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Preface

This work covers perturbation analysis of the following three kinds of algebraic
eigenproblems: the eigenvalue problem

Az = Az, (I)
the singular value decomposition
A=UsvH, (IT)
and the generalized eigenvalue problem
BAz = aBz, (I11)

where the matrices A and B are data.

Perturbation analysis of the algebraic eigenproblems contains forward perturba-
tion analysis and backward perturbation analysis.

Forward perturbation analysis is motivated by the fact that any one of the prob-
lems (I), (II) and (III), as the others in matrix computations, is usually subject to
perturbations on the data reflecting various errors in the formulation of the problem
and in its solution by a computer. When solving a computation problem, it may well
be asked: How does a solution change when the data are subject to perturbations?

The result of a forward perturbation analysis may be a perturbation expansion,
or a condition number, or a perturbation bound. A perturbation expansion approxi-
mates the perturbation in the solution in terms of a known perturbation on the data.
A condition number is a measure of the sensitivity of the solution to perturbations
on the data. A perturbation bound is used to bound the resulting perturbation in
the solution.

Backward perturbation analysis is motivated by the following fact. Let an ap-
proximate solution to a computation problem be given. For example, the approx-
imate solution may come from a numerical algorithm for approximating the exact
solution. Then there are two important questions associated with the approximate
solution: (1) Is the approximate solution the exact solution of a slightly perturbed
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problem? (2) Is the approximate solution close to the exact solution?

To answer the question (1) we need the notion of backward error of a problem
with respect to an approximate solution. In general, an approximate solution of
a problem solves many perturbed problems. The backward error of the problem
with respect to the approximate solution is a measure of the nearness between the
perturbed problems and the original problem. A small backward error means that
the approximate solution is the exact solution of a slightly perturbed problem. Con-
sequently, to find a computable formula of the backward error may be very useful
for testing the backward stability of practical algorithms.

When computable formulas of the backward error and the associated optimal
(minimum) backward perturbation on the data are found, an answer to the question
(2) will be obtained by applying an appropriate forward perturbation result to the
optimal (minimum) backward perturbation on the data. Generally speaking, the
optimal (minimum) backward perturbation is expressed through some residual of
the problem with respect to the approximate solution, and so the obtained estimate
concerning the accuracy of the approximate solution is usually in the form of resid-
ual bound.

The present work is a sequel to the books Matrix Perturbation Analysis [104,
1987 and 2001] and Matrix Perturbation Theory [97, 1990]. In the two previously
published books, we were chiefly concerned with perturbation bounds for linear
systems, least squares, eigenvalue problems, the singular value decomposition, and
generalized eigenvalue problems. The main object of this work is to describe tech-
niques for deriving perturbation expansions, condition numbers, backward errors,
and residual bounds for the problems (I), (II) and (III).

I hope that this work will be useful to graduate students in technical areas and
my colleagues in numerical analysis, and also to all computational scientists and
engineers who are concerned about the stability and accuracy of their results.

The first chapter of the work reviews and collects necessary background material
from matrix algebra and analysis. Chapters 2, 3 and 4 are devoted to the problems
(I), (II) and (III), separately. We have supplemented each section with a set of
“Notes and References” in which literature citations are given, and other related
results are discussed. Besides, a certain number of simple numerical examples are
used to illustrate some theoretical results. All computations were performed using
MATLAB, version 4.2c. The relative machine precision is 2.2204 x 10716,

This work has greatly benefited from the insight and knowledge provided by
many friends and colleagues. In particular, the work of Pete Stewart and Nick
Higham has strongly influenced my research in perturbation analysis of algebraic
eigenproblems.
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Chapter 1

Preliminaries

This chapter contains necessary background material for the chapters that follow.

The first section introduces some notation. §1.2 — §1.5 are devoted to norms,
metrics, matrix orthogonal decompositions, and solutions of some matrix equations.

The implicit function theorem, the Brouwer fixed point theorem and the Schauder
fixed point theorem, are cited in §1.6 and §1.7, respectively.

In §1.8 and §1.9 we introduce definitions of normwise condition numbers and
normwise backward errors.

1.1 Notation

Throughout this work we shall use the following notational conventions.

The symbol C"*™ (R™*™) will denote the set of m x n complex (real) matrices,
Cn =™t R =R™1, C=C! and R = R'. As usual () is the empty set.

The transpose of a matrix A will be written A7, the conjugat A, and A¥ = ar.
The trace of a square matrix A will be written tr(A). The symbol |A| will denote
the matrix (|ay;|) for A = (o ;). The identity matrix will be wriiten I, e; is the jth
column of 7, and egn) stands for the jth column vector of I, the identity matrix of
order n. The null matrix will be written 0.

The set of nxn Hermitian (real symmetric) matrices will be written H"*™ (S™*™),
and the set of m xn unitary (real orthogonal) matrices will be written ™*™ (O™*™);
ie.,

HP={Aec" : AT =4},  SV"={AeRV": AT = A},

umxn:{Aecan:AHA:I}7 Omxn:{AGRmxntATA:I}.
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The positive definiteness (or semi-definiteness) of A € H™*™ (or S™*™) will be
denoted by A > 0 (or A > 0).

For A € C™*" Al stands for the Moore-Penrose inverse of A, and R(A) the
column space of A, i.e., R(A) = {4z : x € C"}. The orthogonal projection onto
the subspace R(A) will be written Pg(4) (or simply, P4), and Pt =1-Py4 Fora
subspace X', dim(X) will denote the dimension of X.

The set of all eigenvalues of A will be wriiten A(A), the set of all singular values of
A will be written o(A), and 04 (A) will denote the set of all positive singular values
of A. The largest (smallest) singular value of A will be written omax(A) (omin(4)).

For A = (aj;) = (a1,...,a,) € C™ " and a matrix B, A ® B = (a;;B) is a

Kronecker product, and vec(A) is a vector defined by vec(A) = (al,...,al)T. For

basic properties of the Kronecker product and vec operator, see Graham [42, Chap-
ters 1 and 2], or Horn and Johnson [56, Chapter 4], or Lancaster and Tismenelsky
[67, Chapter 12].

Throughout this work, the symbol || - || will be used to denote any unitarily in-
variant norm (see Section 1.2.3) if there is no a special statement.

For linear spaces A and B, the product space A x B is defined by
AxB={(a,b) : a€ A, be B}.

“—_"n

The relation is used for implicit definitions.

1.2 Norms

Most of the perturbation results presented in the following chapters are on normwise.
Therefore, norms have an important role to play in our work. In this section we
collect certain basic notion and facts on vector norms and matrix norms.

1.2.1 Vector Norms

A vector norm is a generalization of the modulus of a complex number.
A function v : C" — R is a norm on C™ if v satisfies the following conditions:
Lz#0 = v(zr) >0,
2. v(azx) = |a|v(z) for any a € C,

3.v(z +y) <v(zr)+vy).
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For any z = (¢1,...,&,)T € C, the p-norm ||z||, is defined by

1
el = (1&LlP + -+ [&aP)?, p= 1.

The most useful p-norms are the 1-norm, 2-norm (or the Euclidean norm), and the
0O-norm: .
lzlle =) 1&gl llzlle = Vare, |lz]lo = max [&.
j=1

I<j<n

A vector norm v on C" is absolute if v(|z|) = v(x) for all z € C", where ||
denotes the vector whose elements are the absolute values of the elements of . Any
p-norm is obviously an absolute norm.

It is known (see, e.g., Stewart and Sun [97, Chapter II, Theorem 1.3]) that a
vector norm v is absolute if and only if

2] <yl = v(z) <vly).
For any vector norm v(-) on C”, the dual norm v (-) is defined by

vP(y) = max |yTz|, yec
v(z)=1

It can be verified that for any vector = we have
212 = llzllzs 27 = lelloos 212 = llz[hr-

1.2.2 Matrix Norms

A function v : C™*™ — R is a norm on C™*" if v satisfies the following conditions:
1LA#0 = v(4) >0,
2. v(aA) = |a|v(A) for any a € C,
3.v(A+ B) <v(A) +v(B).

Let v1,v5 and v3 be norms on C™*™, C™** and C™*¥, respectively. Then vy, vs
and v3 are mutually consistent if

I/3(AB) S I/1(A)I/2 (B)

whenever A € C"™*" and B € C™*¥. In particular, a matrix norm v on C™*" is
consistent if

v(AB) < v(A)v(B)
for all A, B € C™*™.
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The most frequently used matrix norms in matrix perturbation analysis are the
Frobenius norm || - ||p and the p-norm || - ||,. For A = (o) € C™*", the norms
|A||r and ||Al|, are defined by

m n
Al = | DD lenl?,
j=lk=1

[

and

| Allp = sup
P 270 ||fE||p’

Note that the Frobenius norm and any p-norm are consistent norms.

The most useful p-norms are the 1-norm, 2-norm (i.e., the spectral norm), and
the oo-norm.

If o1,...,0, are the singular values of A € C"™*" i.e., if 01,...,0, are nonneg-
ative scalars and of,...,02 are the eigenvalues of A” A, then the norms ||A||r and
|All2 can be expressed by

n
IAllF = > 02, |lAll2 = omax(A).
j=1

1.2.3 Unitarily Invariant Norms

For any A € C™*", U e U™*™ and V € U™ ", we have
[UAV]|r = [|Allp,  [[UAV]]2 = [|[All2,

and
|AllF = ||A|l2 if rank(A) = 1.

These facts suggest the following definition.
A norm || - || on C"™*" is called a unitarily invariant norm if it satisfies
4. ||UHAV|| = ||A|| for any U € U™ ™ and V € U™,
5. ||All = ||Alz if rank(A) = 1.

Note that any unitarily invariant norm is a consistent norm.

By the von Neumann theorem [125] (or see Stewart and Sun [97, Chapter II,
Theorem 3.6]), any unitarily invariant norm can be characterized as a symmetric
gauge function of singular values.
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A function ¢ : R™ — R is called a symmeltric gauge function if it satisfies the
following five properties:

lLL.z#0 = ¢(z) >0,
2. ¢(yz) = |y|¢(x) for any v € R,

3. ¢(z +y) < dz) + o),

4. $(P|z|) = ¢(x) for any permutation matrix P,

5. () =1.

Suppose that ¢ is a symmetric gauge function on R”Y, where N is a sufficiently
large natural number. Then for any m,n < N we may define a unitarily invariant
norm || - || on C"™*" (m,n < N) by

Al = ¢(o1,...,00,0,...,0),

where o1, ...,0, are the singular values of A. Consequently, we obtain a family of

unitarily invariant norms on |J C™*™ generated by ¢. For simplicity, the symbol
m,n<N

|| - || will also be used to denote a family of unitarily invariant norms generated by

any symmetric gauge function.

The following properties possessed by unitarily invariant norms are well known:

1A = [lAl,

01 (A1) =0(A2) = A1l = [|A2],

=[]

IAB|| < [[All|BIl,  |ABI[ < [I B[l All

<

Besides, if the singular values of A, B € C™*™ are 01 > -+ > 0, and 71 > -+ > 7,
respectively, and o; < 7; for j =1,...,n, then |A] < ||B]].

1.2.4 Some Results on Matrix Norms
The following results on matrix norms will be used in chapters 2—4.

A A
Ag1 Agp

_ 0 A (A1 O (A O _ An
B_(Azl 0 )’ C_( 0 0>’ D_( 0 A22>’ Al_(A21>'

Theorem 1.2.1. Let A = ( > be a partitioned matriz, and let
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Then
1B <Al [ICl < Al 1D < Al 1A < (Al
Proof. Let
I 0
Then from
1 1 1
B=3(A-QAQ), D=3(4+QAQ). C=5(D+QD)

we get

IBI <Al [ICl < DIl < [|All.

I
wea(l)
< [|A])- O

(o)l

Theorem 1.2.2. Let B € C"™*™,C € C"*" (m > n) be normal matrices, and
I = diag(y;) with y1 > -+ > v, > 0. Then

p(0)-(0)el, o (57)- (%)

Proof. We first prove the inequality (1.2.1) for m = n. Let

Moreover, from

we get

[AL] < [|A]

> 7, (1.2.1)

F

F

§ = ||Br = IC|[% - 72l B - Cll%

and
Q=T —~,1.

Obviously, the diagonal elements of €2 are nonnegative. Moreover,

0 =|1BQ~QC +7(B - O)lF =B - Clix
= |BQ - QC[} + 2mRe (tx [(BQ - 00) (B - C)])
— |BQ - QClf}
ttr (2[(B = 0)1(B - 0)+(B-0)(B-0)"])

> [|BQ - QC% > 0,

which shows
|BL = TCllp > 7allB = Cllp. (1.2.2)
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We now prove the inequality (1.2.1) for m > n. Let

A T 0 ~ C 0

Then we have

2

A a2 T r 0 0
per=ref =} ((5) - (5 ) o2 (e )~ (o )1,
r r\ | 0 o \|
_ _ 2 _
F F
(1.2.3)
and
2
5 AR e I, 0 [ C 0
I I 2 0 o |
— 2 B n o n C + 2 B _ .
" ( 0 > ( 0 ) F o Trn—n Tn—n F
(1.2.4)
By (1.2.2),
o162 -],
Combining it with (1.2.3) and (1.2.4) shows the inequality (1.2.1). O

We now cite two famous results on norm-preserving dilations.
Theorem 1.2.3 (Krein and Kahan). Let

(4 5)

with A € H¥*k and C € C*. Then

: A
yin (|2 (W)ll2 = H( o >

2

Theorem 1.2.4 (Kahan, Weinberger, Davis, and Parrot). Let

Z11 Zi2
V(Z32) = ( Zo1  Zoo >
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with Zy, € C*** and Z21,ZlT2 € C*E. Then

. Z1
min ||V (Z = max
ZypeCix ¥ (Z2)l {H( Z2 >

, ||(Z117212)||2}-

2

Note that Theorems 1.2.3 and 1.2.4 are valid for real matrices.

Notes and References

NR 1.2-1. There is a large literature on vector norms and matrix norms. For
deeper issues concerning norms, see Householder [57, Chapter 2], and Horn and
Johnson [55, Chapter 5]; for unitarily invariant norms, see von Neumann [125] and
Mirsky [78]; for historical comments on the development of norms in numerical anal-
ysis, see Stewart and Sun [97, Chapter II].

NR 1.2-2. The inequality (1.2.2) is proved by Sun [100]. Theorem 1.2.2 is
proved by Chen and Sun [20].

NR 1.2-3. Theorem 1.2.3, as an important dilation theorem, is discovered by
Krein [64] and Kahan [61] (see Parlett [83, 231-233]). Recently, Elsner, He and
Mehrmann [36] give a proof in a different way.

NR 1.2—4. Theorem 1.2.4 is a general dilation theorem. The first proof is given
by Kahan and Weinberger; later proofs are given by Davis [25] and Parrott [84] (see
Davis, Kahan and Weinberger [27]).

1.3 Metrics on Subspaces of C"

In some applications, the object that is perturbed is not a vector or a matrix, but
a subspace, for example, an invariant subspace of a matrix. In this section we shall
discuss measures of metrics on subspaces.

The symbol G will be used to denote the set of /-dimensional subspaces of C".
We shall use X7, Y1, Z;1 for subspaces.
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1.3.1 Unitarily Invariant Metrics
A function d(-,-) : G/ — R is a metric on G if it satisfies the following conditions:
1.d(X, Y1) >0, and d(X,V1) =0 <= X, =),
2.d(&X1, 1) = d(V1, 1),
3. d(X1, 1) < d(X1, Z1) +d(21,)1).
A metric d(-,-) on G’ is unitarily invariant if it satisfies
4.d{UX,,UYy) = d(X1,),) for any U e U™*".

From the definition it follows that for any unitarily invariant norm || - || on C™*7,
|Px, — Py, || is a unitarily invariant metric on G".

Let A7 and Y; be [-dimensional subspaces. Take X;,Y; € U™ such that
R(X1) = X, R(Y1) = V1. Define ©(X,Y;) € HX! by

O(X1,Y;) = arccos(XZV,VH X1)2 > 0. (1.3.1)
Then we have the following result.
Theorem 1.3.1. For any unitarily invariant norm || - || on C*<!, there exists a

unitarily invariant norm || - ||* on C"*™ such that

1Px, = Py I = [|sin © (X1, Y1) .

*

Conversely, for any unitarily invariant norm || - ||* on C™*™, there exists a unitarily

invariant norm || - || on C™*! such that
Isin ©(X1, V)| = [Px, — Py [l

Theorem 1.3.1 shows that for any unitarily invariant norm || - || on C**!, the
quantity p(X1,Y;) defined by

p(X1, 1) = [|sin©(X,, Y1) (1.3.2)
is a unitarily invariant metric on G;'. Particularly, we have

p2(&1, V1) = [|sin©(X1, Y1)[l2 = [|Px; — Py |l2,

. (1.3.3)
pr(X1, V1) = [[sinO (X1, Y1)||r = EHPXI — PyilF.
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We now consider the simplest case: n = 2 and [ = 1. Let 2; = (o, )7
= (v,6)T be nonzero vectors of C2. Then by (1.3.1) and (1.3.2) we have

|d — By
V(lal? + 82 (v +101%) (1.3.4)

= p((a, B), (7,9)),

which is the chordal metric on the complex projective plane (or the chordal metric
on the Riemann sphere). Hence, the metric p(Xy, Y1) defined by (1.3.2) is usually
called the generalized chordal metric.

p(R(z1),R(y1)) =

Let X1 = R(X1) and Y1 = R(Y1) be [-dimensional subspaces of C", where
X1,Y1 € U™, By Stewart [91, Appendix] (or see Stewart and Sun [97, Chapter 1,
Theorem 5.2]), there are unitary matrices @, U; and V; such that

I T
QXU =10 and QY1Vi=1| X (when 21 < n)
0 0
or
I, 0 T 0
QXU = 0 Iy _, and QY1V; = 0 Iy, (when 20 > n),
0 0 > 0
where ' '
I'=diag(vyi, ..., Yn,), X =diag(o1,...,0n,),
OS’}/1< <7TL17 012"'2071,1207
7]2—1_0]2: ) jzla"'anla
in which
l if 21 <m,
= { n —1 otherwise. (1.3.5)
The angles 6; = sin"'o; € [0,7/2] (j = 1,...,n1) are called the canonical angles

between X7 and ).

Using the canonical angles, the metric p(X7, Y1) can be expressed by
p(X1, Y1) = ||diag(sin 6;)]|. (1.3.6)

particularly, we have

pQ(Xl,yl) = sin01, Xl,yl IZ sin 9 (137)
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1.3.2 Some Estimates of Metrics

The following result reveals a relation between p(X,);) and Y7 — X1, where Xy =
R(Xl), and y1 = R(Yl)

Theorem 1.3.2. Let X} = R(X;) and Y1 = R(Y1), where X1,Y] € C™!, and
rank(X;) = rank(Yy) = 1. Then

p(X1,01) = HP)%1 (Y] — Xl)(Y1HY1)_1/2H

(1.3.8)
= [P (v - x)(xf ) 2.
Theorem 1.3.2 implies that for nonzero vectors z,y € C", we have
sin@(z,y) = sinf(u,v) < min{ ly = xHQ, ly = xll2 } , (1.3.9)
1yl ]|

where u = z/||z]l2,v = y/|lyll2, and 6(u,v) denotes the angle between the one-
dimensional subspaces R(z) and R(y).

Proof of Theorem 1.3.2. Define Z; and W by
7y =X (XIx)7V2 Wy = v (vTyy) T2

Then from (1.3.1) and (1.3.2)

1/2
p(X1, 1) = H (1 - Z{IW1W1HZ1> . (1.3.10)
Moreover, we have
P, (Vi — X0) (V') 12 = Pe i(Vv) 2 = Py,
and
N o | 1/2
|Pé,0n = X)) = H (Prw)" (P2w)]
(1.3.11)

_ H(I ~ WﬂlefHWl)l/z .

Observe that
1/2 1/2
o ((I - zftwmw{! z,) ) =0, ((1 — Wiz 2{'w,) ) .
Hence, by a property possessed by unitarily invariant norms (see §1.2.3), we have

H (I - Z{fwlwfle)l/QH = H (I - W{lez{fwl)l/QH .
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Combining it with (1.3.10) and (1.3.11) shows the first equality of (1.3.8). Further,
interchanging X; and Y; of the equality yields the second equality of (1.3.8). O

Let X1 = R(X1) and Y1 = R(Y1) be [-dimensional subspaces of C", where
X, € Ui, Moreover, let 6; > 62 > --- > 6,, be the canonical angles between
Xy and Yy, where n; is defined by (1.3.5). Then from (1.3.6), (1.3.7) and

sinf; <tan6;, tan@; < Sinéjg if sinf; <1,
1 —sin“ 64
we get
p(X1, 1) < || tan ©(X, Y1), (1.3.12)
and
| tan ©(X;, v7)|| < —LLALN) i po(A1,)1) < 1. (1.3.13)

1 — p3(X1, 1)

The following result gives some estimates of the distance between the subspaces
R(X1) and R(X; + XoZ), where (X, Xo) € U™ with X; € U™*'.

Theorem 1.3.3. Let X = (X1, X3) € U™ with X1 € U™*!. Let

5 Il
X=X < 7 ) , (1.3.14)
and
~ ~ ~ 1
Y, =X (XEXx)) 2. (1.3.15)
Then
1Z]| = [| tan ©(X71, Y1) |, (1.3.16)
and
p(X, ) = 1ZI+0(1Z2)°)  as Z =0, (1.3.17)

where O(X1,Y1) is defined by (1.3.1), X1 = R(X1), and Y1 = R(Y1).

Proof. Let
Z = PTQH! (1.3.18)

be the singular value decomposition of Z, where P € Y(=0x(n=0) 0 ¢ y*l and
T = diag(7;). Then by (1.3.1), (1.3.14), (1.3.15) and (1.3.18), we have

. . T1 T H
sin ®(X1,Y7) = Qdiag yeens Q"
,/1—1—712 \/1+Tl2
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which shows that 7;/,/1 + sz =sinf;, and so we have 7; = tan; for j = 1,...,nq,
where n; is defined by (1.3.5). Combining this fact with (1.3.18) shows (1.3.16).

By the first equality of (1.3.8), we have

P20, 1) = | PR ()72 = |21+ 27 2) 71 (1.3.19)
Substituting the expansion
1 3
I+2zHz)y =1~ 521245212 = (12 < 1)
into (1.3.19) gives the relation (1.3.17). O

Let X; and )i be the subspaces of Theorem 1.3.3. From (1.3.12), (1.3.16) and
(1.3.17) we see that a sharper upper bound &* for || Z|| is also a sharper upper bound
for p(Xy, Y1) if £* is very small.

Notes and References

NR 1.3-1. Usually, G/ (the set of [-dimensional subspaces of C") is called a
complex projective space, or a Grassmann manifold (see, e.g., Hirsch [53, Chapter
1]). There are various approaches to introduce metrics on G (see Berkson [4], and
Stewart and Sun [97, Chapter II]). According to Berkson [4], the metric po (X1, V1)
of (1.3.3) was first defined on Hilbert space by Krein and Krasnoselsky [65].

NR. 1.3-2. The functions arccos(X 7YY X1)2, sin©(X, Y1) and tan © (X1, Y7)
of (1.3.1), (1.3.2) and (1.3.16) are matrix functions. For definitions and approxima-
tion methods of matrix functions, see Golub and Van Loan [41, Chapter 11].

NR 1.3-3. Theorem 1.3.1 is cited from Sun [99, Theorem 3.1], a proof of the
result is given by Sun [104, Chapter 2, Theorem 4.4]. From (1.3.6) we see that
the canonical angles between two subspaces play important role for measuring the
distance between the subspaces. Consequently, it may well be asked: Can we char-
acterize any unitarily invariant metric on G;* as some special kind of functions of the
canonical angles? This is a research problem.

NR 1.3-4. Theorem 1.3.2 is a generalization of a result given by Sun [104,
Chapter 4, Theorem 4.5], where only pa (X1, V1) and pp(X1, V1) are considered.

NR 1.3-5. For more results on the generalized chordal metric p(Xy,Y;) and
the canonical angles, see Kato [63, Chapter IV], Davis and Kahan [26], Stewart [91],
[93], and Stewart and Sun [97, Chapter II]. For numerical methods for computing
the canonical angles, see Bjorck and Golub [7].



14 CHAPTER 1. PRELIMINARIES

1.4 Matrix Orthogonal Decompositions

Let X € ¢"*! with rank(X) = [. The QR factorization X = QR, the singular value
decomposition X = USV ¥, and the polar decomposition X = PH are important
orthogonal decompositions of X, where Q,U, P € U™}, V e U"*!, R € C"* is upper
triangular with positive diagonal elements, ¥ € R**! is diagonal with positive diag-
onal elements, and H € #!*! is positive definite. The matrix Q is called the unitary
QR factor, and P the unitary polar factor of X.

It is known that the unitary polar factor P of X possess the best approximation

property:
min || X —Ullp = [|X = P|r.
Ueynxt

In this section we shall show the following fact:
IX X -I|lp<1l = [|X-Plr<1l and |X -Q|r <1, (1.4.1)

where (@ is the unitary QR factor of X.

We first prove a result on perturbations of the Cholesky factor of the identity
maftrix.

Theorem 1.4.1. If H € H"*" satisfies |H||2 < 1, then I + H has a unique
Cholesky factorization
I+H=LL", (1.4.2)

where L = I + G is a lower triangular matriz with positive diagonal elements, and

V2| H|lp
1= Hll2 + V1= [[H]2

1GllF < (1.4.3)

Proof. The assumption ||H|]2 < 1 implies that the Hermitian matrix I + H is
positive definite, and so there is a unique Cholesky factorization (1.4.2). We now
prove the estimate (1.4.3).

The elements of L are obviously differentiable functions of the elements of H.
Differentiating (1.4.2) gives

dH = dLLY + LdL”

and
L YL + (L %D)® = L 'dHL 2,

Combining it with

V2Ll L] < V2L L) p < |L7HL + (L7 1L) |
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and
1LY aHL | p < || Y5 ldH | 7

shows

ldL||F < HEldH | 5. (1.4.4)

I Zfl2l1L™
\/_
Let
Alt)=T+tH, -1<t<1.

