Towards a Standard Dataset of Swedish Word Vectors

Per Fallgren, Jesper Segeblad, Marco Kuhlmann

Linkdping University
581 83 Linkoping, Sweden
perfaz292@student.liu.se, jesse3l7@student.liu.se,marco.kuhlmann@liu.se

Abstract

Word vectors, embeddings of words into a low-dimensional space, have been shown to be useful for a large number of natural
language processing tasks. Our goal with this paper is to provide a useful dataset of such vectors for Swedish. To this end, we
investigate three standard embedding methods: the continuous bag-of-words and the skip-gram model with negative sampling
of Mikolov et al. (2013a), and the global vectors of Pennington et al. (2014). We compare these methods using QVEC-CCA
(Tsvetkov et al., 2016), an intrinsic evaluation measure that quantifies the correlation of learned word vectors with external
linguistic resources. For this propose we use SALDO, the Swedish Association Lexicon (Borin et al., 2013). Our experiments
show that the continuous bag-of-words model produces vectors that are most highly correlated to SALDO, with the skip-gram
model very close behind. Our learned vectors will be provided for download at the paper’s website.

1. Introduction

Word vectors (or word embeddings) ‘represent words in a
language’s vocabulary as points in a d-dimensional space
such that nearby words (points) are similar in terms of their
distributional properties’ (Lin et al., 2015). Recent years
have seen a strong demand for such representations. Apart
from being interesting in their own right, word vectors can
be used as inputs to neural networks, where they have shown
to improve accuracy on a large number of natural language
processing tasks. Our goal with this work is to provide a
useful dataset of word vectors for Swedish.

Many methods for learning word vectors are available
today, and the actual learning requires nothing more than
suitable training data (usually, tokenized text). The harder
task is to choose ‘the right” vector set: An informed choice
requires a way to evaluate the quality of the learned vec-
tors, but how to do such an evaluation is an open problem
and an active area of research. In this paper, we base our
choice on QVEC-CCA (Tsvetkov et al., 2016), an intrin-
sic measure that quantifies the correlation of the learned
vectors with properties obtained from existing linguistic re-
sources. For this we propose to use the ‘supersenses’ of
SALDO, the Swedish Association Lexicon (Borin et al.,
2013). For training the vectors, we use a corpus consist-
ing of approximately 220M tokens, exclusively obtained
from Sprakbanken’s Gdéteborgsposten data set. We produce
vectors for a vocabulary of 192k words.

The next section presents different word embedding meth-
ods, with a focus on the methods that we compare in this
paper. We then present our adapted version of QVEC-CCA
in Section 3. Sections 4 and 5 describe the setup and the
results of our experiments, and Section 6 discusses the impli-
cations of these results for our recommendation of a standard
dataset of Swedish word vectors. Section 7 concludes the
paper with some ideas for future work.

2. Word Embedding Methods

Standard approaches for generating word embeddings are
based on the idea that words that occur in similar contexts
should be close to each other as vectors (Harris, 1954).

Well-known methods for word embeddings include Latent
Semantic Analysis (LSA) (Dumais et al., 1988), in which
the context of a target word is defined as the document that it
occurs in, and the Hyperspace Analogue to Language (HAL)
(Lund and Burgess, 1996), which is based on co-occurrence
statistics about the words immediately before and after the
target word. In both of these methods, the dimensionality
of the resulting vectors grows with the number of distinct
contexts (documents or context words) that the target words
appear in, which can become impractical when the methods
are applied to large amounts of text. In more recent word
embedding methods, the number of dimensions can be fixed
prior to training.

There are several approaches to generating high-quality
word vectors with fixed size. For example, Singular Value
Decomposition (SVD) can be used to reduce the dimen-
sionality of a matrix generated with LSA or HAL. Random
Indexing (RI) (Sahlgren, 2005) is another technique where
the vectors are of fixed size. In this study, we use three differ-
ent methods for creating word embeddings: the continuous
bag-of-words (CBOW) and the skip-gram model (SGNS)
implemented in word2vec (Mikolov et al., 2013a),!, and
GloVe (Pennington et al., 2014). The following paragraphs
briefly present these methods.

