Modelling Synchrony of Non-Verbal Cues in Parent—Child Interaction
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1. Introduction

A cognitive model of language acquisition ultimately needs
to be grounded in social interaction and multimodality to
reflect the significance of phenomena like joint attention,
non-verbal cues and intention-reading in language learn-
ing (Baldwin, 1991; Baldwin, 1993; Tomasello, 2000). A
behaviour which involves all of these phenomena is syn-
chrony; that is, timewise co-occurrences of signals in sep-
arate modalities displayed by the parent, such as sound
(speech) and vision (gaze direction, hand movements). In
previous studies of a multimodally annotated corpus of
parent—child interaction, we have shown that parents who
interact with infants at the early word-learning stage (7—
9 months) display a large amount of synchrony, but that
this behaviour tails off with increasing age of the children
(Bjorkenstam and Wirén, 2014). To shed light on the mech-
anisms underlying synchrony, we have also investigated the
informativeness of the non-verbal cues, that is, to what ex-
tent they can actually help the infant discriminate between
different possible referents (Bjorkenstam et al., 2016). A
crucial aspect of this is the timing of the cues, and whether
the informativeness of the cues used by the parents is un-
affected by small displacements in time (that is, by less
synchrony). This paper reports continued work along these
lines.

2. Related work

Several computational models of word learning based on
cross-situational information about sounds and perceptu-
ally salient objects have been put forward, for example, Yu
and Ballard (2007), but most of these models do not take the
time-order of events into account. One exception is Frank
et al. (2012), who attempted to quantify the informativeness
of eye gaze, hand positions and hand pointing (collectively
called social cues) directed at objects as coded from video
sessions of parent—child interaction. For each spoken ut-
terance by the parent, they coded a) the toys present in the
field of view of the child at the time of the utterance; b)
the objects in the context that were being looked at, held
or pointed to by the parent (the social cues); c) the objects
that were being looked at or held by the child (referred to as
attentional cues); and d) the parent’s intended referent for
the referring name, noun phrase or pronoun in the utterance
(“look at the doggie”, “look at his eyes and ears”).

An analysis of the informativeness of the individual so-
cial cues showed that they were noisy, and that no such
cue was able to disambiguate fully between objects on its

own. (The number of objects in the child’s view, hence
the ambiguity, for each utterance was on average between
1.2 and 2.9 per dyad.) The cues were used frequently but
correct only half or less than half of the time in the sense
that they were directed at the object referred by the parent.
Simulations with a supervised classifier showed that only a
moderate improvement of the accuracy could be achieved
by combining information from different cues. However,
a possible explanation of this noisiness is the coarse tem-
poral granularity of the model, where a referent was pre-
dicted from all the events observed during an entire utter-
ance. Thus, any temporal coordination below the utterance
level was invisible. For example, if the parent was look-
ing first at one object and then at another object during the
same utterance, the coding did not capture the timing and
ordering of these events.

Bjorkenstam et al. (2016) showed that it is possible to
obtain a much more precise picture of the informativeness
of non-verbal cues in parent—child interaction by adopting
continuous time resolution, which in turn was made pos-
sible by their fine-grained, multimodal corpus annotation.
As a proxy for informativeness, they used classification ac-
curacy with respect to verbally referred objects, with pre-
dictions being based on information about the non-verbal
cues, and with different assumptions about the length of
short-term memory. A limitation of the study, however,
was that only a memory backwards in time was modelled
in the sense that only non-verbal cues that occurred before
the verbal mentions were remembered (that is, generated
features used for prediction). But a frequently occurring
phenomenon, not captured by this model, is that the parent
looks at the child at the time of the mention, and only then
looks at the object. This is typically what happens when the
parent “follows in” on the child’s current focus (Tomasello
and Farrar, 1986).

The aim of this paper is to generalise the earlier model to
the more realistic scenario in which there is both a forward
and a backward memory, and to determine what effects this
has on the informativeness of the non-verbal cues.

3. Data
3.1 Corpus

Our primary data consist of audio and video recordings (us-
ing two cameras) from parent—child interaction in a record-
ing studio at the Phonetics Laboratory at Stockholm Uni-
versity (Lacerda, 2009). The corpus consists of 18 parent—
child dyads, totalling 7:29 hours, with three children each



participating longitudinally in six dyads between the ages
of seven and 33 months. The mean duration of a dyad is
24:58 minutes. The scenario was free play where the set
of toys varied over time, but where two target objects (cud-
dly toys) were present in all dyads and thus very frequently
referred to.

3.2 Coding

All annotation of the corpus was made with the ELAN
tool (Wittenburg et al., 2006) according to the guideline
of Bjorkenstam and Wirén (2014). Annotations in ELAN
are created on multiple tiers that are time-aligned to the au-
dio and video, with separate tiers for the parent and child,
as well as for events that include different verbal and non-
verbal cues. The latter are coded in cells spanning the corre-
sponding timelines on the associated tier, thereby allowing
us to track information from the cues very precisely.

