 17.67

R23 5 2.33

R4 22 10.23

R41 4 1.86

R5 18 8.37
R6 18 8.37

R7 21 9.77

R71 11 5.12
R72 10 4.65

R8 16 7.44

All other 14 reviewers 36 16.74∑
215 100

Table V. Number of reviews per example.
Reviews Examples

12 E1, E2, E13

11 E11, E12, E16

10 E3, E4, E6, E9, E10, E14, E15
9 E5, E7, E8

8 E21, E26

3 E19, E20, E25
1–2 E17, E18, E22–E24, E27–E38

example quality and the questionnaire itself. The instrument is discussed in more
detail in [Börstler et al. 2009].

5. RESULTS

In total, we received 215 valid reviews by 25 individuals performing between 1 and
38 reviews each. Of the 25 reviewers, 9 reviewers submitted ≥10 reviews and 11
reviewers submitted ≥4 reviews. Of the 38 examples, 21 received ≥3 reviews each
(191 reviews in total). Of those 191 reviews, 47 (roughly 25%) were contributed by
people involved in checklist design. Details of reviews per reviewer and reviews per
example can be found in Table IV and Table V, respectively.

Table VI summarizes the main results for all examples with ≥8 reviews (ex-
amples in parentheses have 3 reviews). Considering our Likert-type scale from
−3 (extremely poor) to +3 (excellent), we get total average scores in the range
[−30, 30]. Since we only considered examples from popular textbooks, we would
expect most of the scores in the upper positive range. However, as many as 10
out of the 21 examples in Table VI scored below 10 and received an overall final
impression (I2) ≤0.

The average ratings for overall impression before and after the actual review
(I1 and I2, respectively) further corroborate this impression. Only 8 examples
received an overall final impression ≥1 and as many as 10 examples were rated
≤0. Interestingly, the overall impression seems to degrade during the review, in
particular for the examples that already have a low overall first impression (I1) (see
also Table VII). This indicates that the checklist might help to spot problems that
might be easily overlooked.

ACM Journal Name, Vol. 1, No. 2, 04 2003.

10 · Jürgen Börstler et al.

Table VI. Summary of the main results for all examples with ≥ 3 reviews (191 reviews
in total). Ranking is top down according to average total score for the 10 quality factors
T1–D3 (column Score ∈ [−30, 30]). Columns EC and BC list example (as defined in
Section 4.2) and book category (as defined in Table I), respectively. Columns I1 and
I2 list the average score for the overall impression (∈ [−3, 3]) of example quality before
review start and after finishing the review, respectively.

EC BC Score I1 I2 I2− I1

E26 OOD OO 23.88 2.00 2.13 0.13
E9 OOD OO 21.50 1.90 1.80 −0.10

E21 FUDC Trad 19.63 1.75 1.75 0.00

E7 OOD OO 18.00 1.11 0.78 −0.33

E3 FUDC OO 17.00 1.00 1.10 0.10
(E20) FUDC Trad 16.67 1.00 1.33 0.33

E2 FUDC OO 16.42 0.92 0.83 −0.09

E12 OOD Trad 16.00 1.55 1.36 −0.19
E16 CS OO 15.00 1.46 1.09 −0.37

E1 FUDC OO 14.17 1.00 1.00 0.00

E5 FUDC Trad 13.33 0.56 0.56 0.00

E6 FUDC Trad 9.90 0.20 −0.20 −0.40
E4 FUDC Trad 9.90 0.10 −0.60 −0.70

(E19) FUDC Trad 7.00 0.00 −0.67 −0.67

E10 OOD Trad 6.80 0.40 0.00 −0.40
E8 OOD Trad 6.22 0.11 −0.33 −0.44

E11 OOD OO 4.55 0.27 −0.18 −0.45

E14 CS Trad 0.70 0.20 −0.60 −0.80

E13 CS OO −1.08 −1.17 −1.17 0.00
(E25) OOD Trad −2.33 −1.33 −1.67 −0.34

E15 CS Trad −2.60 −1.50 −1.80 −0.30

Table VII. Changes in overall impression of quality from
initial impression I1 (before starting the review) to final
impression I2 (after finishing the review).

Steps Count %

≤ −3 4 1.87

−2 12 5.58

−1 48 22.33
0 117 54.42

1 29 13.49

2 5 2.33
≥ 3 0 0.00∑

215 100

Total negative 64 29.77
Total unchanged 117 54.42

Total positive 34 15.81

The examples in Table VI can be grouped into 4 groups, where the differences in
final overall impression (I2) are smaller between the items in a group than between
groups (the groups are set apart by horizontal lines in the table).

Note that these groups did not change compared to our previous analysis1 [Börstler
et al. 2009], although we now have 191 data points compared to 122 before. This
indicates that our evaluation instrument is quite reliable. This is also corroborated
by the high inter-rater agreement (see Table VIII in Section 6).

