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Abstract
This paper presents results from research on the application and suitability of open-source machine learning and deep learning
libraries for semantic classification of natural language. More specifically, Convolutional Neural Networks were implemented in
Google’s TensorFlow and built and trained according to state-of-the-art methodology. The performance of the resulting models
were compared against baseline results obtained by training and evaluating Naive Bayes classifiers and Support Vector Machines,
as well as against models that Telia has built and deployed themselves. The results indicate that such deep neural networks can be
successfully built and trained to outperform the competition on these specific classification tasks, which involve up to 101 distinct
target classes. Based on these results, we hypothesize that the new models can successfully be deployed and improve call-routing
systems, and furthermore be used as a component of a larger and more sophisticated system that can perform multiple inference
tasks in parallel to find deeper understanding of speech.

1. Introduction
Routing telephone calls based on fluent speech customer
responses is still a challenging task. Despite increased per-
formance of automatic speech recognition (ASR) systems,
the degrees of freedom of input introduced by fluent speech
descriptions demand more sophisticated natural language
understanding (NLU) systems compared to traditional sta-
tistical methods.

The objective of this master thesis was to research
whether open-source libraries for machine learning (ML)
and deep learning (DL) can be used to build NLU mod-
els that are suitable for use and deployment in said context.
Furthermore, the intention was to asses how such models
perform compared to Telia’s own models.

2. Related Work
Training and evaluating NLU models for classifying text
with ML algorithms is a topic that has been researched
extensively over the years. In this project, the suitability
of Convolutional Neural Networks (CNNs) for the desired
goal was investigated. Naive Bayes (NB) classifiers and
Support Vector Machines (SVMs) were also trained and
evaluated in order to establish baseline results for compari-
son purposes.

NB classifiers are commonly applied to establish base-
line results thanks to their simplicity, efficiency, and rel-
atively good results despite the assumption of conditional
independence between every pair of features (Rennie et al.,
2003). They do however not make a good fit for more so-
phisticated systems in part due to the fact that the modelling
assumption often violates the circumstances under which
most real-world events occur. This especially holds true
due to the nature of text in which there clearly exists de-
pendencies between words.

SVMs have for a long time been regarded as the state-
of-the-art in text classification. These classifiers are fast,

robust, works well during both linear and non-linear sepa-
ration thanks to the kernel trick, can effectively cope with
sparse data, and have a strong ability to generalize knowl-
edge in high-dimensional spaces (Joachims, 1998). How-
ever, it has been shown (Bengio and LeCun, 2007) that non-
parametric algorithms such as SVMs are limited in their
ability to scale intelligent behavior to high-dimensional
problems.

2.1 Convolutional Neural Networks
CNNs are a special kind of feed-forward neural networks
that have an architecture that is based on early 60s re-
search (Hubel and Wiesel, 1962) that made new discover-
ies on the arrangement of neurons in the visual cortex of
cats. When originally proposed, new state-of-the-art per-
formance was presented for multiple different classification
tasks. Compared to the traditional fully-connected network
architecture, CNNs have three distinguishing characteris-
tic features in local receptive fields, shared weights, and
sub-sampling which make them more efficient in terms of
computational complexity (LeCun et al., 1998).

Incidentally, CNNs were originally designed to operate
on images and to take the spatial structure of data into ac-
count, making these suitable for computer vision. Yet, by
using a feature representation scheme known as word em-
beddings (Mikolov et al., 2013) that embeds words into
a high-dimensional space, the same kind of convolution
operations can be made on sentences to capture the one-
dimensional spatial aspect of word ordering. This has led to
new state-of-the-art results on a variety of natural language
processing (NLP) tasks such as sentiment analysis (Kim,
2014), semantic parsing (Blunsom et al., 2011), and named
entity recognition (Collobert et al., 2011).