2.1 Word2vec

The basic idea behind the models in word2vec (Mikolov et
al., 2013a; Mikolov et al., 2013b) is to learn word vectors
in the context of a prediction task: in the CBOW model,
the task is to predict the target word from the words in the
surrounding linear window; in the SGNS model, it is the
other way around. The structure of the two models is a
shallow neural network; the learned word vectors are the
outputs of the hidden layer of that network. A more thorough
explanation of the word2vec models can be found in the
original papers by Mikolov et al. (2013a) and Mikolov et al.
(2013Db), as well as in the subsequent analysis of Goldberg
and Levy (2014).

"Both models were used with negative sampling.

2.2 GloVe

The GloVe algorithm is introduced by Pennington et al.
(2014). In their paper they split the field of word vector
learning into two families. The first one is global matrix
factorization methods; LSA is an example of this. These
perform well in capturing global aspects of a corpus, but
not so well in analogy tasks. The other family is called
local context window methods; this family includes the two
word2vec models. These methods perform well in analogy
tasks, but do not capture the global statistics equally well.
GloVe is designed to combine the advantages of the two
approaches. It is a log-bilinear model with a weighted least-
squares objective that tries to adjust the entries of the vectors
so that their dot product approaches the probability of the
words co-occurring with each other.

3. Evaluation of Word Embeddings

How do we know which of the available methods for learn-
ing word vectors performs best for a given dataset? The
most common way to evaluate the quality of word vectors
is to test them on word similarity tasks (Finkelstein et al.,
2002; Bruni et al., 2012; Hill et al., 2015) or analogy tasks
(Mikolov et al., 2013a). Unfortunately, such datasets are
not available for Swedish, and while one could build a new
such dataset, it is a hard task. Apart from annotation being
expensive, the design of such a dataset is difficult. This
is partly due to the problems associated with the datasets
currently used for word similarity tasks, such as low correla-
tions with downstream tasks, the problem of accounting for
polysemous words, and defining the types of similarities to
include (Faruqui et al., 2016).

In this paper we use QVEC (Tsvetkov et al., 2015;
Tsvetkov et al., 2016), an intrinsic evaluation method that
can make use of already existing resources, and has been
shown to correlate well with performance in downstream
tasks. The method essentially measures the correlation be-
tween the vector set and a manually crafted set of ‘linguistic’
vectors. The linguistic vectors can be understood as term
frequency vectors normalised to probabilities, where the
terms express some linguistic property.

Tsvetkov et al. (2015) used WordNet supersenses as di-
mensions in the linguistic vectors, and SemCor (A. Miller
et al., 1993) to extract sense frequencies. As WordNet is not
available for Swedish, we choose to replace this resource
by SALDO, the Swedish Association Lexicon (Borin et al.,
2013). In SALDO, each word has a so-called primary de-
scriptor, which is a more abstract or general description of
the word. As such, the structure of SALDO can be viewed
as a tree, with the primary descriptor being the parent of the
words it describes. At the top of the tree, there are 41 seman-
tic primitives? which are words that cannot be described by
a more general one. These primitives act as ‘supersenses’,
where all words that are subsumed by a specific primitive, di-
rectly or indirectly, have that sense as its supersense. Instead
of SemCor, we use version 3.0 of the Stockholm-Umeé cor-

2Borin et al. (2013) mentions 43 semantic primitives, but we
were only able to identify 41 semantic primitives in the release that
we used for our experiments.

pus (SUC)?, which has been automatically annotated with
word senses from SALDO, to extract sense frequencies for
all words occuring more than 5 times in both corpora.

In its orginal form, QVEC is limited to the comparison of
vectors of the same dimensionality, and is not invariant to lin-
ear transformations of the embedding’s basis. In follow-up
work, Tsvetkov et al. (2016) presented QVEC-CCA which
solves both of these problems, while still showing medium
to high correlations with performance in downstream tasks.
QVEC-CCA uses canonical correlation analysis to measure
the correlation between the word embedding matrix and the
linguistic properties matrix, and produces a single score in
the interval [—1,+1], where —1 means ‘perfect negative
correlation’ and 41 means ‘perfect positive correlation’.