First, for each dyad, the discourse segments in which a
target object was in focus were coded by creating cells that
spanned the corresponding timelines in a designated tier,
annotated with the name of the focused object. “Focus”
here means that at least one of the participants’ attention
was directed at a target object, and that, in the course of
the segment, at least one verbal reference to the object was
made by the parent. (Thus, there is not necessarily joint at-
tention to the target object in the whole of such a segment.)
Such a segment was considered to end when the focus was
shifted permanently to another (target or non-target) object.

These segments were then coded for verbal and non-
verbal referential cues, involving speech, eye gaze and
manipulation of an object by hand. The coding used
cells spanning the timelines corresponding to the respective
events in a separate tier for each type, and with separate
tiers for the parent and child, thus resulting in six ELAN
tiers overall.

The coding of speech involved all references to objects
and persons present in the room by means of a name, defi-
nite description or pronoun. Each such reference was coded
in an annotation cell spanning the timeline corresponding
to the duration of the expression, with addition of its ortho-
graphic transcription and the speaker’s intended referent.
The coding of gaze similarly consisted of a cell spanning
the timeline of the act, with a specification of the agent and
object looked at (see Table 1). The coding of manual object
manipulation additionally distinguished between different
types of object manipulation acts (see Table 2).

An additional coding which is relevant here distinguishes
(re)introductions of objects where the parent is responding
verbally to the child’s attention (follow-in) or getting the
child’s attention (bring-in) by means of speech and/or ob-
ject manipulation (Tomasello and Farrar, 1986).

4. Method

Following Frank et al. (2012), we use classification accu-
racy as a proxy for the variable we are really interested in,
namely, the informativeness of different cues. Highly in-
formative cues provide relatively unambiguous information
about the referent, and a classifier should then be able to
identify the referent with a high level of accuracy. The clas-
sifier is only given information about the non-verbal cues

Table 1: Tuples extracted from coding of gaze. P = parent,
C =child, Siffu = target object 1, Kucka = target object
2

Element | Values

Predicate | gaze

Agent P,C

Patient Siffu, Kucka, C,bag-1id,
bag, P, ...

Table 2: Tuples extracted from coding of hand manipula-
tion of object. P = parent, C = child, Si f fu = target object
1, Kucka = target object 2

Element | Values

Predicate | hold, reach, move, show, ...

Agent P,C

Patient Siffu, Kucka, C,bag-1id,
bag, P, ...

and the time of the parent’s referring utterance. We used su-
pervised classification in the form of multinomial logistic
regression, equivalently formulated as maximum entropy
modelling (Berger et al., 1996). We performed multino-
mial classification between the possible referents at time ¢
coinciding with the start of a mention by the parent, using
predictors that depended on the type of event as well as the
time passed since the event finished.
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Figure 1: Backward memory as seen from spoken mention,
where t,,, is the time at which the mention starts and ¢t is
the time at which the non-verbal event ends. Features for
on-going non-verbal events have value 1. After the end of
the non-verbal event, the value is determined by the decay
function.

As features for the classifier, we extracted infor-
mation from the coding which we represent as tu-
ples.  Thus, for gaze, we extracted triples consist-
ing of (gaze,agent,patient), as shown in Table 1,
and for object manipulation triples in the format
(predicate, agent, patient) as shown in Table 2, for exam-
ple, (pick—up,C, car). Each combination of values in a
tuple that encodes a non-verbal event corresponds to a fea-
ture in the model. To compute the value of this feature at
time ¢, we used an exponential decay function to simulate
short-term memory, as illustrated in Figure 1. The memory
equation has the form f(t) = e~**. Here, k is a constant



Table 3: Accuracy (in percent) of model prediction given
type of cue. Columns show from which agents information
is incorporated into the model (P = parent, C = child, P +
C = both). The upper half shows results from our model
as described. The lower half uses the same data but only
utterance-level binary features, thus emulating the model
of Frank et al. (2012).

Type of cue used | P C P+C
Fine-grained temporal information

Hand 729 71.8 825
Gaze 75.8 80.8 842
Hand + gaze 81.7 83.6 88.7

Utterance-level temporal information

Hand 61.5 641 66.6
Gaze 614 598 623
Hand + gaze 644 650 69.5

that determines the half-life of the memory, and ¢ is defined
by t = t,, — t., where t,, is the time at which the mention
starts, and ¢, is the time at which the non-verbal event ends,
or t = 0 in case these two overlap. Features for on-going
non-verbal events are defined to have a value of 1; when
a non-verbal event ends, the value of the feature is deter-
mined by the decay function. In case the non-verbal event
and mention overlap, the event will have a value of 1, ac-
cording to the memory equation. Future non-verbal events
(that have not yet occurred) are here defined to have a value
of 0. Put differently, there is no forward memory.

