
A Preliminary Study on Text-Based Music Generation

Niklas Zechner

Department of Computing Science,
Umeå University

zechner@cs.umu.se

Abstract
Generating music from a text, considering both the phonetics and the semantic contents of the text, is a large and complex task,
but all the parts necessary have been widely studied, and some are even commercially available. We look at a prototype of a
system for combining all the different steps, to generate mood-appropriate sung music directly from unrestricted text. Well-
established methods for speech synthesis can be separated into text-to-phoneme and phoneme-to-audio conversion, so we can
insert music generation algorithms between those steps. Using sentiment analysis to analyse the mood of the text, we can fit the
musical output to the text. With the modular nature of the method, it is easy to extend the system with more complex algorithms.

1. Introduction

Writing about combinations of notes into chords and
melodies, Guido of Arezzo (1025) makes the indubitable
claim “...some are suitable, some are more suitable, and
some are the most suitable”. In the millennium since, as the
accepted views on which combinations are the most suit-
able have changed, many have tried to formalise the rules,
so that a person - or a machine - could write music by just
applying them.

Different studies vary in their start and end points.
Högberg (2005) starts from only a choice of style, and gen-
erates form, melody, and accompaniment using tree trans-
ducers. Toivanen et al. (2013) start from a single word,
using that to generate both lyrics and music. Chan and Ven-
tura (2008) start from a given melody and a mood, and let
the algorithm create backgrounds that adapt the melody to
the mood. This can be useful for video games and other
adaptive media, where we can let the music seamlessly de-
velop as the setting changes with the character for example
moving between locations.

Another situation where mood-appropriate music is valu-
able is when generating music to fit given lyrics, which is
the topic of this study. Here, the algorithm takes as input
plain text, and creates suitable music, fitting not only the
natural rhythm of the text, but also the mood. We try to de-
velop a modular prototype, where each part can be replaced
with more advanced software.

We want to work with the whole real-world application
all at once - go straight from unrestricted text to audio out-
put. The problem consists of many parts: We must extract
information from the text, both phonetic and semantic, gen-
erate the music to match it, and produce the audio, consid-
ering both textual and musical information.

The good news is that none of these tasks are in them-
selves new. Text-to-speech tools are found on regular home
computers - all we need to do is to separate the parts, so we
can insert the other processes in the middle. So the whole
process becomes:

Use sentiment analysis to extract the mood of the text

Use a text-to-speech system to convert the text to
phonetic data

Extract the rhythm information from the phonetic data

Generate music based on the rhythm and mood

Modify the phonetic data accordingly

Use the text-to-speech system to produce audio from
the modified phonetic data

In this experiment, we will use the MacinTalk text-to-
speech system available in Mac OS X. It has a convenient
feature that lets us specify pitch and rhythm, making it easy
to produce output which is sung rather than spoken. For the
other steps, we use simple algorithms as proof of concept.

Sample output from the program can be found on
www.cs.umu.se/~zechner/singer.

2. The process
2.1 Analysing the text
The first thing we want to do is analyse the input text to
determine the mood. In this initial version, we look for
certain words that suggest whether the text is happy or sad
- a rudimentary form of sentiment analysis. We use that to
automatically create the music in a major or minor key.

We use the existing software to transform the input
text into phonemic information. This includes a list of
phonemes with stress pattern, duration, and pitch. We will
use this intermediate data to create a musical version, by
replacing the pitch and modifying the duration.

2.2 Generating the rhythm
To determine a suitable rhythm, we extract the stress pat-
tern. To keep things as simple as possible, we ignore vowel
length and secondary stress, and think of the spoken rhythm
as a bitstring, with 1 for stressed syllables and 0 for un-
stressed. We can then divide it into substrings by cut-
ting it off before each 1, so the substrings are on the form
(1, 10, 100, 1000...). We use a fixed 4/4 time signature, and
assign each such substring to one bar.



Next, we need to figure out the exact rhythm for each bar.
In the simplest case, we can use a fixed pattern for each
number of notes. Then we need, for each n, a sequence
of lengths adding up to 1. Perhaps the most straightforward
way is going from n to n+1 by picking the last longest note
and cutting it in half. So for increasing number of syllables,
we get the length sequences

1
1/2, 1/2
1/2, 1/4, 1/4
1/4, 1/4, 1/4, 1/4
1/4, 1/4, 1/4, 1/8, 1/8
1/4, 1/4, 1/8, 1/8, 1/8, 1/8
...

