Towards interactive correction of speech recognition errors

Peter Ljunglof

Department of Computer Science and Engineering
University of Gothenburg and Chalmers University of Technology
peter.ljunglof@cse.gu.se

In this project we explore how to make quick fixes to
simple texts using as few interactions as possible. There are
several situations where this could be useful, such as when
you are driving (and don’t have access to a keyboard), if
your device is too small for a proper keyboard (such as a
mobile phone), or if you have a communicative disability
(e.g., cerebral palsy, visual impairment, or something else).

The main contribution of this work is about improving
the online interaction for a user who wants to correct speech
recognition errors. The actual error correction algorithm
that we have used — based on the Levenshtein edit distance
— has not been in focus, and can probably be improved sub-
stantially.

1. Example scenario

One example scenario is if you want to send a text mes-
sage while driving. You dictate your text to your phone and
the phone’s speech recogniser gets almost everything cor-
rect, there are only a few words that turn out slightly wrong
(“will” vs. “well”), or one word is interpreted as two words
(“proceed” vs. “process it”), or even two words which
should be interpreted as two other (“her die” vs. “heard I").
It is also possible that you would need to insert a new word
between to words, or to delete an extraneous word. So, per-
haps the message that you intended to be like this,

“as you have heard I will now proceed”
instead turned out like this:
“as you have her die well now process it”

In this situation it would be great if you could fix the mi-
nor mistakes with just a few interactions, e.g., by point-
ing out the erroneous words or phrases (“her die”, “well”,
“processed”, or “it”) and selecting the correct replacement
(“heard I”, “will”, “proceed”, or deleting the word) from
the alternative words that the phone suggests. If the word
you want is not among the suggestions, the system would
suggest new alternatives to replace with.

This idea probably only works well if the recognised text
is similar enough to the text that was intended. If the recog-
niser does too bad, we would have to resort to other ap-
proaches (e.g., to try to re-recognise the text again).

2. Related work

The approach we are using is similar to (Ljunglof, 2011),
but the main difference is that in this paper we are trying a
statistical approach, as opposed to the grammar-based ap-
proach that was described in our earlier paper.

(Suhm et al., 2001) give a comprehensive overview of
different strategies for error correction of speech recogni-
tion. The main strategies for correcting a misinterpreted
word are (i) selecting from a list of alternatives, (ii) res-
peaking the word, (iii) spelling out loud, (iv) handwriting or
other pen-based gestures, and (v) using a keyboard. In this
paper we focus on (i), to select from a list of alternatives.
According to Suhm et al, all strategies have their advan-
tages and disadvantages, but the main disadvantage with (i)
is that the accuracy tends to be low, i.e., the correct word
seldom is among suggested list of words. However, their
experiments are more than 15 years old, and both speech
recognition quality and NLP techniques have become bet-
ter since then.

(Liang et al., 2014a; Liang et al., 2014b) use a similar
approach to ours, but they have a slightly more compli-
cated interface, where the user makes different gestures on
a touch-screen to indicate the position and type of all er-
rors in the text, after which the system will suggest a new
replacement text.

Previous evaluations of interactive speech input correc-
tion systems have all been performed on human subjects
(Cufin et al.,, 2011; Kumar et al.,, 2012; Suhm et al.,
2001; Vertanen, 2006). In contrast, our evaluation is purely
corpus- and lexicon-based and does not involve human sub-
jects, which can be a promising complement to expensive
evaluations on human subjects.

3. Interaction with the system

The recognised sentence is a list of words, separated by
whitespace. The goal of the interaction is to modify the sen-
tence in small steps to finally reach the intended text. We
provide the user with three interactive editing operations:

e The user can select (i.e., click, point or otherwise spec-
ify) a word in the text. The system interprets this as a
request to either delete the word, or to replace it with
another word (or a pair of words).

e Alternatively the user can select two words at once,
which the system interprets as a request to replace both
words at the same time.

o Finally the user can select a space between two words.
This is interpreted as a request to insert a new word.

The system now tries to suggest new words to replace (or
insert), and displays them in a menu. The user can select
one of the suggestions, or they can ask the system to display
another menu of replacement words.



