
Using HOL LIGHT to Reason over Second-Order MRLs

Michael Minock

TCS/CSC
KTH Royal Institute of Technology

minock@kth.se

Abstract
This extended abstract presents some very preliminary work exploring higher-order meaning representation languages (MRLs)
for natural language interfaces over databases. Specifically the HOL LIGHT theorem prover is being applied to deduce query
containment for a language that uses count terms. While the deduction method is, by definition, sound, it is not complete. Still
on a containment corpus derived from GEOQUERY, the prover is managing to deduce many query containments automatically,
without interaction. Work is underway to supply additional theorems, that when added to the stock of available theorems, will
automatically solve a broader and broader class of containment problems. In the limit, it will be interesting to see how practical
this approach can be made.

1. Introduction
In reviewing natural language interface efforts of the 1980s,
(Copestake and Sparck Jones, 1990) made the observation
that even over simple domains, systems must be based on
expressive MRLs. At roughly the same time the argument
was put forth on the need to be able to decide logical equiv-
alence between arbitrary MRL expressions (Shieber, 1993).
This presents something of a quandary.

Our position is to place more importance on expres-
sive semantics than decidable query equivalence, not to say
that we don’t recognize the clear desirability of the later
(Minock, 2014). Based on this, we must satisfy ourselves
with a sound, but incomplete equivalence checkers. We jus-
tify this by appealing to the following practical problem. In
our work replicating and extending PRECISE (Popescu, et.
al., 2003), the lexical matching and construction of seman-
tically tractable queries is combinatorial. Thus we tend to
generate large sets of candidate queries, many of which are
semantically equivalent, but syntactically distinct. It is de-
sirable to partition these large query sets into equivalence
classes, to reduce the number of queries (one from each
equivalence class) that need to be reported to the user for
interactive disambiguation. So even if we use a equiva-
lence checker that has broad, but incomplete coverage, we
are likely to improve the quality of interaction with the user.
There are other practical examples of where a sound though
incomplete query equivalence checker adds value.

As for how ambitious one wishes to be in expressivity,
full first-order logic would already require us to drop com-
pleteness. But even that does not suffice; the GEOQUERY
corpus, with its counts, sums and averaging questions re-
quires reasoning beyond first-order. Furthermore SQL,
with its aggregation and grouping operators is evidence that
practical MRLs require reasoning over sets. Given this, we
just go ‘whole hog’, and embrace full second-order logic.

2. Queries with counting operators
The syntax and semantics here is standard with the extra
use of don’t care existential variables () and the cardinality
function |X| returning the sizes of sets. Here we present
some example questions over GEOQUERY corpus database

(figure 1) paired with expressions in our higher-order query
language:

Figure 1: Part of GEOQUERY schema.

1. “give me the cities in virginia”:

{(x)|City(x,′ V irginia′)}

This query is a simple first-order expression which
builds a set of 1-tuples for bindings of variable x.

2. “how many cities are in montana”:

{(|X|)|(∀x)(X(x)↔ City(x,′ Montana′))}

This query returns the single tuple giving the size of
the set X which is exactly the cities in Montana.

3. “what states have more cities than ohio”

{(x)|State(x, ,) ∧ (∃Y)(∃Z)
((∀y)(Y (y)↔ City(y, x)∧
(∀z)(Z(z)↔ City(z,′ Ohio′))∧
|Y | > |Z|)}

This query, by introducing sets of cities in Ohio and
sets of cities in the free variable of the query, can, via
> on the sizes of the sets, determine which states have
more cities than Ohio.

4. “What state has the most cites”

{(x)|State(x, ,)∧
(∃Y)(∀y)(Y (y)↔ City(y, x)∧
¬(∃w)(∃Z)(∀z)(Z(z)↔ City(z, w) ∧ |Y | < |Z|))}

This query introduces a not exists over a set variable.
Such quantification takes us beyond existential second
order (ESO) logic.

5. “States where the majority of cities are less than
10,000 people.”

{(x)|State(x, ,)∧
(∃Y)(∃Z)(

(∀y)(Y (y)↔ (∃p)(City(y, x, p) ∧ p < 10000))∧
(∀z)(Z(z)↔ (∃p)(City(z, x, p) ∧ p ≥ 10000))∧
|Y | > |Z|)}

This query shows that generalized quantifiers like ma-
jority are expressible within our logic1.