1Except for E10, which moved from the second group (where it was last) to the third group.

ACM Journal Name, Vol. 1, No. 2, 04 2003.

Quality of Examples in Java Textbooks · 11

1.2

1.4

1.6

1.8

2

R
a

ti
n

g

Average ratings for all 21 examples

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

T1 T2 O1 O2 O3 O4 O5 D1 D2 D3

R
a

ti
n

g

Average ratings for all 21 examples

O3 original

O3 cleaned up

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

T1 T2 O1 O2 O3 O4 O5 D1 D2 D3

R
a

ti
n

g

Average ratings for all 21 examples

O3 original

O3 cleaned up

Fig. 2. Average ratings of all quality factors for the 191 reviews.

Figure 2 shows the average ratings for all quality factors. The peak for O3
(Reasonable Class Relationships) might be attributed to our rating instructions to
consider this factor as excellent (i.e. +3) “when no relationships are present and
the example doesn’t call for any”. When deleting all examples consisting of a single
class only, O3 still has the third largest average (1.38) after the technical quality
factors T1 (1.80) and T2 (1.48).

6. DISCUSSION

6.1 Agreement between raters

Reviewers ranked examples in very similar ways, although their absolute ratings
could be quite different. The majority of reviewers show a very strong and highly
significant correlation with the total average ranking of all reviews (see Table VIII).
This strongly indicates that our evaluation instrument is reliable.

The only outliers are reviewers R1 and R23. For R1 the deviation could be a
result of this reviewer’s different background (see Table III). R1 is the only reviewer
with a background in teacher education, whereas all others have a computer science
background. Furthermore, R1 is less experienced than most other reviewers. For
reviewers R23 and R41, the data includes only 5 and 4 data points, respectively.
Their rho-values can therefore be at best be interpreted as indications.

6.2 Differences between Textbook Categories

In our previous work ([Börstler et al. 2009]), we noticed that the examples from
textbooks categorized as OO on average scored somewhat higher than the ones from
textbooks categorised as Trad. With the extended data in the present analysis this
is still true, and the overall difference is still at the same level. Based on their
average total score (see Table VI), OO-type book examples have an average rank
of 8.2, examples from Trad-type books an average rank of 13. However, one should
note that there are examples from both book categories among the examples in the
top group as well as among the examples in the bottom group.

Since OO-type books have a clear and early focus on object-orientation (see our
definition in Section 4.1) it is not surprising that their examples score higher on a
scale that is partly based on object-oriented properties. For Trad-type texts it could
be argued that object-oriented qualities are not equally important for all types of

ACM Journal Name, Vol. 1, No. 2, 04 2003.

12 · Jürgen Börstler et al.

Table VIII. Spearman rank correlation (rho) for
reviewer’s scores and the total average score for
all reviews. R23 and R41 had too few reviews to
compute meaningful p-values.

Reviewer Rho P -value

R1 0.298 0.263

R2 0.922 2.80E-8
R23 −0.290 −
R4 0.895 9.68E-8

R41 0.892 −
R5 0.633 0.005
R6 0.582 0.011

R7 0.899 4.04E-7
R71 0.904 1.31E-4
R72 0.876 < 0.01

R8 0.883 5.85E-6

examples. The three different types of examples (FUDC: First User-Defined Class,
OOD: Multiple User Defined Classes, CS: Control Structures) are included in the
books to illustrate significantly different concepts. FUDC examples may illustrate
classes, objects, attributes, methods and encapsulation, while OOD examples may
exemplify any of association, collaboration, message passing, inheritance and poly-
morphism. The programming concepts in CS examples, on the other hand, are not
explicitly object-oriented. We will discuss this issue in more detail in the following
sections.

6.3 Dependencies between Quality Factors

Our previous results ([Börstler et al. 2009]) indicated that the different quality
factors seem to capture different aspects of quality. There were examples that
consistently scored high or low on all quality factors and also examples without
consistent scoring patterns.

Our current data shows only weak correlations between quality factors over all
examples. The Spearman rank correlation for all quality factors lies in the range
[−0.28, 0.35], except for two slightly higher values of 0.48 (O1 vs. O2) and 0.76 (O4
vs. O5) (p-values in the range [0.01, 0.025]).

When looking at the quality factors O1–O5, in particular, we can see interesting
differences between the example categories (Figure 3). For CS and OOD examples,
example rankings are almost the same for all five quality factors. For the category
CS, the only deviation is for O3 which is concerning class relationships. Those
small examples of control structures rarely include any relationships and that is
most likely to considered reasonable. Furthermore, all ratings are close to the
average rating for O1–O52.

The variation for FUDC examples is much greater than the variation for CS and
OOD examples. We can find a similar pattern of variation between ratings for
the different example categories for technical quality (T1–T2) and didactic quality
(D1–D3), but much less pronounced.