4. Data and Experiments

With a measure for comparing word embedding methods at
hand, we trained different models in order to identify the
model best aligned to the linguistic dimensions of SALDO.

4.1 Data

Our vector sets were trained on a corpus with texts from
the Swedish newspaper Goteborgsposten (GP) from the
years 2001 to 2013. This material, which is freely avail-
able from Sprakbanken (the Swedish Language Bank)*, was
chosen primarily because of its relatively large size (ap-
proximately 1.5 times the number of tokens in Swedish
Wikipedia) and the fact that it consists of coherent and cu-
rated text. While Swedish corpora of larger size are avail-
able, these are crawled from uncurated sources such as web
forums, which we anticipated would impede the quality of
the word vectors. The training data consisted of 17,397,223
sentences with 220,290,482 tokens; the total size of the data
was 1.4 GB. With a frequency threshold of 25 the produced
vector sets consisted of 192,250 word vectors. The corpus,
which comes in an XML format with automatically assigned
parts-of-speech, dependency relations and other linguistic
annotations, was reduced to the bare tokenised text. Each
sentence was lowercased.

4.2 Models

We produced a total of 45 vector sets, 15 for each of the
three word embedding methods (CBOW, SGNS, GloVe).
The study consisted of two phases: In the first phase, for
each method we created a total of 10 vector sets with con-
text window sizes from 2 to 10, with a step size of 2 and
the default 5 iterations. Half of the models were created
with a dimensionality of d = 50, half of the models with a
dimensionality of d = 300. In the second phase of the study,
for each method we created 5 additional vector sets with a
dimensionality of d = 300, with the window size fixed to
10. This was done by increasing the amount of iterations
from 10 to 50 with a step size of 10. Apart from window
size and number of iterations, we used default settings for
the respective methods.

3https://spraakbanken.gu.se/
*https://spraakbanken.gu.se/

Model | 2 4 6 8 10 Model | 10 20 30 40 50
CBOW | 0.1746 | 0.1766 | 0.1785 | 0.1798 | 0.179 CBOW | 0.355 | 0.3557 | 0.3566 | 0.3570 | 0.3565
SGNS | 0.1856 | 0.1898 | 0.1909 | 0.1908 | 0.1916 SGNS | 0.3537 | 0.3534 | 0.3517 | 0.3524 | 0.3525
GloVe | 0.1377 | 0.1495 | 0.1515 | 0.1555 | 0.1566 GloVe | 0.2901 | 0.2911 | 0.2898 | 0.2893 | 0.2885
d =50
(@ Table 2: Impact of number of iterations on QVEC-CCA
Model | 2 4 6 S 10 score for models with d = 300 and window size 10. Top
CBOW | 0.3428 | 0.3476 | 0.3496 | 0.3505 | 0.3516 | Score for each model in bold.
SGNS | 0.3479 | 0.3540 | 0.3555 | 0.3542 | 0.3536
GloVe | 0.2637 | 0.2783 | 0.2849 | 0.2879 | 0.2908 Although it would have been even more conclusive if the
(b) d = 300 two exceptions had been generated by the same model, it

Table 1: Impact of window size on QVEC-CCA scores for
models with d = 50 and d = 300 and 5 iterations. Top
score for each model in bold.

5. Results

In this section we present the results of our experiments. All
scores are the QVEC-CCA scores of the learned vector set,
computed as described in Section 3.

Effect of Larger Window Sizes Table 1 shows the effect
of an increased window size on the QVEC score. We first
discuss the results for d = 300, which are visualised in
Figure 1. As we see, there is a steady increase in perfor-
mance for each step size, with a top result of 0.3516 for a
window size of 10. In the case of SGNS, we see that the
QVEC score initially increases (until window size 6) but
then decreases. Finally, for GloVe, there is also a steady
increase in performance for each step size, with a top re-
sult of 0.2908 at a window size of 10. For d = 50, we
see a similar trend: Generally, there is an overall increase
in performance corresponding with the window size, with
the highest score for window size 10. For CBOW the top
performance of 0.1798 is observed at a window size of 8.
The top performance of SGNS was 0.1916, observed at a
window size of 10. Similarly, the top result for GloVe was
0.1566, observed at a window size of 10.

