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Abstract
While most of us appreciate recent developments in machine learning—after all, they allow us to throw some data at a deep neural
network and report state-of-the-art results without painstaking feature engineering and probabilistic modeling—we go against
the tide and back into the shallow end of machine learning. We present EFSELAB, a system for compiling feature templates
into optimized computation graphs for feature hashes, which we then throw at a linear classifier to perform part-of-speech (PoS)
tagging and named entity recognition at speeds of millions of words per second on a GPU-less desktop computer. Across the
39 languages evaluated, there is no systematic difference in PoS tagging accuracy between our system and a recently presented
LSTM-based neural network system, while the latter requires nearly three orders of magnitude more computing time.

1. Introduction
Recent years have seen natural language processing (NLP),
like so many other fields, completely overrun by so-called
Deep Learning approaches using multi-layered neural net-
works. These obtain state-of-the-art results in everything
from part of speech tagging (Huang et al., 2015) to machine
translation (Luong and Manning, 2016). While this has rev-
olutionized fields such as computer vision, the difference
in PoS tagging accuracy between a perceptron-based linear
tagger (Shen et al., 2007) and a state-of-the-art neural net-
work system (Huang et al., 2015) is just 0.22 percentage
points on the Penn Treebank test set.

Rather than increasing computational resources by or-
ders of magnitude for a (possible) tiny gain in accuracy, our
aim is to perform the task as cheaply as possible without
sacrificing accuracy.

2. Feature representations
Sequence labeling is the task of finding a sequence of labels
yi given a corresponding sequence of inputs xi. This has
been used in natural language processing for a wide range
of tasks, including PoS tagging, named entity recognition
and shallow parsing.

Feature-rich models for sequence labeling have been
popular for the last couple of decades. They are based on
defining a large set of feature functions, φ(x, y, i), which
describe some feature of the sequence x, label sequence y
and sequence position i. For instance, we might have

φ(x, y, i) =

{
1 ifxi = cat ∧ yi−1 = DET ∧ yi = NOUN
0 otherwise

}
The task of a linear classifier is then to find a weight vec-
tor w̄ such that its dot product with the feature vector
φ̄T · w̄ =

∑
k wkφk(x, y, i) is high when xi has label yi

and low otherwise.

3. Feature hashing
Since φ̄ is typically large but very sparse, it is compu-
tationally more efficient to store only its non-zero ele-
ments. Furthermore, given some hash function h which

maps features to integers, φ̄T · w̄ can be approximated by∑
k|φk(x,y,i)6=0 uh(k) if all φk are binary-valued. The com-

putational advantage is that this amounts to adding a small
number of elements from the weight vector u.

For a collision-free function h with a sufficiently large
weight vector u, this is identical to φ̄T · w̄. In practice we
want u to be as small as possible to save computational re-
sources. Decreasing the size of u makes the approximation
less close, but typically works well despite fairly high col-
lision rates (Ganchev and Dredze, 2008).

We train with a larger than necessary weight vector u fol-
lowed by repeatedly halving its size until accuracy on held-
out data starts to decrease (we do this by simply cutting u in
two halves and adding them, so that the new weight vector
u′ = u1...N/2 + uN/2+1...N ). Empirically, we found this to
work as well as optimizing the weight vector length N by
re-training at each step, while much less costly as training
is only performed once.

4. Redundant feature templates
A naive way to define h(k) would be to construct a string of
characters representing the corresponding feature function
φk, for instance “suffix=ed,tag=VERB”, and then use
any function for string hashing to map this into an integer.
In most cases the feature functions φ are created from tem-
plates that generate a number of very similar functions. For
instance, with x = hinted and y = NOUN we might have
non-zero feature functions with conditions such as these:

suffix1 = d ∧ tag = NOUN

suffix2 = ed ∧ tag = NOUN

suffix3 = ted ∧ tag = NOUN

. . .

A typical hash function over sequences (or trees) of
integers works by recursively applying a mixing func-
tion m(a, b) that maps integers a and b to another in-
teger in a pseudo-random manner.1 For the second

1The choice of m is arbitrary, but we adapt it from Mur-
murHash: https://github.com/aappleby/smhasher



of the examples above, we might therefore compute
m(suffix2,m(e,m(d,m(tag, NOUN)))), assuming that suf-
fix2, e, d, tag and NOUN are all symbols that can be repre-
sented by integers.

Given the redundancy among these feature functions, it is
possible to reduce computation (applications of the mixing
function) significantly by sharing subtrees between feature
hashes. For instance, the hashes of the three features above
can be computed as

t1 = d

t2 = m(e, t1)

t3 = m(t, t2)

t4 = m(suffix1, t1)

t5 = m(suffix2, t2)

t6 = m(suffix3, t3)

t7 = m(tag, NOUN)

h(φ1(x, y)) = m(t4, t7)

h(φ2(x, y)) = m(t5, t7)

h(φ3(x, y)) = m(t6, t7)

As is standard, only the subset of variables which depends
on the current tag label y (in this case t7) is recomputed
when scoring hypotheses with different tags. In addition,
we can use other types of redundancy in the feature tem-
plate to reduce computation, illustrated here by suffixes of
varying length (t4, t5 and t6).

