
Atention-driven Perceptual Classification and Reasoning

Simon Dobnik∗ and John D. Kelleher†

∗CLASP
University of Gothenburg, Sweden

simon.dobnik@gu.se

†School of Computing
Dublin Institute of Technology, Ireland

john.d.kelleher@dit.ie

Abstract
One of the central challenges for embodied and situated agents is how to process and react to a large amount of information that
they receive at some regular rate through their sensors while perceiving their environment and interacting with others through
language given that they have limited processing and memory resources. Secondly, we also need a model of information fusion:
an account for how perceptual and linguistic/conceptual information interact and drive their reasoning. We present a compu-
tational model based on a cognitive notion of attention for perceptual classification in probabilistic Type Theory with Records
(TTR), a formal meaning representation layer for such agents.

1. Type Theory with Records
Probabilistic Type Theory with Records (prob-TTR)
(Cooper et al., 2015) has its origins in natural language
semantics and views meaning assignment (both sense and
reference) being in the domain of an individual agent who
can make probabilistic judgements about situations (or in-
variances in the world) of being of types (written as a : T
with probability p). The type inventory of an agent is not
static but is continuously refined through agent’s interac-
tion with its physical environment and with other agents
through dialogue interaction which provides instances and
feedback on what strategies to adopt for learning. Such
view is not novel to mobile robotics (Dissanayake et al.,
2001) nor to approaches to semantic and pragmatics of di-
alogue (Clark, 1996), but it is novel to formal semantics
(Dowty et al., 1981; Blackburn and Bos, 2005) which rep-
resents important body of work on how meaning is con-
structed compositionally and reasoned about. The premise
that sense is defined in terms of how an agent experiences
language over perceptual scenes and interactions makes it
a highly suitable knowledge representation framework for
situated dialogue systems as it provides information fusion
of perceptional and linguistic/conceptual information. As
argued in (Dobnik et al., 2013) there are several advantages
of such a unifying framework over a standard layered ap-
proach (Kruijff et al., 2007).

The rich type system of TTR gives us a lot of flexibil-
ity in modelling natural language semantics. For example,
(i) most types are not atomic objects but complex record
types that contain both real and nominal/conceptual (ii) de-
pendent types; (iii) they are intensional which means that
a situation may be assigned more than one type; and (iv)
there is a structural relation between the types in the form
of sub-typing. However, unfortunately, the flexibility with
which types are assigned to records of situations and which
is also required for modelling natural language and hu-
man cognition comes with a computational cost. Each type
assignment involves a probabilistic classification (yes/no)

which means that an agent with n types must make n judge-
ments/classifications of each situation. Agents have limited
processing and memory resources and therefore an optimi-
sation mechanism is required that allows them prioritise
what classifications to try first. Given the regularities in
the physical world (spaces are associated with other spaces,
objects and actions) and dialogue contexts (topics of con-
versations are related and predictable from other topics),
judgements are not equally likely across dialogue and per-
ceptual contexts. On the other hand, agents also access per-
ceptual information that is supplied to them continuously,
regardless of the context, as they must be aware of the world
around them to preserve their existence. Hence, they have
to make certain judgements all the time.

2. Attention-driven classification
This problem has been investigated in psychology as at-
tention. For example, the Load Theory (LT) (Lavie et
al., 2004) distinguishes between perceptional selection or
bottom-up attention which is not under conscious control
and is task independent and cognitive control or top-down
attention which is consciously directed and task depen-
dent/primed. The proposal views attention as a shared re-
source between tasks bound by the available resources and
attention policy. Hence, during intensive activity related to
cognitive control, activity from perceptional selection is re-
duced and vice versa. Following this division of attention
we can talk about two kinds of attention-driven judgements,
each with its own control mechanism. Pre-attentive judge-
ments are related to types that are defined by agent’s biol-
ogy and embodiment: they are classifications made by its
sensors and actuators. As such they are basic (not learned)
and finite in number. Classifications of these types are
fundamental to agent’s basic operation and therefore are
made continuously at the rate determined by LT. On the
other hand task and context primed judgements are driven
by a priming mechanism that predicts what types an agent
should expect in the current state based on its knowledge



about the world. The priming is driven by discovery of the-
matic relations: spatial, temporal, causal or functional re-
lations between individuals occuring in the same situations
(Lin and Murphy, 2001; Estes et al., 2011). The idea is
analogous to the notion of type resources (Cooper, 2008),
bundles of types that are employed and learned in different
situational contexts.

3. Computational model for
attention-driven judgements

We propose a computational model for attention-driven
judgements which comprises of two parts: (i) creation of
thematic relations between task/context types; (ii) prim-
ing mechanism for task/context types based on perceptional
and cognitive contexts.

3.1 Creation of thematic relations
An agent experiences the world through perception, em-
bodiment and linguistic interaction. Experiencing percep-
tual and linguistic contexts an agent forms associations be-
tween types co-occuring in its memory or information state
(IS). Type associations can be seen as cognitive states. A
particular type may be associated with more than one state.
There are several computational mechanisms that could
be used to automatically create states (clusters of types)
with the above properties from data, for example Latent
Dirichlet Allocation (LDA) (Blei et al., 2003): associat-
ing words in documents with topics is analogous to asso-
ciating types in agent’s memory with cognitive states. Our
model requires (i) that an agent has discovered a finite set
of states, e.g. S1, S2 and S3 with known prior probabil-
ities; (ii) a stochastic matrix defining a probabilistic rela-
tionship between each of the pre-attentive types, e.g. F1,
F2 and F3 (low-level perceptual features whose occurrence
is biased to particular physical environments) and a state
P(type|Si); (iii) a stochastic matrix defining a probabilis-
tic relationship between each of the task/context types, e.g.
WEATHER, MACH.-LEARN. and WELL-BEING (“topics”
discussed in particular discourse and physical contexts) and
a state P(type|Si); and (iv) a stochastic state transition ma-
trix which defines a probability of transition from state i to
state j in each time step.