2The differing behaviour on O3 is an artefact of our rating instructions as explained at the end
of Section 5.

ACM Journal Name, Vol. 1, No. 2, 04 2003.

Quality of Examples in Java Textbooks · 13

‐3 

‐2 

‐1 

0 

1 

2 

3 

4 

E1
6‐
OO
 

E1
3‐
OO
 

E1
4‐
T 

E1
5‐
T 

E2
1‐
T 

E3
‐O
O 

E2
‐O
O 

E1
‐O
O 

E2
0‐
T 

E4
‐T 

E5
‐T 

E6
‐T 

E1
9‐
T 

E2
6‐
OO
 

E9
‐O
O 

E7
‐O
O 

E1
2‐
T 

E1
1‐
OO
 

E1
0‐
T 

E8
‐T 

E2
5‐
T 

Sc
or
e 

Average O1‐O5, sorted by O‐Avg. 

O1 

O2 

O3 

O4 

O5 

O_Avg 

Fig. 3. Average ratings on O1–O5 for all examples, grouped by example category; CS, FUDC,
and OOD (from left to right).

‐2 

‐1 

0 

1 

2 

3 

T1  T2  O1  O2  O3  O4  O5  D1  D2  D3 

Ra
#
ng
 

Average ra#ngs for FUDC‐type examples 

E1 (OO) 

E2 (OO) 

E3 (OO) 

E4 (Trad) 

E5 (Trad) 

E6 (Trad) 

E19 (Trad) 

E20 (Trad) 

E21 (Trad) 

Fig. 4. Average ratings of all examples exemplifying the first user-defined class (FUDC).

We conclude from this analysis that good FUDC examples are more difficult to
find or develop than the other types of examples we have looked at. This is hardly
surprising, since the demands on a FUDC example seem more difficult to satisfy.
It should be a role model for a “good” object-oriented class, i.e. score well on the
characteristics captured by O1–O5. However, it should also be small and use as
few concepts as possible, since most concepts have not been introduced yet.

Quality factors O1–O5 have been more closely examined by example category in
Section 6.4–6.6.

6.4 Object-oriented quality of FUDC-examples

An example of a user-defined class should make it clear why it is necessary to create
that class and why it needs to have particular state and behavior. Figure 4 shows
the average ratings for O1–O5 for FUDC examples. Here we consider which quality
factors indicate how successfully the examples achieve this and what characteristics
of the examples may influence ratings for these quality factors. O1 (Reasonable
Abstractions) and O2 (Reasonable State and Behaviour) relate closely to these
requirements. O1 is likely to be influenced as much by the “cover story” (the text
which introduces the context of the example) as by the code and is not considered in

ACM Journal Name, Vol. 1, No. 2, 04 2003.

14 · Jürgen Börstler et al.

Table IX. Book category , number of fields, default constructor (Def.), number
of constructors (Cnstr.), number of methods (Meth.), way(s) in which class is
exercised (Ex.) and number of objects instantiated (Obj.), average scores for
quality factors O2 and O5, and average total score (TOD) for FUDC examples.
Possible values for Ex. are IDE (interactive instantiation in IDE), TC (test class)
and TM (test method).

Book F ields Def. Cnstr. Meth. Ex./Obj. O2 O5 TOD

E2 OO 1 y 1 1 IDE/1 1.64 0.09 16.42
E3 OO 1 n 1 2 IDE&TC/1 1.40 0.80 17.00

E1 OO 3 n 1 2 IDE/2 1.33 0.00 14.17

E21 Trad 1 y 1 1 TC/2 1.25 1.88 19.63
E6 Trad 2 y 2 1 TC/2 0.56 0.20 9.90

E5 Trad 4 n 1 0 TM/1 0.22 −0.44 13.33

E4 Trad 1 y 2 0 TC/2 −0.50 0.00 9.90
E20 Trad 1 y 1 0 TC/2 −0.67 1.33 16.67

E19 Trad 1 n 1 0 TC/2 −1.33 −0.33 7.00

this discussion. O5 (Promotes “Object Thinking”) presents an interesting problem
for authors—how can single-class examples promote object thinking? The way
in which instances of the class are created and exercised is important here. The
data for O3 (Reasonable Class Relationships) has clearly been influenced by the
instruction that examples with no relationships should be given score of 3, and this
data is not considered here.

Neither is O4 (Exemplary OO code)—this quality factor does not appear to
discriminate strongly between the examples and suggests that these are generally
free from “code smells”.

