
Heuristics for Designing Object-Oriented
Examples for Novices
MARIE NORDSTRÖM and JÜRGEN BÖRSTLER
Umeå University

Research shows that examples play an important role for cognitive skill acquisition, and students
as well as teachers rank examples as important resources for learning to program. Students use
examples as templates for their work. Examples must therefore be consistent with the principles
and rules of the topics we are teaching.

Despite many generally accepted object oriented principles, guidelines and rules, textbook
examples are not always consistent with those characteristics. How can we convey the idea of
object orientation, using examples showing "‘anti"’-object oriented properties?

Based on key concepts and design principles, we present a number of heuristics for the design
of object oriented examples for novices. We argue that examples adhering to these heuristics are
of higher object oriented quality than examples that contradict them.

Categories and Subject Descriptors: D.1.5 [Programming Techniques]: Object-oriented Pro-
gramming; K.3.2 [Computers and Education]: Computer and Information Science Educa-
tion—Computer science education

General Terms: Principles, Guidelines, Examples

Additional Key Words and Phrases: Example programs, object-orientation, design, quality

1. INTRODUCTION
Examples play an important role in learning, both teachers and learners consider
them to be the main learning tool [Lahtinen et al. 2005]. Research also shows that
the majority of learning takes place in situations where students engage in problem
solving tasks [Carbone et al. 2001]. In a recent survey of pedagogical aspects of
programming, Caspersen concludes that examples are crucial:

Studies of students in a variety of instructional situations have shown

that students prefer learning from examples rather than learning from

other forms of instruction Students learn more from studying ex-

amples than from solving the same problems themselves [Caspersen
2007, p. 27]

To be useful, examples must help a learner to draw conclusions and to make in-
ferences and generalisations from the presented information [Chi et al. 1989; Pirolli
and Anderson 1985]. Since examples do not distinguish incidental from essen-

Author’s address: Marie Nordström, Department of Computing Science, Umeå University, SE-
90187 Umeå, Sweden; email: marie@cs.umu.se.
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c� 2010 ACM 0000-0000/2010/0000-0001 $5.00

ACM Journal Name, Vol. 1, No. 2, 04 2010, Pages 1–21.

2 · Marie Nordström and Jürgen Börstler

tial, or even intended, properties, we argue that examples developed according to
established practices and experience are a necessity for the example to promote
(accurate) generalisation. Novices should be able to use examples to recognize pat-
terns and distinguish an example’s accidental surface properties from those that
are structurally or conceptually important. By continuously exposing students to
well-designed examples, important properties are reinforced. Students will even-
tually gain enough experience to recognize general patterns that help them telling
apart “good” and “bad” designs.

Though largely debated, object orientation is commonly used for introducing
problem solving and programming to novices. The strength of object orientation
lies in the handling of complexity in the design of large-scale system, with high
demands on maintenance, flexibility and reusability. The educational situation,
however, is rather different and does not fit these strengths well. Introductory
examples are often small. Furthermore, the design space for examples is restrained
since many concepts and syntactical elements might not have been introduced yet.

In the following, we will use the term small-scale for the specific situation of intro-
ducing object orientation to novices. A small-scale example is a program, example,
or exercise intended for novices in order to present or illustrate a certain concept
or feature of object oriented problem solving and programming. Small-scale signif-
icantly limits the design space of examples. The size of examples, the repertoire
of concepts and syntactical components, and the need to present concepts in isola-
tion are limiting conditions. Furthermore, we have to support object-thinking, and
we have to be careful with the context or problem domain we choose. Neverthe-
less, we argue that one has to be truthful to the paradigm chosen for introductory
programming, otherwise novices might not recognize any patterns.

Based on commonly agreed upon object oriented principles, guidelines and rules,
we propose a number of heuristics for the design of example programs. We argue
that examples developed according to established practices and experience will lead
to suitable role-models. The proposed heuristics address object oriented quality in
example programs independent of any particular choice of instructional design or
sequence of concept-introduction.

2. RELATED WORK

Various aspects of teaching object orientation to novices have been addressed by
many excellent professionals and educators, but the quality of examples has not
been discussed in a systematic way. Specific common example programs, like
“HelloWorld”, have been critically discussed for a long time [Westfall 2001] and
there have been ongoing debates on the object-orientedness of this and similar ex-
amples [CACM 2002; Dodani 2003; CACM Forum 2005]. However, all of these
discussions have focused on technicalities, rather than conceptual object oriented
qualities of the examples. A recent study of the quality of example programs in
common introductory programming textbooks shows that there is much room for
improvements [Börstler et al. 2009; Börstler et al. 2010].

McConnell and Burhans [2002] examined how the coverage of basic concepts in
programming textbooks has changed over time. They conclude that “there has been
a trend of decreasing coverage for basic programming and subprogram concepts as
ACM Journal Name, Vol. 1, No. 2, 04 2010.

Heuristics for Designing OO Examples · 3

other more current material has been added”. In general, it seems as we are focusing
more on syntactical issues than on problem solving. This view is also supported
by De Raadt et al. [2005], who examined 49 textbooks used in Australia and New
Zealand according their compliance with the ACM/IEEE curriculum recommenda-
tions.

It has been argued that object orientation is a “natural” way for problem solv-
ing, but several studies question this claim [Guzdial 2008]. In particular, it seems
that novices have more problems understanding a delegated control style than a
centralised one [Du Bois et al. 2006], which is critical for understanding object
oriented programs. Such difficulties in understanding program execution have also
been studied by Ragonis and Ben-Ari [Ragonis and Ben-Ari 2005b]. They conclude
that “[i]t is futile to expect that a teaching approach (like objects-first) or a peda-
gogical tool (like BlueJ) will be able to solve all problems that students have when
learning a subject”.

A common result in many studies is that novices have a hard time understanding
the difference between class and object/instance (see for example [Eckerdal and
Thuné 2005; Ragonis and Ben-Ari 2005a; Sanders et al. 2008]). Holland et al.
[1997] discuss a number of misconceptions concerning the concept of an object and
suggest examples and exercises to avoid them. Fleury [2000] shows examples of
erroneous student-constructed rules that could be avoided by more carefully defined
examples.