Depending on the style of music, we might want to add
more rhythmic variation, dotted rhythms, or syncopation,
but as a first approximation, this works quite well; for ex-
ample, a three-syllable sequence is much more likely to
have a (1/2, 1/4, 1/4) rhythm than (1/4, 1/4, 1/2), let alone
(1/4, 1/2, 1/4), or for that matter (1/3, 1/3, 1/3) (assuming
the music is in 4/4 time). This is presumably because stress
is associated not only with amplitude but also with length.
(It is also strongly associated with pitch, which is certainly
something we could use in an algorithm like this, but that
could get more complicated.)

This approach works better for some languages than oth-
ers. Toivanen et al. (2013) work with Finnish, where vowel
length is very important, so they take that into account
when determining the length of notes. In syllable-timed
languages like Italian or Cantonese, where each syllable
takes roughly the same time, this kind of rhythm assign-
ment might be problematic, but since English is a stress-
timed language, where each stress point takes roughly the
same time, this approach closely mirrors natural speech.
We are also basing the music on a European tradition; some
other traditions would not divide things into bars at all.

Note that these stress-initial substrings are not meaning-
ful divisions in any semantic or syntactic sense, but they do
not need to be. We do however need to think of phrases,
and leave pauses in between them. The easiest way to do
that is to assume that each sentence is a phrase. We want
a pause between the phrases, but we also want to allow
phrases starting with unstressed syllables. This can be eas-
ily achieved by thinking of the phrase break as a silent but
stressed syllable.

2.3 Adjusting phoneme length
At this point, we have a length associated with each sylla-
ble. Now, we need to assign each phoneme to a note, and di-
vide the allotted time between the phonemes. The obvious
way would be to separate the syllables where they naturally
break, so for example the word “bitstring” would be divided
into “bit” and “string”, but that would be a mistake. Con-
sider the song fragment “twinkle twinkle little star”. The
stress pattern is clearly “1010101”. If you read it rhythmi-
cally, clapping your hands at the stressed syllables, you’ll
notice that the /s/ clearly occurs before the last clap. You
probably see the same thing with “tw” in “twinkle” - it
comes before the clap corresponding to that syllable. The

clap occurs not at the beginning of the syllable, but at its
sonority peak, typically the vowel. So, just as we divided
the sequence of syllables into substrings starting with the
stressed part, we should do the same with phonemes, each
note containing not the phonemes of one syllable, but rather
one vowel and the following consonants.

Some consonants (mainly plosives, such as p b k g t d)
are usually the same length, at least in English. Others
may vary in length, and this may be noticeable in singing;
one example is the aforementioned “twinkle”, where, if
you sing very slowly, you will probably extend the n-sound
rather than the i-sound. But this is usually not essential - if
you extend the i-sound instead, it may come out as “tween-
kle”, but it is probably not too much of a concern. So, as a
first approach, we let all consonants keep their length, and
extend the vowel until the allotted time is filled. We see
again the advantages of using an existing system for speech
synthesis, as we already have natural-sounding consonant
lengths without having to think about it.

2.4 Generating music
Having established a rhythm, we turn to generating a
melody. Many advanced algorithms have been devised for
this purpose, but we will keep things simple for this prelim-
inary demonstration.

For many music styles, we can think of suitable melodies
and harmonies in terms of constraints, including cost func-
tions on intervals between concurrent notes as well as be-
tween sequential notes. But constraint algorithms can get
slow and complex. We can reach an adequate result using
incremental methods, basing each step on previous steps.

For simple Western music, keys and chords are very use-
ful in finding appealing melodies. There is no need to in-
clude key changes or accidentals (that is, deviations from
the key), so we assume all songs will be in C major or C
(harmonic) minor, depending on the results from the sen-
timent analysis, and we completely exclude notes not in
this scale (effectively setting their cost to infinity). As for
chords, we want to keep things simple while highlighting
the difference between major and minor, so we use only
the three most common chords for each key. In terms of
chromatic scale positions, those are ({0, 4, 7}, {0, 5, 9},
{2, 7, 11}) and ({0, 3, 7}, {0, 5, 8}, {2, 7, 11}). We
choose chords randomly, with equal probabilities, but al-
ways set the final chord to the first of the set (the tonic).
Using chords is an effective way to get natural-sounding
melodies, and makes it easy to extend the system by adding
voices or other harmonic backgrounds.