Effect of More Iterations Table 2 shows the result for the
second round of experiments, in which we fixed the dimen-
sionality at d = 300 and the window size at 10 but increased
the number of iterations. Neither of the models generated a
steady increase or decrease in performance when adjusting
the amount of iterations. The top score was observed for
CBOW (0.3570, 40 iterations)?, outperforming the result
of SGNS in the first phase. The top score for SGNS was
0.3537 (10 iterations). Finally, the top score for GloVe was
0.2911 (20 iterations).

6. Discussion

Effect of Larger Window Sizes Looking at Table 1 and
Figure 1, it is clear that that QVEC-CCA prefers larger win-
dow sizes to smaller ones. With the exception of SGNS at
d = 300, which had a top result at a window size of 6, and
CBOW at d = 50, which had a top result at a window size
of 8, the models all performed best at a window size of 10.

5Using a 2,4 GHz Intel Core i5 MacBook Pro the training time
for the top performing dataset was 7 hours and 11 minutes.

seems clear that higher window sizes lead to higher scores.
Similar observations have been made in previous studies; in
particular, the positive correlation between window size and
quality relates to the result of Pennington et al. (2014): In
the second diagram of their Figure 2 they show an increase
in score that slowly stagnates when reaching larger window
sizes. The prominent observation in both studies is the high
increase in score when choosing a window size of 4 instead
of 2, and that the graphs flatten out when choosing window
sizes of higher values. The consistency observed in these
results corroborates the validity of our evaluation method.
QVEC-CCA is a fairly new evaluation method, and while it
has been shown to correlate well with performance in down-
stream tasks in English when used together with WordNet,
one cannot be sure how well it translates to Swedish and
SALDO. Our interpretation of our results is that our evalua-
tion measure is valid. Apart from the previously mentioned
aspects of consistency, it is quite intuitive that a higher num-
ber of dimensions should lead to better correlation with
linguistic information, and hence to higher scores, assuming
that the evaluation method is valid. This is the case for all
the models explored, where the 300-dimensional vectors
outperform the 50-dimensional ones.

Effect of more iterations In Table 2, we see that the top
result is achieved by the CBOW model trained with 40
iterations. While SGNS yielded the top-performing vector
set of the first phase, it does not produce as high results in
the second phase. The top score of SGNS is however still
close behind; GloVe on the other hand does not seem to
perform as well. Interestingly, with the exception of CBOW,
an increase of iterations does not lead to an increase in score,
which flattens out rather early, and the small fluctuations
that are present are most likely from coincidence rather than
a difference in quality. Nevertheless, there is still sufficient
evidence that the evaluation method is valid, as mentioned
in the previous section, and that the vectors generated by
CBOW make a useful set of word embeddings that we can
recommend for further studies.

7. Conclusion

This study compared three methods for creating word em-
beddings, with the main purpose of producing a useful set of
Swedish word vectors. When using our evaluation method,
which combines QVEC-CCA and SALDO, the highest-
scoring vector set is created with the CBOW algorithm at
d = 300 and 40 iterations. This vector set should provide
a useful off-the-shelf set of word vectors for future work in
Swedish natural language processing.

0.36 0.36 0.3

1]
1]
0.35 |- y 0.35 |- y
I
¥
34 | | | 34 | |
03 2 4 6 8 10 03 2 4 6 8 10
(a) CBOW (b) SGNS (c) GloVe

Figure 1: Impact of increasing window size (z-axes) on model performance as measured in terms of QVEC-CCA score
(y-axes). All models were trained with d = 300 and the default number of iterations.

The Goteborgsposten corpus was used in this study be-
cause of its substantial size and its coherent structure with
respect to formality, language, terminology, and grammar.
One could certainly concatenate different corpora for even
greater size. However, if one is interested in other aspects
than the size or domain of the corpus, then there are alterna-
tives. There is a long list of Swedish corpora to choose from
from the Swedish Language Bank. For a specific domain,
one will probably create custom corpora, and the three meth-
ods that we have investigated in this study may not perform
equally well on these. There are also alternatives with re-
spect to how the data can be preprocessed, normalised, and
augmented. For example, Trask et al. (2015) show how
incorporating part-of-speech tags can greatly reduce issues
regarding ambiguous words.