A coarse categorization of “harmful examples” is provided by Malan and Halland
[2004]: Examples that are too abstract, Examples that are too complex, Concepts

applied inconsistently, and Examples undermining the concept introduced. However,
they do not discuss instructional guidelines to address these problems.

3. ESSENTIAL CONCEPTS AND PRINCIPLES OF OBJECT ORIENTATION

In [Nordström 2009], we have reviewed the literature to identify a small set of
commonly accepted basic object oriented concepts (e.g. [ACM 2008; Armstrong
2006; Henderson-Sellers and Edwards 1994; Kramer 2007]). We have furthermore
reviewed design principles, guidelines, rules, and metrics for object oriented design
(e.g. [Bloch 2001; Fowler et al. 1999; Gamma et al. 1995; Gibbon 1997; Grotehen
2001; Martin 2003; Riel 1996]). These sources, together with the literature on
student problems and misconceptions (see Section 2), as well as our own and other
educators’ teaching experiences have formed the input for defining a small set of
heuristics for defining small-scale example programs.

Figure 1 gives an overview over the types of sources we have considered in this
work.

Within the small-scale context it is often difficult to follow all “good advise”.
In a perfect world, we should for example always put the main-method into a
separate class (to emphasize proper encapsulation) and feature multiple instances
of at least one class (to emphasize the difference between classes and objects). In
an educational context, however, we prefer small and concise examples, very often
for purely pragmatical reasons (to make them fit on a page for example). If we
want it or not, our examples will be used as role-models by our students. If we
do not give them example programs of high quality, we cannot expect high quality

ACM Journal Name, Vol. 1, No. 2, 04 2010.

4 · Marie Nordström and Jürgen Börstler

Instructional design

Basic OO concepts, e.g.
[ACM 2001 Armstrong

Instructional design,
e.g. [Clark et al. 2006,

Mosley 2005]
Teaching experience

Object
misconceptions, e.g.

Code smells and
refactorings, e.g.
[Fowler 1999]

[ACM 2001, Armstrong
2006] [Holland 1997, Ragonis

and Ben Ari 2005]

Coding guidelines, e.g.
[Bloch 2001, Martin

2008]

Review/

OO design heuristics,
e.g. [Riel 1996]

[o e 999] 008]

Software measure
ment, e.g. [Lanza et al.
2005, Chidamber and

Kemerer 1991]
Review/
AnalysisOO design principles,

e.g. [Meyer 1997,
Martin 2003]

Design Patterns, e.g.
[Gamma 1995]

He[d]uristicsHe[d]uristics

Fig. 1. Types of sources used as input for defining educational design heuristics.

code in return.

4. HE[D]URISTICS
The intention of our He[d]uristics is to support the design of exemplary examples.
The He[d]uristics are targeted towards more general design characteristics. Specific
detailed guidelines, like keeping all attributes private, are not stated explicitly.
However, they are implicitly included in the more general guidelines. This made it
possible to define a small, but powerful set of “rules” that can be easily handled:

(1) Model Reasonable Abstractions
(2) Model Reasonable Behaviour
(3) Emphasize Client View
(4) Favour Composition over Inheritance
(5) Use Exemplary Objects Only
(6) Make Inheritance Reflect Structural Relationships

We want to stress that the He[d]uristics are independent of a particular pedagogy
(objects first/late, order of concepts, ...), language, or environment.

4.1 Model Reasonable Abstractions
Abstractions are at the heart of object orientation. An abstraction focuses on the
essential properties of objects from the perspective of a particular viewer or “user”
and suppresses accidental, internal details [Booch 1994]. A good abstraction makes
the objects of interest easier to handle, mentally, since we do not need to constantly
think of all the details that might complicate their handling.

An abstraction should also be plausible, both from a software perspective as
well as from an educational perspective. In particular, it must be plausible seen
through the eyes of a novice. Concept formation is driven by cognitive economy
and inference [Rosch 1999]. A good classification provides a maximum amount of
ACM Journal Name, Vol. 1, No. 2, 04 2010.

Heuristics for Designing OO Examples · 5

information about (the properties of) a particular instance with the least cognitive
effort. Concept formation is also influenced by the knowledge of and experience
with the things that are categorized. A novice’s concept formation will therefore
be very different from an experienced software developer or domain expert. Which
properties are perceived as meaningful or not can therefore be very different [Rosch
1999].

In an educational context, we often make simplifications to decrease a problem’s
size and complexity. These simplifications should, however, never lead to non-
intuitive or artificial classes and objects. It must be possible to imagine a client1
using the objects we are modelling and the objects must model some meaningful
entity in the problem domain.

To promote the understanding of objects, it is important to emphasize the basic
characteristics of objects: identity, state and behaviour. Among other things, this
implies that classes modelling mere data containers are not exemplary. To develop
real software systems, one would, of course, need such non-exemplary classes. Gil
and Maman [2005], for example, showed that a significant portion of the classes
in common Java software are “degenerate”. However, we argue that novices should
internalize the basics rules, before turning to the exceptions.

For the small-scale context, the Single Responsibility Principle (SRP) [Martin
2003] implies few attributes and few methods. Furthermore, the educational con-
ditions of a small-scale example will preferably result in few lines of code. Keeping
the abstraction focused with few collaborators means less passing of parameters.
Encapsulation and information hiding should also be emphasized.

Another important implication of Model Reasonable Abstractions is that context
is critical to the abstraction. It is close at hand to use objects from real life as
examples. But, with every day life examples it is important to explicitly discuss
the differences between the model and the modelled. It is difficult for a novice to
accept that a model has behaviour and responsibilities that its real-life counterpart
never would have [Börstler 2005].

What differs good from bad often depends on small details. For example, for
illustrating smaller syntactical components it is not uncommon to use a single
application class and place the example in the main-method, see Listing 1. This
example is not contributing to a novice’s understanding of object orientation. If
we want to promote the ideas that (1) an object oriented program is a system
of communicating objects and that (2) each object represents an individual real
or abstract entity with a well-defined role in the problem domain, such examples
might do more harm than good. There are no obvious objects in this example.
Furthermore, main does neither represent any behaviour of an object, nor is it
explicitly called. To avoid potential confusion, we should avoid to turn a single
main into the entire program.