We trained and evaluated models using leave-one-out
cross validation on the recording session level, so that we
fitted as many models as there are recording sessions (18).
Each model was fitted using data from all but one session,
then used to predict the referents of the remaining session.
This method allowed us to use as much as possible of the
available data, while at the same time avoiding session-
specific context to influence the model.

5. Informativeness and timing

Bjorkenstam et al. (2016) used the model described above
to obtain measures of the informativeness of the non-verbal
cues from the parent and child separately and jointly. Ta-
ble 3 shows the accuracy of the model’s predictions given
different cue combinations and agents. The half-life of the
short-term memory decay in this experiment was 3 seconds.
The baseline was given by the most frequently referred ob-
ject (target object 1, Siffu), which was used in 58% of
the cases.

As seen in the table, gaze is more informative than hand
manipulation of objects, and, perhaps somewhat surpris-
ingly, the most informative cue is the child’s gaze. We can
also see that the prediction accuracy is higher when the in-
formation sources are combined, as expected. The lower
half of Table 3 shows the results of emulating the model of
Frank et al. (2012), that is, associating all features with the
utterances with which they overlap (with no use of menory
decay). The result is a sharp decline in prediction accuracy,
only slightly above the baseline. Also, gaze is then less in-
formative than hand manipulation. Both of these results are

consistent with the those of Frank et al., and the conclusion
drawn by Bjorkenstam et al. (2016) is that continuous time
resolution is needed for a proper analysis of the informa-
tiveness of the cues.

In a further experiment, Bjorkenstam et al. (2016) trained
a classifier on input where the timing of the predictions rel-
ative to the onset of speech had been moved by whole sec-
onds up/down to +4 seconds. This is comparable to dis-
placing the speech relative to the non-verbal event with the
same amount of time. They also explored how different
memory decays influenced classification accuracy by com-
paring classifiers with a memory half-life of 1, 3 and 10
seconds, respectively. The effects of the timing displace-
ment on accuracy is shown in Figure 2. The 0 second ver-
bal mention offset is the baseline, with an accuracy of about
86% for the 1 second memory model, and around 88% for
the 3 and 10 second memory models. Accuracy dropped
when verbal mention offset was displaced. Offsetting the
verbal mention ahead in time by as little as two seconds re-
sulted in accuracy scores of 82% for the 1 second model,
and 84% for the 3 and 10 second memory models. Delay-
ing the verbal mention by 2 seconds had a less detrimental
effect, in particular for the 10 second model. Interestingly,
the asymmetry resulting from displaced timing is consistent
with experimental results in another paradigm (Trueswell et
al., 2016, p. 128), where observers try to estimate referen-
tial transparency by reconstructing intended referents from
non-verbal cues as they watch a muted video of parent—
child interaction.
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Figure 2: Classification accuracy (y-axis) as a function of
verbal mention offset whole seconds from actual word oc-
currence in parent speech up/down to 4 seconds (x-axis),
given a short-term memory of 1, 3, and 10 seconds, respec-
tively. Time = O coincides with the start of the mentions by
the parent. The memory only goes backwards as seen from
the spoken mention.

6. Backward and forward memory

The model described above only handles cases where the
non-verbal cue occurs (or starts) before the verbal mention.
However, to cover situations where the non-verbal cue oc-
curs after the verbal mention, a memory that looks forward
in time as seen from the mention is also needed. To this end,
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Figure 3: Classification accuracy similar to Figure 2, but
with a memory going symmetrically forward and backward
as seen from the spoken mention at time = 0.

we added a forward memory to the model, and trained clas-
sifiers in which the forward memory was symmetric with
the backward memory in terms of half-lifes (1, 3 and 10
seconds).

The results of the experiment are shown in Figure 3.
Here, the optimal timing for the parent’s spoken mention
occurs about a second earlier for the 1 second memory than
the actual timing in the data, extending even further for the
longer memories. This indicates that a common behaviour
in our data is that parents react on something that has al-
ready happened, and “follow in” in response to an initiative
of the child.

7. Discussion

The aim of this paper was to arrive at a fine-grained model
of the informativeness of non-verbal cues in parent—child
interaction and the effects of displaced timing of the non-
verbal cues. To this end, we generalised our earlier model
to include a memory that extends both backward and for-
ward in time. The rationale for this generalisation is to be
able to cover situations where any of the agents (parent or
child) takes the initiative. What we have seen is that the op-
timal timing for the parent’s spoken mention occurs earlier
than in the data, in contrast to the model with only back-
ward memory. We attribute this to the fact that follow-in
is almost as common as bring-in in our data, which also
seems to accord with the result that the child’s gaze is the
most informative cue. A similar result for child gaze was
obtained by Johnson et al. (2012). Also, our earlier study
(Bjorkenstam and Wirén, 2014) in general showed a high
degree of synchrony for child gaze, but a decreasing ten-
dency as the children get older. To get a further handle
on cause and effect in synchrony, however, a possible next
step would be to correlate our annotation of follow-in and
bring-in with cases of non-verbal cues occurring before or
after the verbal mention.
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