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Abstract
We propose a novel semantic tagging task, semtagging, tailored for the purpose of multilingual semantic parsing, and present
the first tagger using deep residual networks (ResNets). Our tagger uses both word and character representations.We evaluate
the tagset both intrinsically on the new task of semantic tagging, as well as on Part-of-Speech (POS) tagging. Our system,
consisting of a ResNet and an auxiliary loss function predicting our semantic tags, significantly outperforms prior results on
English Universal Dependencies POS tagging (95.71% accuracy on UD v1.2 and 95.67% accuracy on UD v1.3).

1. Introduction
A key issue in computational semantics is the transferabil-
ity of semantic information across languages. Many seman-
tic parsing systems depend on sources of information such
as POS tags (Pradhan et al., 2004; Copestake et al., 2005;
Bos, 2008; Butler, 2010; Berant and Liang, 2014). How-
ever, these tags are often customised for the language at
hand (Marcus et al., 1993) or massively abstracted, such as
the Universal Dependencies tagset (Nivre et al., 2016). Fur-
thermore, POS tags are syntactically oriented, and therefore
often contain both irrelevant and insufficient information
for semantic analysis and deeper semantic processing. This
means that, although POS tags are highly useful for many
downstream tasks, they are unsuitable for semantic parsing.

We present a novel set of semantic labels tailored for the
purpose of multilingual semantic parsing. This tagset (i)
abstracts over POS and named entity types; (ii) fills gaps in
semantic modelling by adding new categories (for instance
for phenomena like negation, modality, and quantification);
and (iii) generalises over specific languages. We introduce
and motivate this new task in this paper, and refer to it as
semantic tagging. Our experiments aim to answer the fol-
lowing two research questions: i) Can we outperform off-
the-shelf sequence taggers by using recent neural network
architectures?; ii) Can we find evidence that semtags are
effective for NLP tasks other than semantic parsing?

To address the first question, we will look at convolu-
tional neural networks (CNNs) and recurrent neural net-
works (RNNs). A recent development is the emergence
of deep residual networks (ResNets), a building block for
CNNs. ResNets consist of several stacked residual units,
which can be thought of as a collection of convolutional
layers coupled with a ‘shortcut’ which aids the propagation
of the signal in a neural network. This allows for the con-
struction of much deeper networks, since keeping a ‘clean’
information path in the network facilitates optimisation (He
et al., 2016). ResNets have recently shown state-of-the-art
performance for image classification tasks (He et al., 2015;
He et al., 2016), and have also seen some recent use in NLP
(Östling, 2016; Conneau et al., 2016; Bjerva et al., 2016;
Bjerva, 2016).

To answer our second question, we carry out an extrinsic

evaluation. We investigate the effect of using semantic tags
as an auxiliary task for POS tagging. Since POS tags are
useful for many NLP tasks, it follows that semantic tags
must be useful if they can improve POS tagging.

2. Semantic Tagging
2.1 Background
We refer to semantic tagging, or semtagging, as the task of
assigning semantic class categories to the smallest mean-
ingful units in a sentence (i.e. words in the context of this
paper). Semantic tagging reaches all parts of speech. Ex-
amples where semantic classes disambiguate are reflexive
versus emphasising pronouns (both POS tagged as PRP,
personal pronoun); the comma, that could be a conjunc-
tion, disjunction, or apposition; intersective vs. subsective
and privative adjectives (all POS tagged as JJ, adjective);
proximal vs. medial and distal demonstratives (see Exam-
ple 1); subordinate vs. coordinate discourse relations; agent
nouns vs. entity nouns. The set of semantic tags that we use
in this paper is established in a data-driven manner, consid-
ering four languages in a parallel corpus (English, German,
Dutch and Italian). This first inventory of classes comprises
13 coarse-grained tags and 66 fine-grained tags. The tagset
also includes named entity classes (see Example 2).

(1) These
PRX

cats
CON

live
ENS

in
REL

that
DST

house
CON

.
NIL

(2) Ukraine
GPE

’s
HAS

glory
CON

has
ENT

not
NOT

yet
IST

perished
EXT

,
NIL

neither
NOT

her
HAS

freedom
CON

.
NIL

In Example 1, both these and that would be tagged as DT.
However, with our semantic tagset, they are disambiguated
as PRX (proximal) and DST (distal). In Example 2, Ukraine
is tagged as GPE rather than NNP.