Listing 1. Application illustrating a for-loop.
public class Ex

{

1We use the term client to refer to classes/objects that make use of the resources provided by the
class/object under development.

ACM Journal Name, Vol. 1, No. 2, 04 2010.

6 · Marie Nordström and Jürgen Börstler

public stat ic void main(string [] args)

{

int i = 0;

for (int j=0; j<10; j++)

{

i = i+j;

}

System.out.println("Sum = " + i);

}

} //class Ex

To make abstractions reasonable, they should be taken from a domain that is
easy to explain and/or familiar to the novices. A typical domain are simple games.
The following class a familiar or easy to explain domain. A class modelling a
playing card might be a suitable candidate (see Listing 2) [Wick et al. 2004]. But
what are the essential properties of playing cards this abstraction is focussing on?
A card has a rank and a suit, but these are fixed and cannot be set randomly
from the outset. Furthermore, exposing the “accidental” realization of essential
properties actually works against the main goal of abstraction. Mentally handling
Card objects becomes actually more complex instead of easier.

Listing 2. Non-reasonable abstraction for playing card objects (see [Wick et al.
2004].)
public class Card

{

private int rank; // 2 .. 14

private char suit; // ’D’, ’H’, ’S’, ’C’

public int getRank ()

{

return rank;

}

public void setRank(int r)

{

rank = r;

}

public char getSuit ()

{

return suit;

}

public void setSuit(char s)

{

suit = s;

}

...

} //class Card

ACM Journal Name, Vol. 1, No. 2, 04 2010.

Heuristics for Designing OO Examples · 7

4.2 Model Reasonable Behaviour
A real problem in defining examples for novices is that educators have only a
limited set of concepts and syntactical elements to play with. Not everything can be
introduced in the first lecture. Examples must be simple enough to not overwhelm
a novice with new concepts or syntax, but still feature meaningful object behaviour.
Discussing what a client might expect in terms of consistency and logic will most
likely extend an example, but will also empower novices in terms of analysis and
design thinking. What is reasonable is highly dependent on the context of an
example. Without explicit context (like a “cover story” or client classes), the actual
meaning of the concept of behaviour is difficult to understand.

When reviewing the playing card example from Listing 2, we should ask ourselves
which behaviour would be appropriate for a class Card. Changing rank or suit would
not be reasonable. The cards in a deck never change suit or value. It might be
much more reasonable to have some comparison behaviour between Card-objects.
Depending on the context for the cards, one suggestion could be Listing 3.

Listing 3. Improved Card class (see [Wick et al. 2004]).
public class Card

{

private int rank; // 2 .. 14

private char suit; // ’D’, ’H’, ’S’, ’C’

public Card(int r, char s)

{

// Validating rank (r) and suit (s) to construct

// valid cards only!

...

this .rank = r;

this .suit = s;

}

public boolean isDiamond ()

{

return suit == ’D’;

}

public boolean isHigherThan(Card c)

{

return this .rank > c.rank;

}

...

} // class Card

Reasonable behaviour also means emphasizing the difference between a model
and the modelled. A software object does not necessarily have exactly the same
behaviour and characteristics as its real world counterpart. In a library system
it would, for example, be reasonable for a borrower object to be responsible for
keeping track of its outstanding fees. In real life, however, this would be a bad
idea. It is important to convey that we do not model the real world, we model
systems that solve problems that originate from the real world. This is a subtle,
but quite significant difference. Therefore, we have to make an effort to aid novices

ACM Journal Name, Vol. 1, No. 2, 04 2010.

8 · Marie Nordström and Jürgen Börstler

in separating the model from the modelled.
Using code snippets without context leaves it up to the learners to imagine the

means and ends of an object’s behaviour, where this particular code snippet makes
sense. We argue that code snippets do not support “object-thinking”, but direct fo-
cus from the underlying concepts to syntactical details. They actually work against
the ideas of abstraction and behaviour, which are central to object orientation.

The for-loop in Listing 1, for example, does not aid the understanding of why,
when, and how objects would or should have this kind of behaviour. The problem
seems highly artificial and it is hard to imagine where summing up 0–10 could be
used “for real”.

Like code snippets, printing for tracing is also often used in example programs
for novices. We argue that printing for tracing not only is a bad habit, but contra-
dicts the very idea of abstraction and communicating objects. Novices are misled
to believe that results can only be returned by printing. In teaching practice, it is
tempting to use printing to, for example, show the values of (instance) variables
as the execution progresses. However, seeing “printing” in too many example pro-
grams, novices might conclude that it actually is necessary to do the printing to
“get things done”.

4.3 Emphasize Client View
Martin [2003] emphasizes that a model must be validated in connection to its clients.
This means there must be some context where such clients can “live”. From an
educational point of view a meaningful context plays an important role for dis-
cussing and contrasting the strength and weaknesses of different solutions. Taking
a clients’ view when discussing the design of a class, promotes the idea of objects as
autonomous, collaborating entities. With a meaningful context a particular design
gets a purpose. An educator can explain why a certain model is the way it is. Again
this helps focusing on concepts instead of syntactical details.

It is crucial to discuss the responsibilities and services of an object as indepen-
dently as possible from their internal representation and implementation in terms
of methods and attributes. We argue that this promotes “object thinking” [West
2004] and makes object oriented problem solving easier for novices. Meyers [2004]
gives the following practical advice for defining the protocol/interface of a class:
“anticipate what clients might want to do and what clients might do incorrectly”.
On the other hand, each object should only have a single well-defined responsibility
and only contain necessary “features” (see Single Responsibility Principle and In-

terface Segregation Principle [Martin 2003]). For examples without context these
important issues cannot be discussed in a meaningful way.

The methods provided by a class must make immediate sense to a novice or a
good “cover story” must be provided that motivates object behaviour.