From ||H||2 < 1 we see that A(t) is positive definite, and there is a unique Cholesky
factorization

A(t) = L) L)® with L(0) =T and L(1) =T+G.
By (1.4.4), we have
[dL(t)||r < \/—HHHFHL( L)~ [3de. (1.4.5)

t) > -+ > A\,(t) be the eigenvalues of A(t). Obviously, A;(0) =1 for all

IGlr = 1L0) = Lol = | [ s

< [Mazio)e < e [N,

Observe that by the Weyl theorem [128] (or see Stewart and Sun [97, p.203]),
M) ST+ [[Hot,  An(t) 21— [[HIlaot.

Hence, we have

- 1- ||H||2t V2 Jo (1= || H]l2t)3/?
_ V2| H]r
L= [H|2 + 1~ [H]2
The proof is completed. O

The following result gives upper bounds for | X — P||F and || X — Q||r, where P
and @) are the unitary polar factor and the unitary QR factor of X, respectively.

Theorem 1.4.2. Let X = PH and X = QR be the polar decomposition and the
QR factorization of a full column rank matriz X, respectively. Then if

IXEX —1I|]; <1,
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we have "
X" X —If|F
X-Pllp——r—r——— 1.4.6
IX = Plle < o (1.46)
and
V2[1 4 opax(X
X —QlF < [ ax (X)) |X — P (1.4.7)

1 — | XAX —I||z + /1 - | X7 X — I,
Proof. By the decomposition X = PH, we have
IX = Pllp =|H-I|r=|(H+D)~"(H* - I)|F
< [H? = I|p/[L + Ain(H)] = | XX~ I||p /[1 + omin(X)]-
The estimate (1.4.6) is proved.

Observe that R is the Cholesky factor of the Hermitian positive definite matrix
H?. Moreover, H? and R" can be regarded as perturbations of the identity matrix
I and its Cholesky factor I. Hence, by Theorem 1.4.1, if |H? — I||3 < 1 then

V2||H? - I||p
1—|H2 = I|s+ /1 —-[HZ= 1]}y

IR —1I||F <
This together with
IR=T|r =X -Qllr, H?*=X"X,
B2~ Tl < [+ A (VI = Tl = 1+ o X)X Pl
shows (1.4.7). O
Substituting (1.4.6) into (1.4.7) gives

V2[1 + omax (XXX — I|F '
1+ Ormin (X)] (1 S IXTX — Il + /T — XX - 1||2)

X = Qllr < (1.4.8)

It is evident that the estimates (1.4.6) and (1.4.8) imply the fact (1.4.1).

Note that for the unitary factor U of the singular value decomposition X =
UV the assumption || XX — || < 1 doesn’t guarantee | X — Ul|p < 1.

Notes and References
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NR 1.4-1. This section is based on Sun [110, Theorem 1.4] and Sun [116,
Lemma 2.4].

NR 1.4-2. For the QR factorization and the polar decomposition, as well as
the best approximation property of the unitary polar factor, see Fan and Hoffman
[37], Golub and Van Loan [41, Chapters 5 and 12], and Higham [47].

NR 1.4-3. Let X, P,@Q be as in Theorem 1.4.2, where X = (z1,...,2;). Chan-
drasekaran and Ipsen [18] prove that if ||z;||o = 1 for all ¢, then

1X - Qllr < 5VIIX - Plls. (L.4.9)

Obviously, the estimates (1.4.7) and (1.4.9) require different conditions. Note that
if X satisfies || X7 X — I||s < 0.6755 = ¢, then the estimate (1.4.7) implies

1+vV1+e
IX = Qllr < —z——IIX = Pllr <5|X = Pllr < 5VI|X = P|ls.
V2(1 —€)

NR 1.4-4. Theorem 1.4.1 gives a perturbation bound for the Cholesky factor
of the identity matrix. A nice perturbation analysis of the Cholesky factorization is
given by Chang, Paige and Stewart [19].

1.5 Solutions of Some Matrix Equations
In this section we consider two kinds of matrix equations. The first one is
AEB = C, (1.5.1)

where A € CP*™, B € C"*9,C € CP*9, and E € C™*™ is the unknown matrix. The
second one is

HB =C, (1.5.2)

where B,C € C™*!, and H € H™*" is the unknown matrix.

The following result gives explicit expressions of the solutions to the equation
(1.5.1).

Theorem 1.5.1. Let A € CP*™ B € C"*? and C' € CP*? be given. Define the
sets € and F by
E={Eel™" : AEB=C}

and
F={ACB'+Z - P;uZPp : Z cC™"},
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respectively. Then £ # O if and only if A, B and C satisfy
PACPyu = C, (1.5.3)
and in the case of € # 0, we have £ = F.

Proof. The relation (1.5.3) is obviously a necessary condition for £ # 0. We
now prove £ = F under the condition (1.5.3).

Assume E € £. Then we may represent the matrix E as
E=A'CB'+ E - P,nEPg.

This means that there exists a matrix Z (= F) € C™*™ such that the matrix F € £
may be expressed by

E=ACB'+Z—-PsuuZPg € F. (1.5.4)
Thus, £ C F.

Conversely, assume E € F, and let E be expressed by (1.5.4) with some Z €
C™*™. Then the expression (1.5.4) and the condition (1.5.3) imply AEB = C, i.e.,
E € &. Thus, F C £. Consequently, we have £ = F. O

The following result gives explicit expressions of the solutions to the equation
(1.5.2).

Theorem 1.5.2. Let B,C € C™*! be given. Define the sets H and G by
H={HecH"" : HB=C}

and
¢=1{cBt+Bt"c? — "o py  PLTPL . T € YT,

respectively. Then H # 0 if and only if B and C satisfy

CPgr =C and PpCB' e H™", (1.5.5)

and in the case of H # 0, we have H =G.

Proof. It can be verified that the relations (1.5.5) are necessary conditions for
H # 0. We now prove H = G under the conditions (1.5.5).

Assume H € H. Then we may represent the matrix H as

o=cst+Bt"cH - Bt"ofpy + PLEPL.
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This means that there exists a matrix T' (= H) € H"*™ such that the matrix H € H
may be expressed by

H=cBt+B"cH - Bt"clHpy + PATPL € 6. (1.5.6)
Thus, H C G.
Conversely, assume H € G, and let H be expressed by (1.5.6) with some T €

H™*™. Then the expression (1.5.6) and the condition (1.5.5) imply H € H™*" and
HB =C,i.e., H€ H. Thus, G C H. Consequently, we have H = G. O

Notes and References

NR 1.5-1. This section is based on Sun [115, Lemmas 1.3 and 1.4]. The proofs
given in this section are simpler.

NR 1.5-2. The following results are known (see Dennis and Moré [30], Higham
[49], and Bunch, Demmel, and Van Loan [11]):

Proposition 1.5.3. let b,c be real vectors, and b # 0. Then

o
bT'h

is the smallest real matriz in the spectral norm and Frobenius norm for which the
vector b, ¢ satisfy Eb = c.

Proposition 1.5.4. Let b, ¢ be real vectors, and b # 0. Then

bt + bel e o
H = — bb
by (bT'b)?

1s the smallest real symmetric matriz in the Frobenius norm for which the vector b, c
satisfy Hb = c.

Propositions 1.5.3 and 1.5.4 can be obtained by applying Theorems 1.5.1 and
1.5.2, respectively.

NR 1.5-3. Let B,C € C™*! be given. Define the set U by
U={UeC™" : UB=C}.

Explicit expressions of the elements of I/ are discussed by Sun [118].
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1.6 The Implicit Function Theorem

The implicit function theorem is an important existence theorem in analysis. In this
section we cite the implicit function theorem on analytic functions.

We first introduce the definition of an analytic function.

Definition 1.6.1. Let z = (&1,...,&,)T € C", and let f(z) be a complex-valued
function defined in an open set D C C". The function f(z) is said to be analytic at
a point a = (ay,...,a,)" € D if there is a neighborhood B(a) C D of a such that
f(z) can be expressed as a convergent power series

o

f(z) = Z Crmyom (§1 = @1)™ - (& — )™, (fla---afn)T € B(a).
ml,...mn:()
(1.6.1)
If f(z) is analytic at any point a € D, then the function f(z) is said to be analytic
in D.

In the same way we can define an analytic real-valued function f(z) in an open
set D C R™.

Note that a complex-valued function f(z) = u(z)+iv(z) of z € R™ with i = /—1
is said to be an analytic function of z if the real-valued functions u(z) and v(x) are
analytic functions of x.

A basic fact about analytic functions is that if the complex-valued (or real-
valued) function f(z) is analytic at a € C™ (or R"), then there is a neighborhood
B(a) of a such that f(z) has continuous partial derivatives

Gttt f (1)
QEM ... g

for my,...,m, >0, z € B(a),

and the coefficients ¢, ..., of the power series expansion (1.6.1) can be expressed
by

C =
M T eyl | 08T g

1 [3m1+~~+mnf($)]
r=a
Suppose that the function

f:DCC">C™(orDCR"—R™),

with
f(:L") = (fl(x)v 7fm($))T7 T = (:El?"' 7$n)T7

is defined in an open subset D of C™ (or R™), and that its component functions
fi,©=1,...,m, have continuous first order partial derivatives on D. Then we define
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the Jacobian matriz f) by

ofi(x ... 9fi(z)

ox1 0Tn
/ . .
fo = : : )
Ofm(x) Ofm(x)

ox1 0Tn

and in the case of m = n, we define the Jacobian H (or simply, %) by
a(fla"'afn) !
= =detf,.
a(xla"'axn) ) fl’

The following implicit function theorem is a basic tool of this work for deriving
perturbation expansions for eigenvalues, singular values, generalized eigenvalues,
and certain characteristic subspaces.

Theorem 1.6.2. If the complez-valued (or real-valued) functions

fj(glw"’fk;nl""’nl)’ J:177k

are analytic functions of k + 1 complex (or real) variables in some neighborhood of
the origin of CE*L (or R¥H) if £,(0;0) =0, j = 1,...,k, and if the Jacobian

8(f15'-'afk?)
a(fla“'aﬁk)

then the equations

£0 for &= =G=m = =ny=0,

fj(fla"'agk;nla"wnl):05 jzlaak
have a unique solution
5]' :gj(nlv---anl)v j: 17---7k

vanishing for ny = --- = m; = 0 and analytic in some neighborhood of the origin of
c! (or R).

The following result is about the Jacobian.

Theorem 1.6.3. If f;(z1,...,2;), 3 = 1,...,k, are analytic functions of complex
variables z1, ..., 2, and if fj = uj +iv; and z; = xj +iy; with ¢ = \/—1, then

a(ulavla"' 7ukavk) _ ‘a(fh 7fk)
a(wlvylv"'vwkayk) 8(215"'5219)

2

Notes and References

NR 1.6-1. Most of the materials of this section are cited from Bochner and Mar-
tin [8, Chapter II]. Theorem 1.6.2 for real-valued function is cited from Dieudonné
[32, p.277].
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1.7 Fixed Point Theorems

Fixed point theorems are also important existence theorems in analysis. In this sec-
tion we cite two results, the Brouwer fixed point theorem and Schauder fixed point
theorem, from the fixed point theory.

Theorem 1.7.1 (The Brouwer Fixed Point Theorem). Let S be a compact
convez set in R™, and M be a continuous mapping on S which maps S into S. Then
M has a fized point in S.

The Brouwer fixed point theorem extends to an arbitrary Banach space; this is
the Schauder fixed point theorem.

Theorem 1.7.2 (The Schauder Fixed Point Theorem). Let S be a compact
convez set in a Banach space B, and M be a continuous mapping on S which maps
S into §. Then M has a fized point in S.

Notes and References

NR 1.7-1. The Brouwer fixed point theorem and the Schauder fixed point the-
orem are well known results of functional analysis (see, e.g., Ortega and Rheinboldt
[81, §6.3], or E. Zeidler [137, §2.3 and §2.6]).

1.8 Condition Numbers

In this section, we shall introduce definitions of normwise condition numbers.

Let £ = ¢(a) be a solution of a matrix problem, where ¢ € A and z € X, A
and X are finite dimensional normed linear spaces with the norms v(:) and u(-),
respectively. A condition number of z is a measure of the sensitivity of the solution
z to small changes in a.

Let Aa be any perturbation in a, and Az be the corresponding perturbation in
the solution z. Then by Rice [88], the condition number c¢(x) of z can be defined by

A
c¢(z) = lim sup A x),
0—0 v(Aa) o5 5(5

(1.8.1)
where «, & are positive parameters. For instance, taking « = & = 1 we get the
absolute condition number cyps(z), and taking a = v(a) and & = p(z) (if v(a) # 0
and p(x) # 0) we get the relative condition number cpe ().
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It is known that the conditioning of a problem is the sensitivity of the solution to
perturbations on the data. Consequently, the relative (absolute) condition number
crel () (caps(z)) is a measure of the relative (absolute) conditioning of the problem.

From the definition (1.8.1) it follows that in first order approximation the in-

lit
e p(Aa) _  v(Aa)
2 <ol

(1.8.2)

holds.

More general, assume that A and X are finite-dimensional metric spaces with
the metrics d4(-,-) and dx(-,-). The condition number ¢(z) of = can be defined by

d N
c(r) = lim sup M,
0—0 ¢ g(a’&><6 55

@ =

(1.8.3)

where & = ¢(a), and «, ¢ are positive parameters.

From the definition (1.8.3) it follows that in first order approximation the in-
equality

holds.

If the data a have some special structure (i.e., a € A, a subset of A), and if
we are interested in the requirement that the perturbed elements @ have the same
special structure (i.e., a € As) too, then we may define the structured condition
number ¢s(z) of x by

cs(2) = lim  sup %,
— ~
ac A
dA(a,(Nl) < 6

where o, £ are positive parameters.

If one is interested in the sensitivity of the solution x = ¢ (a1, as) to perturbations
in each individual member of a1 and as, then we may define the partial condition
numbers ¢, (z) and ¢4, (z) of = by

d ~
g, () = lim sup M,
6—0 ¢ g(a’&><5 do=as 55
ay =
(1.8.4)
. d)( .%‘,i‘
Car () = %1_1;% sup M

: CEZ’&ZS& d1=ax &
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where a1, ap and £ are positive parameters.

We now consider the case of a = (a1,a2) € A1 X Ay, a product space. Assume
that A; x Ay and X are finite dimensional normed linear spaces with the norm
v(-) and u(-), respectively. Moreover, assume that the norms v;(-) are the restric-
tions of v(-) on A; for i = 1,2, and write v;(-) as v(:), i.e., v(a1) = v(a1,0) and
v(az) = v(0, az).

Let Aay and Aas be any perturbations in a1 and ao, respectively, and Az be the
corresponding perturbation in the solution z. As a generalization of the definition
(1.8.1), we can define the condition number ¢(x) of x by the following approach.
First, we define the vector v € R? by

Y (V(Aal) V(Aag))T7

(63] ’ (6%)

and then define the condition number ¢(z) of z as

) w(Az)
= l
o= pics €0

(1.8.5)

where || - || denotes any norm on R2, and a1, as, ¢ are positive parameters.

As another generalization of the definition (1.8.1), we can define the condition
number ¢*(z) of z by

A
c*(z) =lim  sup i x)’
6—0 y(Aal,Aa2)<6 55

(1.8.6)

where o, £ are positive parameters.

The definitions (1.8.5) and (1.8.6) imply that in first order approximation the
inequalities

u(Az) v(Aa) v(Aay)\"
: Sc(:z)( a | a ) (18.7)
and
AD) oy v(Bar, o) (1.8.8)
é“ - (o)
hold.

From the definitions (1.8.5) and (1.8.6) we see that every condition number of z
is defined with respect to a particular class of perturbations in a; and as. Therefore,
different condition numbers have different meanings, and the values of two different
condition numbers of the solution with the same data may be quite different.
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Notes and References

NR 1.8-1. The study of conditioning in matrix computations is an important
subject of matrix perturbation theory, on which there is a very large literature. The
first general theory of condition was developed by Rice [88].

NR 1.8-2. For the study of componentwise condition numbers and structured
condition numbers of some numerical linear algebra problems, see D. Higham and
N. Higham [45], [46], N. Higham [52, §7.2], and Chaitin-Chatelin and Frayssé [17,
Chapter 3].

1.9 Backward Errors

A matrix problem may be cast in the form of solving an equation r(a; ) = 0, where
a € A, and the solution x € X. For example, r(A; z, \) = Az — Az for the eigenvalue
problem Ax = Az, where A € C"*", and the solution (z,\) € C" x C, the product
space of C" and C.

Let Z be an approximate solution of the problem r(a;z) = 0. For example, &
may come from a numerical algorithm for approximating the solution. Then it may
well be asked: Is & the exact solution of a slightly perturbed problem?

For answering the question, we need the notion of backward error of the prob-
lem r(a; ) = 0 with respect to the approximate solution Z. In this section we shall
introduce definitions of normwise backward errors.

Let
E={Aa : a+Aa€ A and r(a+ Aa;Z) =0}.

In general, the set & has many (even an infinity of) elements. The backward error
n(Z) is defined by

. v(Aa)
n(7) = min —2

(1.9.1)

where v(-) is a norm on A, and « is a positive parameter. For instance, taking
a = 1 yields the absolute backward error, and taking o = v(a) (if v(a) # 0) yields
the relative backward error. A small (%) means that the approximate solution Z is
the exact solution of a slightly perturbed problem.

An algorithm for approximating the solution of the problem r(a; z) = 0 is defined
to be backward stable if, for any a € A, it produces a computed Z with a small n(z).
Consequently, a computable formula of the backward error (%) may be useful for
testing the stability of practical algorithms.
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For the problem r(a;z) = 0, any element Aa € & is called a backward perturba-
tion of a associated with Z, and the element Aagp, € € satisfying 1(z) = v(Aagp)/a
is called the optimal (minimum) backward perturbation. Therefore, the backward
error 7)(z) is also known as the optimal backward perturbation bound.

If the data a of the problem r(a;x) = 0 have some special structure (i.e., a € A,
a subset of A), and if we are interested in the requirement that the perturbed
elements a + Aa have the same special structure (i.e., a + Aa € A) too, then we
may define a structured backward error. Let

E={Aa : a+Aa€ A; and r(a+ Aa;Z) = 0}.

In general, the set & has many (even an infinity of) elements. The structured
backward error 7,(Z) is defined by
v(Aa)

ns(T) = [nin ———,

where v(-) is any norm on A, and « is a positive parameter.

Bunch [10] defines that an algorithm for solving r(a; z) = 0 is strongly backward
stable if, for any a € Ay, it produces a computed Z with a small 74(Z). Conse-
quently, a computable formula of the structured backward error 74(Z) may be useful
for testing the strong stability of practical algorithms.

We now consider the case of a = (a1, as) € A; X A9, a product space. Let v(-) be
anorm on A; x As. Assume that the norms v;(-) are the restrictions of v(-) on A; for
i = 1,2, and write v;(-) as v(-), i.e., v(a1) = v(a1,0) and v(a2) = v(0,az2). In such a
case, there are various ways to define normwise backward errors. For instance, the
following definitions are advisable:

(i) Define the backward error 7. (Z) by
(a1 + Aa,l,ag + Aag) € A1 X .AQ,
Noo(Z) =minc e : r(a1 + Aay,as + Aasg; ) =0, , (1.9.2)

vi(Aa;) < e, i =1,2

where v4() and vo(-) are any norms on 4; and As, respectively, and «aq,as are
positive parameters.

(ii) Define the backward error 5 (%) by

Vl(Aal)

@)(%) = min
p(z) 1 ( wis(Aay)

(a1 + Aal,ag + ACLQ) e Ay x AQ,
) : , (1.9.3)

r(a1 + Aay,as + Aag; ) =0
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where v;(-) and v»(-) are any norms on A; and Ajg, respectively, u(-) is any norm
on R?, and w is a positive parameter.

(iii) Define the backward error ) (&) by
(a1 + Aal,ag + ACLQ) e Ay x AQ,

7 (%) = min { v(Aar,0Aas) : , o (1.9.4)
r(ay + Aay,az + Aag; ) =0

where v(-) is any norm on A; x Ay, and 6 is a positive parameter.

It is worth pointing out that the parameters w and € in (1.9.3) and (1.9.4) allow
us some flexibility. We now note some examples:

Example 1.9.1. Let ay,as be any positive scalars (for instance, a; = as = 1, or

a; = vi(a;) if v(a;) # 0 for i = 1,2). Taking w = a1 /az and u(-) = || - || (any norm on R?)
n (1.9.3), and multiplying 5(“) (&) by 1/ay, yields the backward error

1
n(z) = a—lﬁ‘“l/“”(i)

H ( a1)/a ) H (a1 + Aay,az + Aay) € Ay X Ay, (1.9.5)
az)/ o r(a; + Aay,as + Aas; ) = 0
Particularly, taking |- || = [|-||, with p = 1,2,00 in (1.9.5), yields the backward errors n; (%),

12(%), and 1. (%), respectively, where 7., (%) coincides with (1.9.2).

Example 1.9.2. Taking # = 1 in (1.9.4), and multiplying 5®)(Z) by 1/a, yields the
backward error

) (a1 + Aay,az + Aas) € A x As, } (1.9.6)
. r(a; + Aay, as + Aas; &) =0 ’
where « is a positive parameter. For instance, a = 1, or a = v(ay,a2) if v(a;1,a2) # 0.
Example 1.9.3. Let ay,a» be any positive scalars (for instance, a; = as = 1, or

o; = vi(a;) if v(a;) # 0 for i = 1,2). Taking = a;/a» in (1.9.4), and multiplying 1(®) (%)
by 1/aq, yields the backward error

() = —77(0“/“2)( )

041’0[2

Aa; Aa (al + Aa’laaZ + Aaz) e Al X -’427 (197)
= min v <_1 _2> . 7

r(a; + Aay, as + Aas; &) =0
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Example 1.9.4. Taking 6 — oo forces Aas = 0 in (1.9.4), yields the backward error
where only a; is perturbed.

We now assume the norm v(-) on A; X Az has the property that if v(a;) <
v(a;) (i = 1,2) then v(ai,as) < v(ai,as). The following result reveals the relations
between n(Z) and 7, (Z) for p = 1,2, 00. The proof is left as an exercise.

Theorem 1.9.5. Let n,(Z) (p = 1,2, 00) be the backward errors defined by (1.9.5)
with || - || = || - ||, and n* (&) be the backward error defined by (1.9.6), where we take
ap = v(ay), aa = v(az), @ = v(ai,az), and assume that v(ai1) # 0 and v(az) # 0.
Then

Noo (£) < M (Z) < 2100 (2),

%m (&) < m2(&) < m (%), (1.9.8)

%m(@) < Moo (&) < 12(E),

and

min{:((aaf)é;/)(m)} nrlax{:((aal1);;/)(m)}n1 (@). (1.9.9)

Remark 1.9.6. From the definitions (1.9.5)-(1.9.7) we see that every backward
error of the problem r(a1,a9;2) = 0 with respect to % is defined with respect to
a particular class of backward perturbations in a; and ao. Therefore, different
backward errors have different meanings, and the values of two different backward
errors of the problem r(aj,as;z) = 0 with respect to the same Z may be quite
different. For example, n*(Z) may be quite different from 7, (Z) for p = 1,2,00. In
fact, the first inequality of (1.9.9) implies that if any one of v(a;) and v(az) is much
smaller than the other, then 7*(Z) is bounded from below by €no.(Z), where € > 0
is a very small positive scalar. This means that in some cases the quantity n*(Z)
may be much smaller than 7,(Z) for p = 1,2,00. Note that a very small backward
error n*(Z) may be uninformative for the following reason: In the case that there is
a great disparity between v(a;) and v(ag), while the optimal backward perturbation
(Aaqy, Aasgy) is very small compared with (a1, as), it may be making a large relative
perturbation in the small one of a; and as.

Noo(Z) < n*(Z) <

Notes and References

NR 1.9-1. This section is based on the author’s Technical Report “ Optimal
backward perturbation bounds for linear systems and linear least squares problems”,
UMINF 96.15, ISSN-0348-0542, Department of Computing Science, Umea Univer-
sity, 1996.



1.9. BACKWARD ERRORS 29

NR 1.9-2. The earlest results on computable formulas of backward errors for
linear systems are given by Oettli and Prager [80], and Rigal and Gaches [89].

NR 1.9-3. For historical comments on the development of backward error anal-
ysis and backward errors in numerical analysis, see Higham [52, §1.21 and §19.7].
For the importance of the study of computable formulas of backward errors, see
Stewart [94] and Higham [50].

NR 1.9-4. Let z = ¢(a) be a solution of a matrix problem r(a;z) = 0 with
a € A (or a = (ar,a2) € A1 x Ay), and let & be an approximation of z. Moreover,
let ¢(z) be the condition number defined by (1.8.1) (or (1.8.5)), and n(Z) be the
backward error defined by (1.9.1) (or (1.9.5)). Then the relation (1.8.2) (or (1.8.7))
shows that in first order approximation we have

< c(z)n(z). (1.9.10)

Similarly, from (1.8.6), (1.8.8) and (1.9.6) it follows that in first order approximation
we have

< (z)n*(z). (1.9.11)

One way to interpret the relation (1.9.10) (or (1.9.11)) is to say that the approxi-
mation Z may not be close to x if the condition number ¢(z) (or ¢*(z)) is very large,
even if the approximate solution  has a small backward error 7(z) (or n*(z)).

NR 1.9-5. For the study of componentwise backward errors and structured
backward errors of some numerical linear algebra problems, see D. Higham and
N. Higham [45], [46], N. Higham [52, §7.2], and Chaitin-Chatelin and Frayssé [17,
Chapter 5].

NR 1.9-6. Let r(a;z) = 0 be a matrix computation problem, and let Z be
an approximation of the exact solution z to the problem. If the optimal backward
perturbation Aagp is found, then we can apply an appropriate forward perturbation
result to the perturbation Aap, and obtain an upper bound for v(Z — z). Gen-
erally speaking, the optimal backward perturbation Aa,p can be expressed by the
residual 7(a; Z), so the obtained upper bound for v(Z — z) is usually in the form of
residual bound, and the upper bound is called a residual bound. Note that there are
different ways to obtain upper bounds for v(Z — x); but usually, the upper bounds
are dependent on the residual r(a; Z).
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Chapter 2

Eigenvalue Problems

This chapter is devoted to the eigenvalue problem Ax = Az, where A € C"*".
We begin in §2.1 with perturbation expansions for eigenvalues and invariant sub-
spaces. On the basis of the results of §2.1 we derive explicit expressions of condition
numbers for eigenvalues and invariant subspaces in §2.2. In §2.3 we present pertur-
bation bounds for invariant subspaces. In §2.4 we treat backward errors and residual
bounds. The chapter concludes with a section on Hermitian matrices.