The following characteristics of each example were identified by examining the
code listings:

—number of fields/attributes – in all examples the fields are appropriately imple-
mented as private with accessors and mutators as required depending on whether
the field is read-only or read-write

—provision of a default constructor
—total number of constructors, including the default constructor if provided
—number of methods – this number excludes accessors/mutators and toString
implementations, and also excludes methods which play one of these roles (for
example, a method which simply prints out a message containing the value of a
field)

—the way in which the class is exercised – all the examples provide an example
of creating and using instances, either in the form of a separate test class or by
interactive instantiation in an IDE such as BlueJ or Dr Java. The only exception
provides a test method which acts upon an instance of the UDC, but does not
provide a full working example to show how the method could be implemented.

Table IX shows the above information for each of the examples together with:
book category; average score for O2; average score for O5; average total score. The
results are shown in order of average O2 score.

It is strikingly clear from Table IX that the books which we have categorized as
OO attain higher scores for O2 than books in the Trad category. This is not the
case for O5, however. Interestingly, the books in our OO category all choose to
ACM Journal Name, Vol. 1, No. 2, 04 2003.

Quality of Examples in Java Textbooks · 15

exercise classes interactively in an IDE while the Trad books simply provide test
classes.

The ‘size’ of the class in terms of the number of fields does not appear to influ-
ence “Reasonable state and behavior”—the examples with the highest and lowest
O2 scores each have a single field. Constructors also have little influence—some
reviewers have made negative comments where examples do not include a default
constructor, but this is not particularly reflected in the scores. The most signifi-
cant code feature for O2 appears to be the methods provided. Examples with only
accessors/mutators and print operations score poorly, not surprisingly as this issue
is clearly identified in the examples of problems given in the checklist. What is per-
haps surprising is that four out of the nine examples presented a first user defined
class with no meaningful behavior. This may promote misconceptions about the
purpose of classes. It is interesting to note that the ranking by O2 score is quite
different from the ranking by total score. E20 in particular has a good total score
but a very poor O2 score. The comments for that example explicitly identify the
limited behavior but excuse this—for example “perhaps this example does not lend
itself to behaviour which can be modeled”.

The ranking by O5 score is quite different from the ranking by O2, and again
class size and constructors do not have any clear influence. The only common
factor which can be observed is that examples with only accessors/mutators and
print operations score poorly. Scores for “Promoting object thinking” do not appear
to be strongly influenced by the way in which classes are exercised. Test classes
and interactive instantion in an IDE appear to be equally acceptable, although the
lowest score is attained by the example which shows an incomplete test class. There
is, though, a wide range in the scores for this quality factor. This suggests that
factors other than the code itself are influential here.

It is difficult to draw firm conclusions on what makes an “exemplary” FUDC
example. It does appear, perhaps not surprisingly, that examples which illustrate
meaningful behavior display greater object-oriented quality than examples which
include no or trivial behavior.

6.5 Object-oriented quality of OOD examples

It might be expected that examples in the OOD category should score highly for
object-oriented quality. An object-oriented program is in essence a group of collab-
orating classes, and a well designed example should illustrate collaborations and the
programming structures which allow these collaborations to occur. The examples
reviewed were generally among the first multiple class examples in each book.

These examples have been examined further to ascertain any clear influence on
scores for object-oriented quality of following factors:

—number of classes in the example
—type(s) of relationship represented in the example

The number of classes in these examples ranges from 2 to 6. Some examples
exercise the classes using a client class, while others either do not provide a way
to exercise the classes, or do so using the capability of the IDE to instantiate and
interact with objects. Client classes are not included here in the number of classes
listed here.

ACM Journal Name, Vol. 1, No. 2, 04 2003.

16 · Jürgen Börstler et al.

-3

-2

-1

0

1

2

3

T1 T2 O1 O2 O3 O4 O5 D1 D2 D3

R
a

ti
n

g

Average ratings for OOD-type examples

E7 (OO)

E8 (Trad)

E9 (OO)

E10 (Trad)

E11 (OO)

E12 (Trad)

E25 (Trad)

E26 (OO)

Fig. 5. Average ratings of all examples exemplifying object-oriented design involving several classes
(OOD).

A class relationship is a binary association between classes in the example. Each
example may include one or more binary associations. The types of relationships
represented have been grouped into three categories which we define as:

IN: Inheritance. This relationship indicates specialization, and is realised by the
implementation of one class as a subclass of another.
CO: Composition. This relationship indicates containment, and is realized by

the presence of a field in one class having a field which holds a reference to one or
more instances of another class. This includes relationships commonly described as
composition or aggregation, or as a “has-a” relationship.
AS: Association. This indicates a transient relationship, where one class has a

reference to one or more instances of another class as a method parameter, method
return value or local variable. This includes relationships commonly described as
association or dependency, or as a “uses-a” relationship.

Note that under these definitions, a composition and association relationships
provides means for objects to collaborate, while inheritance represents a static
structural relationship.