4. Implementation

The main difficulty of the implementation is how to come
up with a reasonable list of replacement words. There are
several possible approaches, more or less advanced. In this
initial attempt we have chosen a simplistic approach, to be
able to perform an initial evaluation to see if the basic idea
is feasible and worth exploring in more detail.

When a word is clicked, the system calculates a score
for every word in a dictionary of possible replacements.
The score of a replacement word is calculated from the fre-
quency of the word, and its phonetic similarity to the origi-
nal word.

The word frequencies are calculated from the unigram
frequencies in the 3 million word Switchboard corpus, pub-
lished as part of the Open American National Corpus.! We
do not take the surrounding context into account when rank-
ing, because the Switchboard corpus is too small to get use-
ful bigram or trigram frequencies.

The phonetic similarity is measured by calculating the
Levenshtein edit distance (Levenshtein, 1966) between the
phonetic transcriptions of the source and the replacement
words. The phonetic transcription is taken from the CMU
pronouncing dictionary of the CMU Sphinx speech recog-
nition engine,? containing more than 120 000 words.

Our approach for splitting a source word into two target
words is done in a brute force manner: we split the source
word at all possible locations and then apply the algorithm
for single words twice.

5. Evaluation

We performed an initial evaluation to see if the basic idea
would be worthwhile to explore further.

5.1 The evaluation corpus

To create a corpus of speech recognition errors, we used
the open-source speech recognition training set collected
by the VoxForge project.> This training set consists of
46 824 recorded utterances paired with gold-standard tran-
scriptions. We used the CMU Sphinx speech recogniser
to automatically transcribe each recorded utterance. 44%
of the utterances were recognised incorrectly and we col-
lected them into a parallel corpus of speech recognition er-
rors which contains 20 556 utterances.

To measure how incorrect the recognition was, we used
the Levenshtein character distance. The distribution of the
“incorrectness” of the utterances is shown in table 1. As can
be seen, the majority (52%) of the erroneous recognitions
differ with at most 10 character edits.

This is encouraging for our idea of interactive editing of
errors, since we believe that our approach works best for
doing minor changes.

5.2 Experiments

Since our hypothesis is that click-and-select editing works
best for correcting minor errors, we decided to do an initial

'Open American National Corpus, http://anc.org/

2CMU Sphinx speech recognition toolkit,
http://cmusphinx.sourceforge.net/

3VoxForge project, http: //voxforge.org/

Character distance N:o utterances

1-5 5551 27%

6-10 5127 25%
11-15 3495 17%
16-20 2557 12%
21-25 1586 8%
26-30 931 5%
31-85 1309 6%

Table 1: Distribution of errors in the evaluation corpus.

Error type Correct Possible Difficult
Word deletion 14 - -
Word insertion 5 2 3
Word replacement 54 13 8
Multi-word repl. 3 2 9
Total 76 17 20

Table 2: Distribution of suggested error corrections.

evaluation of utterances with minor errors. From the eval-
uation corpus, we selected the 5551 utterances that had a
character edit distance of 1-5.

From this smaller evaluation set we randomly selected
100 random utterances, and manually annotated which re-
placements, deletions or insertions that should be done to
correct the utterances. Some utterances require more than
one correction, so in total there were 113 corrections that
we evaluated. Of these corrections, 14 were deletions, 10
were insertions, 75 were single-word replacements, and 14
were multi-word replacements (such as “read I” to “red
eye”, or “fort” to “for it”, or “camp fang” to “campaign”).

For each of these 113 corrections, we asked the system
to list the 50 highest ranked modifications. Then we man-
ually checked if the correct modification was among these
50 suggestions. The results from this evaluation is shown
in table 2.

The system suggested a correct modification in 76 of the
113 test cases. All deletions were correct, as were most
of the single-word replacements, and half of the insertions.
The multi-word replacements were more difficult however,
which is not surprising.

We analysed the 37 failed cases in more detail, and came
to the conclusion that 17 of them would probably have been
treated correctly, if we had used more accurate bigram and
trigram statistics from a larger corpus. Those 17 utterances
contain very common sub-expressions such as “all rights
reserved”, “all the rest” and “passed through”. The final 20
cases will probably require more work.

6. Discussion

Naturally a manual evaluation of only 113 examples is
bound to give inconclusive results. However, the results
that we got are very promising considering the simplistic
algorithm we use for finding suggestions. For 76 of the
utterances the system returns a correct modification among
its list of suggestions. For another 17 utterances, we believe
that there is a good chance that a slightly improved system
will suggest the correct replacement.