2.1 Perturbation Expansions

2.1.1 Simple Eigenvalues

Let A € C™", If
Ax = \x

for A € C and a nonzero z € C™, then X is called an eigenvalue of A, and z a right
etgenvector of A associated with A. Usually, we call z an eigenvector of A associated
with A. The corresponding nonzero solution y € C" of the equation

is called a left eigenvector of A associated with .

Let p = (p1,...,pn)" € CV (or RY), and let A(p) = (ajk(p)) € C**" (or R™ ")
be an analytic matrix-valued function in some neighborhood B(p*) of the point p*.
For simplicity, we assume p* = 0, the origin of C¥ (or R"). By Definition 1.6.1, the
function A(p) can be expressed by

A(p) = AQ0) + E(p),  E(p) = (&r(p)),

where

@]
" )
EJk(p):Z Z O&E{)thilp%V, 1§]ak§N7 pEB(O)a
Tzlzti:r

31
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and Y t; =t +---+tn.

Let A be a simple eigenvalue of A(0), and z,y be associated right and left eigen-
vectors satisfying y#2 = 1. Then, as a consequence, there are X»,Y> € cnx(n—1)
such that the matrices

X =(z,Xs), Y =(yYo) (2.1.1)
satisfy
YIX =1 (2.1.2)
and
H A0
Y7A(0)X = ( 0 A, ), A& A\(As). (2.1.3)

First applying the implicit function theorem we prove the following result.

Theorem 2.1.1 Let p € CV, and let A(p) € C™*™ be an analytic function of p
in some neighborhood B(0) of the origin. Assume that X is a simple eigenvalue of
A(0), and z,y are associated right and left eigenvectors satisfying y"z = 1. More-
over, assume that the relation (2.1.3) holds, in which X and Y are the matrices of
(2.1.1) and satisfy (2.1.2)-(2.1.3). Then

1) there exists a simple eigenvalue \(p) of A(p) which is an analytic function of
p in some neighborhood By of the origin, and A(0) = A;

2) the function \(p) has a power series expansion at p =0 of the form

N N 2
OA(p) 1 9°A(p)
Ap) = A+ ( ) P+ 5 ( pipk + -+, pE By,
jgl i ) g 2]',%::1 Ty
where
8p]- p=0 8pj p=0
and
2 2
(8 A(ﬁ)) _ (8 A(P)) I <3A(p)> 0 (é’A(p)) )
piopr ) ,_, piop ) ,_, Wi ) Ik / p=o
L (3A(p)) Q(314(;0)> N
Ik / p—o Opj ),y
(2.1.5)
in which

Q= XM — A))"'YH. (2.1.6)
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Proof. 1) By the hypotheses there are X, Y € C™*™ such that the relations
(2.1.1)—(2.1.3) hold. For p € B(0) we set

A — _ [ au(p) aialp) -
Alp) =YP A(p)X = ( i (p) Am(p) ) , a(p) €C, (2.1.7)

and introduce a vector-valued function

f(z,p) = a21(p) — a11(p)z + ;122(29)2 — z12(p) 2, (2.1.8)
where
F=U o fac)ts 2=(G,. . Go)T €C™TY, p e B(0).

Observe that the vector-valued function f(z,p) is analytic for z € C*~! and p € B(0),
f;(0,0) =0for j=1,...,n—1, and

I(f1;- - afn—l))
— e s = det(Az — AI) # 0.
<a(<17 e 7CTL—1) z:[),p:() ( )
Hence, by the implicit function theorem (Theorem 1.6.2) the equation
(fl(zvp)avfn—l(zap)) :(0770) (219)

has a unique analytic solution z = z(p) € C" ! in some neighborhood By C B(0) of
the origin, and z(0) = 0.

From (2.1.7)—(2.1.9) it follows that for p € By we have

—1
(z@ ?> Mm(Z& ?>:(A? I>’ (2110

A(p) = a11(p) + a12(p)z(p)- (2.1.11)

The relation (2.1.10) shows that A(p) is an eigenvalue of A(p), and the eigenvalue
is simple provided that the neighborhood By is sufficiently small. Moreover, the
analyticity of the functions a11(p), a12(p) and z(p) implies that A\(p) is an analytic
function of p € By, and from (2.1.11) it follows that A(0) = A.

where

2) From (2.1.11) and a@12(0)” = 2(0) = 0 we obtain

OA(p) _ [ 9an(p)
(5) = ("57) 2112
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Moreover, from (2.1.7) we obtain

(3511(29)) - (8 A(P)> .
Ip; =0 opj =0 ’

<82&11(p)> _ <82{1(p)> . (2.1.14)
p=0 p=0

Op;Op,

dai2(p) _u (9 Alp)
( Opj >po_y ( Opj >poX2'

Combining (2.1.12) with the first formula of (2.1.14) shows (2.1.4). From (2.1.13)
and (2.1.14) we see that for obtaining the formula (2.1.5) we only need to find an

explicit expression of (%ZT%)) p=0"

It is known that z(p) is the unique analytic solution of f(z,p) = 0 in By, where
f(z,p) is defined by (2.1.8); i.e., z(p) satisfies the equation

d1(p) — a11(p)z(p) + Asa(p)z(p) — a12(p)z(p)2(p) =0, p € By (2.1.15)

Differentiating (2.1.15) at p = 0 gives

9z(p) vr A1 [ 9a2(p)
(81%' >po_w ) ( Ipj >po

(2.1.16)
= (M — Ay) v (%@) T

Substituting (2.1.14) and (2.1.16) into (2.1.13) shows the formula (2.1.5). O

Remark 2.1.2. From (2.1.10), (2.1.7) and (2.1.2) we get
A(p)z(p) = Ap)z(p), p € Bo, (2.1.17)

where z(p) is defined by
1
=X . 2.1.18

The relation (2.1.17) shows that the vector z(p) is an eigenvector of A(p) associated
with A(p), and the expression (2.1.18) shows that the eigenvector is an analytic
function of p € By satisfying z(0) = z. Moreover, the relations (2.1.18) and (2.1.16)
imply that the eigenvector z(p) has the expansion of the form

Y. (9(p)
sp)=x+> | =) pit+-, pEDBy,
=1 Ip; =0
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(336(29)) _q (é’A(p)) N
apj p=0 apj p=0

Remark 2.1.3. Without the assumption of y”z = 1 in Theorem 2.1.1, the
formula (2.1.4) becomes

where

H (9A(p)
OAp) ! ( i )PZOI. (2.1.19)
Op; =0 yHy

Example 2.1.4. Consider the matrix

3 2
A(p) — < 4 14+p1+p2 ) , (p1,p2)T =pe RQ.

" 1+pi—p2 -

Obviously, A(p) is an analytic matrix-valued function of p in a small neighborhood of the
origin of R?. Moreover,

and the real matrices

X:(_} _;)E(xl,xg) and Y:G })E(ylu?ﬂ)

satisfy

and

Observe that

and
(82A(p)) _ ( 0 4 )
opiops ),y \8 0 )

Hence, if A1 (p) and A2 (p) denote the eigenvalues of A(p), then by the formulas (2.1.4)—(2.1.6)

we have
<8>\1 (p)> g <8>\1(p)) _o
apl p=0 ’ 8p2 p=0 ’

() (),
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<82>\1(p)) _ a3 (62>\1(p)> _ 0 <62>\1(p)) _ g
8p% p=0 ’ 31913292 p=0 ’ 8p% p=0 ’

<82>\2(p)) s <62>\2(p)) _ 0 (62>\2(p)> _g
8p% p=0 ’ 8p18p2 p=0 ’ 3195 p=0

Consequently, A1(p) and Xa(p) have the expansions

and

M(p) =1+ 8p1 — 44p7 — 4pj + O(Ipll3) (2.1.20)

and
Xo(p) = —1 — 8py + 44p? + 4p2 + O(||p|3) (2.1.21)

as p— 0.

Note that the eigenvalues A (p) and Aa(p) have the explicit expressions

8 8
M=\ M T

From the expressions we can also obtain the second order perturbation expansions (2.1.20)
and (2.1.21).

2.1.2 Simple Invariant Subspaces

Let A be an eigenvalue of A € C"*", and x € C" be an associated eigenvector. Then
the one-dimensional subspace R(z) satisfies AR(z) C R(z), and which is called a
one-dimensional invariant subspace of A. This definition extends in a natural way
to higher dimensions.

Let A e C™™ and let X; C C™. If
dlm(Xl) =[] and AX; C Xy,

then X is said to be an [-dimensional (right) invariant subspace of A.

The invariant subspace X; may be equivalently defined by A} = R(X;) with
X, € C™! satisfying

rank(Xl) =1[ and AX1 :X1A1

for some A; € C'*!. The matrix A; may be called the (right) eigenmatriz of A
associated with Xj.

Let X = (X1, X3) € U™" with X; € U™*! such that

A A

XHAX =
( 0 A

) , Ay ec (2.1.22)
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Then the invariant subspace X1 = R(X7) is called a simple invariant subspace of A
if A(A11) N A(A22) = 0. In this chapter we only consider simple invariant subspaces.
We now prove the following perturbation expansion theorem.

Theorem 2.1.5. Let A € C™*", and let X = (X1, Xo) € U™ ™ with X, € U™
such that the relation (2.1.22) holds, and A(A11) N A(Aa2) = 0. Moreover, let X1 =
R(X1), for M € C™*™ let

XHMX — ( M1 Mo >

My Mo
and define the linear operator T : C(v=Dxl _ cln=Dxl py,

TP = PAy, — ApP, P echDx, (2.1.23)
Then

1) there ezists a unique [-dimensional simple invariant subspace Xy (1) of A+TM
such that X1(0) = Xy, and the basis vectors x1(7), ...,z (1) of X1(7) may be defined
to be analytic functions of T in some neighborhood B(0) of the origin of C;

2) the analytic matriz-valued function X,(1) = (z1(7),...,2(7)) has the pertur-
bation expansion

Xi(r) =X1+ X2 Y K;r!, 1€B(0), (2.1.24)
7=1

in which

Ky =T My,

Ky =T MK — KiMy; — K1A12K1],
j—2 j-1

K; =T ' \MpKj_1 — K;_1My — 3 Kj 1 MoKy — Y Kj_pA12Ky|
k=1 k=1

j>3.
(2.1.25)

Proof. 1) Let

and
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where

Ajk(T) :Ajk+TMjk7 1 S],k < 2, A21 =0. (2127)
For Z € C("=Dxl and 7 € C define the function F by

F(Z,7) = A9 (1) — ZA11 (1) + Aga(1)Z — ZAya(7) 2, (2.1.28)

and let
f=vec(F), z=vec(Z).

Observe that by (2.1.28) and the hypothesis (2.1.22), we have

<8_f> =det(I ® Ay — AT, ® I) #0.
82 z=0, 7=0

Hence, by the implicit function theorem (Theorem 1.6.2) the equation
F(Z,7)=0

has a unique analytic solution Z = Z(7) of 7 in some neighborhood B(0) of the
origin of C satisfying Z(0) = 0, or equivalently, we have

I o\ . I 0 A7) Al
( Z(r) I ) A(7) ( Z(r) I > - ( 10 Algz(T) ) (2.1.29)
where

Al(T) = AH(T) —I—Alg(T)Z(T), AQ(T) = AQQ(T) — Z(T)AH(T),

and A(A1(7)) N AM(A2(7)) = 0 provided that the neighborhood B(0) is sufficiently
small.

Define
Xi(r) = X < ZZT) ) . (2.1.30)
Then from (2.1.29) and (2.1.26)
A(T) X1 (1) = Xu (1) Au (7).
Thus, we have proved that X;(7) = R(X1(7)) is the unique [-dimensional simple

invariant subspace of A(7) in B(0) satisfying X;(0) = &, and X;(7) is an analytic
matrix-valued function of 7 € B(0).

2) Substituting the relations of (2.1.27) into F(Z(7),7) = 0, we get the basic
equation for Z(7):

Z(T) (A12—|—7'M12)Z(7')+Z(7')(A11 —|-7'M11)—(A22+TM22)Z(T)—TM21 = O, (2.1.31)
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where 7 € B(0).

Differentiating (2.1.31) at 7 = 0, and writing

. f]
Z(J):<dZ7(T)> . j=1.2...,
T7=0

dri

=1
iy )

where T is the linear operator defined by (2.1.23), and ( ‘]1 > are binomial coeffi-

cients.
Since A(A11 N A(Ag2) = 0, the operator T is invertible. Define

1
_ (k) _
Kp=5720, k=12...

Then from (2.1.32) we get the relations (2.1.25) and the power series expansion of
Z(r) at 7 =0:

X1 o )
Z(t) = Z ﬁZ(])T] = ZK]'TJ.
7=1 j=1
Substituting it into (2.1.30) shows (2.1.24). 0

The following result, as a corollary of Theorem 2.1.5, gives a modified form of
the first order perturbation expansion of a simple invariant subspace.

Corollary 2.1.6. Let A, X, A1, Ase, Xy and T be as in Theorem 2.1.5, and for
E ¢ C™%™ et
Ey Ein

XPEX =
( Ey E

>, AEllefﬂXA

If |E||F is sufficiently small, then there exists a unique [-dimensional simple invari-
ant subspace X1 = R(X1) of A+ E such that X1 has the expansion

X1 =X, + XoZ, + O(|E||%), (2.1.33)
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where E — 0, and Z, € C DXl s defined by
Z) =T 'Ey. (2.1.34)

Let T be the linear operator defined by (2.1.23). Using the Kronecker product
and vec operator, the matrix representation 7' of the operator T can be expressed
by

T=Al @I, |- I, ® Ay, (2.1.35)

and the relation (2.1.34) can be written
vec(Z;) = T~ 'vec(Ey). (2.1.36)

Example 2.1.7. Let A € C"*" be a normal matriz, i.e., A satisfies AHA = AAH . Then
there is a matrix X = (21, X2) € U™*" with X5 = (x2,...,x,) such that

XHAX = diag(A\1,A2), Ay =diag(Xa, ..., \n).

Let A; be a simple eigenvalue of A, and for M € C"*" let

mT
XAMX = ( /;1111 Mzg ) = (mij),  pn €C.

Then by Theorem 2.1.1 and Theorem 2.1.5, we have the following conclusions:

i) There is a simple eigenvalue A (1) of A + 7M which is an analytic function of 7 in
some neighborhood By of the origin of C, and A;(0) = Ay;

ii) The function A;(7) has a power series expansion at 7 = 0 of the form
M) =M+ 2 Meyr + e MXo(MT — Ap) ' XEMaym? -+, 7 € Bo;

iii) There exists a unique 1-dimensional simple invariant subspace X; (7) of A+7M such
that &1(0) = R(z1), and the basis vector z1(7) of X1(7) may be defined to be an analytic
function of 7 in some neighborhood B(0) of the origin of C;

iv) The analytic vector-valued function x4 (7) has the perturbation expansion
[oe)
z1 (1) =21 + X> ZKjT], T € B(0),
j=1

where the vectors K; € C"~! are defined by (2.1.25). In particular, the first-order term of
the perturbation in x; is given by

XoKit = Xo(MT — As) tmar

o 12122 #3173 Hn1Tn
B (Al—Az PV +A1—An)7’
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and the second-order term is given by

X2K27'2 = XQ()\lI — Ag) (MZQ - ulll)()\ll Ag) m17'2

— 1
Jj=2 Jj=2

_ z":(uzg pin)n @ +z": (H3j — mpjn s
VIS VI W VD VIR VW

]

,unj ,ull l//jl T 2
+ Z S An) .

Notes and References

NR 2.1-1. This section is based on Sun [102] and [109]. The basic tool is
the implicit function theorem (Theorem 1.6.2). The approach of setting the (2,1)
submatrices of the equations (2.1.10) and (2.1.29) equal to zero to obtain nonlinear
equations for a basis is due to Stewart [91]. The technique described in this section
will be used in chapters 3 and 4 for deriving perturbation expansions of singular
values, singular subspaces, generalized eigenvalues, and deflating subspaces. This
technique is also used by Chu [21] for studying the mean of multiple eigenvalues and
the corresponding invariant subspaces, and by Andrew, Chu and Lancaster [1] for
studying eigenvalues and eigenvectors of matriz functions. Recently, Lin and Sun
[71] study the eigenproblem of periodic matriz pairs by using the same technique.

NR 2.1-2. Let A\ (p) and z1(p) be as in Theorem 2.1.1. By using (2.1.11),
(2.1.7) and (2.1.15), we can derive formulas of

9" Xi(p)
< k1 ki Rty =k
Op1' -+ Opy p=

for k > 3. Moreover, by using (2.1.8), (2.1.7) and (2.1.15), we can derive formulas

of i

0

kx41(p)k: , k1+...+kN:k
apll"'apNN _

for k > 2 (see Sun [102] and Chu [21]).

NR 2.1-3. A general matrix may only depend analytically on one parameter.
For such matrices, the derivatives of eigenvalues and associated eigenvectors are
studied by Rellich [86], Lancaster [66], and perturbation expansions of eigenvalues
and associated total projections are studied by Kato [63] by using different tech-
niques from that described in this section.
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NR 2.1-4. Explicit expressions of the derivatives of the eigenvalues and eigen-
vectors of a general matrix depending analytically on one or several parameters have
important practical and theoretical applications, such as in the perturbation theory
of eigenvalue problems (see Kato [63]), inverse eigenvalue problems (see Sun [103],
Xu [134]) and control system and engineering designs (see Crossley and Porter [24]).
Numerical methods for computing the derivatives are studied by many authors, see,
e.g., Andrew, Hoog and Tan [2] and the references contained therein.

NR 2.1-5. There are some situations in which the use of the group inverse is
natural in the formulation of explicit formulas for derivatives of the eigenvectors.
This is demonstrated by Deutsch and Neumann [31], and Meyer and Stewart [77].

NR 2.1-6. Large vibration systems and control systems are frequently depen-
dent on many physical and geometrical parameters p1,...,pn, and it will generally
happen that several eigenvalues overlap at some points (p1,...,py). It is worth
pointing out that the local behavior of the eigenvalues dependent on several pa-
rameters at the overlapping points is different from that of the eigenvalues only
dependent on one parameter. Lancaster and Tismenetsky [67, Chapter 11, Theo-
rem 1] show that if A(¢) is an analytic function of one parameter ¢ in a neighborhood
of £ = 0, and X is a nondefective multiple eigenvalue of A(0) with multiplicity r, then
A(€) has r eigenvalues A\i (&), ..., A\r(&) such that A\;(0) = 0 for all j, and each A;(¢)

has derivative ngﬁ at & = 0. However, if A(p) is an analytic function of several
parameters, then the situation becomes complicated. For example, consider the
matrix
1+2pi+p2 —2pm
Alp) = (

T 2
, = (p1, e R>.
. 1_p2> p = (p1,p2)

The elements of A(p) are real analytic functions of p € R?, the matrix A(0) has the
nondefective multiple eigenvalue 1 with multiplicity 2, and the eigenvalues of A(p)

are
A(p) =1+p+\/p2+03  Xalp) =1+p —/p? +p3

Obviously no arrangement of these eigenvalues could make them that the rearranged
eigenvalues have partial derivatives at p = 0. Sun [113] studies the existence and
expressions of the directional derivatives of nondefective multiple eigenvalues of a
general matrix depending analytically on several parameters. The result of [113] are

used to discuss the condition numbers of nondefective multiple eigenvalues by Sun
[114] and [117].

NR 2.1-7. Lidskii [70] establishes a perturbation theory for eigenvalues of
matrices with arbitrary Jordan structure (see Moro, Burke and Overton [79] for a
nice review and an alternative proof of Lidskii’s main theorem). Let A be a complex
matrix with arbitrary Jordan structure, and A; be an eigenvalue of A whose largest
Jordan block has size m. Lidskii [70] shows that if A is perturbed to A + ¢B with a
small parameter £ then the splitting of A, is, generally, of order ¢Y/™ and obtains
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explicit formulas for the leading coefficients which involves the perturbation matrix
and the eigenvectors of A.

2.2 Condition Numbers

2.2.1 Simple Eigenvalues

Let A € C"*", and X be a simple eigenvalue of A. Let A = A+ E be a perturbation
of A, and X be the corresponding perturbation of A. Then by (1.8.1) we define the
condition number ¢(A) for A as

. A= )\|
=1
) =i S e

(2.2.1)

where o and ¢ are positive parameters.

From the definition (2.2.1) we see that in first order approximation the inequality

A < o2l
& a

holds.

Let z,y € C™ be right and left eigenvectors of A associated with A\. Then by
Theorem 2.1.1 and (2.1.19) we have

H

~ FE
A=A+ ynyx +O(|EI?), E—o.

Substituting it into (2.2.1) gives

H
c¢(\) = a sup ‘y E:E‘ _ allzll2llyll2
IE<1 &lyPzl ¢y x|

(2.2.2)

Taking o = &£ = 1 yields the absolute condition number

T
Caps(N) = Izl llyl> &3}5”2, (2.2.3)

and taking o = ||A|]2 and £ = |A| (if A # 0) yields the relative condition number

_ [Alallzll2llyll2

2.2.4
Nz (2.2.4)

Crel (>\)

The following result shows an important fact that if A is a simple eigenvalue
of A, then the shortest distance from A to a matrix which has an eigenvalue A\ of
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multiplicity at least two is approximately bounded by || A||2/caps(A) for large caps(A).

Theorem 2.2.1 (Wilkinson). Let A be a simple eigenvalue of A € C™ ™ with
right eigenvector x and left eigenvector y. If caps(A) > 1 then there exists a matriz
E € C™™ such that A+ E has \ as an eigenvalue of multiplicity ot least two and

A
1Bl < 2” o (2.2.5)
ch(A) —1
Proof. By the hypothesis, A has the Schur decomposition
A (lH H
A—U(0 A2>U’ (2.2.6)

where U = (u1,Uz) € U™ with u; € C*, and A € A(Az). Thus, there is a w € C"~*

such that
1 —wf - A o 1 —w (A0
0 I 0 A, 0 I A0 Ay

Combining it with (2.2.6) implies that

H HyirH
Ul + w U2 . )\ 0
( * >A(u1, *)_<O Ay |7

which shows that the vectors
rz=u; and y=u + Uow (2.2.7)

are right and left eigenvectors of A belonging to A. Consequently, by (2.2.3) and

(2.2.7) we have
cans(A) = /1 + [lw]3. (2.2.8)

Moreover, combining y7 A = Ay" with (2.2.6) gives

(1, w) ( ) ) = (1, w"),

or equivalently,
H

wh <A2+ wa 2) = .
|wl|3

Take
0 0 -
E=U 0 MH2 Uu™. (2.2.9)
llwl|3

Then A is an eigenvalue of A + E of multiplicity at least two, and from (2.2.8) and
(2.2.9) we get the estimate (2.2.5). O
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2.2.2 Invariant Subspaces

Let A € C"*", and X be a simple invariant subspace of A. Let A=A+Ebea
perturbation of A, and X} be the corresponding perturbation of X;. Then by (1.8.3)
we define the condition number ¢(X}) for X} as

X, X
c(X1) = lim sup 7PF( L 1),
6—0 HE”F<§ )

(2.2.10)

where « is a positive parameter, and pg(-, ) is the generalized chordal metric defined
by (1.3.3).

From (2.2.10) we see that in first order approximation the inequality

~ FE
pr (X1, X1) < C(/’@%

holds.

By (2.2.10), (2.1.33) and Theorem 1.3.3 (see (1.3.17)), we have

Z
o(X)) = lim sup M, (2.2.11)

550
SOuEle 5 O

where 77, as a function of E, is defined by (2.1.34). Combining (2.2.11) with (2.1.36)
gives

Z
c(X1) =lim sup Ivec(Zy)llz =a sup ||T tvec(Ey)ls
00 Jlvec(m)lly s o ([vec(E)|2<1
o (2.2.12)
=a  sup || vee(Bar)lla = af| T2,
llvec(E21)ll2<1
where T is the matrix of (2.1.35).
Taking o = 1 yields the absolute condition number
Cans (A1) = |77, (2.2.13)
and taking « = ||A||r yields the relative condition number
crel(X1) = [P T2 (2.2.14)

Using the function sep introduced by Stewart [91], (2.2.13) can be written

Cabs (A1) = Sepﬁl(An, Az),
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where the function sepp(Aq1, Agz) is defined by

T~ if 0¢ M\(T),
sepp (A1, Agg) =
0 if 0 \(T),

in which T is the operator defined by (2.1.23), || - | denotes the operator norm
induced by the Frobenius norm, and A\(T) denotes the spectrum of T.

Notes and References

NR 2.2-1. The expression (2.2.3) of the absolute condition number c,ps(A) is
a well known result (see Wilkinson [130]). The expression (2.2.4) of the relative

condition number ¢ (A) is obtained by Geurts [40]. Moreover, Geurts [40] gives the
()

2ol (A) for the non-zero simple eigenvalue

componentwise relative condition number ¢

)\1:

_ Iy llAlja]
Ally" x|’

where x and y are right and left eigenvectors of A associated with A, respectively.

A9

rel

Let v(-) be any vector norm, and v”(-) be the dual norm of v(-). Then we can
obtain a more general expression of the condition number c¢()):
av(z)v? (y)
Ely™ |

Particularly, taking o = € = 1 yields the absolute condition number

c(\) =

v(@)r?(y)

cabS(A) = |yHIL"|

and taking o = ||A|| and £ = X (if A # 0) yields the relative condition number

_ A )
Y

where || - || is a matrix norm consistent with v(-).

NR 2.2-2. If an eigenvalue of a matrix has multiplicity at least two, then the
corresponding eigenvalue problem is called ill-posed for the eigenvalue. Theorem
2.2.1 (Wilkinson [131]) shows that if A is a simple eigenvalue of A, then the shortest
distance from the eigenvalue problem to an ill-posed one is bounded by the recipro-
cal of the condition number of A\. Demmel [29] gives and compares various bounds
on the distance from a matrix to the nearest one with a multiple eigenvalue, and he
shows that for many problems of numerical analysis, there is the same relationship
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as for the eigenvalue problem between the condition number of a problem and the
shortest distance from that problem to an ill-posed one.

NR 2.2-3. Assume that X is a nondefective multiple eigenvalue of A € C"*"
with multiplicity r, i.e., there are matrices X,Y € C™*™ such that

M, 0

H —
YAX_(O Ay

> . YHEX =T, Mg M\Ay).