Table X shows the following information for each of the examples: number of
classes; average score for O3 (Reasonable Class Relationships); average score for
O5 (Promotes “Object Thinking”); average total score. Of all the quality factors,
O3 and O5 are likely to have been most strongly influenced by the representation of
class relationships. O3 is likely to have been considered in the way it was intended
to be for these particular examples by reviewers as there clearly are relationships
present. The results are shown in order of average O3 score. It is apparent that
the examples which score well for object-oriented quality factors also score well
overall—it is not only their representation of relationships which makes them good
examples.

The number of classes does not appear to have any influence on the results.
The highest and lowest rated examples both contain only two classes. It is clearly
possible to create examples which provide a useful illustration of the relationship
between a pair of classes. Examples with more classes can illustrate a more complex
ACM Journal Name, Vol. 1, No. 2, 04 2003.

Quality of Examples in Java Textbooks · 17

Table X. Book category, Number of classes
(Cl.), class relationship types represented (Rel.),
average scores for quality factors related to rela-
tionships and average total score (TOD) for OOD
examples. *In E10 two additional subclasses are
discussed but the code for these is not listed.

Book Cl. Rel. O3 O5 TOD

E26 OO 2 CO 2.63 2.63 23.88
E9 OO 2 AS 2.44 2.22 22.44

E7 OO 2 IN 1.88 1.25 18.38

E12 Trad 6 IN, CO 1.50 1.50 16.50
E11 OO 3 IN 1.30 0.20 4.90

E8 Trad 2 IN 1.00 −0.38 6.63

E10 Trad 3∗ IN, CO 1.00 0.67 6.33
E25 OO 2 IN 0.00 −1.67 −2.33

system of collaborations, but need to be designed carefully so that the details and
significance of each collaboration are not lost.

The types of relationships represented does appear to be significant. The two
best examples illustrate composition and association respectively, while the lowest
rated example illustrates a simple two-class inheritance hierarchy. Examples of
composition and association are able to exemplify collaboration between objects
at runtime, which is helpful in promoting object-thinking. While inheritance is
an important concept, it does not by itself reflect object collaboration. Two of
the examples combine inheritance with composition to illustrate polymorphism. It
might be expected that showing inheritance in a typical collaborative context would
lead to better examples than demonstrating it in isolation, but this is not clearly
reflected in the reviewers’ scores. The best example of inheritance focuses clearly
on the issues of additional state and behavior, in contrast to another example which
only considers additional data members in a subclass. The lowest rated example also
deals with state and behavior, but comments suggest that it is a rather confusing
example. Some reviewers commented that examples of inheritance were based on
scenarios which would be better modelled as roles and were therefore not exemplary
illustrations. This issue would be reflected in the O5 score and may be significant
for E8 in particular.

It is clearly possible to create exemplary examples of multiple collaborating
classes, and such examples illustrate fundamental concepts in object-oriented pro-
gramming. The results suggest that early examples in this category should adopt
a clear focus on illustrating a specific type of relationship. Examples which de-
velop more complex structures can then build on the simple examples or can be
constructed from smaller clearly focused examples of collaborations.

6.6 Object-oriented quality of CS examples

Figure 6 shows that, with one exception, the control structure examples scored
poorly on object-oriented quality. As was the case for FUDC examples, the data
for O3 (Reasonable class relationships) has probably been artificially influenced by
the instructions given in the checklist and is disregarded.

Control structures are fundamental programming concepts and are not a fea-
ture of any particular paradigm. The authors of these books follow quite different

ACM Journal Name, Vol. 1, No. 2, 04 2003.

18 · Jürgen Börstler et al.

-3

-2

-1

0

1

2

3

T1 T2 O1 O2 O3 O4 O5 D1 D2 D3

R
a

ti
n

g

Average ratings for CS-type examples

E13 (OO)

E14 (Trad)

E15 (Trad)

E16 (OO)

-3

-2

-1

0

1

2

3

T1 T2 O1 O2 O3 O4 O5 D1 D2 D3

R
a

ti
n

g

Average ratings for CS-type examples

E13 (OO)

E14 (Trad)

E15 (Trad)

E16 (OO)

-3

-2

-1

0

1

2

3

T1 T2 O1 O2 O3 O4 O5 D1 D2 D3

R
a

ti
n

g

Average ratings for FUDC-type examples

E1 (OO)

E2 (OO)

E3 (OO)

E4 (Trad)

E5 (Trad)

E6 (Trad)

E19 (Trad)

E20 (Trad)

E21 (OO)

Fig. 6. Average ratings of all examples exemplifying control structures (CS).

approaches to introducing control structures:

—E14 (Trad book category) – shows a single class which consists entirely of a main
method. This is an example of the data-less object described by Hu [2005]. It
scores poorly, particularly for O5 (Promotes object-thinking).