The evaluation is purely corpus- and lexicon-based and
does not involve any human subjects, so it is possible to do
an extensive automatic evaluation on the whole error cor-
pus. However, such a fully automatic evaluation will not be
able to distinguish between possible and difficult cases, as
was shown in table 2.

As mentioned earlier, (Suhm et al., 2001) list five differ-
ent correction strategies, and we have only focused on one
of them — to select from a list of alternatives. The other
strategies are of course still an option, and sometimes they
are more useful. However, our strategy can be tried in paral-
lel with other strategies — e.g., the system can present a list
of options, and the user can either select the correct word,
or speak (or spell) the correction out loud. In other words,
using one correction strategy does not necessarily exclude
using another strategy at the same time.

In some settings, displaying alternatives on a screen is
not an option, e.g., when the user is visually impaired or
when driving a car. However, by using a speech interface
such as the voice cursor (Larsson et al., 2011a; Larsson et
al., 2011b), a variant of our strategy could be very useful.

6.1 Future work

This is an initial report of an ongoing project. In the future
we plan to try out several improvements of the selection and
ranking algorithms for suggestions, such as:

e Use a distance measure that assigns different weights
to more or less similar phonemes.

e Use a larger corpus for calculating word frequencies.

e Use context dependent features, such as bigram or
trigram frequencies, so that the system can suggest
words that make sense semantically.

e Use morphological analysis, so that the system can
suggest grammatically correct inflections of the re-
placement words.

e Use part-of-speech tagging and grammatical analysis,
so that the system can suggest words that make sense
grammatically.

Furthermore, we plan to perform a fully automatic eval-
uation on the improved algorithms using the whole error
corpus.

References

Jan Cufin, Martin Labsky, Tomas Macek, Jan Kleindienst,
Holger Quast, Hoi Young, Ann Thyme-Gobbel, and Lars
Konig. 2011. Dictating and editing short texts while
driving: Distraction and task completion. In Automo-
tiveUI 2011, 3rd International Conference on Automo-
tive User Interfaces and Interactive Vehicular Applica-
tions, Salzburg, Austria.

Anuj Kumar, Tim Paek, and Bongshin Lee. 2012. Voice
typing: A new speech interaction model for dictation
on touchscreen devices. In Proceedings of CHI 2012,
SIGCHI Conference on Human Factors in Computing
Systems, Austin, Texas, USA.

Staffan Larsson, Alexander Berman, and Jessica Villing.
2011a. Adding a speech cursor to a multimodal dialogue
system. In Proceedings of Interspeech 2011, Florence,
Italy.

Staffan Larsson, Alexander Berman, and Jessica Villing.
2011b. Multimodal menu-based dialogue with speech
cursor in DICO II+. In Proceedings of ACL-HLT’11:
49th Annual Meeting of the Association for Compu-
tational Linguistics, Systems Demonstrations, Portland,
Oregon.

Vladimir I. Levenshtein. 1966. Binary codes capable of
correcting deletions, insertions, and reversals. Soviet
Physics Doklady, 10(8):707-710.

Yuan Liang, Koji Iwano, and Koichi Shinoda. 2014a. An
efficient error correction interface for speech recogni-
tion on mobile touchscreen devices. In Proceedings of
SLT 2014, IEEE Spoken Language Technology Work-
shop, South Lake Tahoe, Nevada, USA.

Yuan Liang, Koji Iwano, and Koichi Shinoda. 2014b. Sim-
ple gesture-based error correction interface for smart-
phone speech recognition. In Proceedings of Interspeech
2014, Singapore.

Peter Ljunglof. 2011. Editing syntax trees on the surface.
In Nodalida’11: 18th Nordic Conference of Computa-
tional Linguistics, Riga, Latvia.

Bernard Suhm, Brad Myers, and Alex Waibel. 2001. Mul-
timodal error correction for speech user interfaces. ACM
Transactions on Computer-Human Interaction, 8(1):60—
98.

Keith Vertanen. 2006. Speech and speech recognition dur-
ing dictation corrections. In Proceedings of Interspeech
2006, Pittsburgh, Pennsylvania, USA.