Our vector set is available for download at http://www.
ida.liu.se/divisions/hcs/nlplab/swectors/.

References

George A. Miller, Claudia Leacock, Randee Tengi, and
Ross T. Bunker. 1993. A semantic concordance. In Hu-
man Language Technology: Proc. of a Workshop Held at
Plainsboro, New Jersey, March 21-24, pages 303-308.

Lars Borin, Markus Forsberg, and Lennart Lénngren. 2013.
SALDO: A touch of yin to WordNet’s yang. Language
Resources and Evaluation, 47:1191-1211.

Elia Bruni, Gemma Boleda, Marco Baroni, and Nam-Khanh
Tran. 2012. Distributional semantics in technicolor. In
Proc. of ACL, pages 136-145.

Susan T. Dumais, George W. Furnas, Thomas K. Landauer,
Scott Deerwester, and Richard Harshman. 1988. Using
latent semantic analysis to improve access to textual in-
formation. In Proc. of SIGCHI Conference on Human
Factors in Computing Systems, pages 281-285.

Manaal Faruqui, Yulia Tsvetkov, Pushpendre Rastogi, and
Chris Dyer. 2016. Problems with evaluation of word em-
beddings using word similarity tasks. In Proc. of the Ist
Workshop on Evaluating Vector-Space Representations
for NLP, pages 30-35.

Lev Finkelstein, Evgeniy Gabrilovich, Yossi Matias, Ehud
Rivlin, Zach Solan, Gadi Wolfman, and Eytan Ruppin.
2002. Placing search in context: The concept revisited.
ACM Transactions on Information Systems, 20:116—131.

Yoav Goldberg and Omer Levy. 2014. Word2vec ex-
plained: Deriving Mikolov et al.’s negative-sampling
word-embedding method. CoRR, abs/1402.3722.

Zellig S. Harris. 1954. Distributional structure. Word,
10:146-162.

Felix Hill, Roi Reichart, and Anna Korhonen. 2015.
SimLex-999: Evaluating semantic models with (genuine)
similarity estimation. Computational Linguistics, 41:665—
695.

Chu-Cheng Lin, Waleed Ammar, Chris Dyer, and Lori Levin.
2015. Unsupervised POS induction with word embed-
dings. In Proc. of NAACL-HLT, pages 1311-1316.

Kevin Lund and Curt Burgess. 1996. Producing high-
dimensional semantic spaces from lexical co-occurrence.
Behavior Research Methods, Instruments, & Computers,
28:203-208.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean.
2013a. Efficient estimation of word representations in
vector space. CoRR, abs/1301.3781.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S. Cor-
rado, and Jeff Dean. 2013b. Distributed representations
of words and phrases and their compositionality. In Proc.
of Conference on Advances in Neural Information Pro-
cessing Systems, pages 3111-3119.

Jeffrey Pennington, Richard Socher, and Christopher Man-
ning. 2014. GloVe: Global vectors for word representa-
tion. In Proc. of EMNLP, pages 1532—-1543.

Magnus Sahlgren. 2005. An introduction to random index-
ing. In Proc. of Methods and Applications of Semantic
Indexing Workshop at the 7th International Conference
on Terminology and Knowledge Engineering.

Andrew Trask, Phil Michalak, and John Liu. 2015.
sense2vec — A fast and accurate method for word sense
disambiguation in neural word embeddings. CoRR,
abs/1511.06388.

Yulia Tsvetkov, Manaal Faruqui, Wang Ling, Guillaume
Lample, and Chris Dyer. 2015. Evaluation of word vec-
tor representations by subspace alignment. In Proc. of
EMNLP, pages 2049-2054.

Yulia Tsvetkov, Manaal Faruqui, and Chris Dyer. 2016.
Correlation-based intrinsic evaluation of word vector rep-
resentations. In Proc. of 1st Workshop on Evaluating
Vector-Space Representations for NLP, pages 111-115.