3.2 Priming of task/context judgements: update
mechanism for state-space

Priming of task/context judgements works as follows. As
stated earlier, pre-attentive judgements (Pre) are made con-
tinuously at each time step t, only task/context judgements
(Task and Cont) are primed. Hence, we require an up-
date mechanism for the posterior distribution over states of
task/context types P(st |Pret ,Taskt−1,Contt−1,ASt−1) after
encountering new perceptual (Pret ) and dialogue contexts
(Taskt−1 and Contt−1), successful classifications of those
types. We also need a mechanism for reduction of the state-
space of task/context types at a rate determined by the LT
and a selection of types to be primed for.

The current state-space is conditionally dependent on the
(active) state space at t − 1 (ASt−1) and the probabilities
that condition observed types (Taskt−1, Contt−1 and Pret )
with states. This way, the more judgements an agent makes,

the more it reduces its ambiguity of being in several states.
Taskt−1 and Contt−1 are classifications that an agent has
successfully made following the priming in the previous
time step, while Pret is new perceptual evidence, as the
agent might have also changed its location. The probability
distribution over states at t is:

P(st |Pret ,Taskt−1,Contt−1,ASt−1) =

η×P(Pret |st)×P(Taskt−1|st)

×P(Contt−1|st)×P(ASt−1|st)

×P(st)

(1)

The equation is assuming independence of conditioned
events. P(Pret |st), P(TaskContt−1|st), P(ASt−1|St) and
P(st) are obtained from our model of thematic relations
between types described in Section 3.1 (for the matrix
P(ASt−1|St) we have to apply Bayes’ rule to revert it
from P(St |ASt−1)). Each factor on the RHS of Equa-
tion 1, P(Pret |st), P(TaskContt−1|st), P(ASt−1|st) and
P(ASt−1|Sit) expands into several conditionally indepen-
dent factors depending on the evidence observed (Taskt−1,
Contt−1 and Pret ) and the current state of active states. For
example, if there are three active states:

P(ASt−1|Sit) = P(AS1t−1|Sit)

×P(AS2t−1|Sit)×P(AS3t−1|Sit)

η denotes a normalisation process that ensures that the
total probability mass of the posterior distribution sums to
1.

After determining poster probabilities over states we
need to select types to be primed. The most straightfor-
ward solution is to select a state st ∈ S with the maximum a
posteriori probability and load the types from st into short-
term memory. However, there are two disadvantages to this
approach: (i) the agent assumes it is only in 1 state and
(ii) it may end up switching between two states that have
similarly high probability. A more sophisticated solution
is to (i) rank the states by posterior probability; (ii) prune
the state-space according to P(st) by a threshold (θAS) de-
termined by available resources and LT, where high cogni-
tive load corresponds to high threshold. The states that are
left after pruning are our active states for which we (iv) re-
normalised probabilities so that they sum to 1. Using the
set of active states ASt we (v) compute a posterior prob-
ability over the set of types in ASt using a Bayes Optimal
Classifier. Here, several states may be maximising a proba-
bility of a particular type and hence the system is more sta-
ble in making decisions than the one using argmax. How-
ever, the approach is computationally more demanding as
we are calculating posterior probabilities over types in ac-
tive states rather than probabilities of states. However, sim-
ilarly as before (vi) pruning that is sensitive to a threshold
determined by the LT and available resources (θT ) can be
applied to types to determine a set of active types (AT ).
Finally, we (vii) normalise the posterior probabilities of ac-
tive types and load them into working memory where they
can be applied to classify new tasks/contexts. In step (v)
the posterior distribution for type where P(type|ASi) > 0
is calculated as follows:



P(typet |Pret ,Taskt−1,Contt−1,ASt−1) =

∑
s∈ASt

P(type|s)×

P(s|Pret ,Taskt−1,Contt−1,ASt−1)

(2)

where typet denotes a type at time t, ASt de-
notes the set of unpruned (active) states at time t,
P(s|Pre,Task,Cont,ASt−1) denotes the probability of an
active state s after the state set has been pruned and the
posterior probability over the active states has been renor-
malised.

4. Conclusions and future work
We have presented attention-driven type judgements in an
agent interacting through perception and dialogue based on
discovery of thematic relations and sharing of cognitive re-
sources. The agent maintains (i) a distribution over set of
cognitive states and (ii) a distribution over set of types in
the active states. The number of active states (and types) is
controlled by available cognitive resources that are shared
between perceptual selection and cognitive control. The
more task/context judgements an agent makes the more it
reduces ambiguity of being in several states.

The proposal is not exclusive to the TTR framework we
are using. It is a general solution for agents making classi-
fications, an area of research in robotics that is sometimes
called visual search (Sjöö, 2011; Kunze et al., 2014). The
approach could also be applied in situated dialogue systems
for disambiguation of speakers utterances/topic priming or
for generating new utterances/topic modelling.

In our forthcoming work we will focus on studying the
effects of the parameters that the model introduces in a
computational simulation: the number of states, the num-
ber of types and the size of memory/processing resources.
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