Generally speaking, the multiple eigenvalue A of A will split into r simple eigenvalues
Aj (j =1,...,r) when A is slightly perturbed to A. Hence, a multiple eigenvalue
of multiplicity r can have r condition numbers that reflect the different sensitivities

of its progeny. The typical behavior of the eigenvalues and corresponding condition
numbers are studied by Stewart and Zhang [98], and Sun [114], [117].

NR. 2.2—4. On the basis of Lidskii’s perturbation theory for eigenvalues of ma-
trices with arbitrary Jordan structure (see NR 2.1-7), Moro, Burke and Overton
[79] suggest a notion of Holder condition number for multiple eigenvalues, depend-
ing only on the conditioning of the associated eigenvectors.

NR 2.2-5. The condition number cypg(X7) = sepgl(All, Asg9) is given by Stew-
art [91]. In §2.2.2 we present a proof by applying Rice’s theory of condition and
using the generalized chordal metric.

NR 2.2-6. Varah [124] discusses some properties of sepp(A11, A22), and gives
some examples to show how very small it can be for seemingly harmless prob-
lems. Sun [101] and Xu [133] give some theoretical estimates on lower bounds for
sepF(AH, AQQ).

NR 2.2-7. Byers [12] proposes an algorithm for estimating sepp(Aj1, A22) in
the style of the LINPACK condition number estimator. Kagstrom and Poromaa
[58] present estimators for sepp(A11, A22) by using distributed and shared memory
block algorithms. For a nice survey on condition estimation in general, see Higham
[48].

NR 2.2-8. Let A, AH, AQQ, /Yl be as in Theorem 215, where )\(AH) ﬂ )\(AQQ) =
(); the corresponding eigenvalue problem is called well-posed for the invariant sub-
space Xj. If A(A11) N A(Ag2) # 0, then the corresponding eigenvalue problem is
called ill-posed for the invariant subspace. Demmel [29] gives a lower bound on
the distance from a well-posed eigenvalue problem for an invariant subspace to the
nearest ill-posed one by means of the reciprocal of the condition number c,ps(X7)

NR 2.2-9. Bai, Demmel and McKenney [3] review the theory of condition num-
bers for the eigenvalue problem and give a tabular summary of bounds for eigenval-
ues, means of clusters of eigenvalues, eigenvectors, invariant subspaces, and related
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quantities. They describe the design of algorithms for estimating these condition
numbers.

2.3 Perturbation Bounds for Invariant Subspaces

We first prove a forward perturbation theorem for simple invariant subspaces. The
proof is based on the use of Stewart’s technique [91] and Theorem 2.3.4 at the end
of this subsection.

Theorem 2.3.1. Let X = (X1, Xo) € U™ ™, and suppose that Xy = R(X1) is an
[-dimensional simple invariant subspace of A and (2.1.22) holds. For a perturbation
E we let

Ey E
H _ 11 12
X"EX = ( B B > : (2.3.1)

and assume that M(A1j1 + E11) N A(Aaz + Ea2) = 0. Define the linear operator L :
C(nfl)xl _)C(nfl)xl by

LZ = Z(An + En) — (Ao + Ex)Z,  Z €0 (2.3.2)
and set
b= L' Eall, c=IL7Y  n=I[lAn+ Bl (2.3.3)
If
4ben < 1, (2.3.4)

then there is a unique l-dimensional invariant subspace X; = R(X'l) of A+ FE
satisfying

~ 2b
tan O(X1, XH)|| € ——— 2.3.5
Jtan ©(X,, X)) € [ (2335)
where X, € U<,
Proof. Consider the equation

where L is the operator defined by (2.3.2), and the function ¢ is defined by
¢Z) =—-Z(A12+ Ern)Z, 7 ¢ ctn=hxt,
Observe that the function ¢ satisfies
I <nllZI?,  16(2) = ¢(2)II < 2nmax{| Z|, |1 Z|}|Z ~ Z],

and the scalars b,c,n defined by (2.3.3) satisfy (2.3.4). Hence, by Theorem 2.3.4
at the end of this subsection there is a unique solution Z* of the equation (2.3.6)
satisfying

1z* (2.3.7)

2b
< ——F—.
I'< 1+ +v1—4ben
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It can be verified that the relation

L7* = FEo1 + ¢(Z*)

-1
I 0 I 0 ok
(Z* 1> (A+E)(Z* I>_<0 *>
Combining it with (2.1.22), (2.3.1), (2.3.7) and (1.3.16) shows that the subspace X
defined by A} = R(X) with

is equivalent to

v I s 7% nxl
Xl_X(Z*><I+Z z*) *eu
is the unique invariant subspace of A + E satisfying (2.3.5). O

From Theorem 2.3.1 we get the following corollary.

Corollary 2.3.2. Let A, E, X, X, be as in Theorem 2.3.1, and assume that
En=0, Ea=0, Ey=0.
Define the linear operator T : C(=Ox1 — cn=0xI py,
TZ = ZAy — Ay Z, Z e (2.3.8)
and assume A(A11) N A(A2) = 0. If
4T IT™ Bl Arell2 < L,

then there is a unique l-dimensional invariant subspace X; = R(X'l) of A+ FE
satisfying

2| T~ By |

tan@(Xl,Xl)H < ,
H L+ V1= AT HIT By [[[[ 4122

where X, € UL,

Moreover, if the perturbation matrix F itself is unknown but some upper bounds
for || Eji| are known, then we have the following well known result.

Theorem 2.3.3 (Stewart). Let A, F, X, X, be as in Theorem 2.3.1, and let T
be the linear operator defined by (2.3.8). Assume that

AAn) (N AMA2) =0 and [ T7Y([[Enll + | E2l) <1,
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and set
f= C y=UBul. = el + | Biell
L= T E N + 1 E22ll)
If
420 < 1,
then there is a unique l-dimensional invariant subspace X; = R(X'l) of A+ FE
satisfying

Itan ©(X1, X1)| <

2¢y
14+ /1 — 4y’
where X, € U<,
We now prove a general result on solution of a nonlinear equation, which can be
used to establish the existence of Z* in Theorem 2.3.1. We state and prove it for a

Banach space, which the reader may take to be a finite dimensional normed linear
space.

Theorem 2.3.4. Let T be a bounded linear operator on a Banach space B,
and let || - || be a norm on B and the induced operator norm. Assume that T has a
bounded inverse, and set

c=|T7. (2.3.9)

Let ¢ : B — B be a function that satisfies

lg@) < nllzll?,  1¢(2) - ¢(2)]| < 2nmax{||z], |«|}|E — =] (2.3.10)

for any x,Z € B and some n > 0. For any g € B, let
b=|T gl (2.3.11)

If
dben < 1, (2.3.12)

then there is a unique solution x* of the nonlinear equation
Tz =g+ ¢(x) (2.3.13)

that satisfies

2b
I < ————— = . 2.3.14
') < T =¢ (23.14)

Proof. Define
Se-={z €B : |lz]| <&}

We first prove that if there is a solution of (2.3.13) in S¢-, then it is unique.
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Assume that the equation (2.3.13) has different solutions z*,# € Sg-. Then by
(2.3.9), (2.3.10), and (2.3.14), we have

lz* =2l < ITlé=") - (@)

< 2cnmax{||z"[], |2[|}|=" — 2]

< 2en - " — 2|

2b
14+ /1 —4ben
< Adben||z* — 2| < ||=* =z

This contradiction shows that there is at most one solution of the equation (2.3.13)
in 85* .

Now we prove the existence of a solution of (2.3.13) in Se-.

Consider the continuous mapping M : B — B defined by
y =T g+ ¢(z)]. (2.3.15)

Since any fixed point of the mapping M is a solution of the equation (2.3.13), the
problem of finding a solution of (2.3.13) satisfying (2.3.14) reduces to the problem
of showing that there is a fixed point of the mapping M in Sg-.

It is easy to verify that the scalar £* defined by (2.3.14) is a solution of the
equation

eng? —€+b=0. (2.3.16)
From (2.3.15) we see that if x € B satisfies ||z|| < &* then y satisfies

Iyl < IT™ gl + 1T~ () |
<b+cen|zl|*  (by (2.3.9) — (2.3.11))
<b+ene?
— ¢ (by (2.3.16))
which means that for the mapping M defined by (2.3.15) we have

T €Sy = y €S (2.3.17)

Observe that Sg« is a bounded closed convex set of B, and (2.3.17) shows that
the continuous mapping M maps Sg- into Sg-. Hence, by the Schauder fixed-point
theorem (Theorem 1.7.2) the mapping M has a fixed point in Sg-, and thus the
equation (2.3.13) has a solution in Sg-. O
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Notes and References

NR 2.3-1. Theorem 2.3.3 is given by Stewart [91]. Theorem 2.3.1 and Corol-
lary 2.3.2 are new results, which give perturbation bounds for invariant subspaces
when the perturbation matrix F itself is known.

NR 2.3-2. Theorem 2.3.4 is proved by Sun [121].

NR 2.3-3. A note on Theorem 2.3.4. Let v = ||g||. Stewart [91, Theorem 3.1]
shows that if the function ¢ satisfies (2.3.10), and

4ctyn < 1,

then there is a unique solution z* of the equation (2.3.13) that satisfies

2cy
¥ < . 2.3.18
I < T (23.15)
We now compare the estimates (2.3.18) and (2.3.14). Assume that B is a finite
dimensional Banach space. Let T' be the matrix representation of T, and let v;«, v,

be the vector representations of £*, g, respectively. Then in first order approximation
the estimates (2.3.14) and (2.3.18) can be written

log= | < IT " ogll,  Mlvas | < 1T Hogll, (2.3.19)

respectively, where || - || denotes any consistent matrix norm and associated vector
norm. The attraction of the first bound of (2.3.19) is that if v, is known then large
elements in the jth column of 7! may be countered by a small jth element of Vg
(or a large jth element of v, may be countered by small elements in the jth column
of T—!), making the bound much smaller than the second bound of (2.3.19). This
fact is pointed out by Higham [51, section 5]. Note that if the vector v, itself is
unknown but some upper bound for ||vg|| is known, then we are forced to use the
second bound of (2.3.19), i.e., if the g itself is unknown but some upper bound for
llg|l is known, then we are forced to use the bound (2.3.18).

2.4 Backward Errors and Residual Bounds

2.4.1 Backward Errors

In this subsection we discuss several kinds of normwise backward errors which are
defined by using some information of approximate simple invariant subspaces and
associated eigenmatrices of a matrix A. An approximate invariant subspace may
come from a numerical algorithm (see, e.g., Dongarra, Hammarling, and Wilkinson
[33] for methods for computing invariant subspaces).
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2.4.1.1 The Backward Error 7(X})

Let X, approximate an [-dimensional simple invariant subspace of A € C"*". By
§1.9, we define the backward error n(X7) of A with respect to X; by

n(&1) = min || ], (2.41)
where the set £ is defined by
g={Eec™m . (A+E)X C &}, (2.4.2)

The following result gives a computable formula of 5(X;).

Theorem 2.4.1. Choose U, € U™ so that R(Ul) = X,. Let
R =U(U7 AT) — AT, (2.4.3)

be the residual of A with respect to Uy. Then the backward error (X)) can be
expressed by
(&) = [|R]| (2.4.4)

The expressions (2.4.3) and (2.4.4) imply that the backward error n(X;) defined
by (2.4.1)-(2.4.2) is independent of the choice of the matrix U; whose column vec-
tors form an orthonormal basis of A].

Proof of Theorem 2.4.1. From (2.4.2) it follows that a matrix £ € £ if and
only if F is a solution of the equation

(A+ E)U, = U A
for some A; € C*!; or equivalently, F satisfies
EU, =U, A, — AU,. (2.4.5)

Applying Theorem 1.5.1 to the equation (2.4.5) we see that the equation is
solvable, and any solution E of the equation can be expressed by

E = (Uh A, — AU)UE + z(1 - 0,0}, (2.4.6)
where Z € C"*"™.
Choose Us so that U = (Uy,Us) € U™ ™. Then from (2.4.6)

ghpy — (A UTADL U120, _ (A - UfT AT, Uf 20,
~US' AU U ZUs UER  UHz0, |
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By the definition (2.4.1) and Theorem 1.2.1 we have

5 . ~ 0 0\ ~

Observe that the relation

~ 0
H frd ~

4R = ( o )
implies

o4 (U3’ R) = 04(R).
Hence, we have

0 0
o4 ( UQPIR 0 ) = O'+(R).

Combining it with (2.4.7) shows (2.4.4). O

2.4.1.2 The Backward Error n(X;, A)

Let A € C™*", and let X} be an I-dimensional subspace of C". By the definition,
X, is an invariant subspace of A if and only if there are matrices X; € C"*! and
Ay € €™ such that
/Yl == R(Xl) and AX1 = X1A1.

The matrix A; may be called the (right) eigenmatriz of A associated with X;.

Suppose that the column vectors of X, € ¢ form a basis of an approximate
invariant subspace of A, and A; € C"*! is the associated eigenmatrix. By §1.9, we
define the backward error n(X1, A1) of A with respect to X7 and A; by

(X1, A1) = min||E], (2.4.8)
where the set £ is defined by

g={Eecv™ : (A+E)X = XA} (2.4.9)
The following result gives a computable formula of n(X 1, fh).

Theorem 2.4.2. Let
R=X{A; - AX, (2.4.10)

be the residual of A with respect to X1 and Ay. Then the backward error n(X,, A;)
can be expressed by

n(X1, Ay) = HRXIH : (2.4.11)
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Proof. From (2.4.9) it follows that a matrix F € £ if and only if E satisfies
EX| =R, (2.4.12)

where R is the residual defined by (2.4.10).

Applying Theorem 1.5.1 to the equation (2.4.12) we see that the equation is
solvable, and any solution E to the equation can be expressed by

E=RX"+z(I-XX"), (2.4.13)

where Z € C"*",

Take an orthogonal decomp081tlon X1 = U1L of X1, where U1 e U™ and
L € C*¥!, Further, choose Uy so that U = (U, Us) € U™ ™. Then from (2.4.13)

E=RL'UF + z(1 - U,UF) = (RL™Y, ZU,)UH.
By the definition (2.4.8) and Theorem 1.2.1, we have

N(X1, A1) = [|Bope| with Eop = RL;'Uf! = RX],
which shows (2.4.11). 0

Remark 2.4.3. Let A\; € C be an approximate eigenvalue of A € C"*", and
Z1 € C™ be an associated eigenvector. Then by Theorem 2.4.2, the backward error
n(Z1, )\1) of A with respect to #; and A can be expressed by

[]]2
Z1l2

n(z 1,)\1) (2.4.14)
where .

r = )\11%1 — Ai‘l
be the residual of A with respect to Z; and Al Moreover, the optimal backward
perturbation E,p; in A is expressed by

_at
Eopt = 12y,

which is the smallest perturbation of A (in any unitarily invariant norm) such that
A1 is an eigenvalue of A + E,p;, and 27 is an associated eigenvector.

Example 2.4.4 (Yamamoto [135, Example 2]). Consider the matrix

14 9 6 4 2

-9 4 -3 -2 -1

A= -2 =2 0 -1 -1
3 3 3 ) 3

-9 -9 -9 -9 4
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which has the eigenvalues
M=1+V2, A=1-V2i, A3=5, M=2X=2,

and associated eigenvectors

0 0 1 -1
0 0 -1 2

Ir = _1 5 ro = _1 , I3 — 0 , rq4 = —].
2 —/2i 2 +/2i 0 0
—142v2i —1—2v2i 0 0

Using the MATLAB file “eig” (which is an implementation of the QR method) to the matrix
A, we get the computed eigenvalues A; and associated eigenvectors &; for j = 1,2,3,4,5,
among which &4 and &5 are approximately linearly dependent. Applying (2.4.14) we get

n(E1, A1) ~ 6.94 x 10715 (&, Xo) & 6.94 x 10715, 5(Z3,A3) ~ 3.38 x 10715,

N(Eg, M) ~ 422 x 10715 p(Es5, As) ~ 5.05 x 10715,

which show that each computed eigenvalue ;\j and associated eigenvector Z; are an exact
eigenvalue and an associated eigenvector of a very slightly perturbed matrix of A; in other
words, the computation has proceeded quite stably.

2.4.1.3 The Backward Errors nF(Xl,f/l,fil,é’l) and 772(5(1,}71,1411,6’1)

Let A € C™™. IfY; € "% and C; € C**¢ satisty
rank(Y1) =1 and Y7A=cCY/,

then Yy = R(Y7) is called a left invariant subspace of A, and the matrix C; may be
called the left eigenmatrix of A associated with Y7.

Let the column vectors of Xl e €™ form a basis of a subspace 2?1 which
approximates an invariant subspace X; of A, and let A; € ™ be the associated
approximate (right) eigenmatrix. Moreover, let the column vectors of ¥; € C™*!
form a basis of a subspace ); which approximates a left invariant subspace Y of
A, and C € €' is the associated approximate left eigenmatrix. Suppose that the
invariant subspaces A7 and ) correspond to the same eigenvalues of A. Therefore,
we may assume that

rank(Y7 X,) = 1. (2.4.15)

By §1.9, we define the backward errors ne(X1,Y1, A1, Cy) and (X1, Y, Ay, Cy) of
A with respect to Xy, Y7, Ay, Ci by

nF(Xhi/luAl?él) = IEﬂEiIngEHFa 772()21,3717211,01) = gleigHEH% (2.4.16)
where the set £ is defined by

g={EBecv™ . (A+E)X, = XiAy, VI(A+E) =Y} (2.4.17)
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If the matrices X; and Y satisfy )g' {I ):( 1= 171H V=1 , then the fgllowing result
gives computable formulas of np(X1,Y7, A1, Cy) and n2(X1, Y1, A1, C1) in the case
of & # 0.

Theorem 2.4.5 (Kahan, Parlett, and Jiang). If X1, Y1 e U™, and if

~ ~ ~ ~ ~ ~ ~ ~ \—1
rank(VE X)) =1, €)= (YlH Xl) A, (Ylel) . (2.4.18)
Then
ne (X1, Y1, A1, C1) = VIRIG + 1813 — 15X 13 (2.4.19)
and S
n2(X1, Y1, Ay, C1) = max{|[|R[[2, [|S]2}, (2.4.20)

where R, S are the residuals defined by
R=XA - AX,, S=CY7-YA (2.4.21)

Proof. From (2.4.17) it follows that a matrix £ € £ if and only if F is a solution
of the equations . .
EX, =R, Y{E=5, (2.4.22)

where R and S are the residuals defined by (2.4.21).

Applying Theorem 1.5.1 to the first equation of (2.4.22) we see that the equation
is solvable, and any solution £ to the equation can be expressed by

E=RXI 4+ 7(1 - X, X1, (2.4.23)

where Z € C"*". Combining (2.4.23) with (2.4.21) and the second equation of
(2.4.22), shows that the matrix Z of (2.4.23) satisfies

VHZ(I - X0 X7y = GV — VHA - VIR A XT 4 VAR XE. (2.4.24)

Applying Theorem 1.5.1 to the equation (2.4.24) we see that the equation is solvable
if and only if A; and C satisfy (2.4.18), and under the condition (2.4.18) any solution
Z to the equation (2.4.24) can be expressed by

Z=Y81I-X, X" +w-wny'wu-x,X).
Substituting it into (2.4.23) gives
E=RXI+v,8(1 - X X))+ (I -nYHwi - x, X1). (2.4.25)

Choose X5,Y; so that X = (Xl,XQ),f/ = (371,372) € U™*"™, Then any matrix E

of (2.4.25) satisfies
S YER  SX
1% Ex_( TR TIW R, ) (2.4.26)
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By the definition (2.4.16) and Theorem 1.2.1, we have
[ (%0, V1, A1, G| = IR + 85
Combining it with
~ 2 ~ 2
ISIE = [s% ] + 5%,
shows (2.4.19).

Moreover, by the definition (2.4.16) and Theorem 1.2.4, from (2.4.26) we get

n2(X1, Y, Ay, C1) = max {||R||2,

(5'm. 55%)],}-
Combining it with

(57 55.)], = |3 (5. %), = st
shows (2.4.20). O

2.4.2 Residual Bounds

Let an approximate invariant subspace X; = R(U;) of A € C"*™ be given, where
U; € U™*'. Then by using Theorem 2.4.1 and an appropriate forward perturbation
result we can determine the accuracy of the approximate invariant subspace X7.

Choose Us so that U = (Ul,Ug) € U™, By the proof of Theorem 2.4.1, the
optimal backward perturbation Eqp of (2.4.7) satisfies

. . UM AU, UH AU Ay, —SU
UT(A+ B, )U = LAVL P72 ) = o 2.4.27
( + opt) < O UQI{AUQ 0 A22 ) ( )
and
- - 0 0
UM EonU = ( GFR ) , (2.4.28)

where R is the residual defined by (2.4.3), and S is the residual of A with respect
to Ul defined by N o N

S = (U AU)UE - U A.
The relation (2.4.27) implies that the subspace X} is an invariant subspace of
A+ Eopt.

_ Applying Corollary 2.3.2 to the matrices A+ Eqpy and A, and using the relations
SUp = 0 and ||SUz|| = [|SU|| = ||S||, we obtain the following result which gives a
residual bound for the approximate invariant subspace X7 of A.
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Theorem 2.4.6. Let X, = R(UL) be an approzimate invariant subspace of A €
cnxn, where Uy € U™, Choose Uy so that U = (U, Us) € UM ™. Define the
matrices A1, Aso by (2.4.27), and define the linear operator T by

TZ = ZAH — AQQZ, Z € C(nil)Xl.
Moreover, define the residuals R and S by
R=U A, — AU, S=ALU-UFA.

If . . .
AA11) (N AA) =0 and 4T T TSRS < 1,

then there is a unique invariant subspace X; = R(U1) of A with U; € U™ such that
2T (4 B)| |
L+ /14T T O RISz

p(X, X)) < || tan ©(U,, Uy)|| < (2.4.29)

From the relation (2.4.27) we see that the eigenvalues A1, ..., \ of U1 AUy, as [
approximate eigenvalues of A, are [ eigenvalues of A + E,;. Applying the Henrici
theorem on perturbations of eigenvalues [44] (or see Stewart and Sun [97, Chapter
IV, Theorem 1.9]) to the matrices A and A + F,p, we can obtain a residual bound
for the approximate eigenvalues 5\1, ey M of A. Before the statement of the result
on a residual bound for \i,..., )\, we first define the 2-departure of a matrix from
normality by using the Schur decomposition.

It is well known that for any A € C"*"™, there is the Schur decomposition A =
UTUY, where U € U™*", and T € C™*™ is upper triangular. Let A € C™*", and let
U4 be the set defined by

Uy = {U ceU™™ . UMAU is upper triangular}.

For each U € Uy write U AU = Ay + Ry, where Ay is diagonal, and Ry is strictly
upper triangular. Then by Henrici [52], the 2-departure from normality of A is the
number

Az(4) = min || Ryll2,

and by the Henrici theorem [44, Theorem 4], for any eigenvalue A of A+ E with
FE #£ 0, there is an eigenvalue A of A such that

Ay (A)
1Bz’

A=A < EliBle, 0=

g(n)

(2.4.30)

where g(n) is the unique nonnegative solution of the equation

g+g g =n (n>0).
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Applying Henrici’s estimate (2.4.30) to the matrices A and A+ Eyp; of (2.4.27)—
(2.4.28) yields the following result.

Theorem 2.4.7. Let X; = R(ﬁl) be an approrimate invariant subspace of A €
C"", and R be the residual defined by (2.4.3), where U1 U, Moreover, let
A,..., N be the eigenvalues of UlHAUl Then for any Ay (1 <k <) there is an
ezgem}alue Aj, of A such that

Ao(A)

‘S\k: - Aj, m,

< lotnl,. 0=

where g(n) is the unique nonnegative solution of the equation
g+g g =n (n>0).
Example 2.4.8. Consider the matrix A of Example 2.4.4. The vector
z1=(0, 0, =1, 2 —/2i, -1+ 2v2i)T

is an eigenvector associated with the eigenvalue A\; = 1 4+ v/2i of A. Suppose that we have
an approximate eigenvector

# = (0.0001, 0.0000, —0.9999, 1.9999 — 1.4142i, —1.0001 + 2.8284i)T,
and let uy = z1/||z1||2, @1 = &1/]|#1]|2- A calculation gives
sin@(uy, i) ~ 4.5453 x 107°,  tan@(uy, ;) ~ 4.5453 x 1075, (2.4.31)

and
a7 Aty — M| & 9.2454 x 1077, (2.4.32)
where 6(u1,4;) denotes the angle between the two 1-dimensional subspaces R(u1) and

R(ir).

Choose U, so that (@, Us) € UP*®. (See NR 2.4-4 for a simple algorithm for determining
such a matrix Us.) Compute

Ay =atAay, Ay =UTAD,,

and . . . .
r = Allﬂl — Aﬂl, S = Allﬂ{{ — ﬂ{{A, T = AHI — Agg.

A calculation shows that A ¢ )\(14122), and
AT Y NTHTLr)||2]5]]2 = 1.3021 x 1072 < 1.
Consequently, applying Theorem 2.4.6, there is a unit eigenvector v of A such that

2T (U 1)l

tan O(u, @) < =
L4 y/1= 4T o TFF ) o sl

~ 4.5601 x 1075, (2.4.33)
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Comparing (2.4.33) with (2.4.31) shows that the estimate (2.4.33) is fairly sharp.
Observe that
4T HENTL r)]2)1s]]2 ~ 4.6181 x 107 < 1.

Hence, applying Theorem 2.3.3, there is a unit eigenvector u of A such that
2|7 MU 7l

tan 6(u, i) < =
L /1= AT BT o]l

~ 1.8597 x 1073,

which is weaker than the estimate (2.4.33).

Moreover, by Theorem 2.4.7, we have

min i} Aiiy — \j| S 6.8769 x 1071 (2.4.34)
A;EX(A)

Comparing (2.4.34) with (2.4.32) shows that the estimate (2.4.34) obtained by applying
Theorem 2.4.7 is a severe overestimate.

For improving the estimate (2.4.34), we first prove a lemma.

Lemma 2.4.9. Let A be an eigenvalue of A € C™*™ and x be an associated
eigenvector. Define G(xz,\) by

G(z,\) = (\I — A, z).

Then X is simple if and only if rank(G(z,\)) = n.

Proof. Without loss of generality we may assume that the matrix A = J, the
Jordan canonical form of A.

If A is simple, then
J =diag(\, J1), A€ A1),

and

(n)

x = ae; ' with nonzero a € C.