—E15 (Trad) – a single class which contains a main method which instantiates an
instance of the class and calls a “start“ method. One other method is included
which is used by the start method. This example also scores poorly—scores are
very similar to E14 except for a slightly higher O5 score. The inclusion of the
main method in the single class is noted by one reviewer as bad practice, and
contrasts with the way in which main methods are used appropriately in test
classes in many of the FUDC examples.

—E13 (OO) – presents an if-else structure within a method to handle a mouse
button click. It scores poorly, but marginally better for object-oriented quality
than E14 and E15. Reviewers comments note the dependence of the example on
code presented elsewhere in the book and the complexity of this code.

—E16 (OO) – structured in a similar way to most FUDC examples. It shows a class
which represents a clear abstraction and includes relevant state and behavior,
and includes a separate test class. The methods provide motivations for the use
of control structures. This example received the highest scores among the CS
examples for object-oriented quality. The score for O5 is low, although it was
noted in section 6.4 that O5 scores may depend strongly on factors other than
the example code.

These results suggest that reviewers regard the use of control structures as a way
of implementing behavior within meaningful class methods as exemplary in this
category.

6.7 Relation to traditional software measures

We also investigated the relationship of total average scores with traditional mea-
sures of software quality. In Table XI we have summarized the results from com-
paring the total average score of our instrument with the measures described be-
low. Most of these measures have been obtained using the measurement tool
ACM Journal Name, Vol. 1, No. 2, 04 2003.

Quality of Examples in Java Textbooks · 19

Table XI. Spearman rank correlation (Rho) for
common software measures and the total average
score of our 21 examples.

Measure Rho P -value

Size −0.080 0.729
Maintainability Index 0.494 0.023

Complexity −0.138 0.550

Code density 0.557 0.009
Comment density 0.498 0.022

JHawk [JHawk]. Since most of our examples consisted of only a single class, we did
not collect any object-oriented measures.

—Size: The total lines of code, counting code, comments and empty lines. Although
size is a very simple measure it tends to correlate with many software attributes.

—Maintainability Index (MI): The Maintainability Index is a measure for predict-
ing the relative effort for software maintainability [Welker et al. 1997]. Since
maintainability requires easy to read and to understand code, MI intends to
capture these properties.

—Complexity: McCabe’s cyclomatic complexity measures the number of (stati-
cally) distinct paths through a method [McCabe 1976].

—Code density: The number of statements divided by Size (see above).
—Comment density: The number of comments divided by Size (see above).

Our checklist captures different aspects of quality from traditional measures of
software quality. However, since MI, code density and comment density all capture
different aspects of readability and understandability, we would expect some kind
of relationship to our ratings. Looking at the scatterplots in Figure 7, we can see
some indications for such relationships:

—Examples with dense code tend to have worse overall average ratings. The best
rated examples tend to have a code density between 0.2 and 0.3. If we look at
examples in the two top and two bottom “quartiles” (see Table VI), we can see
that 10 of the 11 better examples have a code density below 0.3, whereas 7 of 10
of the worse examples have a code density above 0.3.

—The picture for comment density is somewhat similar. The better examples tend
to have more comments, but this relationship is much less pronounced than for
code density.

—Although all examples have MI-values above 85, indicating “high maintainabil-
ity” [Welker et al. 1997], there is a clear difference between the two top and two
bottom “quartiles”. Nine of the 11 better examples have MI ≥ 130, whereas 7 of
10 of the worse examples are beyond this level.

The actual correlations are, however, only moderate. This indicates that our
measure does indeed capture different aspects of quality from traditional software
measures.

7. CONCLUSIONS

In this paper we analysed 191 reviews of 21 object-oriented example programs
from 11 introductory object-oriented programming texts. The reviews were done

ACM Journal Name, Vol. 1, No. 2, 04 2003.

20 · Jürgen Börstler et al.

0

0.1

0.2

0.3

0.4

0.5

0.6

-5 0 5 10 15 20 25

TOD vs. Code density

0

0.1

0.2

0.3

0.4

0.5

0.6

-5 0 5 10 15 20 25

TOD vs. Comment density

100

110

120

130

140

150

160

-5 0 5 10 15 20 25

TOD vs. MI

Fig. 7. Scatterplots for the 21 examples’ average total scores (TOD) against Maintainability Index
(MI), Code density, and Comment density, respectively.

by 11 reviewers from Denmark, Germany, Sweden, the UK, and the USA. The re-
view instrument comprised 10 quality factors, grouped into three quality categories:
technical quality (T1–T2), object-oriented quality (O1–O5), and didactic quality
(D1–D3).

Our results show that the examples in the analysed sample varied markedly in
quality. The object-oriented quality of many examples is not as high as one would
expect to find in an introductory programming text. In particular, many examples
received low ratings for “object thinking” (O5) and Reasonable state and behaviour
(O2). Since examples are the most important tools for learning, these results are
alarming. High quality examples are a prerequisite for successfully learning a new
skill.

