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Abstract
According to the standard view, Constraint Grammar (CG) is a DSL for writing reductionistic surface parsers for natural language.
The current work presents an alternative, system theoretic view, according to which CG is a very powerful transition system
that is equivalent to a Turing Machine but has interesting nondeterministic restrictions that are equivalent to a Linear Bounded
Automaton, a Pushdown Automaton, and a Finite Automaton. This analysis is fruitful because it gives rise to several interesting
connections and perspectives. A probabilistic CG is a system where each disambiguation and scanning step is probabilistic
decision. Converting that kind of parser to a neural parsing architecture is possible. Most interestingly, CG can be seen as a very
general two-way transition system whose attention moves back and forth in the input.

1. Introduction
There has been recently growing interest in the mini-
complexity of two-way automata (Kapoutsis, 2012), and
the complexity of bidirectional implementations (Hulden,
2011; Yli-Jyrä, 2011) of Constraint Grammar. A prob-
lem with a detailed view to CG implementation through
automata is that it restricts the techniques too early and
does not provide an overview on the full power of CG.
The purpose of this article is to demonstrate that view-
ing CG as a transition system gives a natural and very
flexible view to analyze the relationship between CG and
automata-theoretic models of computation, Markov deci-
sion processes and neural parsing architectures.

2. CG as a Transition System
A transition system is a tuple (C, T,C0, CF ) consisting of
a set of configurations C, transitions T ⊆ C×C over them,
and initial C0 ⊆ C and a final configurations CT ⊆ C. In
a deterministic transition system, T is a function from the
previous configuration to the next configuration.

The classical Constraint Grammar (Karlsson, 1990) is
a deterministic transition system operating on a sequence
w ∈ Π∗ of elements of a powerset alphabet Π = 2Σ where
each element in Σ is a possible label for a word. A word
label can be an atomic part-of-speech tag or a complex la-
bel such as morphological analysis, morpho-syntactic cate-
gory, supertag or a lexicalized syntactic category. The pow-
erset alphabet of such label sets would be impractical to
process directly and therefore various encodings have been
proposed. An element of the powerset alphabet has been
encoded either as as a string (Hulden, 2011) or an acyclic
automaton (Yli-Jyrä, 2011), but whenever Π is finite these
encodings are formally equivalent.

The initial configuration of the transition system is
⋄wlexical where the sequence wlexical ∈ Π∗ is generated by
the lexicon from the input string and the diamond ⋄ in-
dicates the location of the write head. The main task of
the transition system is to replace the powerset elements
(aka cohorts in the CG literature) in w with their smallest
nonempty subsets without losing the correct labeling of the

whole string. Some transitions may also expand the pow-
erset elements or interleave new powerset elements to the
configuration.

Since the turns of the write head are not bounded and the
size of the configuration can grow without bounds, it is not
too difficult to show that CG can simulate a deterministic
Turing machine, being thus computationally universal and
equivalent to nondeterministic Turing machines. In the ex-
tended version of this paper, we give a formal proof on this
by reduction of 2-stack automata to constraint grammars.

3. CG as a Linear-Space-Bounded System
A linear bounded automaton (LBA) is essentially a Turing
machine whose space is bounded by a linear function of the
input size. An inportant result by Kuroda (1964) states that
a language is accepted by an LBA if it is a context sensitive
language.

In linguistics, Generative Phonology is another Turing
equivalent system for which the complexity of a practical
instance is more important than the theoretically proven
computational complexity. A similar argument for practi-
cal constraint grammars is possible. Although practical CG
grammars may have some rules that make the configuration
longer, they do this in a very controlled way. Most of the
time the number of insertions to the sentence is bounded by
a linear function.

The practical observations suggest that CGs, which still
retains its iterated definition, are simulated by a linear
bounded automaton. We prove this constructively by en-
coding both the input and the output configurations to the
same linear-bounded tape. The converse reduction holds
if every linear bounded automaton could be modelled by a
linear-bounded Constraint Grammar. To this end, we need
to introduce nondeterministic transitions to the CG.

4. CG as a Linear-Time-Bounded System
The third class of automata that could characterize the com-
plexity of CGs under additional constraints is so-called
Hennie machine, i.e. single-tape Turing machine whose
visits to each tape cell is bounded by a constant. Re-
lated to this, Hennie proved that any Turing machine that



works in linear time recognizes a regular language (Hen-
nie, 1965). More generally, any Turing machine running in
O(n log n) time recognizes a regular language (Hartmanis,
1968). However, there are Turing machine instances that
take more time but still recognize only a regular language.
Therefore, it is undecidable wheter a given Turing machine
is a Hennie machine (Pru◦ša, 2014), or more generally, rec-
ognizes a regular language. Practical CG instances run very
efficiently, but the framework lacks formal constraints that
would ensure a O(n log n) time complexity for all practical
CG systems.

There is a way to constructively restrict a Turing ma-
chine, as well as a CG parser, to halt in linear time. For
example, we can add a finite counter to each position in
the configuration to tell the number of remaining visits in
that location (Pru◦ša, 2014). Under such an additional pro-
cessing constraint that is turned into a hard constraint of a
system, we obtain the result that the classical CG (Karls-
son, 1990) is regular and thus a very compactly represented
finite-state grammar although its architecture involves con-
text checks, two-way rewriting and iteration. However,
since setting an arbitrary limit for the visit is formally awk-
ward, we conjecture that a similar constraint can be stated
probabilistically: when the size of the input grows, the
number of visits per each position tend to a linear function
whose constants depend on each grammar instance.

5. Extensions to Classical Constraint
Grammar

Formal analysis of the CG framework using the transition
systems and restrictions of a Turing machine opens inter-
esting possibilities by providing means for analysing and
presenting various variants of the framework in an under-
standable way.

5.1 Nondeterminism and Probabilities
New implementations of CG became possible when the
system is understood as a transition system. Classical con-
straint grammar is a deterministic transition system. How-
ever, it is possible to introduce nondeterminism and proba-
bilistic transitions to the system.

5.2 Neural CG
It is possible to use continuous space representations to turn
a transition system into a neural transition models. The re-
quired neural architecture is in many respects nonconven-
tional: (i) input and output layers must handle ambiguity
classes by context embeddings, (ii) one location is changed
at a time, (iii) the refinements of context embeddings must
be feeded back to the network, (iv) there can be an unspec-
ified number of iterations, (v) contexts must be evaluated
after each change and (vi) beam search must be generalized
to two-way search.

5.3 Full Parsing
If the label alphabet of the words consists of syntactic cate-
gories rather than morphological tags, CG generalizes to
a transition-based syntactic parser. More generally, it is
conjectured that any current transition-based parser archi-
tecture could be encoded as a Constraint Grammar whose

complexity depends on the complexity of the encoded tran-
sition system. In particular, any linear transition-based
parser is a special case of a two-way transition-based parser
such as Constraint Grammar, although this is far from ob-
vious if we view CG as a specific domain specific language
that disguises the generality and elegancy of the underlying
transition and automaton architecture.
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