Given a database state D and a query Q of the above form,
answers Q(D) are computable; it is straight forward to map
such queries to SQL with sub-queries computing counts.
What is more problematic is deciding things like query con-
tainment and thus by extension equivalence. For example,
query 3 above contains query 4. The focus of this work will
be to automatically determine determine containment for as
large a class of formulas as possible.

3. Using HOL LIGHT to decide query
containment

Our method of testing if query Q2 contains query Q1 is to
prepare the sentence Σ ⇒ (Q1 ⇒ Q2) where Σ expresses
the relevant database constraints and the unique names as-
sumption for the constants in Q1 and Q2. If HOL LIGHT
(Harrison, 2009) can prove the validity of this sentence,
then containment holds2. If HOL LIGHT does not returns a
theorem expressing the input sentence within a certain time
span, then we conclude that the containment does not hold.

We also have a closely related test to determine if the size
of the answer set returned by Q2 is always greater than or
equal to the size of the answer set returned by Q1, that is
Σ⇒ (|Q1| ≤ |Q2|)

4. Initial Results
To test our containment checker, we constructed a corpus of
containment problems over the GEOQUERY corpus. A part
of this corpus was drawn from traces of our replication and
extension of PRECISE as it attempted to simplify returned
query sets (See section 1). Also we are adding additional
examples that more extensively exercise the higher-order
capabilities of our MRL. This corpus will be available for
download from the author’s web site.

As it stands now, queries only requiring first order rea-
soning are all solved correctly. We are still trying to find
counter examples, but it seems that the model elimination
prover in HOL LIGHT is very much up to the task. We
add simple numerical constraints to the proofs via HOL
LIGHT’s ARITH_RULE function. Determinations of an-
swer set size constraints in count queries (e.g. query 2

1Note that we extended the vocabulary to include city popula-
tions just to support this example.

2If the arities of the answer tuples of Q1 and Q2 are not equal,
then we simply determine that query containment does not hold.

above) are also being correctly solved; using the theorem
CARD_SUBSET we can determine things such as the num-
ber of cities in the Western States is always greater than the
answer to the query 2 above.

The current focus is getting the reasoner to dig into
set terms. Currently we are manually constructing simple
higher order proofs for individual examples to get a better
insight into how to develop an automatic method.

5. Discussion
Instead of bringing in the machinery of a higher-order theo-
rem prover (like HOL LIGHT), one might consider alterna-
tive ‘approximation’ methods. One method, used in PRE-
CISE’s evaluation, is to consider queries equivalent if they
return the same answer over the GEOQUERY database in-
stance. While an easy method to implement, it is unsound.
At best such a method can give a sound method of deter-
mining query non-equivalence. That is, given a database
state D if Q1(D) − Q2(D) 6= ∅ then Q1 6v Q2. One
could generate a set of sample databases and hope that the
probability of an unsound judgment would approach zero.
Also more thought could be put into generating canoni-
cal databases for a given problem that would guarantee
that witnesses in Q1 that would not show up in Q2. Still
our plans for Σ in the future (see section 3) are to include
adding things like database instance assumptions (e.g. the
western states are California, Montana, Oregon, etc.). This
argues argues in favor of a theorem proving based method.

Another idea is to attempt to approximate the higher-
order problems in some type of first-order cover restricted
to a decidable fragment and give such problems to an auto-
matic first-order theorem prover. This was our first instinct,
but it seemed to work only under very odd circumstances.
There was also a lot of invented syntax that tends to muddle
the problem. We have essentially abandoned this approach.

For now our project will pursue the approach outlined
in this paper and encode problems in HOL LIGHT. Since
humans can reason over these types of problems, a person
should be able to prove such lines of reasoning and encode
them in HOL LIGHT theorems to further patch the system.
Such theorems need to be defined over general predicates
so that the patterns of reasoning developed in one domain
are useful to other domains. It will be interesting to see how
practical this approach can be made.

References
A. Copestake and K. Sparck Jones. Natural language in-

terfaces to databases. The Natural Language Review,
5(4):225–249, 1990.

J. Harrison. HOL Light: An Overview. In 22nd Interna-
tional Conference on Theorem Proving in Higher Order
Logics , Munich 2009.

M. Minock. In pursuit of decidable ’logical form’. In
Swedish Language Technology Conference (SLTC), Up-
psala, 2014.

A. Popescu, O. Etzioni, and H. Kautz. Towards a theory
of natural language interfaces to databases. In Intelligent
User Interfaces, 2003.

S. Shieber. The problem of logical-form equivalence.
Computational Linguistics, 19(1):179–190, 1993.