Thus, we have
0 0 1
Gla,A) = ( 0 Ay—i—Ji 0 )
and obviously, rank(G(z, A)) = n.

On the other hand, if A is a multiple eigenvalue of A with multiplicity m > 1,
and x is an associated eigenvector, then

J = dia’g(‘])\a J1)7
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where Jy, € C™*™ is in Jordan canonical form and whose eigenvalues are only
A & A(Jp). If Jy only contains one Jordan block, then z = ozegn) with a nonzero
a € C, and the mth row of G(z, ) is (0,...,0), and so we have rank(G(z,\)) < n.
If Jy contains at least two Jordan blocks, then there are at least two zero columns
among the first m columns of G(z, A), and so we have rank(G(z, A)) < n, too. O
Let A be a simple eigenvalue of A € C™*™, and x be an associated eigenvector.

Then from Lemma 2.4.8 we see that if (4, 5\) is a good approximation of (z, A), then
rank (S\I — A, ﬂ) =n.

The following result gives a residual bound for an approximate eigenvalue and
associated eigenvector of a matrix, in which the approximate eigenvalue approxi-
mates a simple eigenvalue of the matrix.

Theorem 2.4.10. Let A € C be an approzimate eigenvalue of A € C", and
u € C™ be an associated unit eigenvector. Define the residual v by

r = A\ — Au, (2.4.35)
and let N
T = (AI — A, u) : (2.4.36)
TTr:<c>, TT:<W>, ¢, 2T ecn, (2.4.37)
d z
and
v=llel2, d=ldl, w=[Wl2 ¢=]zl2 (2.4.38)
If
rank(T) =n (2.4.39)
and
(1 4+~¢ = dw)? —49¢ > 0, (2.4.40)
then there exist an eigenvalue \ of A and an associated unit eigenvector u such that
. N 2y
sin @ (u, ) < =& 2.4.41
(v, @) 1+7¢ — 0w+ /(1 +79¢ — dw)? — 479¢ i ( )
and
A=Al < 2 =¢ (2.4.42)
T 1+ ow+ VI — v+ 0w)? — dow o

Proof. By theorem 1.3.2 (see (1.3.9)), we only need to prove the following
conclusion: Under the conditions (2.4.39) and (2.4.40), there exist A € C and z € C"
such that

Az = Az, (2.4.43)
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and N
|2 —zll2 <&, A=A <&, (2.4.44)

where &} and &5 are defined by (2.4.41) and (2.4.42), respectively.

Suppose that z and A satisfy (2.4.43). Let
Az=a-z, Ax=X—\

Combining it with (2.4.35) and (2.4.43) shows that Az and A\ satisfy

Az
T ( AL > =7+ ANAz, (2.4.45)

where T is the matrix defined by (2.4.36).

Consider the nonlinear equation

Az
( AN ) =T (r + ANAZ), (2.4.46)

where AX and the elements of Ax are independent variables. By (2.4.39), we have
TT' = I, so multiplying the equation (2.4.46) on the left by T yields (2.4.45). This
shows that any solution of (2.4.46) is a solution of (2.4.45). Define the function f
by

f(Az, AX) =TT (r + ANAz) (2.4.47)

which can be regarded as a continuous mapping M : C**! — C**+!. Since any fixed
point of the mapping M is a solution of (2.4.46), the problem of proving (2.4.44)
reduces to the problem of showing the existence of a fixed point of the continuous
mapping M and then determining an upper bound on its size.

Let f = (¢7,h)T, where g € C". Then by using (2.4.37), the mapping (2.4.47)
can be expressed by
g(Az, AN) = c+ WANAz,

(2.4.48)
h(Az, AN) = d + zANAz.
Consider the nonlinear system
&1 =7+ wiiéy,
(2.4.49)
§2 =0+ (&i&2.

It is easy to verify that under the condition (2.4.40), (&5,£5) is a solution of (2.4.49).
We now define

Am * *
Ser g = {( AN ) Azl < &, JAN < 62}-
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Sz g5 is obviously a bounded closed convex set of C"*1. Moreover, (2.4.48) and
(2.4.49) imply

Ax g(Az, AN)
( AN ) €S = ( h(Az, A)) > € Serg5

which shows that the continuous mapping M expressed by (2.4.48) maps 851«75;
into Sgr¢r. Therefore, by the Brouwer fixed-point theorem (Theorem 1.7.1), the
mapping M has a fixed point in Sgr ¢r. Thus, we have proved that under the condi-

tions (2.4.39) and (2.4.40) the equation (2.4.45) has a solution ( ﬁi* > satisfying

|Az.lle < & and |AN] < &. Let £ = 0 — Az, and X = A\ — A, then z and A\
satisfy (2.4.43) and (2.4.44). 0

Since &} and & satisfy (2.4.49), we can first compute & by (2.4.41), and then
compute & by
6=
Pl

Example 2.4.11. Let A, uy, A1, 1,4 be as in Example 2.4.8, and let

)\1 - ﬂTAﬂl

Suppose that we have the approximation (@1, A\1). Applying Theorem 2.4.10, there exist an
eigenvalue A of A and an associated unit eigenvector u such that

sinf(u, ty) < 5.4826 x 107°,  |A; — A| < 9.2495 x 107°. (2.4.50)

Comparing (2.4.50) with (2.4.31) and (2.4.32) shows that the error bounds obtained by ap-
plying Theorem 2.4.10 are fairly sharp.

Example 2.4.12. Consider the matrix A of Example 2.4.4. Let :\j and &; be the
computed eigenvalues and associated eigenvectors of A by using the MATLAB file “eig”, and
let @; = %;/||%;]|2. Applying Theorem 2.4.10, there exist simple eigenvalues A; (j = 1,2, 3)
and associated unit eigenvectors u; of A such that

sinf(up, ;) <4.26 x 10715, A} = Ay < 1.02 x 10714,
sin (us, @ip) < 4.26 x 10715, [Ny — Ap| < 1.02 x 10714,

sinf(us, Gi3) < 7.25 x 10716, A3 — 3] < 3.02 x 10717,

which mean that the computed simple eigenvalues and associated eigenvectors of A by using
the MATLAB file “eig” have very high precision. Note that A, = 2 is a multiple eigenvalue
of A, we cannot use (2.4.41) and (2.4.42) to give appropriate estimates of error bounds for
the computed eigenvalue A4 and associated eigenvector Z4. (In fact, the condition (2.4.40)
is violated for A4 and Ty.)
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Remark 2.4.13. An obvious drawback of Theorem 2.4.10 is that it needs to
compute the Moore-Penrose inverse of an n x (n + 1) matrix. The problem of how
to find nearly optimal residual bounds with less effort for computed eigenvalues and
associated eigenvectors is worth studying.

Notes and References

NR 2.4-1. Theorem 2.4.1 is proved by Sun [115].

NR 2.4-2. Theorem 2.4.5 is established by Kahan, Parlett and Jiang [62, Main
Theorem], and the result is used to derive a useful set of criteria for terminating the
two-sided Lanczos algorithm.

NR. 2.4-3. If the assumption X7 X; = Y'Y} = I of Theorem 2.4.5 is removed,
then we have the following result. (The proof is left as an exercise.)

Theorem 2.4.14. Let nF(Xl,f/l,fh, 6’1) and 772()21,171,1211, 6’1) be the backward
errors defined by (2.4.16), where £ is the set defined by (2.4.17), and assume that
the condition (2.4.15) is satisfied. Then €& # 0 if and only if the matrices A1 and
C1 satisfy

. e N v e~ =1
Cr= (VX)) A4 (VIX)

and in the case of € # 0, we have the formulas

O ~ 1112 ~ L H 12 ~ L H 2
(651,10 = [RI] + [71 s [~ |7 s

and
772()21,171,[11, 6’1) = max {HRXH‘z ,

~TH
i SHz}’
where o ) o :

R=X A, - AX,, S=CY/T-v7A

are the residuals.
If X'l and }71 satisfy X{IXl = 171H1~/1 = I, then Theorem 2.4.14 is reduced to 2.4.5.

Theorem 2.4.2 can be regarded as a one-sided version of Theorem 2.4.14. Whether
one needs to use the one-sided or the two-sided result depends on whether one is
interested in the left and right invariant subspaces simultaneously or in the right
invariant subspace only.

NR 2.4-4. Suppose that 41 € R" is a unit vector. We now present a simple
algorithm for determining a matrix Uz such that (i1, Us) € U™ ™: Let

(n)

v="1u; —e
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and

Then
U= (’111, UQ) ey,

In fact, the matrix U is a Householder reflection which satisfies

and

(See, e.g., [48, §5.1].)

NR 2.4-5. A componentwise error bound for computed eigenvalues and associ-
ated eigenvectors is given by Yamamoto [135] and [136]. For applying Yamamoto’s
result it needs to compute the inverse of an (n + 1) X (n + 1) matrix.

NR 2.4-6. Suppose that one has an approximation for an invariant subspace
of a matrix, and one also has an approximation for the corresponding eigenvalues.
Haviv and Ritov [43] develop bounds on the angle between the approximating sub-
space and the invariant subspace itself. These bounds are functions of the following
three terms: (1) the residual of the approximations; (2) singular value separation in
an associated matrix; and (3) the goodness of the approximations to the eigenvalues.

2.5 Hermitian Matrices

In this section we treat perturbation analysis of the Hermitian eigenvalue problem
Az = Az, where A € H™*™,

2.5.1 Perturbation Expansions

Let p = (p1,...,pn)T € RY, and let A(p) € H™ " be an analytic matrix-valued
function in some neighborhood B(0) of the origin. It is well known that the eigen-
values of A(p) are real.

Let A € R be a simple eigenvalue of A(0), and = € C™ be an associated unit
eigenvector. Then there is a matrix Xy such that

X = (anQ) € unxn)

and

XTA0)X = ( 3 22 > . AL € M(A). (2.5.1)
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In this subsection we first apply the implicit function theorem to prove the follow-
ing result which gives perturbation expansions for simple eigenvalues of a Hermitian
matrix..

Theorem 2.5.1. Let p € RN and let A(p) € H™™ be an analytic matriz-valued
function of p in some neighborhood B(0) of the origin. Suppose that X\ is a simple

eigenvalue of A(0), and = is an associated unit eigenvector. Then

1) there ezists a simple eigenvalue X(p) of A(p) which is a real analytic function
of p in some neighborhood By C B(0) of the origin, and A(0) = A;

2) the function \(p) has a power series expansion at p =0 of the form

) Hi(”@)) iy ( ) b peB
p) = 5 bjpg 5 D 05
0 Opj p:O 2 i ok ) _,
where
(—8”\@)> =z (—aA(p)> 7, (2.5.2)
8p]- p=0 8pj p=0
and

?Xp) _H 8 A(p) o ol 94D 9A(p) T
<8pj8pk>p:0 N <8pjf)pk>p:0 + ( 8pj >p:0 QH( Opx; )pO
u (OA(p) d0A(p) "
( Ipy, )p:[) i ( Ip; >po 7

Qp = Xo(M — Ay) X1 (2.5.4)

Proof. 1) By the hypotheses there is a matrix X = (z, Xo) € U™*" such that
the relation (2.5.1) holds. For p € B(0) we set

(2.5.3)
in which

~ ~ H
Ap) = XFA@p)X = [ Qi) an®)™ ) p e r 2.5.5
(p) (p) ( G (p) AQQ(p) all(p) ( )
and introduce a vector-valued function
f(z,p) = a21(p) — a11(p)z + A (p)z — 2 (p)" 2, (2.5.6)
where
F=U o fac)ts 2=(G,. . Go)T €C™TY, p e B(0).
Let

f] ¢]+/Lw]7 C]://’]+ZV]7 /[::V_]w j:]-’"'an_]-7



68 CHAPTER 2. EIGENVALUE PROBLEMS

and
U= (Ml,...,un,l)T, v=(v1,.. .,I/nfl)T e R" L

Obviously, ¢;(u,v,p) and 4;(u,v,p) are real analytic functions of the real variables
u,v € R ! and p € B(0), and the functions satisfy

¢(07070):07 11[](07070):07 j:]-’"'an_]-'

Since f1, ..., fn_1 are complex analytic functions of the complex variables (1, ..., (1
for any p € B(0), by Theorem 1.6.3 we have

<a(¢17' .. 7¢n—15¢17- .. 71/}n—1))
a(u’h ceesn—1,V1,- .. aVn—l) u=v=0, p=0

2

_ ‘a(flw"afnl)
a(Cla e 7<n71)

Therefore, by the implicit function theorem (Theorem 1.6.2) the system of equations

¢j(u,U,p):0, ¢j(uvvap):05 jzla"'an_l

has a unique real analytic solution v = wu(p), v = v(p) in some neighborhood
By C B(0) of the origin, and u(0) = v(0) = 0. In other words, the equation
f(z,p) = 0 has a unique analytic solution z = z(p) in By, and z(0) = 0. Moreover,
we may choose By so small that 1+ z(p)* z(p) > 0 for any p € By.

= |det (A — AI)|* > 0.
2=0, p=0

Define
0(p) = ( z(lp) —z(Ip)H ) (1 +z(p):z(p))% " 0 ) ew
2(p)2(p)™)
Then we have
Q)" Ap)QM) = ( e ) . peB

Combining it with (2.5.5) gives

A(p)z(p) = Ap)z(p), (2.5.7)
where

Ap) = (@1 (p) + 2(p)"a21 (p) + 21 (1) 2(p) + 2(p)" As(p)2(p) )
(2.5.8)

% (1+2()"2(p))
and

#(p) = X ( ) > (1+20"2) ?, (2.5.9)
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in which the analytic vector-valued function z(p) satisfies the equation
a21(p) — a1 (p)2(p) + Asa(p)z(p) — 2(p)azi (p) " 2(p) =0, p€Bo.  (2.5.10)

From (2.5.7)-(2.5.9) we see the following facts: (i) A(p) is an eigenvalue of A(p)
and z(p) is an associated eigenvector; (ii) A(p) and z(p) are analytic functions of
p in By, and A(0) = A, z(0) = z; (iii) the eigenvalue A\(p) of A(p) is simple in By
provided that By is sufficiently small.

2) From (2.5.8), (2.5.5) and a91(0) = z(0) = 0, we get

Opj ), opj p:07
and
82)\(])) _ 82a11(p)
Pk ) ok ),

8@21( H
p:0+< om ), O( 50; ) (2.5.12)
ox\" , (92) 0:)\" , (9=)
Ip; ) A2< Opk >p:o+< Opk )p:o A2< op; >p:0
0:0)\"  (92(p) 20\ (92(p)
N [( Ip; >p:0< Opi; )p:0+< Opi; >p:o< op; >p:0] '
Moreover, from (2.5.10)

<8Z_@> — (M — Ao)~' X T <3A(p)> z. (2.5.13)
8pj p=0 p=0

H ~
(F0) )L GO (52
( )
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Combining (2.5.11)—(2.5.13) with

(3&11(27)) _ L H (3A(p)> .
opj =0 opj p:O’

daoi (p) _ o [ 9A(p) .
( Op;j >po_X2 ( Opj >po ’

Xo(NT — Ap) 7 X 4 Xo(NT — Ap) P Ao(NT — Ay) X I

and using the relation

= AXo(A — Ap) 72X 1T

we obtain the formulas (2.5.2)-(2.5.4). O

Note that the relations (2.5.9) and (2.5.13) imply that the eigenvector z(p) has
the expansion of the form

N
0A
p=0

=1

where Qp is the matrix defined by (2.5.4).

Example 2.5.2. Consider the Hermitian matrix

2

1 )
A(p) — < p1—ip2+1 ) ; (p17p2)T =p c R27 i = /_1.

1
p1+ip2+1

Obviously, A(p) is an analytic matrix-valued function of p in a small neighborhood of the

origin of R?. Moreover,
2 1

and the real orthogonal matrix

satisfies (

Observe that
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(32A(p)> B ( 0 2 ) <62A(p)) B ( 0 —2 )
m ),y \ 2 0)° w5 Jpmo \ 72 0 )7

(32A(p)> :< 0 —2z’>
Op10p2 ) =g 2i 0 )"

Hence, if A1 (p) and A2 (p) denote the eigenvalues of A(p), then by the formulas (2.5.2)—-(2.5.4)

we have
<8>\1(p)> _ <8>\1(p)) _0
apl p=0 ’ 3292 p=0 ’
(8>\2(p)) _ <8>\2(p)) _0
apl p=0 ’ 3102 p=0 ’
(6%@)) L, (a%(m) . (a%(p)) .
ap% p=0 ’ 8p1 8p2 p=0 ’ apg p=0 ’

0?X2(p) _ 9 9*X2(p) —0 9*X2(p) -1
S apr — 7\ opiops U op2 T
P p=0 DP10D2 p=0 P> p=0

Consequently, A1(p) and A\a(p) have the expansions

and

and

1
M(p) =3 —p1+pi = 505+ O(lpll3) (2.5.14)
and 1
Xo(p) =1+p1 —pi + 51)3 +0(Ipl3) (2.5.15)
asp — 0.

Note that the eigenvalues A (p) and Aa(p) have the explicit expressions

1 1

MP) =2 M) =2 ———
1(p) (1+p1)2 + p3 (p) (1+p1)2 +p2

From the expressions we can also obtain the second order perturbation expansions (2.5.14)
and (2.5.15).

Let A€ H™™ ™ and let X; C C"*. If
dim(X;) =1 and AX; C Ay,
then A7 is said to be an [-dimensional eigenspace of A.
The eigenspace &) can be equivalently defined by A} = R(X1) with X satisfying
X, eU™!, and AX, = X34

for some A, € H!*L,
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Let X; € YU™*!. Tt can be verified that the subspace X = R(X1) is an eigenspace
of A € H"*" if and only if there exists a matrix X = (X1, X3) € U"*" such that

An 0

XHAX =
( 0 A

) . A e 1 (2.5.16)

If AM(A11) N A(Agz) = 0, then the eigenspace X; is called a simple eigenspace of
A. In this section we only consider simple eigenspaces.

Using the same technique described in the proofs of Theorems 2.1.5 and 2.5.1,
we obtain the following result which gives perturbation expansions for eigenspaces.

Theorem 2.5.3. Let A € H™ ", and let X = (X1, Xo) € U™ with X; € Y™
such that

A11 0

XHAX =

) ;A e 1P A (M M(Azz) = 0.

Moreover, let X1 = R(Xy), for H € H™*" let

H,, HZ
XX — 2t )
( Hy  Hy >

and define a linear operator T : C(n=0xl 5 cln=DxL p,
TP = PAy — ApP, P e ix (2.5.17)

Then

1) there exists a unique l-dimensional simple eigenspace X1(7) of A+ T7H such
that X1(0) = X1, and the basis vectors x1(T),...,x1(T) of X1(T) may be defined to
be analytic functions of T in some neighborhood B(0) of the origin of R;

2) the analytic matriz-valued function X,(1) = (z1(7),...,2(7)) has the pertur-
bation expansion

Xl(T):Xl-f—XQZKjTj, TGB(O),
7j=1

in which

Ky =T 'Hoy,

Ky =T Y (HypK, — K1Hy),

j-2
K;=T7'|HpK; 1 — K; 1Hp1 — kZ Kj 1 pHi2Kg|, 723
=1
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2.5.2 Structured Condition Numbers

Let A € H™ ™ and X be a simple eigenvalue of A. Let A = A+ H € H"™ be a
perturbation of A, and X be the corresponding perturbation of A\. Then by §1.8 we
define the structured condition number ¢(A) for A as (2.2.1), but the perturbation
matrices £ € C"*" are replaced by H € H™*™.

Let € C™ be the unit eigenvector of A associated with A. Then by Theorem
2.5.1 we have
A=X+z"Hz + O(|H|?).

Combining it with the definition (2.2.1) yields

‘W=7

where « and £ are positive parameters. Obviously, we have the absolute condition
number caps(A) = 1, and the relative condition number ¢ (X) = ||A]|/|A] if A # 0.

Let X, be a simple eigenspace of A € H™ ", Let A = A+ H € H™™ " be
a perturbation of A, and X, be the corresponding perturbation of X;. Then by
§1.8 we define the structured condition number ¢(X}) for A as (2.2.10), but the
perturbation matrices £ € C™*™ are replaced by H € H™*". By the same argument
as in §2.2,2, we obtain
(1) = al| T2,
where « is a positive parameter, and 7T is the matrix representation of the linear

operator T defined by (2.5.17).

Let
AMA1) ={A1,..., N}, A(A22) = {415+ A}

Then ¢(X;) has the expression

o(Xr) = -

min N — Akl
1<y <l
[+1<k<n

2.5.3 Perturbation Bounds for Eigenspaces

In this subsection we give perturbation bounds for eigenspaces. The proofs of the
following three results are similar to those of Theorem 2.3.1, Corollary 2.3.2 and
Theorem 2.3.3, and left as exercises.

Theorem 2.5.4. Let A € H™*". Let X = (X1, X2) € U™*", and suppose that
X1 = R(X1) is an l-dimensional simple eigenspace of A and (2.5.16) holds. For a
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Hermitian perturbation H we let

Hyy HZ
X"HX = 21
( Hy Hy >
0.

and assume that A(A11 + Hi1) N A(Ae + Hy) =
L: C(nfl)xl N C(nfl)xl by

Define the linear operator

L/ = Z(A11 + HH) — (A22 + HQQ)Z, Z € C(nil)Xl,

and set
b=|L"Hyl, c=|L7", n=|Hxuls

If
4dben < 1,

then there is a unique l-dimensional eigenspace X; = R(Xl) of A+ H satisfying

. 2b
tan O(X 1, X1)|| € — e
Itan®X X0l < T A=y

where X, € UL,
From Theorem 2.5.4 we get the following corollary.

Corollary 2.5.5. Let A, H, X, X} be as in Theorem 2.5.4, and assume that
Hy; =0, Hy = 0.
Define the linear operator T : C(n—DxL 5 cn=Dxl p,
TZ = ZAy — ApZ, 7 ecmhxl

If
AT YIT " Ho || Haa 12 < 1,

then there is a unique l-dimensional eigenspace Xy = R(X'l) of A+ H satisfying

|| < 2HT_1H21||
T 1+ 14T T[T THa [[Hall2’

|| tan @(Xl,Xl)

where X, € UL,

Moreover, if the perturbation matrix H itself is unknown but some upper bounds
for [|[Hj|| are known, then we have the following well known result.
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Theorem 2.5.6 (Stewart). Let A, H, X, Xy be as in Theorem 2.5.4, and let T
be the linear operator as in Corollary 2.5.5. Set

T
L= T Hua | + [ Hz2ll)

¢ = v = [[Ha|]-

If
2y < 1,
then there is a unique l-dimensional eigenspace X; = R(Xl) of A+ H satisfying
2¢y
+ /1 = (267)?

| tan (X1, X)) < -

where X, € UL,

2.5.4 Structured Backward Errors
2.5.4.1 The Backward Error UH()EI)

Let X; approximate an [-dimensional eigenspace of A € H™ ™. Then there are
various ways to define backward errors of A with respect to X;. For example, we
may define the backward error 7(X;) by (2.4.1), in which the set £ consists of back-
ward general perturbations E € C"*" of A. An explicit expression of n(X;) is given
by (2.4.4).

The expression (2.4.4) gives a distance from the Hermitian matrix A to the near-
est matrix A+ Eqp for which the given approximate eigenspace X, of A is an exact
invariant subspace of A + E,,;. However, from the expression (2.4.7) of the optimal
backward (general) perturbation F,p; we see that the perturbed matrix A+ E,p, may
not be Hermitian. Consequently, if we are interested in the requirement that the
perturbed matrices are Hermitian too, then the definition (2.4.1) has to be modified.

We now define the structured backward error nH(Qa) of A with respect to X; by
X1) = min |H 2.5.18
Ny (A1) = min [|H|, ( )
where the set H is defined by
H={HeH™ : (A+H)X C & }. (2.5.19)
The following result gives a computable formula of UH()?I)-

Theorem 2.5.7. Choose Uy € U™ so that X) = R(Ul) Let

R =U, (U AUY) — AU, (2.5.20)
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be the residual of A with respect to Uy. Then the backward error nH(é’El) can be

expressed by .
0 R
( R0 > H . (2.5.21)

The expressions (2.5.20) and (2.5.21) imply that the backward error nH(fl) de-
fined by (2.5.18) is independent of the choice of the matrix U, whose column vectors
form an orthonormal basis of X.

nH(Xl) =

Proof of Theorem 2.5.7. From (2.5.19) it follows that a matrix H € #H if and
only if H is a solution of the equation

(A+ H)U, = U Ay
for some A; € H!!, or equivalently, H satisfies
HU, = U, A, — AU, (2.5.22)

Applying Theorem 1.5.2 to the equation (2.5.22) we see that the equation is
solvable, and any solution H to the equation can be expressed by

H = (01141 - Aﬁl)UlH + 01([71141 - Aﬁl)H
~ ~ o (2.5.23)
~Ui(A = U{" AU + Pg- TPz,

1

where T € H™ <™,

Choose Uy so that U = (U, Uy) € U™™. Then from (2.5.23)

grgp— (A 2 UMAG —UfAU, (A - U AU RPT,
~UH AU, UATU, UFR U, TU, )
By the definition (2.5.18) and Theorem 1.2.1, we have
- . ~ 0 RUU, \ ~py
My (X1) = [ Hopell - with  Hope =U | mpp Ut (2.5.24)
2

Observe that the relation
- 0
H — ~
U"R = ( U2H R >

0. (Uy'R) =01 (R), o (R"U,) =0.(R).

i ORHﬁg_UORH
Y\VUER 0 “"tTLR 0

implies

Hence, we have
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Combining it with (2.5.24) shows (2.5.21). O

Comparing the optimal backward Hermitian perturbation Hopy of (2.5.24) with
the optimal backward general perturbation E,p; of (2.4.7) we obtain the following
Corollary.

Corollary 2.5.8. Let A € H™ ", and X, = R(U,) approzimate an eigenspace
of A. Moreover, let Hypy be the optimal backward Hermitian perturbation , and Eypy
the optimal backward general perturbation. Then we have

[ Eopt|| < [[Hopt|l < 2[| Eopy];
and particularly,
[ Hopillm = V2l Eoptlles 1 Hopillz = | Eoptl2-

2.5.4.2 The Backward Errors 77HF(01,/~\1) and 77H2(01,1~\1)

Let Al,...,N € R (I < n) be approximate eigenvalues of A € H"™ ", and
Z1,...,T; be associated approximate eigenvectors. Generally speaking, the approx-
imate eigenvectors are linearly independent but not necessarily orthonormal. An
important question associated with the approximate eigensystem is: How can we
define a backward error of A with respect to the approximate eigensystem, and how
can we obtain a computable formula of the backward error? In this subsection we
discuss the question.