For each note, we rate each possible scale position, by
combining several criteria:

whether the note is in the chord; this is more important
if the note is stressed

the distance between this scale position and that of the
previous note; smaller intervals are better, and this is
less important if the note is stressed

whether the note is the same as the previous; although
small distances are good, we may get more interesting
melodies with a penalty for repetition



the distance between this scale position and the middle
of the available range; closer is better

a random factor

3. Example
As an example, we try the text “give me a hug”. We take the
output from the speech synthesis, ignoring syllable breaks:

g {D 95; P 102.4:0 112.2:47}

1IH {D 140; P 130.9:0 130.7:14 118.4:61 111.1:79}

v {D 85; P 99.1:0}

m {D 80; P 101.3:0 102.0:44}

IY {D 85; P 106.4:0 106.3:71}

IX {D 75; P 104.9:0 102.3:60}

h {D 85; P 94.0:0 99.5:29 105.4:47 119.2:71}

1UX {D 170; P 139.9:0 146.3:12 144.9:24 109.1:71}

g {D 145; P 80.9:0 74.2:59 73.4:86 75.0:100}

The “1”s denote stressed vowels, so the algorithm deter-
mines the stress pattern to be 1001. We get two bars of mu-
sic, and the note lengths will be (1/2, 1/4, 1/4, 1). No nega-
tive words are found in the text, so we get a major scale.
The chords are chosen by the program to be ({0, 5, 9},
{0, 4, 7}). The notes are chosen to be (14, 11, 7, 12). The
phoneme lengths and frequencies are adjusted, and we get
the modified data:

g {D 95; P 146.832627925494:0 146.832627925494:100}

1IH {D 603; P 146.832627925494:0 146.832627925494:100}

v {D 85; P 146.832627925494:0 146.832627925494:100}

m {D 80; P 146.832627925494:0 146.832627925494:100}

IY {D 384; P 123.47103046483:0 123.47103046483:100}

IX {D 299; P 97.9990218237347:0 97.9990218237347:100}

h {D 85; P 97.9990218237347:0 97.9990218237347:100}

1UX {D 1391; P 130.813:0 130.813:100}

g {D 145; P 130.813:0 130.813:100}

which corresponds to the following notes:

4. Future work
We have purposely designed the process so that each part
can be replaced by something more advanced. There are
many ways the different algorithms could be extended.

Much research has been done on sentiment analysis that
could be applied here. We could try to classify the text as
energetic or relaxed, and use that to set a tempo. Taking it to
a more advanced level, we could check for other things that
can be translated into music styles - dialectal differences
might affect regional differences in music, archaic words
lead to older music styles, or age and gender classification
determine which voice to use.

For the music generation, there are also many more ad-
vanced algorithms, some of which would be applicable
here. As a first step, we could include more rules, such
as “avoid intervals of 6” or “if the previous note was much

higher than the one before that, prefer a slightly lower note
now”. It would also be an easy task to add harmonic back-
grounds, which can also vary in style depending on the sen-
timent analysis.

Other possible approaches include working with specific
styles of music; styles such as gregorian chant, traditional
four-part harmony, or baroque minuets follow many rules
that would work in a system like this. It might also be in-
teresting to explore the differences between languages and
geographic music traditions, as mentioned above, and the
relation between them.

References
Guido of Arezzo. 1025. Micrologus de disciplina artis mu-

sicae.
J. Högberg. 2005. Wind in the willows – generating music

by means of tree transducers. International Conference
on Implementation and Application of Automata, 2005:
153–162.

J.M. Toivanen, H. Toivonen, and A. Valitutti. 2013. Auto-
matical composition of lyrical songs. The Fourth Inter-
national Conference on Computational Creativity.

D.A. Ventura and H. Chan. 2008. Automatic composition
of themed mood pieces. Computational Creativity.