For further description of the semantic tags, and an
overview of all tags used, we refer the reader to Bjerva et
al. (2016).

2.2 Annotated Data
We use two semtag datasets. The Groningen Meaning Bank
(GMB) corpus of English texts (1.4 million words) contain-



ing silver standard semantic tags obtained by running a sim-
ple rule-based semantic tagger (Bos et al., Forthcoming).

Our second dataset is smaller but equipped with gold
standard semantic tags and used for testing (PMB, the Par-
allel Meaning Bank). It comprises a selection of 400 sen-
tences of the English part of a parallel corpus. It has no
overlap with the GMB corpus. The semantic tags were ob-
tained as for the GMB, and then corrected by a human an-
notator.

For the extrinsic evaluation, we use the POS data in the
English portion of the Universal Dependencies dataset, ver-
sion 1.2 and 1.3 (Nivre et al., 2016).

3. Method
Our tagger is a hierarchical deep neural network consist-
ing of a bidirectional Gated Recurrent Unit (GRU) net-
work a the upper level, and a Convolutional Neural Net-
work (CNN) and/or Deep Residual Network (ResNet) at
the lower level.

3.1 Gated Recurrent Unit networks
GRUs (Cho et al., 2014) are a recently introduced vari-
ant of RNNs, and are designed to prevent vanishing gra-
dients, thus being able to cope with longer input sequences
than vanilla RNNs. A bi-directional GRU is a GRU which
makes both forward and backward passes over sequences,
and can therefore use both preceding and succeeding con-
texts to predict a tag (Graves and Schmidhuber, 2005).

3.2 Deep Residual Networks
Deep Residual Networks (ResNets) are built up by stack-
ing residual units. ResNets can be intuitively understood
by thinking of residual functions as paths through which
information can propagate easily. This means that, in every
layer, a ResNet learns more complex feature combinations,
which it combines with the shallower representation from
the previous layer. This architecture allows for the con-
struction of much deeper networks.

3.3 System description
We use pre-trained word embeddings, which are passed di-
rectly into a two-layer bi-GRU. We further use CNNs for
character-level modelling. The resulting character-based
word representations are concatenated with the word em-
beddings (depending on condition), and passed into the bi-
GRU.

Recent work has shown that the addition of an auxiliary
loss function can be beneficial to several tasks (Plank et al.,
2016; Søgaard and Goldberg, 2016). We experiment with
predicting coarse semtags as an auxiliary task for the sem-
tagging experiments. Similarly, we also experiment with
POS tagging, where we use the fine semtags as an auxiliary
task.

3.4 Hyperparameters
All hyperparameters are tuned with respect to loss on the
semtag validation set. We use rectified linear units (ReLUs)
for all activation functions (Nair and Hinton, 2010), and ap-
ply dropout with p = 0.1 to both input weights and recur-
rent weights in the bi-GRU (Srivastava et al., 2014). In the

CNNs, we apply batch normalisation (Ioffe and Szegedy,
2015). In our basic CNN, we apply a 4 × 8 convolution,
followed by 2×2 maximum pooling, followed by 4×4 con-
volution and another 2× 2 maximum pooling. Our ResNet
has the same setup, with the addition of a residual connec-
tion. All experiments were run with early stopping moni-
toring validation set loss, using a maximum of 50 epochs.
Optimisation is done using the ADAM algorithm (Kingma
and Ba, 2014), with the categorical cross-entropy loss func-
tion. In our experiments, we weight the auxiliary loss with
λ = 0.1, as set on the semtag auxiliary task.

4. Evaluation
We evaluate our tagger on two tasks: semantic tagging (ST)
and POS tagging. Note that the tagger is developed solely
on the semantic tagging task, using the GMB silver training
and validation data (i.e. no fine-tuning of hyperparameters
for POS tagging). We calculate significance using bootstrap
resampling (Efron and Tibshirani, 1994). We manipulate
the following independent variables in our experiments: i)
character and word representations (~w,~c); ii) convolutional
representations (Basic CNN and ResNets); iii) auxiliary
loss (using coarse semtags on ST and fine semtags on UD).