4.4 Favour Composition over Inheritance
Inheritance is the concept that distinguishes object orientation from other paradigms.
It is therefore given significant coverage in introductory object oriented program-
ming. Introducing inheritance early typically leads to very simple examples, since
novices only have mastered a very limited repertoire of concepts and syntactical
constructs. Early examples are therefore usually too simple to show the real power
ACM Journal Name, Vol. 1, No. 2, 04 2010.

Heuristics for Designing OO Examples · 9

of inheritance. Furthermore, inheritance is often used to exemplify code reuse,
which generally is considered a problematic motivation for inheritance [Armstrong
and Mitchell 1994] and may lead to typing problems [Liskov and Wing 1994], for
example when implementing a stack by inheriting from a vector or a queue.

Since inheritance is so powerful, it might easily be overused [Armstrong and
Mitchell 1994; Johnson and Foote 1988]. We argue that inheritance also might be
overeducated. There is so much focus on inheritance in introductory programming
that example programs often use inheritance where other solutions might actu-
ally be more suited. The usage of inheritance should be carefully considered and
discussed. Being careful with inheritance is important to guide novices toward a
proper use of inheritance. Novices must not be led to believe that inheritance has
to be used as the only relationship between classes.

A common pitfall is to model roles as classes [Fowler 1997; Reenskaug et al. 1996;
Skrien 2009; Steimann 2000] as in the common person/student/teacher example,
see Figure 2. Teacher and Student seem good examples of subclasses of Person,
since a teacher or a student “is-a” person. However, this model is neither flexible
nor extensible. Even in very simple contexts, like a course administration system,
students might act as teachers or teachers might take some courses. In model 2(a),
we would get the Person-attributes of persons with double roles twice. This will
lead to problems as soon as some of these attributes have to be changed. On might
argue that this could be a good example to motivate multiple inheritance. However,
this would not solve the problem, since roles will likely change dynamically during
the lifetime of a person.














(a) Teacher and Student mod-
elled as subclasses of Person.













(b) Teacher and Student modelled as
roles of Person.

Fig. 2. Inheritance versus composition (and delegation) [Skrien 2009].

The design patterns by Gamma et al. [1995] explicitly build on the principle of
favouring composition over inheritance. Skrien [2009] shows many examples of how
composition can lead to better designs.

4.5 Use Exemplary Objects Only
Learners use examples as role-models or templates for their own work [Lahtinen
et al. 2005]. All example properties, even incidental ones, will therefore affect
what students learn from the examples. The literature discusses many examples of
student-constructed rules or misconceptions that could be avoided by more careful
example design [Holland et al. 1997; Ragonis and Ben-Ari 2005b; Fleury 2000;
Malan and Halland 2004].

ACM Journal Name, Vol. 1, No. 2, 04 2010.

10 · Marie Nordström and Jürgen Börstler

To emphasize the notion of communicating objects, examples should actually
feature communicating objects, i.e. at least one explicit instance that sends a
message to another explicit instance. To emphasize the differences between ob-
jects and classes, examples should feature at least two instances of at least one
class. Otherwise students might infer that we need a new class for each new
object. However, many textbooks use one-of-a-kind examples heavily, like the
RobberLanguageCryptographer in Listing 42.

Listing 4. Example of a class modelling a one-of-a-kind object.
public class RobberLanguageCryptographer

{

public boolean isConsonant (char c) { ... }

public String encrypt(String s)

{

StringBuffer result = new StringBuffer ();

for (int i = 0; i<s.length (); i++)

{

char c = s.charAt(i);

result.append(c);

i f (isConsonant(c))

{

result.append(’o’);

result.append(c);

}

}

return result.toString ();

}

public String decrypt(String s) { ... }

}

In this example, multiple instances make no sense, unless it is explicitly shown
that different instances can produce different results given the same input. One
reason could be that the encoding-algorithm can vary among the the objects, de-
pending on some information submitted to the constructor. The constructor of
this example is missing, could be empty, and there are no attributes. This is trou-
blesome for novices, and it is not a good role-model for the definition of objects.
This class defines no state, only behaviour, sometimes even static, which is non-
exemplary for objects [Booch 1994]. In this case it is no more than two methods
(with a small helper, isConsonant) that easily could be the responsibility of some
other object. A small change can make this example more suitable as a role-model
for object orientation. One reason for more than one object of this kind is to let
the object take responsibility for knowing its substitution-character, then it will be
plausible to have many different cryptographers.

It is also important to be explicit, i.e. using explicit objects whenever possible.
Following the Law of Demeter is one way to make a design more explicit. Calling
methods of explicit objects instead of calling the nameless object resulting from a

2This example is actually taken from the exam solutions provided for an introductory programming
at a Swedish university.

ACM Journal Name, Vol. 1, No. 2, 04 2010.

Heuristics for Designing OO Examples · 11

method call, makes the behaviour of objects less obscure. Anonymous classes is
way of making the example shorter which often is desired, but contradictory to the
needs of a novice. Since tracing is an important part of learning to program, avoid-
ing anonymous objects and classes, will decrease the cognitive load for a novice.
Avoiding anonymity and using explicit objects mean that the use of static elements
becomes an issue. Static attributes and static methods can confuse novice of the
concepts class, object and behaviour and should preferably be avoided, or deferred.

Another example of non-exemplary objects is when illustrating the instantiation
and use of objects within the class itself. To save space (examples should preferably
be short in terms of lines-of code!), a main method is added to the class, an object is
instantiated in main and the class’ own methods can be called, often to demonstrate
how to use objects of the class. In this case, an unnecessary strain is put on a novice.
It is artificial to instantiate an object inside a static method of the class. How can
something that does not exist create itself? Still one might argue for using the main-
method. One reason for insecurity among novices is the lack of control. A common
question is -How is this run? or -Where is the program? Dealing with objects, there
is no simple answer to these questions. One of the difficulties with object oriented is
the delocalised nature of activities. The flow of control is not obvious, and working
with complete applications is one way of gaining a sense of control for the novice
programmer. “This is a complete program - and I wrote it myself” is a comforting
feeling that should not be underestimated. This can be achieved by adding a class
with the single purpose of acting as a client in need of these objects. Through the
isolation of main, the boundaries of the abstractions/objects stay clear.