5. A practical system
Our main contribution in this work is a practical system,
EFSELAB 2, which takes as input a feature template descrip-
tion and produces a sequence learning program based on
the structured perceptron (Collins, 2002) using optimized
feature hashes as described above. These sequence learning
programs can then be trained with actual data to perform
sequence labeling tasks such as part of speech tagging or
named entity recognition.

A pre-trained Swedish model using extra resources is
available, intended as a replacement for Stagger (Östling,
2013). This has also been integrated into an easy-to-use
Swedish annotation pipeline, where EFSELAB is used for
PoS tagging and named entity recognition, and MaltParser
(Nivre et al., 2007) for dependency parsing. Since this
pipeline uses additional resources, including a morpholog-
ical lexicon (Borin and Forsberg, 2009) and the SUC cor-
pus (Källgren, 2006), the error rate (2.0%) is considerably
lower than that of the model trained on only UD data (3.3%,
see Table 1 on the following page).

6. Experiments
We evaluate EFSELAB on 39 languages from the Universal
Dependencies 1.3 treebank (Nivre et al., 2016), using the
17-tag universal PoS tagset. These results are compared to

2https://github.com/robertostling/efselab
(the experiments reported here can be reproduced with commit
b3f99d1)
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Figure 1: PoS tagging error rate of EFSELAB (green cir-
cles) and Plank et al. (2016) (blue triangles) on the UD
Treebank 1.3 test sets, showing error rate and training data
size. For readability, only the system with the lowest error
rate is shown for each language, please refer to Table 1 on
the following page for further details.

Plank et al. (2016)3, who used a model with bidirectional
LSTMs on both the character and word level.

Surprisingly, given their very powerful model, EFSELAB
performs better on 25 of 39 languages, with a (geometric)
mean relative error reduction of 4% over all 39 languages.
In other words, the two system would seem to be roughly
on par with each other. To some extent this seems to be
due to EFSELAB’s ability to better handle data sparsity, as
there is a moderate correlation (Spearman’s ρ = 0.46) be-
tween training set size and error ratio in favor of Plank et
al. This is further illustrated by Figure 1 and Table 1 on the
following page.

The difference in computational efficiency, on the other
hand, is striking. While EFSELAB achieves a tagging speed
of about 7.2 million tokens per second, Plank et al.’s tagger
manages 10 700 on the same system.4

7. Future work
By reducing the beam size and using greedy search (beam
size 1) instead of the default beam size of 4, EFSELAB’s
performance increases to 13.5 million tokens per second, at
the cost of somewhat decreased accuracy (mean error rate
increase of 17% on the UD treebank compared to beam
size 4). To improve accuracy with small beams, includ-
ing greedy search, search-based optimization methods such
as early updating or LaSO (Daumé and Marcu, 2005) can

3The original article contains only results on version 1.2 of the
treebank, with considerably fewer languages, so we instead use
their results for version 1.3, which are published at https://
github.com/bplank/bilstm-aux/ (column i20-h1)

4This was measured using the Swedish UD data with the stan-
dard training and test partitioning, on a system with two Intel
Xeon E5645 CPUs running at 2.4 GHz, with 12 physical cores
in total. 24 parallel processes were used in both cases. For EFSE-
LAB we use the default beam size 4, and for Plank et al.’s tagger
model a single LSTM layer.



Table 1: PoS tagging error rate for EFSELAB and Plank et
al. (2016). Best (lowest) value for each language in bold.
The rows are sorted by training coprus size (second column,
in thousands of tokens).

Language Size Error rate (%)
EFSELAB Plank

Kazakh 4 15.8 22.3
Tamil 7 13.7 15.5
Latvian 13 9.0 8.6
Irish 17 8.1 9.5
Hungarian 34 5.6 6.2
Latin 40 6.6 9.8
Turkish 45 5.4 6.2
Gothic 49 4.4 4.0
Greek 49 1.6 2.2
Old Church Slavonic 51 3.6 3.5
Swedish 71 3.3 3.5
Polish 76 3.3 3.7
Basque 78 5.0 6.1
Galician 82 2.3 3.1
Croatian 82 4.0 5.0
Russian 84 4.2 4.3
Danish 94 3.6 3.9
Indonesian 102 7.1 6.8
Chinese 103 8.7 6.9
Romanian 113 4.0 4.5
Slovenian 119 3.5 2.5
Persian 126 3.0 3.2
Bulgarian 133 2.1 1.8
Hebrew 141 4.5 4.8
Finnish 175 4.9 5.7
Estonian 202 4.0 4.2
Ancient Greek 209 5.9 5.6
Dutch 210 9.8 10.0
English 217 5.3 5.4
Portuguese 224 3.4 2.8
Arabic 232 4.0 3.9
Norwegian 260 2.6 2.4
Italian 261 2.4 2.6
German 284 7.3 7.1
Hindi 294 3.4 3.6
French 371 3.6 3.7
Spanish 397 4.3 4.8
Catalan 442 2.4 1.9
Czech 1242 1.5 1.4

be used, with no additional test-time cost. This is left for
future work.
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Bouma, Sam Bowman, Gülşen Cebirolu Eryiit, Giuseppe
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Mašek, Yuji Matsumoto, Ryan McDonald, Anna Mis-
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