We compare our results to four baselines: i) the most
frequent baseline per word (MFC); ii) the trigram statistic
based TNT tagger (Brants, 2000); iii) the BI-LSTM base-
line, running the off-the-shelf state-of-the-art POS tagger
for the UD dataset (Plank et al., 2016) (default parame-
ters with pre-trained Polyglot embeddings (Al-Rfou et al.,
2013)); iv) we use a baseline consisting of running our own
system with only a BI-GRU using word representations (~w)
from pre-trained Polyglot embeddings.

4.1 Experiments on semantic tagging
We evaluate our system on our silver semtag dataset and
our gold semtag dataset. For the +AUX condition we use
coarse semtags as an auxiliary loss. Results from these ex-
periments are shown in Table 1.

4.2 Experiments on Part-of-Speech tagging
We evaluate our system on v1.2 and v1.3 of the English part
of the Universal Dependencies (UD) data. We report re-
sults for POS tagging alone, comparing to commonly used
baselines and prior work using LSTMs, as well as using
the fine-grained semantic tags as auxiliary information. For
the +AUX condition, we train a single joint model using
a multi-task objective, with POS and ST as our two tasks.
This model is trained on the concatenation of the ST silver
data with the UD data, updating the loss of the respective
task of an instance in each iteration. Results from these
experiments are shown in Table 2.

5. Discussion
5.1 Performance on semantic tagging
The overall best system is the ResNet combining both
word and character representations ~c ∧ ~w. It outperforms
all baselines, including the recently proposed RNN-based
bi-LSTM. On the ST silver data, a significant difference
(p < 0.01) is found when comparing our best system to
the strongest baseline (BI-LSTM). On the ST gold data, we



BASELINES BASIC CNN RESNET

MFC TNT BI-LSTM BI-GRU ~c ~c ∧ ~w +AUX ~c ~c ∧ ~w +AUX

Semtag Silver 84.64 92.09 94.98 94.26 91.39 94.63 94.53 94.39 95.14 94.23
Semtag Gold 77.39 80.73 82.96 80.26 69.21 76.83 80.73 76.89 83.64 74.84

Table 1: Experiment results on semtag (ST) test sets (% accuracy). MFC indicates the per-word most frequent class
baseline, TNT indicates the TNT tagger, and BI-LSTM indicates the system by Plank et al. (2016). BI-GRU indicates the ~w
only baseline. ~w indicates usage of word representations, ~c indicates usage of character representations. The +AUX column
indicates the usage of an auxiliary loss.

BASELINES BASIC CNN RESNET

MFC TNT BI-LSTM BI-GRU ~c ~c ∧ ~w +AUX ~c ~c ∧ ~w +AUX

UD v1.2 85.06 92.66 95.17 94.39 77.63 94.68 95.19 92.65 94.92 95.71
UD v1.3 85.07 92.69 95.04 94.32 77.51 94.89 95.34 92.63 94.88 95.67

Table 2: Experiment results on Universal Dependencies (UD) test sets (% accuracy).

observe significant differences (p < 0.0025). Adding the
coarse-grained semtags as auxiliary task only helps for the
weaker CNN model.

It is especially noteworthy that the ResNet character-only
system outperforms the BI-GRU and TNT baselines, and is
considerably better than the basic CNN. Since performance
increases further when adding in ~w, it is clear that the char-
acter and word representations are complimentary in na-
ture. The high results for characters only are particularly
promising for multilingual language processing, a direction
we want to explore next.

5.2 Performance on POS tagging
Our system was tuned solely on semtag data. This is re-
flected in, e.g., the fact that even though our ~c ∧ ~w ResNet
system outperforms the Plank et al. (2016) system on sem-
tags, we are substantially outperformed on UD 1.2 and 1.3
in this setup. However, adding an auxiliary task based on
our semtags markedly increases performance on POS tag-
ging. In this setting, our tagger outperforms the BI-LSTM
system, and results in new state-of-the-art results on both
UD 1.2 (95.71% accuracy) and 1.3 (95.67% accuracy). The
difference between the BI-LSTM system and our best sys-
tem is significant at p < 0.0025.

6. Conclusions
We introduce a semantic tagset tailored for multilingual se-
mantic parsing. We evaluate tagging performance using
standard CNNs and the recently emerged ResNets. ResNets
are more robust and result in our best model. Combin-
ing word and ResNet-based character representations helps
to outperform state-of-the art taggers on semantic tagging.
Coupling this with an auxiliary loss from our semantic
tagset yields state-of-the art performance on the UD 1.2 and
1.3 POS datasets.
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