) Assume that the vectors Zi,...,Z; are close to orthonormal, i.e., the matrix
X1 = (%1,...,7;) satisfies
e= || XX, - I|lr < L. (2.5.25)
Let N o
Xy =U114 (2.5.26)

be an orthogonal decomposition of X, ie, U € U™, and Ly € ¢ is nonsingu-
lar. If the column vectors of U; are approximate eigenvectors of A associated with
AL, ..., A, then through the orthogonal decomposition (2.5.26) we may define the
backward errors nH7F(U1, Al) and an(ﬁla /NXl) of A with respect to U; and A4 by

Ny p(U1, A1) = min || Hl|7, My (01, A1) = min || Hll2, (2.5.27)
where the set H is defined by
H={HeH™" : (A+H)l =01k }. (2.5.28)

Note that there exist orthogonal decompositions (2.5.26) of X, such that under
the hypothesis (2.5.25) the column vectors of U; are approximate eigenvectors of
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A associated with 5\1, cen, N. For example, the polar decomposition and the QR
factorization of X; are such decompositions. In fact, if

X, =PH, X =QR

are the polar decomposition and the QR factorization of Xj, respectively, where
P,Qy € U™, H, € ¢! is Hermitian positive definite, and R; € C**! is upper
triangular with positive diagonal elements, then by Theorem 1.4.2 we have

IX — Pillp < (2.5.29)

€ €
=— < <1,
1+O’min(X1) 1—1—\/1—6
and
V2 (14| Xill2) €

(14 (K1) (1= IXE R = 11z + 1= 1 XF X~ 1))

1X) —Qillr <

< L

< V2(1 + VT e)e
T(1HVI =1 —e+V1—¢)
(2.5.30)

The relations (2.5.29) and (2.5.30) show that if the approximate eigenvectors Z1, ..., Z;
of A are close to orthonormal, then the column vectors of P, and (); are also ap-
proximate eigenvectors of A associated with the same eigenvalues.

Let nHF(Ul,]\l) and 77H2(01,1~\1) be the backward errors defined by (2.5.27).
The following result gives computable formulas of the backward errors 7 F(Ul, 1~\1)
and nH’2(017A1)‘

Theorem 2.5.9. Let A € H"*", and let U, e U™ and Ay = diag(j\l,...,)\l)
be given, where Aj € R (1 < j <1). Moreover, let

R=TUA, — AT, (2.5.31)

be the residuals of A with respect to 01 and ]\1. Then the backward errors ny F(ﬁl, ]\1)
and T]HQ(Ul,[h) can be expressed by

M (01, A0) = 2IRIZ — |OF RIZ, (2.5.3)

and
My o (Ur, A1) = [IR]2. (2.5.33)

Proof. From (2.5.28) it follows that a matrix H € H if and only if H satisfies

HU, = R, (2.5.34)
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where R is the residual defined by (2.5.31).

Applying Theorem 1.5.2 to the equation (2.5.34) we see that the equation is
solvable, and any solution H of the equation can be expressed by

H = RU{" + U\R" — T\ R"U,U{" + P5 TPy, (2.5.35)
where T € H™*"™.

Choose Uy so that U = (U, Uy) € U™™. Then from (2.5.35)

N UPR RUU.
UTHU = < 0;HR 02HTU22 ) (2.5.36)

Consequently, by the definition (2.5.27) we have
o : - ( UFR RUD \ -
UH,F(UlaAl) = ||H0ptH with  Hopy = U ( U;HR 0 > UH7
which shows (2.5.32).
Moreover, by (2.5.27), (2.5.36) and Theorem 1.2.3, we have
Ng1,5(U1, A1) = max{|[R]l2, (U R, R"Us)|[}.
Combining it with
IO R, R7O2)|| = | R (U1, Ua)|l2 = || B2,
shows (2.5.33). O

Remark 2.5.10. Let A\; € R be an approximate eigenvalue of A € H™ ", and
@i € C" be an associated unit eigenvector. Then the backward errors 7, (1, A1)

and 1y (1, 5\1) of A with respect to #; and A has the expressions
nH,F(ﬂh)‘l) =YV 2”7’”% - |&{{r|2, nHQ(ﬂla >‘1) = HTH?’

T = )\1’&,1 - Aﬂl

where

is the residual of A with respect to Z; and Al Moreover, the optimal backward
Hermitian perturbation Hopy of A associated with 7y (41, A1) has the expression

~H | o~ H 3 ~H g~ \~ ~H
Hopy = ray +ar™ — ()\1 — U Aul) Uity .

Let Py be the unitary polar factor of X,. Take Uy, = P, in (2.5.28). We now
discuss the backward error 7, .(P1, A1).



80 CHAPTER 2. EIGENVALUE PROBLEMS

The following result shows that the Frobenius norm of the residual X 1[\1 — AX 1
can be used to bound the backward error ny (P, Ar).

Theorem 2.5.11. Let A, Ay be as in Theorem 2.5.9, and let Py be the unitary
polar factor of X1. Then

- V2|Rg |lr
(P A) < —2—, (2.5.37)
’ Umin(Xl)
where o .
RXI = X1A1 — AX1
is the residual of A with respect to X'l and 1~\1.
The estimate (2.5.37) shows that if [ R¢ ||F is small and if Z1,. .., Z; are close to
orthonormal, then there is a Hermitian matrix A + Hopy with small || Hopy||p such
that A1,...,A; and the column vectors of P; (the unitary polar factor of X;) are [

exact eigenvalues and associated eigenvectors of A + Hopy.

Proof of Theorem 2.5.11. By (2.5.32) we only need to prove the inequality

IRIlF < |Rg, |/ omin(X1), (2.5.38)
where )
R = P1A1 - AP1
Let X, =U ( 2(])1 ) VH be the singular value decomposition of X1, where U =

(Ul,UQ) e U™ " with Uy € U”Xl, V e Z/{M, and ;1 = diag(al, . ,Ul) with oy
--+ > 07 > 0. Then the unitary polar factor P; of X; can be expressed by P;
U, VH. Thus, we have

v

0 0

U%U(%)—(IS)VH]\W

= omin(X1)||AP1 — PiA ||,

S 5 5 i
Rz lr =[AX1 — XiM|p = HUHAU< ' ) - ( ! >VHA1V

F

> oy (by Theorem 1.2.2)

F

which shows the inequality (2.5.38). O

2.5.5 Residual Bounds

Let an approximate eigenspace X; = R(Ul) of A € H™ " be given, where U; € U™ L.
Then by using Theorem 2.5.7 and appropriate forward perturbation results we can
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determine how the eigenvalues A1, ..., \ of UlH AUl~ relate to those of A, and deter-
mine the accuracy of the approximate eigenspace Xj.

Choose Us so that U = (U;,Us) € U™ ™. By the proof of Theorem 2.5.7, the
optimal backward perturbation H,yy, of (2.5.27) satisfies

~ ~ [TH ATT 0 A 0
H 1 1 _ 11
A+ H = | = b 2.5.
U At Hop)U ( 0 UQHAU2> ( 0 Ay ) (2.5.39)
and
- N 0 RHD,
U Hop U = ( 0iR o ) : (2.5.40)

where R is the residual defined by (2.5.20). The relation (2.5.39) implies that the
eigenvalues M1, ..., \; of U AU 1, as [ approximate eigenvalues of A, are [ eigenvalues
of A+ Hgpi, and the subspace & is an eigenspace of A + Hy.

Applying the Mirsky theorem [78] (see below NR 2.5-8) to the Hermitian ma-
trices A + Hopt and A, we obtain the following result which gives a residual bound
for the approximate eigenvalues Ay, ..., A;.

Theorem 2.5.12. Let A € H™", and let X, = R(U,) be an approzimate

eigenspace of A, where ) ENM"Xl. If the eigenvalues of A are Ay > -+ > Ay, and the
eigenvalues of U AU are Ay > --- > X, then there are integers j1 < jo < -+ < ji

such that
0 RH
R 0

R=U,A, — AU,. (2.5.42)

[diag(A — Ajys--o s — M)l <

' , (2.5.41)

where R is the residual defined by

Applying Corollary 2.5.5 to the Hermitian matrices A + Hopy and A shows the
following result which gives a residual bound for the approximate eigenspace X of A.

. Th~e0r~em 2.5.13. Lel A, 2?1,01 be as izz T@eorem 2.5.12. Choose f]g so that
U = (Uy,Uy) € U™*™. Define the matrices A1, Aag by (2.5.39), define the residual
R by (2.5.42), and define the linear operator T by

TZ = Zzzln — AQQZ’ Z € C(nil)Xl.

If
MAu)(A(Az2) =0 and 4T H|IT (U B2 < 1,
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then there is a unique eigenspace X1 = R(Uy) of A with Uy € U™ such that

2T (U R)|

p(X1, X1) < || tan O(U, Th)|| < —
L+ /1= 4TI T TR R]:

=7(R).

(2.5.43)

It is worth noting that by using Theorem 2.5.13 and Theorem 2.5.17 of the next

subsection (§2.5.6), we obtain the following result on residual bounds for eigenvalues
which may be sharper than the estimate (2.5.41).

Theorem 2.5.14. Let A, 231, Ul, UQ,T and R be as in Theorem 2.5.13. Let the
eigenvalues of A be Ay > -+~ > X\, and the eigenvalues of UL AUy be Ay > --- > \,.
If the scalar T2(R) defined by (2.5.48) with || - || = || - |2 satisfies

n(R) <1, (2.5.44)

then there are integers j1 < jo < --- < j; such that

m(R)| R

diag(A1 = Xipyeno s N — A € ——2
|diag (A1 J1 l Jz)”_ 1—(7’2(R))2

(2.5.45)
Proof. By Theorem 2.5.17 of the next subsection (§2.5.6), there are integers
g1 < ja < --- < j; such that

o - X1, X)) R
[diag(A — Ajy, .- A — M) < pa(, X | El : (2.5.46)

/1= 3, )

where pa(-,-) is the generalized chordal metric defined by (1.3.3). Substituting

(2.5.43) into (2.5.46) shows (2.5.45). O
Define 2 by
L,
0 ywecm-nxt Wl
W £ 0

Then from (2.5.43)

s, @) <20 (@ B, < 2
Consequently, if
W= 2”5”2 <1,
then from (2.5.46) we get a weaker estimate
2 |RIIR|

Hdlag(j‘l - >‘J17 s 75‘l - >‘Jl)H < (2547)

V1 —w? 02
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Example 2.5.15. Consider the real symmetric matrix

1 0 0 0
0 1 10° 1
A= 0 10° 1 1
0 1 1 2

The vector u; = (1,0,0,0)7 is clearly a unit eigenvector of A associated with the eigenvalue
A1 = 1. Suppose that we have an approximate eigenvector

&1 =(1,107%, 1077, 107%)7,
and let 4y = &1 /||Z1]|2. A calculation gives
sin @(uq, ;) ~ 1.0049 x 107°, tan 8 (uy, ;) ~ 1.0049 x 10 (2.5.48)
and
A(A) = {1.0, —1.0 x 10%, 1.0 x 10%, 2.0},

(2.5.49)
|l Ay — Ay ~ 2.0000 x 1078,

where 6(u1,4;) denotes the angle between the two 1-dimensional subspaces R(u1) and

Riin).
Choose U so that (i1,Us) € O**. Compute A1, Ags, r and T by
1411 = ﬂTAﬂl, 1422 = UQTAUQ7

and 3 ~ 3
T:Allfl/l —Aftl, T:Allf—Azz.

calculation shows that Aq; ¢ /\(/122), and
AT T =T )2 llr|l2 ~ 4.0403 x 1077 < 1,

2T (U5 )l

- ~1.0100 x 10"° < 1.
L+ /L= 4T ol T (T )l Il

T2 (7") =

Consequently, applying Theorem 2.5.13, there is a unit eigenvector u of A such that
tan 8(u, iiy) < 7 (r) ~ 1.0100 x 107°, (2.5.50)

and applying Theorem 2.5.14 (see (2.5.45)), there is an eigenvalue A(= u'l Au) of A such
that

T A ) < 22
V1= (r(r)?
Comparing (2.5.50) and (2.5.51) with (2.5.48) and (2.5.49) we see that the estimates
obtained by applying Theorems 2.5.13 and 2.5.14 are fairly sharp.

~ 1.0100 x 10~ ". (2.5.51)

It is worth pointing out that by Theorem 2.5.12 (see (2.5.41)) there is an eigenvalue A
of A such that
|ul Ay — A < ||7|l2 ~ 1.0050 x 101,
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and by (2.5.47) there is an eigenvalue A of A such that
20174 2
VP a1
V1= CITH2Ir[l2)

The estimates obtained by (2.5.41) and (2.5.47) are obviously severe overestimates.

|ul Adiy ~ 2.0621 x 1072,

Example 2.5.16 (Saad [90, Example 3.4]). Consider the real symmetric matrix

1.00 0.0055  0.10 0.10  0.00

0.0055 2.00 -0.05 0.00 -0.10

A= 0.10 -0.05 3.00 0.10 0.05
0.10 0.00 0.10 4.00 0.00

0.00 -0.10  0.05 0.00 500

Since the off-diagonal elements of A are small, the diagonal elements can be considered
approximations to the eigenvalues of A. The question is: How good accuracy can be ex-
pected? We now apply Theorem 2.5.12, (2.5.47), and Theorem 2.5.14, to give estimates on
the accuracy.

For any fixed integer k € [1,5] let 4 = e,(f), the kth column of the identity matrix I5,

and then compute A;; = a7 Ad; = k. Let A\, (k = 1,...,5) be the eigenvalues of A. By
Theorem 2.5.12 (see (2.5.41)) we get the estimates

A —1.0] < 0.14153, |y —2.0] < 0.11194,  |As — 3.0] < 0.15811,

[As —4.0] <0.14142, [As — 5.0 < 0.11180.
By (2.5.47) we get the estimates
A1 — 1.0] €0.04203, |A2 —2.0] €0.02591, |X3 —3.0] <0.05251,

|As —4.0] <0.04197,  |As — 5.0] < 0.02603.
By Theorem 2.5.14 (see (2.5.45)) we get the estimates
A1 — 1.0] < 0.00838, |2 —2.0] <0.00662, |A3 —3.0] <0.02050,

Ay —4.0] < 0.01591,  |As — 5.0 < 0.00480.

Note that the actual errors are
|[A1 — 1.0] ~ 0.00805, |[A2 — 2.0] ~ 0.00556, |As — 3.0] =~ 0.00492,

|As — 4.0] ~ 0.01386, |As — 5.0] &~ 0.00467.
Obviously, the estimates obtained by applying Theorem 2.5.14 are fairly sharp.

By the way, the vectors 655), . ,eé5) can be considered approximations to the eigenvec-
tors of A. Let uy be an eigenvector of A associated with Ag, &k = 1,...,5. Then by Theorem
2.5.13 (see (2.5.43)) we get the estimates

tan f(uy, 655)) < 0.05908, tan 0(uz,eg5)) <0.05903,  tan6(us, 6;5)) < 0.12856,

tan H(U4,ei5)) < 0.11179, tan@(u&e?)) < 0.04292.
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2.5.6 Eigenvalues of Rayleigh Quotient Matrices

In this subsection we shall reveal an approximation property of the eigenvalues of
a Rayleigh quotient matrix that can be used to establish the estimate (2.5.45) of
Theorem 2.5.14.

Let X1 = R(X1) be an eigenspace of A € H"*" and Y, = R(Y1) approximate
Xy, where X1,Y; € U™, Let

A =XPAX,, H, =Y{Av. (2.5.52)

The matrices A; and H; are called the Rayleigh quotient matrices of A with respect
to X1 and Y1, respectively.

It is easy to see that
AX1 = XA, )\(Al) C )\(A)

However, in general, AY] # Y1 H; and A(Hy) ¢ A(A). In such a case, we introduce
the residual R of A with respect to Y; defined by

R =Y,H, — AY;. (2.5.53)

In this subsection we prove the following result (Theorem 2.5.17) which gives an
upper bound for the distance between the sets A(H1) and A(A;) in terms of || R|| and
p2(X1,V1). Here pof-,-) is the generalized chordal metric defined by (1.3.3), i.e.,

p2(X1, Y1) = || sin O,

in which the matrix © is defined by

o=

0 = 0(X,,Y)) = arccos(XT1 Y1V X1)2 > 0.

Theorem 2.5.17. Let A, X1,Y1, A1, H1, R and X1,Y1 be the above-mentioned
matrices and subspaces. Let

AA1) = {\}ios AL > 2 A

A(Hl) = {Mj}ézla M1 > 2 i,

and
Ay :diag(Alu"'7>‘l)7 M, :diag(,ul,...,m).

If p2(X1,)1) < 1, then

p2 (X1, V)| R|| '

|[A1 — M| <
1 — p3(X;, )

(2.5.54)
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Proof. 1) By Stewart [93, Appendix| (or see Stewart and Sun [97, Chapter I,
Theorem 5.2]), there are unitary matrices @, U; and V; such that

QX1U1=<g> and QYﬂ/l:(;)a

where
Iy = diag(y, ... ,7) if 21 <n
T = (2.5.55)
diag(I‘l, IQl—n)a ' = diag('yl, R ,’yn_l) if 21 > n,
( 201 ) e Rn=0xl 53 = diag(oy,...,00)  if 21 <n,
5 (2.5.56)
($1,0) € ROt % = diag(oy,...,00_) if 20 >n,
and

0<y <<+ <1, 120120220, Af+07=1Vj (2557

Without loss of generality we may assume that the matrices A, X; and Y7 have the
following reduced forms:

A:(%l jg), X1:<g>, Y1:<£>, (2.5.58)

where T, ¥ are the matrices of (2.5.55) and (2.5.56). Thus, we have

p2(X1, 1) = [|sin Oz = |[X]2, (2.5.59)
and
_( TH, - AT
R= ( SH Aoy > . (2.5.60)
2) Let
R diag(Ty, I, o) if 21 < m,
= (2.5.61)
Iy if 21 > n.
Combining it with (2.5.55) and (2.5.56) shows
SI=I3. (2.5.62)

Moreover, let

_nr
Y, = ( N > , Y=(1Y). (2.5.63)
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Then from (2.5.62) we see that Y € U™*™, and the relations (2.5.60), (2.5.63) and
Hy = Y# AY] imply

YHR = < g ) : (2.5.64)

Thus,
IRl = [|B]|- (2.5.65)

From (2.5.60), (2.5.63) and (2.5.64)

TH, — AT = (I,0)R = (I, 0)Y < . )

= (I;,0)Y2B = —-x7B.
Combining it with (2.5.65) gives
ITHy = A L[| < [[Z]l21B] = [[Zll2ll ] (2.5.66)

3) Applying a result due to Bhatia, Davis and Kittaneh [9] (see below NR 2.5-5),
and using the expressions (2.5.55)—(2.5.57), for the Hermitian matrices H; and A;
we have

IPHy — AT > llHy — Ay = /1~ [S31A: — Hy | (2.5.67)
Moreover, by the Mirsky theorem [78] (see below NR 2.5-8), we have
A1 — Hil| > [[A1 — M.
Substituting it into (2.5.67) gives

IHy — AT > /1= [ — M. (2.5.68)

Combining (2.5.68) with (2.5.66), (2.5.59) and the assumption p2(X1,V1) < 1,
shows (2.5.54). O

Notes and References

NR 2.5-1. §2.5.1 is based on Sun [102]. Theorem 2.5.6 is proved by Stewart [91].
NR 2.5-2. §2.5.4 and §2.5.5 are based on Sun [115] and [116].

NR 2.5-3. For the spectral norm, the residual bound (2.5.41) of Theorem 2.5.12
is due to Kahan [61] (or see Parlett [83, p.219-220]). If { = 1 and if we write U; =
and R = r, then (2.5.41) becomes

Ar =2 < el
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which is a well known inclusion theorem (see, e.g., Wielandt [129]).
NR 2.5-4. Theorem 2.5.17 is proved by Sun [111].

NR 2.5-5. Bhatia, Davis, and Kittaneh [6] prove the following result: Let
A, H,7Z € C™™"™ in which A and H are Hermitian. Then for any unitarily invariant
norm || - ||

|AZ — ZH|| > omin(Z)||A - H]|

NR 2.5-6. Let A, X1,Y1, Ay, Hi, R be the matrices as in Theorem 2.5.17. It
is easy to see that for any X = (X1, X9) € U™*" the matrix A has the spectral
resolution

XTAX = diag(A;, As).
Davis and Kahan [26] show that if

A(Hy) C [a,f] (2.5.69)

and for some 6 > 0,
A(A2) C R\[a — 0,8 + 4], (2.5.70)

then

Jsimo(x,, vi) < L

This is the Davis-Kahan sin # theorem.

Combining the Davis-Kahan sinf theorem with Theorem 2.5.17 we see that
under the assumptions (2.5.69) and (2.5.70) we have the following corollary: If

1]l
4]

€ <1,

then
| R||2||R]

V1 —e2’

where Ay and M are the diagonal matrices of Theorem 2.5.17.

[A1 = M| < (2.5.71)

An estimate similar to (2.5.71) is first given by Stewart [96]. Recently, Mathias
[76] obtains stronger and more general O(||R||?) bounds for the Hermitian eigen-
value problem, and the results are extended to singular values, eigenvalues of non-
Hermitian matrices, and generalized eigenvalues.

NR. 2.5-7. More results on Rayleigh quotients and eigenvalues of Rayleigh quo-
tient matrices are given by Kahan [61], Paige [82], Parlett [83], Chatelin [16], Li [68],
Liu and Xu [73], Sun [111], and Cao, Xie and Li [14].
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NR 2.5-8. Mirsky Theorem [78]. Let A and A be Hermitian matrices of the
same dimension with eigenvalues

AM>X> >, A > > >
Then for any unitarily invariant norm || - ||,
Idiag(X; — )l < |4 = Al
(See, e.g., Stewart and Sun [97, Chapter IV, Corollary 4.12.)

NR 2.5-9. In recent years, perturbation theory for the unitary eigenproblem
has been developed; see, e.g., Bhatia and Davis [5], Elsner and He [35], and Bohn-
horst, Bunse-Gerstner and Fassbender [9]. Backward errors and residual bounds are
discussed by Sun [118] and [120].
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Chapter 3

The Singular Value
Decomposition

In this chapter we will be concerned with perturbation analysis of the singular value
decomposition of A € C™*": A =UXVH, where U and V are unitary matrices and
> is a diagonal matrix with nonnegative diagonal elements. Perturbation expan-
sions and condition numbers of singular values and singular subspaces, perturbation
bounds for singular subspaces, and backward errors and residual bounds, will be
studied in §3.1 — §3.4, separately.

3.1 Perturbation Expansions

3.1.1 Simple Non-Zero Singular Values

Let A € C™*™, If
Av=cu and ATy =ov

for ¢ > 0 and unit vectors v € C" and v € C™, then o is called a singular value of
A, and v and u are called unit right and left singular vectors of A associated with
o. Without loss of generality we may assume that m > n.

Let A € C™*™ and let
A=Uzv?

Can

be an singular value decomposition of A € , where

V=(v1,...,05) €U™", U= (u1,. - up) €U™™,

and

Y = diag(oy,09, ) € R™*™ with oy,...,0, > 0.
Then o1,...,0, are the singular values of A, and v; and u; are unit right and left
singular vectors of A associated with o;, 7 =1,...,n.

91
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Let p= (p1,...,pn)7, and let A(p) € C™ ™ be a matrix-valued function in some
neighborhood B(p*) of the point p*. For simplicity, we assume that p* = 0, and
p1,...,pN are real parameters.

Let o > 0 be a simple singular value of A(0), and v and u be the associated unit
right and left singular vectors. Then, as a consequence, there are matrices

U= (u,U) eld™™m, V=(v,Vo)eU", (3.1.1)
and
o)
_(o 0 _ (m=1)x(n—1)
2_<0 22>, ¥y = . €ER (3.1.2)
0

with 0,09,...,0, > 0 and 0; # 0 > 0 for j = 2,...,n, such that A(0) has the
singular value decomposition

A(0) =UxVH.
First applying the implicit function theorem we prove the following result.

Theorem 3.1.1. Let p € RY and A(p) € C"™*". Suppose that Re[A(p)] and
Im[A(p)] are real analytic matriz-valued functions of p in some neighborhood B(0)
of the origin. If A(0) has a singular value decomposition A(0) = ULV, where U,V
and X are the matrices of (3.1.1) and (3.1.2). Then

1) there exists a simple singular value o(p) of A(p) which is a real analytic func-
tion of p in some neighborhood By of the origin, and o(0) = o; the unit right singular
vector v(p) and the unit left singular vector u(p) of A(p) associated with o(p) may be
so defined that Re[v(p)], Im[v(p)], Relu(p)] and Im[u(p)] are real analytic functions
of p in By, v(0) = v and u(0) = u;

2) the function o(p) has a power series expansion at p =0 of the form

N N 2
do 1 0“0
P):0+§ (8(?)> ‘ 5 E ( > pjpk+ -+, P € B,
j:l p:[) k,’

] Op;Opy,

do(p) _Re |uf 9A(p) ;
< o, >p:0_Re[ < op; >p:0 ], (3.1.3)

where
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Pow)\ ol (AR L (w\" (u)
()., o) e () otoms

and

(3.1.4)

where
H
dA dA
Dj:diag(< a@> , ( 8@) ) (3.1.5)
p] p=0 p] p=0
and
[ VeV Tl
S = ( LVH Uyl ) (3.1.6)
in which
O =0(c’ I -XE8)7, By =0(0’T — 227
(3.1.7)

Q= y(cI —2Isy) L,

and u,v,Us, Vo, 0 and Xy are defined by (5.1.1) and (3.1.2).
Proof. 1) Define A(p) by

)H

Ap) = VI AT AV = ( an(p) ai(p

as (p) A(p) >’ an(p) €&,

and introduce a vector-valued function

F(z,p) = a21(p) + [Az2(p) — a11(p) 1]z — zazn (p)" 2,

where

f=U o)ty 2=(G, Gm) €0, pe RN
Let

f]:¢]+“rb]7 C]:§]+7'77J7 i:V_la j:]-’"'an_la
and

r = (517‘ B agn—l)Ta Yy = (7717- .. ,nn—l)T S Rn_l.