These results are promising, but they have however
mostly been in the form of proof-of-concepts on tasks in
which written text with relatively few target classes are dis-
tinguished between. In real, live systems, it is not uncom-



Dataset Number of Semantic Vocabulary
Utterances Categories Size

A 77 291 69 5 333 (6 903)
B 70 662 94 7 199 (9 298)
C 34 434 46 2 328 (3 446)
D 33 715 101 4 043 (5 475)

Table 1: Some of the main characteristics of the four dif-
ferent datasets used during this research. The numbers in
parenthesis indicate the value prior to pre-processing.

mon that one needs to be able to scale this behavior to many
more target classes. Furthermore, spoken utterances tend to
be more chaotic and less structured compared to written ut-
terances. As such, this work attempts to bring these previ-
ously presented concepts to a complex real world problem.

3. Method and Implementation
3.1 Datasets and Pre-processing
Four different datasets were used during this project, each
of which contains utterances and semantic categories. The
utterances consist of phrases of spoken Swedish that have
been transcribed by an ASR engine. Each utterance has
subsequently been manually paired with a semantic cate-
gory that reflects the intention of the utterance. The data
originates from four different companies and have been col-
lected through recorded telephone calls in an initial phase
of deployment of the currently used systems. The content
of these datasets is hence the same content that has been
used by Telia to train and evaluate their own models prior
to deployment in a live setting. The inclusion of multiple
different datasets is motivated by the importance of getting
a sense of how the ML algorithms under study perform with
respect to different dataset characteristics. Table 1 gives an
overview of some of the features of the datasets.

Prior to the feature extraction process, the raw data of the
utterance transcript files was pre-processed in order to sani-
tize the data and reduce its dimensionality. This pipeline in-
cludes steps such as lowercasing, removal of punctuations
and stopwords, conversion of numbers into a designated
number placeholder tag, and application of stemming.

3.2 Features
Features were extracted using a bag-of-words (BoW) ap-
proach with binary and term frequency-inverse document
frequency weighting schemes for the baseline algorithms.
The CNNs were however designed to take word embed-
dings as their input data in order to supply these with more
dense feature vectors that overcome the loss of information
on word order and semantic relatedness caused by BoW. In
this project, two types of word embeddings were subject to
investigation. The first approach relies on a precursor em-
bedding layer built into the network. The weights of this
layer were randomly initialized and learnt during training
of the downstream classification task. The second approach
instead injects externally trained embeddings into this em-
bedding layer. This is accomplished by using an implemen-
tation of Google’s word2vec (Mikolov et al., 2013) to learn
embeddings on in-domain data in an unsupervised fashion.

Model A B C D
BNB 90.69 85.52 86.25 88.54
MNB 91.27 86.13 86.22 88.80

Lin-SVM 94.55 89.80 91.23 92.61
RBF-SVM 94.91 90.10 92.03 92.37
CNN-rand 95.25 90.52 92.30 92.60
CNN-pre 94.89 90.49 92.00 92.52

Telia 95.05 91.07 91.98 93.11

Table 2: Results in terms of classification accuracy. BNB:
Bernoulli NB. MNB: Multinomial NB. Lin-SVM: Linear
SVM. RBF-SVM: SVM with RBF kernel. CNN-rand:
Convolutional Neural Network with randomly initialized
embeddings. CNN-pre: Convolutional Neural Network
with pre-trained embeddings. Telia: Telia’s own model.

3.3 Hyperparameter Optimization and Evaluation
The relatively cheap computational costs involved when
running the NB and SVM experiments paved way for ex-
tensive fine-tuning of model hyperparameters. This was ap-
proached by applying a technique called grid search, which
enables exhaustive optimization that searches for an opti-
mal model in a hyperparameter space defined by the Carte-
sian product of all possible hyperparameter values. This
step as well as the model evaluation was bundled together
to constitute a nested stratified 10-fold cross-validation in
which the grid search is incorporated as well. Such an ap-
proach delivers results which are as unbiased as possible
and that are minimally influenced by variance.