We looked at three different categories of examples (FUDC, OOD, and CS3) and
two different categories of texts (OO-type and Trad-type4).

Our analysis revealed different rating patterns for FUDC examples compared to
CS and OOD examples indicating that it is specifically difficult to develop FUDC
examples with consistent high ratings for all object-oriented quality factors. Of
the 4 CS examples we analysed, 3 are among the bottom 4 examples. This was
not surprising, since such examples are said to be impossible to do in an “object-
oriented way”. However, one of these examples was rated above average, indicating
that it actually is possible.

Although examples from OO-type texts receive somewhat higher ratings on av-
erage than examples from Trad-type texts, taking an example from an OO-type
text is no guarantee for high ratings in object oriented-quality. Examples with high
ratings in object-oriented quality can be found in Trad-type textbooks as well as
examples with low ratings in OO-type texts.

Our review instrument is highly reliable and measures aspects of quality that are
not captured by common size or complexity measures. It can be a useful tool for
identifying problems in example programs that might otherwise go unnoticed.

3The first example of a user defined class in the text (FUDC), the first example of an object-
oriented design featuring multiple classes (OOD), and the first example of control structures
(CS).
4Texts with a clear and early focus on object-orientation (OO-type) and others (Trad-type).

ACM Journal Name, Vol. 1, No. 2, 04 2003.

Quality of Examples in Java Textbooks · 21

REFERENCES

Anderson, J., Farrell, R., and Sauers, R. 1984. Learning to program in LISP. Cognitive
Science 8, 2, 87–129.

Barnes, D. J. and Kölling, M. 2009. Objects First with Java, 4th ed. Prentice Hall.
Börstler, J., Caspersen, M., and Nordström, M. 2007. Beauty and the beast—toward

a measurement framework for example program quality. Tech. Rep. UMINF-07.23, Dept. of
Computing Science, Umeå University, Umeå, Sweden.

Börstler, J., Christensen, H. B., Bennedsen, J., Nordström, M., Westin, L. K.,
Moström, J. E., and Caspersen, M. E. 2008. Evaluating oo example programs for cs1.
In ITiCSE’08: Proceedings of the 13th Annual Conference on Innovation and Technology in
Computer Science Education. 47–52.

Börstler, J., Hall, M. S., Nordström, M., Paterson, J. H., Sanders, K., Schulte, C.,
and Thomas, L. 2009. An evaluation of object oriented example programs in introductory
programming textbooks. inroads 41, 4, 126–143.

Bransford, J. D., Brown, A. L., and Cocking, R. R. 2004. How People Learn, Expanded
Edition. National Academy Press, Washington, D.C., USA.

Bravaco, R. and Simonson, S. 2010. Java Programming – From the Ground Up, 1st ed.
McGraw-Hill.

Brooks, R. 1983. Towards a theory of the comprehension of computer programs. Intl. Journal
of Man-Machine Studies 18, 6, 543–554.

Brykczynski, B. 1999. A survey of software inspection checklists. ACM SIGSOFT Software
Engineering Notes 24, 1, 82–89.

Burkhardt, J., Détienne, F., and Wiedenbeck, S. 2002. Object-oriented program compre-
hension: Effect of expertise, task and phase. Empirical Software Engineering 7, 2, 115–156.

CACM Forum. 2002. ‘Hello, World’ gets mixed greetings. Communications of the ACM 45, 2,
11–15.

CACM Forum. 2005. For programmers, objects are not the only tools. Communications of the
ACM 48, 4, 11–12.

Clancy, M. 2004. Misconceptions and attitudes that infere with learning to program. In Com-
puter Science Education Research, S. Fincher and M. Petre, Eds. Taylor & Francis, Lisse, The
Netherlands, 85–100.

de Raadt, M., Watson, R., and Toleman, M. 2005. Textbooks: Under inspection. Tech.
rep., University of Southern Queensland, Department of Maths and Computing, Toowoomba,
Australia.

Deitel, H. M. and Deitel, P. J. 2007. Java – How to Program, 7th ed. Prentice Hall.
Dodani, M. H. 2003. Hello World! goodbye skills! Journal of Object Technology 2, 1, 23–28.
Farrell, J. 2010. Java Programming, 5th ed. Thomson.
Fleury, A. E. 2000. Programming in Java: Student-constructed rules. In Proceedings of the
thirty-first SIGCSE technical symposium on Computer science education. 197–201.

Fowler, M. 1999. Refactoring: improving the design of existing code. Addison-Wesley Longman
Publishing Co., Inc.

Guzdial, M. 1995. Centralized mindset: A student problem with object-oriented programming.
In Proceedings of the 26th Technical Symposium on Computer Science Education. 182–185.