Obviously, ¢;(z,y,p) and 4;(z,y,p) are real analytic functions of the real variables
z,9 € R" ! and p € B(0), and the functions satisfy

¢(07070):07 11[](07070):07 j:]-a"'7n_1'
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Since f1, ..., fn_1 are complex analytic functions of the complex variables (y, ..., (-1
for any p € B(0), by Theorem 1.6.3 we have

(8(¢15 ) ¢n—17'l/}1’ s a¢n—1))
8(517 v 7671,7177717 v 77]7171) z=y=0, p=0

2

‘a(fla - '7fn—1)
a(Cla e '7Cn71)

2=0, p=0

- ‘det(AQQ(O) - &11(0)1)‘2 - ‘det(zzTEQ - 02[)‘2

n
= 1_[(al2 - 0% >0.
1=2
Therefore, by the implicit function theorem (Theorem 1.6.2) the system of equations

ngJ(:L",y,p):O, ¢J($7y7p)207 .7:177”_]-

has a unique real analytic solution z = z(p),y = y(p) in some neighborhood By C
B(0) of the origin, and z(0) = y(0) = 0. In other words, the equation f(z,p) =0
has a unique analytic solution z = z(p) in By, and z(0) = 0. Moreover, we may
choose By so small that 1 4 z(p) z(p) > 0 for any p € By. As a result, we have

_ < B1(0) + 20" (7) + 3 0)5(9) + )" A7) 0 ) . peby

and from this relation we get

[

via v (g ) (1456)"0)

= (a11(0) + 2(0) "2 (p) + 21 (p) " 2(p) + 2(p) " A (P)2(p)) (1 4 2(p)"2(p))

X ( z(lp) > (1 +z(p)Hz(p))_‘ .

Since

N =

(3.1.8)

ar1(p) + 2(p) ™ as1 (p) + @21 (p) 2(p) + 2(p) Az (p)2(p) > 0

for p € By provided that By is sufficiently small, we may define a positive valued
analytic function o1 (p) by

o(p) = [(a@1(p) + 2(p)" 21 (p) + 21 () 2(p)

+2(p)" Ao (p)2(p)) (1 + Z(p)HZ(p))_l] " en
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Further, for p € By we define two vector-valued analytic functions v(p) and u(p) by

v<p>:v<z(1p))(1+z<p>Hz<p))”2, u(p) = A@)() /o). (3.1.9)

Then the relation (3.1.8) implies that for p € By the functions o(p), v(p) and u(p)
satisfy

A(p)v(p) = o(p)ulp),  Alp)"u(p) = o(p)v(p),
(3.1.10)

[u(p)ll2 = [lo(P)ll2 = 1,

which means that o(p) is a singular value of A(p), and u(p) and v(p) are associated
unit right and unit left singular vectors. Moreover, we have

c(0) =0, v(0)=v, u(0)=u, (3.1.11)

and the singular value o(p) is simple provided that the neighborhood By is suffi-
ciently small.

2-1) By (3.1.10) and (3.1.11),

o(p) = u(p)” A(p)v(p) = v(p)" A(p)" u(p).

Thus, we have

H H
T =W (%) o) +oe)” (8A(p)> ulp)+op)up) T 22 (31.13)

From (3.1.12), (3.1.13) and

we get

H
c‘)g(P) 1 [u(p)HaA(P)U(p) o) <8A(P)> u(p)-l ' (3.1.14)
pj 2 [ J

Substituting p = 0 into (3.1.14) gives (3.1.3).

2-2) From
A(p)" A(p)v(p) = o(p)*v(p)
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it follows that

01 — A(0)" A(0 (a”(p)>
( 0"40) | 75, .

ZIOA w (040 _, (000 ,
( ;. > A(0) + A(0) ( o; )po 2 (apj >p01] :

p=0

H
0 0 0 i [ OA(p)
9z =oVH | =2 u
<0 ol - 31I'%, ) ( (agﬂ)pzo ) ( i ),

and

0z -
(52), - ra-sr)”

Substituting (3.1.15) into

9A(p) ; Ov(p) _ ([ 9a(p) u
< 9p; >p:o +A(O)( 9p; >p:o < Ipj >p:o ]

Combining it with (3.1.3), (3.1.16), and using the relations

1 1 1
—AVVd VI = U,QVHE,  ZA0)WRQTUE = Usd, U — —U,UH,
o o o1
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we get

2-4) From (3.1.14) it follows that
o)) _ el (P40 ] re [ (2u0)" (aA<p>>

<8pj8pk>p0 =R [u <8pj3pk>p0vJ R _( Opx; )po Op; pzov

o\ (04m)\"

* ( Op; )po( Ip; >p0 |

Combining it with (3.1.16) and (3.1.17) shows

(de> :RehH<WA@» ]
WPk ) [ WPk ) J

H <8A D )H 0 H
R ( Z ) e 9A(p)
(3.1.18)
H TrrH (aA(p))H 0
%@1‘/2 VQQ U2 apj p=0 u
UQQVQH UQQ)QUQH 0 (81841517)) U
7/ p=0
+l|m ut (%) vl Im luH (%) v] .
o Wi ), Ok / p=o

Using the matrices D; and S defined by (3.1.5) and (3.1.6), the formula (3.1.18) can
be written as (3.1.4). O

Example 3.1.2 [74]. Consider the matrix

A(P)Z( } _11 ), p=(p,p)t €R? i=V-L

p1+ip2+2

Obviously, A(p) is an analytic matrix-valued function of p in a neighborhood of the origin.

Moreover, the matrix A(0) = ( 1 _11 ) has a singular value decomposition A(0) = UXV#H
2
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with
1 2 1) 1 12 _ _(35 0
v=g5( 1o)==z (5 ] ) = 225 0):

Thus, we have

o
o

o

ol ®
< | =
S
N——
hi
o
Il
N
|
%I»—AO
o O
N——
N
o| 2
S

e

N
3
i
Il

N 7 ~
|
e
o O

and

and

2 2 2
<3 012@)) — 0042, (M) —0, <8 Ulﬁ”) — 0.0983,
o/ =0 Op10p2 ) g /Ry —

2 2, 2
<3 022(1?)) =(.208, <3042(p)> =0, (8 0’25;0)) = —0.12.
o1/ p=o Op10p2 ) =g Iy ) p=o

Consequently, o1 (p) and o2(p) have the expansions

o1(p) = 1.5+ 0.05p; — 0.021p° + 0.04916p2 + O(||p||3),
and
o2 (p) = 1.0 — 0.2p; + 0.104p% — 0.06p% + O(||p|2),

where p € By, a neighborhood of the origin.
From Theorem 3.1.1 we obtain the following result.

Theorem 3.1.3. Let A(p) € R™™ with p € RY. Suppose that A(p) is a real
analytic matriz-valued function of p in some neighborhood B(0) of the origin. If
A(0) has a singular value decomposition A(0) = USVT, where U,V and % are ex-
pressed by (3.1.1) and (3.1.2), among which U and V are real orthogonal matrices,
and 0,09,...,0p, > 0 with oj #0 >0 for 5 =2,...,n. Then
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1) there exists a simple singular value o(p) of A(p) which is a real analytic func-
tion of p in some neighborhood By of the origin, and o(0) = o; the unit right singular
vector v(p) and the unit left singular vector u(p) of A(p) associated with o(p) may
be so defined that v(p) and u(p) are real analytic functions of p in By, v(0) = v and
u(0) = u;

2) the function o(p) has a power series expansion at p =0 of the form

N N 2
aa(p)> 1 d>*o
p)=0+2( j —Z Pk p € Bo,
o dp; p:O 2 Py 8pJ8p I
where
(a"(p)> _— (8A(p)> v (3.1.19)
Ip; 0 dp; 0 ’
and
0%a(p) 0% A(p) w) u
=ul [ Z—= v+ D}'SD; : (3.1.20)
3pj3pk p=0 apjapk p=0 v v
in which

Vad Vi QT Uul
S = T T
UQQVQ UQ@QUQ

e [(24@)\" (240)
D=l g(( Ipj >p:o’ < Ipj >p:o>’

and @1, Py, Q are defined by (3.1.7).

Note that for the singular vectors v(p) and u(p) we have the formula

(%) .
( Suln) )M = SD; < ) :
;i /) p=0

The following two results, as corollaries of Theorems 3.1.1 and 3.1.3, give second
order perturbation expansions of any non-zero simple singular value. The proofs are
left as exercises.

Corollary 3.1.4. Let A = UXV! be a singular value decomposition of A €
C™*™ where the unitary matrices U,V and the diagonal matriz ¥ are expressed by
(3.1.1) and (3.1.2), in which 0,09,...,0p > 0 and 0j # 0 > 0 for j =2,...,n
Moreover, let E € C™*™. Then as E — 0 the matriz A+ E has a simple singular
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value & satisfying
& =0+ Re(uf’ Ev)
H
Re EV,o\V'ET EV,QTUSE u
27\ v EHUQVIER ERUL,8,UME |\ o (3.1.21)
1 o 2 3
5 [Im(” Bo)| "+ 01 2]},
and the associated right and left singular vectors © and U satisfy
b=+ V(@ V' B, OTULB) ( . ) +O(IE]R),
(3.1.22)
i=u+U(QV'EY, &,U;'E) < Z ) + LIm(u Bo)u + O(|E||%),
o
where ®1, Do, Q are the matrices defined by (3.1.7).
Corollary 3.1.5. Let A = USVT be a singular value decomposition of A €
R™*™  where the real orthogonal matrices U,V and the diagonal matriz X3 are ex-
pressed by (3.1.1) and (3.1.2), in which o,09,...,0p, > 0 and o; # o > 0 for

j =2,...,n. Moreover, let E € R™*™. Then as E — 0 the matrit A+ E has a
simple singular value & satisfying

6 =o+ulEv

A w) ( EveVTET EGOTUSE \ (u
2\ v ETUQVIET ETU,®,UTE v

+O(IEl7),

and the associated right and left singular vectors ¥ and 4 satisfy

b =0+ V(0 V4 ET, QTUTE) ( if ) +O(|IE|F),

i =u+Ux(QV5 ET, ®,U] B) ( Z > +O(IE|I7),
where ®1, Py, Q are the matrices defined by (3.1.7).

3.1.2 Singular Subspaces

Let A € C™ "™ and let v € C™ and u € C™ be unit right and unit left singular vec-
tors of A associated with the same singular value. Then the pair of one-dimensional
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subspaces R(v), R(u) satisfy AR(v) C R(u) and APR(u) C R(v), and the pair
{R(v),R(u)} is called a pair of one-dimensional singular subspaces of A. This defi-
nition extends in a natural way to higher dimensions.

Let X7 be a subspace of C™, Y1 be a subspace of C™ with the same dimension as
X1. The pair of subspaces X1,V is called a pair of singular subspaces of A € C™*™
if AX; C Y1 and AHJ)1 C A

Let X7 € L{"Xl,Yl € Ule, and let the columns of X1,Y; form bases for sub-
spaces X1, )1, respectively. Then it is easy to see that the pair {X1,):} is a pair

of singular subspaces of A if and only if there is a matrix A; € C"! such that
AX1 = Y1A1 and AHY1 = XlAIf

Let X1 € U™, Yy € U™ ! Tt can be proved that the pair of the subspaces
X = R(X71) and Yy = R(Y7) is a singular subspace pair of A € C"™*™ if and only if
there are matrices X = (X7, X9) € U™ and Y = (Y1, Y2) € U™ ™ such that

YHAX = ( Ap 0 ) . Ay ech (3.1.23)
0 A,
Define the matrix A, by
Ao if m=n,
Ay = (3.1.24)

(As,0) € Ctm=0Ox(m=l) if m > p.

If o(A;) N o(Az) = 0, then the singular subspace pair {X1, 1} is called a simple
singular subspace pair. The condition o(A;) [ o(As) = 0 means that

g(A1)No(Ay) =10 if m=mn,

o(A1)No(Az) =0 and 0 € o(A4y) if m >n.

In this chapter we only consider simple singular subspaces.
In this subsection we prove the following perturbation expansion theorem.

Theorem 3.1.6. Let A € C™*™ (m > n) have the decomposition (3.1.23), where
X = (X1, X2) eU™™ and Y = (Y1,Ys) € U™™ with X1 € U™ and Y € U™,
and

o(A1)[(o(4s) =0, (3.1.25)

in which the matriz Ay is defined by (8.1.24). Moreover, let X1 = R(X1),)h =
R(Y1), for M € C™*™ et

M1 Mo

YEMX =
( My Moo

> . My e c™, (3.1.26)
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and define the linear operator T : C(n=DxL y clm=Dxl _y oln=l)xl y c(m—U)xl p,

Z \ _( ZA{ - Afw (n—1)xl (m—I)xl
T<W>_<—A2Z+WA1 , Z€C , Wec . (3.1.27)

Then
(1) there is a unique [-dimensional simple singular subspace pair {X1 (1), V1(7)}
of A+ M (7 € R) such that X1(0) = X1, Y1(0) = Y1, and the basis vectors

x1(7), ..., x(1) of X1(T) and the basis vectors yi(T), ...,y (T) of Y1(T) may be cho-
sen to be analytic functions of T € (—0,9) for some § > 0;

(2) the analytic matriz-valued functions

Xi(r) = (@1(7), -y m(7), - Yal(7) = (52(7), -, (7))

have the perturbation expansions

o o
Xi(n) =X1+ X2 Kir!, Yi(r)=Yi+Ye) Ljv/, 1€ (=656), (3.1.28)
i=1 j=1

in which

Kl — T71 MII% ’
Ly 705

Ky \ _ g [ —EiM{ + M35L
MoKy — LiMyy )’

j—2
K. —K; AME +MBLi 1 — Y KeM3[Lij_1_y
(Lj->:T_1 =  Jz3
I My Kj; 1 — Lj 1My — kgl LiMi2Kj_1_g
- (3.1.29)
Proof. Let
~ 12111(7') 1‘112(7’)
ATy =A+7M, A(r)=YTA(M)X = - ~ , 3.1.30
Q (1) =" A(r) (AW) o (3.1.30)
where A1 (1) € C'*, and
Aji(r) = Aj+7Mj5, j=1,2 Aj(r)=7Mpy, j#k (3.1.31)

For Z € C(n=0xL W e ¢(m=Dxl and 7 € R define the functions ® and ¥ by

@(Z, W, 7’) = Am(T)H — ZAH(T)H =+ AQQ(T)HW — Zzzlgl (T)HW,
(3.1.32)
\I/(Z, VV, 7') = 1‘121(7’) + AQQ(T)Z — WAH(T) — Wfilg(T)Z;
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and let
¢ = vec(®) = f +ig, o = vec(¥) = p +igq,

z=vec(Z) =z +1iy, w=vec(W)=u+iv,

where f,g,p,q are real analytic vector-valued functions of z,y,u,v,7. Applying
Theorem 1.6.3 and using the expressions (3.1.31) and (3.1.32) we get

<3(f797P7Q)) peyog = ‘%

2

a($7 y’ u’ ,U) ZZO,’LU:O
u=v=0
T=0
_ I 2
— ldet -A1®l,; ILI®A;
L®Ay  —Al @Iy

Let A; = UjEjVjH be singular value decompositions of A; for j = 1,2, where U;, V;
are unitary matrices, and

21 :diag(al,...,al), 22 :diag(aHl,aHg,...).

Then

2
(8(f,g,p, q)) Mot [ 1@ ol
a(x7y7u7v) = 9= Il X 22 _21 ®Imfl

2

! L
= Haj H H(UJZ—U]%) > 0,
j=1 j=1k=I+1
where we have used the assumption (3.1.25). Therefore, by the implicit function
theorem (Theorem 1.6.2) the equations
(Z,W,7) =0, W(Z,W,7)=0

have a unique analytic solution Z = Z(7),W = W (7) of 7 € (=4, ) for some ¢ > 0
satisfying Z(0) = 0 and W(0) = 0. Moreover, we may choose d so small that the
matrices I + Z(7)"Z(7) and I + W (7)? W (1) are nonsingular. Thus, we have

I W)\ - I —Zn" Y\ [ A(r) 0
<—W(7) I )A(ﬂ(zm 7 )—( 0 A2(7)>’ (3.1.33)
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As(1) = /122(7) — Agl(T)Z(T)H — W(T)JZhQ(T) + W(T)AH(T)Z(T)H,

and (A1 (1)) No(Aa(r)) = 0 for 7 € (—6,8) provided that the positive scalar § is
sufficiently small, in which

Ao(T) if m=n,

(As(7),0) € ctm=Ox(m=0) if m > p.

From the relations (3.1.33) and (3.1.30) it follows that if we define

I 1
Xi(r)=X ( 7(7) ) , Yi(r)=Y ( W(r) ) (3.1.34)
and
Xi(r) =R(X1(7)),  Ni(r) = R(Yi(r)),
then the pair {X;(7),Vi(7)} is the unique I-dimensional simple singular subspace
pair of A(7) in (—0,9) satisfying X(0) = &} and Y;1(0) = V1, and X1(7),Yi(7) are

analytic matrix-valued functions of 7 € (=4, ).

Observe that Z(7), W(7) satisfy
o(Z(1),W(r),7) =0, ¥ (Z(1),W(1),7) =0,

where ®(Z, W, ) and ¥(Z, W, 1) are defined by (3.1.32), in which fljk(T) are ex-
pressed by (3.1.31). Hence, we get the basic equations for Z(7), W(7):

TZ(TYMAW (1) + Z(1)(A1 + M) P — (Ag + TMo) W (1) — 7ML =0,
TW(T)M12Z(T) — (A2 + TMQQ)Z(T) + W(T)(A1 + TM11) — TM21 = O,
(3.1.35)
where 7 € (=9,0).

Differentiating (3.1.35) at 7 = 0, and writing

zm:(d’z(”) , W(j):<d]W(T)> L oi=12.,
7=0 7=0

dri dri
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we get

T 7(1) MIEQ’
w My |

T yAS) _y —ZOMHE + MEW®)
w@ My ZW — WO My, ’

k

) —ZU-OME + MEWGE-D — jf j—1 Z0) MHW -1
( A ) — k=1 k
@ ) P .

W Moy ZU=1) — W=D a1, — JZQ ( j—1 ) W k) 7y 2= 1-k)

k=1
(3.1.36)
where j > 3, and T is the linear operator defined by (3.1.27).

The assumption (3.1.25) implies that the operator T is invertible. Define

Then from (3.1.36) we get the relations (3.1.29) and the power series expansions of
Z(t),W(r) at 7 = 0:

| =
| =

Z(t) = Z ,'Z(j)Tj = ZKjTj, Wi(r) = Z ,'W(j)Tj = ZLjTj.
j=1" 7j=1 j=17 7=1

o
o

This together with (3.1.34) gives (3.1.28). O

We now consider a special case where
A =31 = diag(al, ca ,Ul) with o1,...,0; >0, and Ay =0. (3137)

In such a case, the operator T defined by (3.1.27) can be written

(n—l)xl (m—1)xl
T(WZ>_(WZ>21, Zec , Wece :
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and the relations of (3.1.29) become

K1 _ Mg Efl
= o
Ly Mo
Ky \ _ [ —KiM{{ + M3 L, i1
Lo My Ky — Ly My L

i
( K, > —Kj 1Ml + M3jLj — % KpM3{Lj 1y
J k=1

3 >t >3

MKy — Lj_1My — Y LMK
k=1

(3.1.38)

Observe that from (3.1.26) Mj, = YIMX, for j,k = 1,2. Hence, if we let

E=71M,X; = X,(7) and Y] = Yi(7), then from (3.1.28), (3.1.29) and (3.1.38) we
get the following corollary.

Corollary 3.1.7 (Vaccaro). Let A, X,Y, X1, be as in Theorem 3.1.6, and let
Ay and Ay be the matrices of (5.1.37). If ||E|| is sufficiently small, then there is
a unique l-dimensional singular subspace pair {Xl, yl} of A+ E with X, = R(Xl)
and 5/1 = R(Yl) that Xl and Yl have the second-order perturbation erpansions

X = X+ XoXEpHy 3!

~Xo X EH (le:;leqEHY1 - YQYQHEX@;l) =+ O(1E(1),
(3.1.39)
and
Yi= Y+ YRYIEX Y
(3.1.40)
-,V E (XQ:;H/%X1 - XQX{fEHYlE;l) S+ OB,

where E — 0.

The following result, as a corollary of Theorem 3.1.6, gives modified forms of the
first order perturbation expansions of X;(7) and Y7 (7).

Corollary 3.1.8. Let A, XY and T be as in Theorem 8.1.6, and let X1 =
R(X1), 1 = R(Y1). Moreover, for E € C™*™ let

YHEX:(gi g;) By e o,

If | E|lr is sufficiently small, then there exists a unique I-dimensional singular sub-
space pair {X1, Y1} of A+ E with X; = R(X,) and Y; = R(Y1) that X, and Y| have
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the expansions
£ =X+ XoZy + O(IEIZ), Vi=Yi+XoW +O(IBIZ),  (3.141)

where E — 0, and Z,, W1 € C"D%L gre defined by

Z1\ _ [ ER
<W1>_T 1(Ei> (3.1.42)

Observe that by using the Kronecker product and vec operator, the matrix rep-
resentation T' of the linear operator T defined by (3.1.27) can be expressed by

T ALy -L®AY
~-®A AT®I,_

Hence, the relation (3.1.42) can be written

vec(Z1) \ vec(E1)
( vec(W) > N C( vec(Far) | (3.1.43)
where
—r1_ [ O1
c=7""= ( . ) (3.1.44)
in which
C1 = (AT @ LK™, (L@ Af)L7'),
(3.1.45)
Cy = (i@ A)K ', (A1 @ L) L71),
and

K=AAT oL _ - LAY Ay, L=ATA ®1I,_;—I;® A, AL (3.1.46)

Notes and References

NR 3.1-1. This section is based on Sun [105] and [119].

NR 3.1-2. MacFarlane and Hung [74] consider the singular values of a rational
matrix-valued function of a complex variable. Analytic properties and Taylor series
expansions of the singular values are studied. The technique used in [74] is different
from that in §3.2.1.

NR 3.1-3. A second order perturbation expansion for small singular values of a
matrix A is derived by Stewart [95]. The key step is to work with the cross-product
matrix A” A and to get a second order perturbation expansion of the corresponding



108 CHAPTER 3. THE SINGULAR VALUE DECOMPOSITION

small eigenvalues of A% A.

NR 3.1-4. Elsner and He [34] consider the matrix G(s) = G| + sG2, where s
is a real parameter, G; and (G2 are complex matrices. The smallest singular value
o(s) of G(s) is assumed positive and simple. Explicit expressions of the first and
second order derivatives of o(s) are obtained in [34], which coincide with the results
of Theorem 3.1.1 with N = 1. The explicit expressions of derivatives serve as a basis
for an algorithm to compute the distance to uncontrollability.

NR 3.1-5. Let A(p) and B(0) be as in Theorem 3.1.1. If 0, is a zero singular
value or a multiple singular value of A(0), then, in general, there is no a real dif-
ferentiable function o(p) > 0 defined in some neighborhood By C B(0) of the origin
such that o(p) is a singular value of A(p) in By, and ¢(0) = o,. Sun [106] studies
the existence and expressions of the directional derivatives of zero singular values
and multiple singular values.

NR 3.1-6. The second order perturbation expansions (3.1.39) and (3.1.40)
are derived by Vaccaro [123] in another way. Vaccaro [123] points out that the
expressions can be used to analyze the performance of direction-finding algorithms
in array signal processing.

3.2 Condition Numbers

3.2.1 Simple Non-Zero Singular Values

Let A € C™ " and o > 0 be a simple singular value of A. Let A = A+ FE be a
perturbation of A, and ¢ be the corresponding perturbation of o. Then by (1.8.1)
we define the condition number ¢(o) for o as

|0 — ol

¢(o) = lim sup ,
0—0 LEI <5 55

where o and ¢ are positive parameters.

From the definition of ¢(o) we see that in first order approximation the inequality

o — E
70l _ 1B

¢ «

holds.

Let v € C™ and u € C™ be the unit right and unit left singular vectors of A
associated with o, respectively. Then from Corollary 3.1.4

& = o + Re(u Ev) + O(|| E||?).
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Consequently,
(o) ‘Re(uHEv)‘ o
c(loc)=a sup ——— = —.
[ESTR 3
Taking o = £ = 1 yields the absolute condition number cyps(0) = 1, and taking
a = ||A|| and £ = o yields the relative condition number ¢ (o) = || Al|/0.

Note that the formula of the condition number ¢(o) is generalized to simple
generalized singular values by Sun [122].

3.2.2 Singular Subspaces

Let A € C™*", and {&1, 1} be a simple singular subspace pair of A. Let A=A+FE
be a perturbation of A, and {X;, Y} be the corresponding perturbation of {X;, V1 }.
Then by (1.8.3) we define the condition numbers ¢(X7), ¢(Yy) for X1, Y as

¢(X1) = lim sup M c(V1) = lim  sup (yhyl)

: . (32.1)
=0uEle s 0 0 EE g 0

where «y is a positive parameter, and pg (-, -) is the generalized chordal metric defined
by (1.3.3).

From the definition (3.2.1) we see that in first order approximation the inequal-

ities
E ~ E
o, ) < @), 30y < o) 2N
hold.
y (3.2.1), (3.1.41) and Theorem 1.3.3 (see (1.3.17)),
c(X1) = lim sup m, (3.2.2)

6—0 HEHF <5 )

where Z; is defined by (3.1.42). Combining (3.2.2) with (3.1.43)(3.1.46) gives

7 H
c(X1) =lim sup 4”‘7%( Dll2 =a sup Cy vee(E)
030 vec(m)ly g ) I[vee(B)[l2<1 vec(Ban) /|,
vec(Eg)
=« su C = a||Cql|s.
b H L ( VeC(E21) 2 H 1”2
1

H( vec(EH) )
VeC(Egl)

Similarly, we have ¢(Y1) = «||Ca||2.

2
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Let A; = UijVjH be the singular value decomposition of A; for j = 1,2, and
let
Cro= (1 ® LKy ', (e $F)Lg!

SN——

?

Coo = (L@ ) Ky !, (1 ® L)Ly ') ,
where
Yy = dia’g(ala s aal)v Yo = diag(al+la O1+2 -+ ')a
Ko=X2®IL,_ - L®%ly), Li=%2@L,_ —I®%%T].

