
User’s Guide
libipsfc v0.9

April 19, 2010

Introduction
The In-Place Storage Format Conversion library, libipsfc, leverages the effectiveness of the
recently developed algorithm for in-place matrix transposition [1] to convert between standard
data layouts such as column- and row-major and blocked data layouts. The conversion requires
only a small amount of workspace, typically not larger than a single block of the matrix that
is being converted. Parallelism is exploited on many levels and is expressed using the OpenMP
framework. The library is written in Fortran 95 and OpenMP.

In certain cases, the performance delivered by libipsfc rivals the performance of out-of-place
conversion. For this reason, it might be advantageous to use this library even when out-of-place
conversion is possible. The primary intended application of the library is to support conversion in
face of scarce memory resources.

API

convert_storage_format

This subroutine handles conversion between any pair of storage formats. The parameters are listed
below.

• A
The input and output matrix.

• A11, A12, A21, A22
Pointers to the blocks A11, A12, A21, and A22. Offsets, in terms of matrix elements, from
the base location of A.

• m, n
The matrix A has m rows and n columns.

• fromformat
The storage format of each block of A on input.

• mb1, nb1
The primary block size, i.e., the block size of A11, is mb1 rows by nb1 columns on input.

• toformat
The storage format of each block of A on output.

• mb2, nb2
The primary block size is mb2 rows by nb2 columns on output.

1



transpose_explicitly

Driver for explicit conversion in any storage format. The parameters are listed below.

• A
The input and output matrix.

• A11, A12, A21, A22
Pointers to the blocks A11, A12, A21, and A22. Offsets, in terms of matrix elements, from
the base location of A. On output, the pointers A12 and A21 have been swapped.

• informat
The storage format of each block of A on input and output.

• m, n
The matrix A is m rows by n columns on input and n rows by m columns on output.

• mb, nb
The primary block size, i.e., the block size of A11, is mb rows by nb columns on input and nb
rows by mb columns on output. These parameters are optional in case of the CM and RM
formats.

inplace_transposition_driver

An implementation of the in-place matrix transposition algorithm developed in [1]. The parameters
are listed below.

• p
Number of OpenMP threads to use.

• m, n
The size of the matrix is m rows by n columns.

• A
The input and output matrix.

• nprob
Number of independent problems.

• me, ne
The size of each problem is me rows by ne columns.

• L
Each block is L elements.

Testing/Timing Executables

test_conversion

Tests the storage format conversion aspect of the library. Currently, there are no command line
options to this program, so parameter changes must be applied directly in the source. Each test
case produces one line of output, such as

4 448 512 1 64 64 3 64 64 0.005054 0.220E-07 1 0

The quantities are, in order:

• OpenMP threads,

2



• rows in A,

• columns in A,

• input format (1:CM, 2:CCRB, 3:CRRB, 4:RCRB, 5:RRRB, 6:RM),

• rows in an input block,

• columns in an input block,

• output format,

• rows in an output block,

• columns in an output block,

• parallel execution time,

• normalized parallel execution time (seconds per matrix element),

• 0: wrong answer, 1: correct answer,

• 0: no packing performed, 1: packing performed.

test_transposition

Tests the inplace matrix transposition kernel. The command line options are, in order:

• rows in A,

• columns in A,

• rows in transposition problem,

• columns in transposition problem,

• size of one block,

• ‘yes’: verify answer, ‘no’: do not verify answer,

• number of repetitions of each test case.

The output of the command

test_transposition 450 125 45 25 50 yes 1

might look something like

nth d4 d2(me) d3(ne) d1(L) Tp Tp/el ... verified?
4 1 45 25 50 0.000725 0.129E-07 ... 1

A number of less important columns have been removed to make room. The first column is the
number of OpenMP threads. The four columns after that are the problem parameters. The
column Tp is the parallel execution time, and the column after that is the normalized execution
time. A one in the last column means that the answer was verified to be correct.

3



test_memory

The test_memory executable can be used to obtain two benchmarks of the system: namely the
time to copy an element and the time to scale an element. These values can be used as practical
peak when evaluating the performance of the library.

The command line options are, in order:

• ‘copy’: copy one vector to another, ‘scale’: scale one vector in-place,

• exponent e that determines the length n = 2e of each vector,

• number of repetitions of each test case.

The output of the command

test_memory copy 22 1

will be something similar to

nth n Tp Tp/el copy? scale?
4 4194304 0.060855 0.145E-07 1 0

The last two columns determine the executed benchmark, in this case the ‘copy’ benchmark.

References
[1] Fred Gustavson, Lars Karlsson, and Bo Kågström, “Parallel and Cache-Efficient In-Place Ma-

trix Storage Format Conversion,”, ACM Transactions on Mathematical Software, (submitted)
2010. Also available as Technical Report UMINF 10.05, Department of Computing Science,
Umeå University, SE-901 87, Sweden.

4