4.6 Make Inheritance Reflect Structural Relationships

Inheritance is often over-emphasized and misused when introducing hierarchical
structures early. To show the strength and usefulness of inheritance it is necessary
to design examples carefully. Behaviour must guide the design of hierarchies and
specialisation must be clear and restricted. The Liskov Substitution Principle (LSP)
promotes polymorphism, but restricts the relationship between the base class and
the derived class. This must be taken into account when designing examples. What
can be expected of an object of the base class must always be true for objects of
the derived class.

A common small-scale example for inheritance is the design of the geometrical
shapes rectangles and squares as shown in Listing 5.

Listing 5. A Rectangle class.
public class Rectangle

{

private double height , width;

public Rectangle(double h, double w)

{

setHeight(h);

setWidth(w);

}

public void setHeight(double h)

ACM Journal Name, Vol. 1, No. 2, 04 2010.

12 · Marie Nordström and Jürgen Börstler

{

height=h;

}

public void setWidth(double w)

{

width=w;

}

...

} //class Rectangle

From a mathematical point of view it might be possible to say that a square is
a specialised form of a rectangle (a rectangle with height = length). This could be
regarded a reasonable specialisation hierarchy, demanding only a small adjustment
in Square to make sure that its height and width are the same, see Listing 6.

Listing 6. Square derived from Rectangle.
public class Square extends Rectangle

{

public Square(double s)

{

super(s, s);

}

public void setHeight(double h)

{

super.setHeight(h); super.setWidth(h);
}

public void setWidth(double w)

{

super.setHeight(w); super.setWidth(w);
}

} //class Square

It is reasonable to believe that the designer of the method setWidth, assumed
that setting the width of a rectangle leaves the height unaltered. One could therefore
argue that Square violates the Liskov Substitution Principle which demands that
an object of a subclass can replace an object of its superclasses in any context.

Adhering to the design heuristic “only derive a class from an abstract class” [Riel
1996] would prevent some of the most common problems concerning both exem-
plifying and understanding inheritance. In our opinion, examples of inheritance,
should demonstrate that the base class is an unfinished description shared by struc-
turally related things. Even though geometrically a square might be regarded as a
rectangle, it is not true when talking about objects. The behaviour of the derived
class, Square, is not consistent with the expected behaviour of a Rectangle object.
From a structural point of view one could instead argue that Rectangle should
be a subclass of Square as shown in Figure 3. The inherited method changeSize

would be redefined to change width and height by the same factor.
An extensive discussion of this particular example is given in [Skrien 2009].

ACM Journal Name, Vol. 1, No. 2, 04 2010.

Heuristics for Designing OO Examples · 13

changeSize(factor)

width

Square

changeSize(factor)
changeWidth(factor)
changeHeight(factor)

height

Rectangle

Fig. 3. Rectangle inheriting from Square.

Table I. Correspondence between accepted OO principles (rows) and He[d]uristics
(columns).

H
1:

R
ea

so
na

bl
e

A
bs

tr
ac

ti
on

s

H
2:

R
ea

so
na

bl
e

B
eh

av
io

ur
H

3:
E

m
ph

as
iz

e
C

lie
nt

V
ie

w

H
4:

Fa
vo

ur
C

om
po

si
ti

on

H
5:

E
xe

m
pl

ar
y

O
b
je

ct
s

H
6:

St
ru

ct
ur

al
R

el
at

io
ns

hi
ps

Single Responsibility Principle X X X X
Open− Closed Principle X

Liskov Substitution Principle X X
Dependency Inversion Principle X X
Interface Segregation Principle X X X

Law of Demeter X X
Favour Object Composition Over Class Inheritance X X

5. DISCUSSION
In [Nordström 2009], we have evaluated how well our He[d]uristics cover basic object
oriented concepts and commonly accepted object oriented design principles. The
results of this evaluation, summarized in Table I and Table II, show that all impor-
tant concepts and principles are covered well. This indicates that the He[d]uristics
actually address all properties of object orientation that are generally considered
relevant for novices. However, this does not show whether an example designed
according to these heuristics actually holds high object oriented quality or not.

In [Börstler et al. 2008], we present a checklist for evaluating the quality of
examples according to their technical, object oriented, and didactical quality. This
checklist was later refined and used in a large-scale study reviewing 38 example
programs from 13 common introductory programming textbooks [Börstler et al.
2009; Börstler et al. 2010]. Regarding object oriented quality, the checklist covered
the following quality factors:

—Reasonable Abstractions: Abstractions are plausible from an OO modelling per-
spective as well as from a novice perspective.

—Reasonable State and Behaviour : State and behaviour make sense in the pre-
sented software world context.

ACM Journal Name, Vol. 1, No. 2, 04 2010.

14 · Marie Nordström and Jürgen Börstler

Table II. Correspondence between basic OO concepts (rows) and He[d]uristics (columns).

H
1:

R
ea

so
na

bl
e

A
bs

tr
ac

ti
on

s

H
2:

R
ea

so
na

bl
e

B
eh

av
io

ur
H

3:
E

m
ph

as
iz

e
C

lie
nt

V
ie

w

H
4:

Fa
vo

ur
C

om
po

si
ti

on

H
5:

E
xe

m
pl

ar
y

O
b
je

ct
s

H
6:

St
ru

ct
ur

al
R

el
at

io
ns

hi
ps

Responsibility X X X X
Abstraction X X X X

Encapsulation X X X X X
Information Hiding X X

Inheritance X X X
Polymorphism X X

Protocol/ Interface X X X X
Communication X X X X X X

Class X X X X
Object X X X X X X

Table III. Correspondence between OO quality factors (rows) and He[d]uristics
(columns).