Holland, S., Griffiths, R., and Woodman, M. 1997. Avoiding object misconceptions. In
Proceedings of the 28th Technical Symposium on Computer Science Education. 131–134.

Horstmann, C. S. 2008. Big Java, 3rd ed. Wiley.
Hu, C. 2005. Dataless objects considered harmful. Communications of the ACM 48, 2, 99–101.
JHawk. Product homepage. http://www.virtualmachinery.com/jhawkprod.htm, last visited
2009-11-03.

Lahtinen, E., Ala-Mutka, K., and Järvinen, H. 2005. A study of the difficulties of novice
programmers. In Proceedings of the 10th Annual SIGCSE Conference on Innovation and
Technology in Computer Science Education. 14–18.

ACM Journal Name, Vol. 1, No. 2, 04 2003.

22 · Jürgen Börstler et al.

LeFevre, J. and Dixon, P. 1986. Do written instructions need examples? Cognition and
Instruction 3, 1, 1–30.

Lewis, J. and Loftus, W. 2009. Java – Software Solutions, 6th ed. Addison-Wesley.
LimeSurvey. Project homepage. http://www.limesurvey.org/, last visited 2009-10-20.
Lin, J. M.-C. and Wu, C.-C. 2007. Suggestions for content selection and presentation in high

school computer textbooks. Computers & Education 48, 3, 508–521.
Magel, K. 1982. A Theory of Small Program Complexity. ACM SIGPLAN Notices 17, 3, 37–45.
Malan, K. and Halland, K. 2004. Examples that can do harm in learning programming. In
Companion to the 19th Annual Conference on Object-Oriented Programming Systems, Lan-
guages, and Applications. 83–87.

Malik, D. and Burton, R. P. 2009. Java Programming – Guided Learning with Early Objects,
1st ed. Course Technology.

Mason, J. and Pimm, D. 1984. Generic Examples: Seeing the General in the Particular. Edu-
cational Studies in Mathematics 15, 3, 277–289.

McCabe, T. 1976. A complexity measure. IEEE Transactions on Software Engineering 2, 4,
308–320.

Niño, J. and Hosch, F. A. 2008. Introduction to Programming and Object Oriented Design
Using Java, 3rd ed. Wiley.

Nordström, M. 2009. He[d]uristics—heuristics for designing object oriented examples for
novices. Ph.D. thesis, Umeå University, Umeå, Sweden.

Ourosoff, N. 2002. Primitive types in Java considered harmful. Communications of the
ACM 45, 8, 105–106.

Purao, S. and Vaishnavi, V. 2003. Product metrics for object-oriented systems. ACM Com-
puting Surveys 35, 2, 191–221.

Reed, S. and Bolstad, C. 1991. Use of examples and procedures in problem solving. Journal
of Experimental Psychology: Learning, Memory, and Cognition 17, 4, 753–766.

Reimann, P. and Schult, T. J. 1996. Turning examples into cases: Acquiring knowledge
structures for analogical problem solving. Educational Psychologist 31, 2, 123–132.

Riel, A. J. 1996. Object-Oriented Design Heuristics. Addison-Wesley, Reading, MA.
Riley, D. D. 2006. The Object of Java, 2nd ed. Addison-Wesley.
Roberts, E. 2008. Java – An Introduction to Computer Science, 2nd ed. Addison-Wesley.
Sanders, K. and Thomas, L. 2007. Checklists for grading object-oriented cs1 programs: Con-

cepts and misconceptions. In Proceedings of the 12th annual SIGCSE conference on Innovation
and technology in computer science education. 166–170.

Trafton, J. G. and Reiser, B. J. 1993. Studying examples and solving problems: Contributions
to skill acquisition. Tech. rep., Naval HCI Research Lab, Washington, DC, USA.

VanDrunen, T. 2006. Java interfaces in CS 1 textbooks. In OOPSLA Conference Companion –
21st ACM SIGPLAN Symposium on Object-Oriented Programming Systems, Languages, and
Applications. 875–880.

Welker, K. D., Oman, P. W., and Atkinson, G. G. 1997. Development and application of
an automated source code maintainability index. Journal of Software Maintenance: Research
and Practice 9, 3, 127–159.

Westfall, R. 2001. ‘Hello, World’ considered harmful. Communications of the ACM 44, 10,
129–130.

Wu, C.-C., Lin, J. M.-C., and Lin, K.-Y. 1999. A content analysis of programming examples in
high school computer textbooks in taiwan. Journal of Computers in Mathematics and Science
Teaching 18, 3, 225–244.

Wu, C. T. 2008. A Comprehensive Introduction to Object-Oriented Programming with Java,
International ed. McGraw-Hill.

Received February 2010; accepted June 2010.

ACM Journal Name, Vol. 1, No. 2, 04 2003.