The CNNs are however much more expensive to opti-
mize. Long training times combined with the fact that
the number of possible combinations of hyperparameters
grow exponentially and thus suffer from the curse of di-
mensionality make exhaustive parameter search infeasible.
As such, the current approach has been to rely on a mea-
sure of heuristics and expert knowledge, as well as to ap-
ply moderately aggressive early-stopping methods, in order
to make an educated guess on how to start searching for a
good model configuration.

Models were evaluated according to a range of perfor-
mance metrics which were measured on a macro scale. Ac-
curacy, F1-score, precision, and recall are found among
these. Furthermore, learning curve analysis is performed in
order to analyze how each respective algorithm is affected
by the amount of data that is available during training. This
is an especially interesting aspect to research for the CNN,
since deep learning algorithms are known to require a lot of
data in order to produce good results.

4. Results
Some of the main results obtained during the experiments
are shown in Table 2. Numbers in bold indicate the best
observed score per dataset. These measurements were ob-
tained using the same network architecture for all datasets.
The selection was based on the fact that this architecture
appeared to be relatively stable and provided good results
across all datasets. This constraint is simply motivated
by the computational costs involved in the hyperparameter
tuning of CNNs and the limited duration of the project.
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Figure 1: Results of the learning curve analysis. The plots illustrate the mean training and test set accuracies as functions
of the available fraction of the training set.

Figure 1 depicts the results of the learning curve analy-
sis. The green and dashed lines that continue past the 1.0
mark along the horizontal axis predict the future increase of
accuracy as the dataset size is increased. These were pro-
duced by fitting an inverse power law function to the entire
learning curve and fitting a linear function to the last four
samples of it. The prediction of the polynomial fit was of-
ten overly optimistic, hence why the linear prediction was
necessary in order balance it. The true progression is likely
somewhere between the two lines.

5. Discussion
The results of Table 2 show that the CNNs and Telia’s mod-
els tie in terms of best accuracy per dataset. The CNNs per-
form better on datasets A and C, whereas Telia’s models
does so on datasets B and D. Another interesting observa-
tion is that the pre-trained word embeddings gave no boost
of performance. This is likely explained by the fact that the
corpus on which these were trained was not large enough.

The learning curves of Figure 1 show that the CNNs
would benefit from more data. More specifically, in order
for these to reach and perform better than Telia’s models
on datasets B and D, an expansion of the dataset size by a
factor of around 1.2 and 1.1 would be required. Further-
more, the learning curves show that the neural networks
suffer from overfitting and would benefit from stronger reg-
ularization. This would however require additional hyper-
parameter tuning and was not feasible during the scope of
the project. Despite this obvious overfitting, the CNNs per-
form well. This, along with the fact that the same architec-
ture was used for all datasets, indicates that the presented
results should be interpreted as soft lower margins of what
this algorithm can achieve in this context.

6. Conclusions
The main goal of this master thesis was to research and
assess the suitability of using open-source ML and DL li-
braries to build a specific type of NLU model. This model is
aimed at routing fluent speech telephone calls by semantic
classification of natural language. The results of the project
show that the CNNs beat the baseline algorithms and put
up with a good challenge with Telia’s models. In fact, the
CNNs beat Telia’s models on two out of four datasets. The

results should be interpreted as soft lower margins for what
can be achieved due to the presence of overfitting and an
insufficient amount of hyperparameter tuning due to time
restrictions. Despite this, the proof of concept of the project
is important and it was shown that CNNs are a very viable
approach to accomplish the stated goal.

This also indicates that TensorFlow (Abadi et al., 2015),
and likely also similar alternatives, can successfully be used
to construct NLU models that are suitable for use in a call-
routing context. We hypothesize that such a model may be
suitable as a component of a larger and more sophisticated
system that performs several different NLU tasks in parallel
(e.g. with the addition of sentiment analysis, named entity
recognition, etc.) in order to gain a deeper understanding of
spoken utterances. In the context of customer support via
telephone, this could potentially pave the way for construc-
tion of systems of higher intelligence that start to resemble
that of a truly smart virtual assistant.
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