H
1:

R
ea

so
na

bl
e

A
bs

tr
ac

ti
on

s

H
2:

R
ea

so
na

bl
e

B
eh

av
io

ur
H

3:
E

m
ph

as
iz

e
C

lie
nt

V
ie

w

H
4:

Fa
vo

ur
C

om
po

si
ti

on

H
5:

E
xe

m
pl

ar
y

O
b
je

ct
s

H
6:

St
ru

ct
ur

al
R

el
at

io
ns

hi
ps

Reasonable Abstractions X X X
Reasonable State and Behaviour X X X X
Reasonable Class Relationships X X

Exemplary OO X X X X
Promotes ��Object Thinking�� X X X X X

—Reasonable Class Relationships: Class relationships are modelled properly (the
“right” class relationships are applied for the “right” reasons).

—Exemplary OO code: The example is free of “code smells”.
—Promotes “Object Thinking”: The example supports the notion of an OO program

as a collection of collaborating objects.

The results of this study showed that the checklist captured the strengths and
weaknesses of examples well. There was also very high reviewer agreement, indicat-
ing that the checklist is a reliable evaluation instrument. Correspondencies between
the heuristics presented in the present paper and the checklist are summarized in
Table III. The table shows that the heuristics cover object oriented qualities well.

In the following, we will discuss our He[d]uristics with respect to the checklist re-
sults. Examples that scored low according to the checklist should indicate violation
of at least some He[d]uristics and examples that scored high should not violate any
He[d]uristic. We will furthermore discuss in which way the He[d]uristics can help
ACM Journal Name, Vol. 1, No. 2, 04 2010.

Heuristics for Designing OO Examples · 15

to improve an example.
An important type of example is the first user defined class (FUDC) novices

are confronted with. These examples are the initial frame of reference for novices’
perception of object orientation, and are therefore crucial. FUDC-examples must
therefore be exemplary and follow high standards. In [Börstler et al. 2010], we
examined 9 FUDC-examples that shifted significantly in their rating on object
oriented quality factors.

3

2

3

0

1

2

3

Reasonable Abstractions

Reasonable State and Behaviour

Reasonable Class Relationships

1

0

1

2

3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Reasonable Abstractions

Reasonable State and Behaviour

Reasonable Class Relationships

Exemplary OO Code

Promotes "Object Thinking"

3

2

1

0

1

2

3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Reasonable Abstractions

Reasonable State and Behaviour

Reasonable Class Relationships

Exemplary OO Code

Promotes "Object Thinking"

3

2

1

0

1

2

3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Reasonable Abstractions

Reasonable State and Behaviour

Reasonable Class Relationships

Exemplary OO Code

Promotes "Object Thinking"

3

2

1

0

1

2

3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Reasonable Abstractions

Reasonable State and Behaviour

Reasonable Class Relationships

Exemplary OO Code

Promotes "Object Thinking"

3

2

1

0

1

2

3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Reasonable Abstractions

Reasonable State and Behaviour

Reasonable Class Relationships

Exemplary OO Code

Promotes "Object Thinking"

Fig. 4. Average object oriented quality scores for the 21 examples in [Börstler et al. 2010] (range:
+3(extremely poor) .. -3(excellent)).

To illustrate the influence He[d]uristics might have on the design of examples we
examine two example from the study discussed above: one that scored low and one
that scored high.

The lowest-scoring FUDC-example models a GradeBook. In this example dif-
ferent components of the final class are introduced gradually and with each new
version a class GradeBookTest is shown that illustrates the instantiation and use of
GradeBook objects. Initially the class contains only a single method (displayMessage)
that prints a fixed string as a welcome message. For the second version a parameter
is added to the method to vary the welcome message. Next, an instance variable
for the course name and methods to get and set the course name are added. At this
stage the parameter in displayMessage is removed again. Finally a constructor is
added, see Listing 7 for the final (full) version of GradeBook.

Listing 7. First User Defined Class: GradeBook
// GradeBook class with a constructor to initialize the course name.

public class GradeBook

{

private String courseName; // course name

// constructor initializes courseName

public GradeBook(String name)

{

courseName = name; // initialize courseName

}

ACM Journal Name, Vol. 1, No. 2, 04 2010.

16 · Marie Nordström and Jürgen Börstler

// method to set the course name

public void setCourseName(String name)

{

courseName = name; // store the course name

}

// method to retrieve the course name

public String getCourseName ()

{

return courseName;

}

// display a welcome message to the GradeBook user

public void displayMessage ()

{

// this statement calls getCourseName to get the

// name of the course this GradeBook represents

System.out.printf("Welcome to the grade book for\n%s!\n",

getCourseName ());

}

} //class GradeBook

Using our He[d]uristics, we would evaluate the object oriented qualities of this
example in the following way:

(1) Model Reasonable Abstractions: What entity in the problem domain is this
class modelling? How can it be argued that this is a well chosen abstraction
representing a component in the problem domain? It would be reasonable for a
grade book to keep track of student records, but this is not mentioned explicitly,
and not supported in the details of the implementation.

(2) Model Reasonable Behaviour : This class does not have any behaviour at all,
and it is not indicated in the accompanying text what objects of this kind would
be needed for. It states: Class GradeBook will be used to display a message on

the screen welcoming the instructor to the grade-book application.
(3) Emphasize Client View : No discussion of whom the client might be is supplied

by the example. The object does not have state and behaviour, not even in its
final version.

(4) Favour Composition over Inheritance: There are no relationships introduced
in this problem, but if discussed what a GradeBook-object should be respon-
sible for (student records), it would have been possible to indicate this as a
composition of objects.

(5) Use Exemplary Objects Only : The example does not support the idea of many
objects. It starts with just a print method, and does not support the idea of
objects having state and behaviour.

(6) Make Inheritance Reflect Structural Relationships: Not applicable, since no
inheritance is used or needed in this example.

In comparison, we also want to take a look at a high-scoring example, modelling
a class Die, see Listing 8.
ACM Journal Name, Vol. 1, No. 2, 04 2010.

Heuristics for Designing OO Examples · 17

Listing 8. First User Defined Class: Die
public class Die

{

private f ina l int MAX = 6; // maximum face value

private int faceValue; // current value showing on the die

public Die()

{

faceValue = 1;

}

public int roll()

{

faceValue = (int)(Math.random () * MAX) + 1;

return faceValue;

}

public int getFaceValue ()

{

return faceValue;

}

public String toString ()

{

String result = Integer.toString(faceValue);

return result;

}

} //class Die

From the perspective of our He[d]uristics, we would argue as follows:

(1) Model Reasonable Abstractions: The abstraction is crisp and easy to under-
stand. It is also reasonable from a software perspective. It is easy to find
possible applications where such a class could make sense.

(2) Model Reasonable Behaviour : One would expect that a die can be rolled and
rolling should potentially change the die’s face value. That corresponds closely
to a die’s “behaviour” in reality. What seems less reasonable is that all dice
initially have a face value of 1. Also less reasonable is setFaceValue-method,
unless its existence is motivated by the context the example is set in. Further-
more, the Die interface is not minimal; the methods are not orthogonal. The
roll-method returns a new face value, although there is a method for accessing
the face value.

(3) Emphasize Client View : In its original context, the Die-example starts with a
test class exemplifying the instantiation and use of two Die-objects. However,
the usage scenario is not very convincing, since, for example, the face value of
a die is set manually.

(4) Favour Composition over Inheritance: Not applicable. There are no class rela-
tionships in this problem, nor does it seem sensible to extend the example.

(5) Use Exemplary Objects Only : It is easy to imagine applications with many
Die-objects. Die-objects have state, behaviour and a clear, well-defined (single)
responsibility. There are no superfluous printing methods and the toString-

ACM Journal Name, Vol. 1, No. 2, 04 2010.

18 · Marie Nordström and Jürgen Börstler

method just returns a die’s face value, leaving decisions about textual repre-
sentations up to the client.

(6) Make Inheritance Reflect Structural Relationships: Not applicable, since no
inheritance is used or needed in this example.

The issues raised above can be easily fixed, since the underlying abstraction is
reasonable. Small adjustments would turn the Die-class into an exemplary FUDC
example, see Listing 9.

Listing 9. First User Defined Class: Die – slighly adjusted
public class Die

{

private f ina l int FACES = 6; // a standard die has 6 faces

private int faceValue; // current value showing on the die

public Die(int faces)

{

roll (); // sets a random initial face value

}

public void roll()

{

faceValue = (int)(Math.random () * FACES) + 1;

}

public int getFaceValue ()

{

return faceValue;

}

public String toString ()

{

return Integer.toString(faceValue);

}

} //class Die

6. CONCLUSIONS
In this paper, we have described a number of heuristics for the design of object
oriented examples for novices. The foundation for these heuristics are concepts and
principles constituting object orientation. We have also shown how these heuristics
can help in designing or improving examples.

In the He[d]uristics, the word reasonable is rather imprecise. What is reasonable
is context-dependent, and it is therefore vital to design examples carefully and to
discuss the differences in solutions depending on the contexts. Furthermore, reason-
able also indicates that the responsibility lies heavily on the designer of examples to
scrutinize what object orientation really means. As we all have experienced, this is
not a trivial task. There are many limiting conditions to take into account in teach-
ing, and in small-scale examples we always have to compromise. It is important
to take into consideration that examples always fulfill several purposes. One is the
very immediate one; exemplifying a certain concept or construction, syntactical or
ACM Journal Name, Vol. 1, No. 2, 04 2010.

Heuristics for Designing OO Examples · 19

semantical, but there is also a more generic exemplification of the paradigm itself
and what could be called object thinking.

However, surprisingly often, being particular about details can make all the dif-
ference when it comes to upholding object oriented quality.

REFERENCES

ACM. 2008. Computing curricula update 2008. http://www.acm.org/education/curricula/

ComputerScienceCurriculumUpdate2008.pdf. Last visited: 2008-12-15.
Armstrong, D. J. 2006. The quarks of object-oriented development. Communications of the

ACM 49, 2, 123–128.
Armstrong, J. and Mitchell, R. 1994. Uses and abuses of inheritance. Software Engineering

Journal 9, 1, 19–26.
Bloch, J. 2001. Effective Java Programming Language Guide, 1st ed. Addison-Wesley.
Booch, G. 1994. Object-Oriented Analysis and Design with Applications, 2nd edition. Addison-

Wesley.
Börstler, J. 2005. Improving crc-card role-play with role-play diagrams. In Conference Com-

panion 20th Annual Conference on Object Oriented Programming Systems Languages and
Applications. ACM, 356–364.

Börstler, J., Christensen, H. B., Bennedsen, J., Nordström, M., Kallin Westin, L.,
Jan-ErikMoström, and Caspersen, M. E. 2008. Evaluating oo example programs for cs1.
In ITiCSE ’08: Proceedings of the 13th annual conference on Innovation and technology in
computer science education. ACM, New York, NY, USA, 47–52.

Börstler, J., Hall, M. S., Nordström, M., Paterson, J. H., Sanders, K., Schulte, C.,
and Thomas, L. 2009. An evaluation of object oriented example programs in introductory
programming textbooks. Inroads 41, 126–143.

Börstler, J., Nordström, M., and Paterson, J. H. 2010. On the quality of examples in intro-
ductory java textbooks. The ACM Transactions on Computing Education (TOCE) Accepted
for publication.

CACM. 2002. Hello, world gets mixed greetings. Communications of the ACM 45, 2, 11–15.
CACM Forum. 2005. For programmers, objects are not the only tools. Communications of the

ACM 48, 4, 11–12.
Carbone, A., Hurst, J., Mitchell, I., and Gunstone, D. 2001. Characteristics of program-

ming exercises that lead to poor learning tendencies: Part ii. In ITiCSE ’01: Proceedings of
the 6th annual conference on Innovation and technology in computer science education. ACM,
New York, NY, USA, 93–96.

Caspersen, M. E. 2007. Educating novices in the skills of programming. Ph.D. thesis, University
of Aarhus, Denmark.

Chi, M. T. H., Bassok, M., Lewis, M. W., Reimann, P., and Glaser, R. 1989. Self-
explanations: How students study and use examples in learning to solve problems. Cognitive
Science 13, 2, 145–182.

De Raadt, M., Watson, R., and Toleman, M. 2005. Textbooks: Under inspection. Tech.
rep., University of Southern Queensland, Department of Maths and Computing, Toowoomba,
Australia.

Dodani, M. H. 2003. Hello world! goodbye skills! Journal of Object Technology 2, 1, 23–28.
Du Bois, B., Demeyer, S., Verelst, J., and Temmerman, T. M. M. 2006. Does god class de-

composition affect comprehensibility? In SE 2006 International Multi-Conference on Software
Engineering, P. Kokol, Ed. IASTED, 346–355.

Eckerdal, A. and Thuné, M. 2005. Novice java programmers’ conceptions of "object" and
"class", and variation theory. In ITiCSE ’05: Proceedings of the 10th annual SIGCSE confer-
ence on Innovation and technology in computer science education. ACM, New York, NY, USA,
89–93.

Fleury, A. E. 2000. Programming in java: Student-constructed rules. In Proceedings of the
thirty-first SIGCSE technical symposium on Computer science education. 197–201.

ACM Journal Name, Vol. 1, No. 2, 04 2010.

20 · Marie Nordström and Jürgen Börstler

Fowler, M. 1997. Dealing with roles. In Proceedings of the 4th Pattern Languages of Program-
ming Conference (PLoP).

Fowler, M., Beck, K., Brant, J., Opdyke, W., and Roberts, D. 1999. Refactoring: im-
proving the design of existing code. Addison-Wesley Longman Publishing Co., Inc.

Gamma, E., Helm, R., Ralph, E. J., and Vlissides, J. M. 1995. Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley Longman.

Gibbon, C. 1997. Heuristics for object-oriented design. Ph.D. thesis, University of Nottingham.
Gil, J. Y. and Maman, I. 2005. Micro patterns in Java code. In Proceedings of the 20th

Annual ACM SIGPLAN Conference on Object Oriented Programming, Systems, Languages,
and Applications. San Diego, CA, USA, 97–116.

Grotehen, T. 2001. Objectbase design: A heuristic approach. Ph.D. thesis, University of Zurich,
Switzerland.

Guzdial, M. 2008. Paving the way for computational thinking. Commun. ACM 51, 8, 25–27.
Henderson-Sellers, B. and Edwards, J. 1994. BOOK TWO of object-oriented knowledge: the

working object: object-oriented software engineering: methods and management. Prentice-Hall,
Inc.

Holland, S., Griffiths, R., and Woodman, M. 1997. Avoiding object misconceptions. In
Proceedings of the 28th Technical Symposium on Computer Science Education. 131–134.

Johnson, R. and Foote, B. 1988. Designing reusable classes. Journal of Object-Oriented
Programming 1, 2 (June/July).

Kramer, J. 2007. Is abstraction the key to computing? Communications of the ACM 50, 4,
36–42.

Lahtinen, E., Ala-Mutka, K., and Järvinen, H. 2005. A study of the difficulties of novice
programmers. In Proceedings of the 10th Annual SIGCSE Conference on Innovation and
Technology in Computer Science Education. 14–18.

Liskov, B. H. and Wing, J. M. 1994. A behavioral notion of subtyping. ACM Trans. Program.
Lang. Syst. 16, 6, 1811–1841.

Malan, K. and Halland, K. 2004. Examples that can do harm in learning programming. In
Companion to the 19th Annual Conference on Object-Oriented Programming Systems, Lan-
guages, and Applications. 83–87.

Martin, R. C. 2003. Agile Software Development, Principles, Patterns, and Practices. Addison-
Wesley.

McConnell, J. J. and Burhans, D. T. 2002. The evolution of CS1 textbooks. In Proceedings
FIE’02. T4G–1–T4G–6.

Meyers, S. 2004. The most important design guideline? IEEE Softw. 21, 4, 14–16.
Nordström, M. 2009. He[d]uristics – heuristics for designing object oriented examples for

novices. Licenciate Thesis, Umeå University, Sweden.
Pirolli, P. L. and Anderson, J. R. 1985. The role of learning from examples in the acquisition

of recursive programming skills. Canadian journal of psychology 39, 2, 240–272.
Ragonis, N. and Ben-Ari, M. 2005a. A long-term investigation of the comprehension of OOP

concepts by novices. Computer Science Education 15, 3, 203–221.
Ragonis, N. and Ben-Ari, M. 2005b. On understanding the statics and dynamics of object-

oriented programs. In Proceedings of the 36th SIGCSE Technical Symposium on Computer
Science Education. 226–230.

Reenskaug, T., Wold, P., and Lehne, O. A. 1996. Working With Objects: The OOram
Software Engineering Method. Manning/Prentice Hall.

Riel, A. J. 1996. Object-Oriented Design Heuristics. Addison-Wesley.
Rosch, E. 1999. Principles of categorization. In Concepts: Core Readings, E. Margolis and

S. Laurence, Eds. MIT Press, 189–206.
Sanders, K., Boustedt, J., Eckerdal, A., McCartney, R., Moström, J. E., Thomas, L.,

and Zander, C. 2008. Student understanding of object-oriented programming as expressed
in concept maps. In SIGCSE ’08: Proceedings of the 39th SIGCSE technical symposium on
Computer science education. ACM, New York, NY, USA, 332–336.

ACM Journal Name, Vol. 1, No. 2, 04 2010.

Heuristics for Designing OO Examples · 21

Skrien, D. 2009. Object-Oriented Design Using Java. McGraw Hill.
Steimann, F. 2000. On the representation of roles in object-oriented and conceptual modelling.

Data & Knowledge Engineering 35, 1, 83–106.
West, D. 2004. Object Thinking. Microsoft Press.
Westfall, R. 2001. ’hello, world’ considered harmful. Communications of the ACM 44, 10,

129–130.
Wick, M. R., Stevenson, D. E., and Phillips, A. T. 2004. Seven design rules for teach-

ing students sound encapsulation and abstraction of object properties and member data. In
Proceedings of the 35th SIGCSE technical symposium on Computer science education. ACM,
Norfolk, Virginia, USA.

Received October 2010; ...

ACM Journal Name, Vol. 1, No. 2, 04 2010.