Then we have

0]2 +0,%
c(X) = al|Cil2 = af|Crollz = o max ) (3.2.3)
1<j<i loj—oj
I+1<k<n
and
0]2- + 0,%
c(D1) = af|Call2 = af|Cypllz = « max L, (3.2.4)
1<j<i loj—op
I+1<kE<m
where we define
Opt1 = =0oyp =0 if m >n.
From (3.2.3) and (3.2.4) we see that
c(X1) if m=mn,

(D) =
max{c()(l), a max Ui} if m > n.

1<5<i %
Consequently, the expressions (3.2.3) and (3.2.4) reveal an important fact: If m > n
then, in general, the singular subspaces &} and Y; have different condition numbers
c(X1) and ¢()1), respectively.

Taking o = 1 yields the absolute condition numbers

UJQ- + a,%
Cabs(Xl) = max 3 5 (325)
1<j<i loj—oj
[+1<k<n
and
JJQ- + 0,%
Cabs (V1) = max EPCRTE (3.2.6)
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and taking o = ||A||r yields the relative condition numbers

Crel(Xl) = ||A||Fcabs(X1)a Crel(yl) = ||A||Fcabs(y1)- (3.2.7)

Remark 3.2.1. Let T be the operator defined by (3.1.27), and define

o)

IT) = max
Zecn l)xl WEC(m 1)x1

(5,

_ 1
HT 1” = ||C||2 = 1 énf}X< ; m = C(Xl,yl), (3.2.8)
>J > J
I+1<k<m

F

=1

Then

where C, the matrix representation of T~!, is expressed by (3.1.44)—(3.1.46), and
Op+1 =+ =0opm = 0if m > n. Usually, by Stewart [96, Theorems 6.3 and 6.4], the
quantity ¢(X1, Y1) defined by (3.2.8) is regarded as the (absolute) condition number
of the singular subspaces X1, ) of A. However, observe that the expressions (3.2.5),
(3.2.6) and (3.2.8) imply that

1 .
ﬁc(‘/l{la yl) < Cabs(Xl) = Cabs(yl) < C(/Yla yl) if m=mn, (329)
and in the case of m > n,

Cabs (A1) < cabs(V1) < (A1, D1),

Cabs (X1) K Cabs(V1) < (X1, V1) if caps(A1) K max % (3.2.10)

%C(Xl,%) < Caps (V1) < (X1, 1),

Hence, the condition number ¢(X7, Y1) may be a severe overestimate of the sensitiv-
ity of the right singular subspace X in some cases.

Example 3.2.2. Consider the matrix
g1 0
A= 0 o9 with oy = 1078, 05 = 1.
0 O

Let
z1=(1, 07, y=(1,0 07
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Then the pair of the subspaces X1 = R(z1) and Vi = R(y1) is the singular subspace pair of
A associated with 1. By (3.2.5) and (3.2.6) we have

Vo? +o2 Vorl+olz 1
cabs(Xl) =12 1, cabs(yl) =max{ Y2, — b = 1087

|of — o3| lof — 03] " o

(X, 0) = max{; i} = 10%,

|0’1 - 0’2|7 g1

and
Cabs(Xl) < Cabs(yl) = C(Xluy1)~

Obviously, ¢(X1, Y1) is a severe overestimate of the sensitivity of the right singular subspace
X1

Notes and References

NR 3.2-1. The condition numbers c,ps(X1) and caps(Y1) are given by Sun
[119]. From the analysis of Remark 3.2.1 we see that ¢(X), Y1) and caps(D1) are
qualitatively the same; but caps(X1) < c(&1,V1), and in some cases caps(X)) <
¢(X1,)1). The drawback of the condition number ¢(X7, );) is that it is governed by
the ill-conditioning of the most sensitive subspace of a singular subspace pair.

3.3 Perturbation Bounds for Singular Subspaces

A perturbation bound for a pair of simple singular subspaces has been obtained by
Stewart [96, Theorem 6.4]. We now apply Theorem 3.3.5 at the end of this subsec-
tion to derive a new result. The difference between the new result and Stewart’s
result is that the new result gives an individual perturbation bound for each sub-
space in a pair of singular subspaces, separately.

Theorem 3.3.1. Let A, X, Y, X1,V be as in Theorem 3.1.6. For E € C™*", let

YUEX = ( g; g;z ) By ech (3.3.1)

Moreover, let caps(X1), cans(V1) be the condition numbers expressed by (3.2.5) and
(3.2.6), and let

Cy = \/[Cabs(Xl)]Q +leansV) €= 1Bl + [ Exll, (3.3.2)

and

v = \/||E12||% + 1Bl 1= max{[[Eil2, [|E22}. (3.3.3)

If
e (2077 + €) < 1, (3.3.4)
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then there is a unique pair of l-dimensional singular subspaces X =R(X), ) =
R(Y1) of A+ E such that X; € U™, Y1 e U™, and

~ ~ ZCabs(Xl)'y
X, A1) < || tan O (X1, X < ;
pr(dr, 1) < [ tan O(Xy, Xi)llr < 1 — cee + /(1 — cu€)? — 4c2yn
(3.3.5)
2Cabs(y1)7

e+ /(1 — cue)2 — 4c2yn’

pr(V1,D1) < || tan O(Y1, V1) < -

where O(-,-) is defined by (1.3.1).

Proof. Let T be the linear operator defined by (3.1.27). Tt is easy to verify that

Z O\ . . .
( W > is a solution of the equation

of 2\ Bh )| ZEG+ExW \ _( ZExW (3.3.6)
W By EynZ - WEy, WE2Z

if and only if Z and W satisfy

I 0 A+ Eny Evy I 0 _ [ * «
-Ww I Eo As + Eop /i o 0 = ’
H
I 0 Ay + By Eis I 0 . *
-7 1 Ey Ag + Eoyo w I - 0 =x% ’

The relations of (3.3.7) imply that the pair of the subspaces

wen(x(1)) 5n(r(y)

is a pair of [-dimensional singular subspaces of A + E. Consequently, by (1.3.12)
and (1.3.16), the problem of proving (3.3.5) is reduced to the problem of finding a

*

solution V?/* of (3.3.6) in a certain neighborhood of the origin.

Let C1,Cy be the matrices defined by (3.1.45) and (3.1.46), and let

(3.3.7)

*

z=vec(Z), w=vec(W), es=rvec(ED), ey =vec(By),

z(z,w) = vec(—ZBE + EXW),  y(z,w) = vec(FoZ — WE)) (3.3.8)

and
u(z,w) = vec(ZESW), wv(z,w) = vec(WE2Z). (3.3.9)
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Then the equation (3.3.6) can be written in an equivalent form

B e12 r(z,w) \ [ u(zw)
e K ) * ( ylzu) > (v(w) ﬂ
B €12 r(z,w) \ [ u(z,w)
v K > * ( ylzu) ) (v<z=w> )]

Define the functions f and h by

=) ()

Observe that f and h satisfy the conditions (3.3.21) and (3.3.22) (see below Theorem
3.3.4), where ¢ and 7 are the scalars defined by (3.3.2) and (3.3.3), respectively.
Hence, by Theorem 3.3.5 at the end of this subsection, if

4c2yn

€< 1 d —F—
Cy€ an (1_0*6)2

<1,

or equivalently, if c,, €, v, n satisfy (3.3.4), then the system of equations (3.3.10) has a
*
unique solution 5}* (or equivalently, the equation (3.3.6) has a unique solution

( Vf/* >) satisfying

* " 2¢ b: Xl
124 = 12> < bl M)y
1 —coe + /(1 — cu€)? — dc2yn’
* * 2Cabs(y1)'}’
W = < .
W= lle = flw™l2 < 1 —coe+ /(1 —ce€)2 — 4c2yn
Combining it with (1.3.12) and (1.3.16) shows the inequalities of (3.3.5). O

Remark 3.3.2. The estimates (3.3.5) imply that if ¢, (2,/y7 + €) is sufficiently
small, or more intuitively, if ||E|| is sufficiently small, then

[tan ©(X1, X1)||F S cabs(X1)y, | tan O (Y1, Y1)[|[F S cans(V1)7- (3.3.11)
Note that by Stewart [114, Theorem 6.4], we have
tan@ Xl,Xl)
tan@ Yl, Yl)
when ||F|| is sufficiently small, where ¢(X7,Y;) is defined by (3.2.8). The relations
(3.2.9) and (3.2.10) show that the bounds of (3.3.11) and (3.3.12) are, in general,

S e(X, 1)y (3.3.12)
F
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qualitatively the same, but in some cases the result (3.3.11) is better (even much
better) than (3.3.12) if one needs to bound perturbations of each subspace of the
pair {X1, Y1}, separately. The drawback of the bound (3.3.12) is that it is governed
by the ill-conditioning of the most sensitive subspace of the singular subspace pair.

If the matrices E;, of (3.3.1) are known, then we can apply Theorem 3.3.4 (which
is given below) to derive the following result on perturbation bounds for singular
subspaces which will be used in §3.4.2.

Theorem 3.3.3. Let A, X,Y, Ay, Ay, X1, V1, E and Ejj, (j,k = 1,2) be as in The-
orem 3.3.1, and C1,Cy be the matrices defined by (3.1.45) and (3.1.46). Moreover,

let
vec(E
by = ||Ch (E12) , ¢ =|Cil2,
VeC(Egl) 9
vec(EL (3.3.13)
by = ||Co (1) , a2 =Cyl2,
VeC(Egl) 9
b:b1+b25 c=c1 + ¢y,
and let
n=max{[|Ezll2, [|E2ll2}, €= [Eull2+ [[Ea2|?. (3.3.14)
If
ce + 2v/ben < 1, (3.3.15)

then there is a unique pair of singular subspaces X =R(X.), I =R(Y)) of A+E
such that X1 € U™, Yy e U™, and

pr (X1, X)) < | tan ©(X 1, X1)||r < by 4 ¢1(eB + 16?),
] ) (3.3.16)
pr(V1, V1) < || tan ©(Y1, Y1)||lr < ba + co(eB + nB?),

where

2b
1 —ce+ /(1 — ce)Z — dben
Proof. From the proof of Theorem 3.3.1 we see that it only needs to show the
following fact: Under the assumptions (3.3.15) the system (3.3.10) has a unique

p= (3.3.17)

*

solution ( Z* ) satisfying

12*]l2 < b1 + c1(eB + nB?),
(3.3.18)
[w*|l2 < ba + c2(eB + nB?),

where 3 is the scalar defined by (3.3.17).
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Applying Theorem 3.3.4 (see below) to the system (3.3.10), and using the fact
that the assumption (3.3.15) is equivalent to

4ben

ce < 1 and m

<1,

we get the estimates (3.3.18) immediately. 0

We now prove two general results on solutions of some nonlinear equations. The

first one, Theorem 3.3.4, is an extension of Theorem 2.3.4 for finite-dimensional
*

spaces, which can be used to establish the existence of ( 5)* > in Theorem 3.3.3.

Theorem 3.3.4. Let z = (z],23)7 € C™ with x; € C™ for j = 1,2, g € C",
and

C = ( gl ) with Cj € cC™>*", j=1,2. (3.3.19)
2
Let
b=1>0; +by with bj = ||ng||2,
(3.3.20)
c=c +cy with cj = ||Cj||2,
and let f,h :C™ — C™ be two continuous mappings satisfying
1f(@)ll2 < ellzllz,  f(@) = f@)ll2 < €l — =2 (3.3.21)

and
k()2 < nllzll3,  [|(E) = h(z)ll2 < 2nmax{||Z]l2, |z]l2}E — zll2  (3.3.22)

for some e, > 0. If
4ben

(1 — ce)?

then there is a unique solution * of the nonlinear equation

ce <1 and <1, (3.3.23)

z=Clg+ f(z) + h(z)] (3.3.24)
that satisfies
25 ]l2 < bj +ej(eB+nB8%) =&, 5=1,2, (3.3.25)
where 2
p (3.3.26)

T l-cet V(1 = ce)2 —4dben
Proof. Define

Z2

Ser s = {:p - ( 1 > Dz €CM, |zjlla < €, G = 1,2}. (3.3.27)
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We first prove that if there is a solution of (3.3.24) in S¢: ¢;, then it is unique.

Assume that the equation (3.3.24) has different solutions z*,2 € Sgr¢;. Then
by (3.3.20)-(3.3.24) we have

12 =2l < c(elld — 2|2 + 2n max{||&[|2, [|="[l2} |2 — 27[|2)

< ¢ e+ 2+ c(e +nB)) ll& - 2"z

2b 26 \2|\ .. . (3.3.28)
<cle+2n|b+ce- +en- | — |z — z*||2
1—ce 1—ce
4bc’en  8b?c*n?
= 2b r—2%|2.
(ce—l— cn + 1_06—1-(1_06)2 |z —x*|2

Observe that the assumptions (3.3.23) imply

4bc%en
1—ce

8b%c%n? 1 9
m < 5(1 — CE) .

1
2bcn < 5(1 — ce)?, < ce(1 — ce),

Hence, from (3.3.28)
12— 2"[la < |2 — 2™[]2.

This contradiction shows that there is at most one solution of the equation (3.3.24)
n 551*,53 .

We now prove the existence of a solution of (3.3.24) in S¢: ¢:.
Consider the continuous mapping M : C"™ x C™ — C™ x C™? defined by
y = Clg+ f(z) + h(z)]. (3.3.29)

Since any fixed point of the mapping M is a solution of the equation (3.3.24), the
problem of finding a solution of (3.3.24) satisfying (3.3.25) reduces to the problem
of showing that there is a fixed point of the mapping M in Sgx ¢x.

Let &5 and &5 be the scalars defined by (3.3.25), in which g is defined by (3.3.26).
It can be verified that g is a solution of the equation

enB?— (1 —ce)f+b=0.

Combining this fact with (3.3.20) and (3.3.25) shows that & and &; satisfy the
relations & + & = [ and

G=bj+oe&+&) +nE+6)?], =12 (3.3.30)
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Let 2 € Sgr ¢z Then by (3.3.29), y satisfies

luslls < b+ (cllalla +nllz|3)  (by (3:3.20) — (3.3.22))

<b+o /et gt n (@ +6?)| oy Ga2)

< b+ [l +€5) + et + )7

=&, j=12, (by(3.3.30))
which means that for the mapping M defined by (3.3.29) we have
T € Sy = YE S (3.3.31)

Observe that Sgr¢x is a bounded closed convex set of C™! x €2, and (3.3.31)
shows that the continuous mapping M maps Sgr ¢r into Sgx e By the Schauder
fixed-point theorem (Theorem 1.7.2), the mapping M has a fixed point in Sg: ¢,
and thus the equation (3.3.24) has a solution in Sg: ¢:. O.

Theorem 3.3.4 shows the existence and uniqueness of a solution z* of the equation
(3.3.24) in S¢x ¢x under the assumption that the vector g itself is known. However, in
some applications, the vector g itself is unknown but some upper bound for ||g||2 is
known. In such a case, we have the following result on the existence of some solution

to the equation (3.3.24), which can be used to establish the existence of ( Z* ) in
Theorem 3.3.1.

Theorem 3.3.5. Let x,9,C,c1,co, f(z),h(x),e,n be as in Theorem 3.3.4, and

let
v=llgllas, =/t + e (3.3.32)

If

4 2
ce<l and —o o (3.3.33)
(1 — cy€)?
then there is a unique solution of the nonlinear equation (3.3.24) that satisfies
2¢c;y .
zills < J =&, =1,2. 3.3.34
Proof. Define

St1. bon = {x = ( i; > sy €CM |wglle < &s 7= 1,2}. (3.3.35)

We first prove that if there is a solution of (3.3.24) in S¢,_ ¢, , then it is unique.
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Assume that the equation (3.3.24) has different solutions z,,% € S¢,, ¢,.. Then
by (3.3.20)-(3.3.22), (3.3.24), (3.3.32)—(3.3.34) we have

1€ = zullz < cu (€]l = wull2 + 2n max{[|Zl2, ||z« ]|2} & — 2]|2)

<o (e el I = 5
C € r—T
- 1 —coe + /(1 — cu€)? — 4c2yn Hiz

4c R
<e <e 4 Ao ) 1% — 2l
1—c.e

402 .
_ (m + ﬁ(l - C*e)> 13 — 2|2

*
< Hff? — ZE*HQ

This contradiction shows that there is at most one solution of the equation (3.3.24)
in S&l* Eou

We now prove the existence of a solution of (3.3.24) in S¢,, ¢,. .

Let M be the mapping defined by (3.3.29). Then the problem of finding a solu-
tion of (3.3.24) satisfying (3.3.34) reduces to the problem of showing that there is a
fixed point of the mapping M in S¢,, ¢,..

It can be verified that the scalars &, and &y, defined by (3.3.34) satisfy the

equations
’y+e\/£%+£§+n(§%+£§)], j=12. (3.3.36)

From (3.3.29) we see that if € S¢,, ¢, then y satisfies

& =¢j

lyillz < ej(y +ellzllz +nllzll3)  (by (3.3.20) — (3.3.22), (3.3.24), (3.3.32))

<olrre/@ g (@ g)| oy eas)

which means that for the mapping M defined by (3.3.29) we have
T € S&*’&* — Yy € S&u,&zw
By the same argument as above in the proof of Theorem 3.3.4, the mapping M has

a fixed point in S ¢,., and thus the equation (3.3.24) has a solution in S, g,..
.
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Notes and References

NR 3.3-1. The first perturbation bound for singular subspace pair was obtained
by Stewart [91, Theorem 6.4]. Theorem 3.3.1 is proved by Sun [119, Theorem 2.5.1].

NR 3.3-2. Theorem 3.3.5 is proved by Sun [119, Theorem 1.3.1].

3.4 Backward Errors and Residual Bounds

3.4.1 Backward Errors

In this subsection we discuss several kinds of normwise backward errors which are
defined by using some information of approximate singular subspaces and associated
singular values of a matrix A.

3.4.1.1 The Backward Error 77(2?1,)71)

Let {Xl, yl} approximate an [-dimensional simple singular subspace pair of A€
C™*™_ By §1.9, we define the backward error n(X;,Y;) of A with respect to Xy, )
by

X1, Y1) = min ||E 4.1
1(%, 1) = min | 2], (3.4.1
where the set £ is defined by

g={Bec™m . (A+B)X CH, (A+B)IY C &}, (3.4.2)
The following result gives a computable formula of 5(X;, ;).

Theorem 3.4.1. Let A € CMXN Lot Xy = R(Vl) and Y, = R(Ul) with V; €
U™ and Uy € U™, and let

R=U(UfAV) — Ay, S=W(VEARD)) - A"D, (3.4.3)

be the residuals of A and A" with respect to V4, Uy, respectively. Then the backward
error n(X1, Y1) can be expressed by

n(X, V1) = H( 1?% SJI )H (3.4.4)

The expressions (3.4.3) and (3.4.4) imply that the backward error 5(X;, V) de-
fined by (3.4.1) is independent of the choice of the matrices V; and U; whose column
vectors form orthonormal bases of X; and Y, respectively.
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Proof of Theorem 3.4.1. From (3.4.2) it follows that a matrix F € &£ if and
only if £ is a solution to the equations

(A+E)WV, =U A, (A+E)2 U, = Al
for some A; € C**%; or equivalently, E satisfies
EVi =U, A, — AV, EFU, =V AT — AH T, (3.4.5)

Applying Theorem 1.5.1 to the first equation of (3.4.5) we see that the equation
is solvable, and any solution £ of the equation can be expressed by

E = (A - AWV + 2(1 -V, Zzecmm, (3.4.6)
Choose Vs so that V = (f/'l, ‘72) € U™ ™. Then (3.4.6) can be written
E= (A — AWV + 20V, 7 ecmn. (3.4.7)

Combining it with the second equation of (3.4.5) shows that the matrix Z of (3.4.7)
satisfies : : : )
Ul ZzVy = —UJ AV,. (3.4.8)

By Theorem 1.5.1, the equation (3.4.8) is solvable, and any solution Z can be ex-
pressed by

Z = -0UF ARV +w - 00wV wecm™ . (3.4.9)
Choose U, so that U = (Uy,Uz) € U™ ™. Then from (3.4.9)
Z‘N/Q = —UlﬁlHAVQ + [jQUQHWVQ
Substituting it into (3.4.7) gives
E = (UlAl — Avl)le — UlﬁlHAf/QVQH + UQUQHWVQVQH,
and
— A U AV, UM AW, A —UAv, SPV,
U EV — H ~ S ~ = S H ~ = .
-Uy' AV; Uy WV, Uy’ R UsWVa
Consequently, By Theorem 1.2.1 and the definition (3.4.1) we have
- . ~ 0 SV \ gy
n(X1, Y1) = ||Eopt|]|  with  Eop =U GFR 0 V. (3.4.10)
2

Observe that the relations

2
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imply

0 (Uy'R) = 01 (R), o0.(S"Vs) =0, (8").

i OSHVQ_UOSH
"\vfrR o ) "'\ R 0 )

Combining it with (3.4.10) shows (3.4.4). 0

Hence, we have

3.4.1.2 The Backward Errors nF(IM/l,Ul,fll) and ng(f/l,ﬁl,fll)

Let 61,...,6; (I < n) be approximate singular values of A € C"™*" and Z1,...,%;
and ¢1,...,%; be associated right and left singular vectors, respectively. Gener-
ally speaking, the vectors are linearly independent but not necessarily orthonormal.
This subsection is devoted to some backward errors of A with respect to &4, ...,d;,
:fl,...,fil, and gl,...,gl .

Let
3 = diag(61,...,61), Xi1=(F1,...,%), Yi=1,...,0%) (3.4.11)
Take orthogonal decompositions of X 1 and 171:
X, =WVF, Y,=UG, (3.4.12)

where Vi € U™, U; € U™, and Fy,G; € C"*!. Then by §1.9, we define the
backward errors np(Vy, Uy, 31) and n9(Vy, Uy, 31) by

nr(Vi,Ur, 81) = min||EllF,  12(Vi, Ur, 21) = min| B2, (3.4.13)
where the set £ is defined by
g={Eecc™™ . (A+ BV =05, (A+ B0 =% }. (3.4.14)

Computable formulas of nF(ffl, Ui, f]l) and ng(ffl, Ui, f]l) are given by the fol-
lowing result.

Theorem 3.4.2. Let
R=U\% - AV, S=Wx - A0, (3.4.15)

be the residuals of A and AH with respect to Vi, Uy, 31, respectively, where 1:/'1, [:]1 and
¥y are defined by (3.4.12) and (3.4.11). Then the backward errors np(Vi,Uy, ¥1)
and 1n2(V1,U1,31) can be expressed by

ne(V, 01, 50) = VIIRIZ + 1SI2 — [V S 2, (3.4.16)
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and
n2(V1, Ur, X1) = max{||Rl|z, [|S]l2}- (3.4.17)

Proof. From (3.4.14) and (3.4.15) it follows that a matrix E € & if and only if
FE is a solution of the equations

EV, =R, E"U =5 (3.4.18)

Choose Vs and Us so that V = (Vl,f/g) € U™ and U = (Ul,ﬁg) e Ymxm,
Then by the same argument as in the proof of Theorem 3.4.1 we can show that any
solution F of the equations (3.4.18) can be expressed by

- (UFR STV, -
E=U| *} - L\ VE, W oe g™, 3.4.19
( OFR OFWT, (3.4.19)

Thus, applying Theorem 1.2.1 we obtain

UMR STV,

nF(Vh 01721) = HEOPtHF with EOpt = ﬁ ( UHR 0 > f/"H’ (3420)
2

which gives the expression (3.4.16).

Moreover, by (3.4.19) and Theorem 1.2.4 we have

n(V1,U1,%1) = max{||Rllz, (U{'R, $"7%)|.2}

= max{[|Rllz, |S™ (V1, V2)|l2},

which gives (3.4.17). O

Remark 3.4.3. Let 61 be an approximate singular value of A € C™*", and
U1 € C™ and 141 € C™ be associated unit right and left singular vectors. Then by
Theorem 3.4.2, the backward errors ng (01, 41, 1) and 72(01, 41, 61) of A with respect
to 01, 41,01 can be expressed by

ne (i, 1) = /el + [1sl13 — (5 s]2

and
M2(01, 41, 61) = max{||r|l2, [[sll2},

where r and s are the residuals defined by
T:5'1’L~L1—A’L~)1, s:(}lle—AHﬂl.
Moreover, by (3.4.20), the matrix

ﬁflr sHV,

.0 > VI =l pays® — sHo a0l
2



124 CHAPTER 3. THE SINGULAR VALUE DECOMPOSITION

is the smallest perturbation of A such that &; is a singular value of A + Ey;, and
U1, U1 are associated unit right and unit left singular vectors. Note that the formula
of no(v1,u1,01) is generalized to the generalized singular value decomposition by
Sun [122].

From (3.4.15)—(3.4.17) we see that 77F(Vl, Ui, f]l) and 772(171, Ui, f]l) are depen-
dent on the orthogonal decompositions (3.4.12) of X; and Y;. In view of a best
approximation property possessed by the unitary polar factor, we take the polar
decompositions of X 1 and f/l:

X, =PH, Y =ILK, (3.4.21)

where P, € U™ 11, € U™, and Hy, K| € H'¥! are positive definite. By (3.4.16)
and (3.4.15), we have

ne(PL T, S0 < /IS — APZ + [|PiS — AHTL 2. (3.4.22)

The following result presents an upper bpund for np (P, 14, 21) by using f]l and
the residuals Y13, — AX; and X%, — A"Y].

Theorem 3.4.4. Let %1, X1, Y, be the matrices of (3.4.11). Define 6, €1, ez by

§ = max{|omax(X1) — Omin (Y1), |0max (Y1) = omin(X1)|}, (3.4.23)
and o N
Y131 — AXy|[F + 6||APg |7
€1 = = ,
Umin(Yl)
(3.4.24)
1X131 — ATYi||p + 6| A7 Py ||
€9 = .

O'min(Xl)
Then for the backward error ne(Py, 10,5 defined by (3.4.13) and (3.4.14) with
Vi = Py and Uy =111, we have the estimate

np (P11, 1) < \/el + €2 (3.4.25)

The estimate (3.4.25) shows that if the residuals Vi3 — AX; and X132, — AEY;
are small, and if Z1,...,Z; and ¢q,...,¥; are close to orthonormal, then there is a
matrix A + Eqpy with small Eyp of (3.4.20) (in which Vi="P and Uy = I11) such
that &1,...,0; are exact singular values of A 4+ E,, and the column vectors of P,
(the unitary polar factor of X;) and TI; (the unitary polar factor of ¥7) are associ-
ated unit right and left singular vectors.

_ Proof of Theorem 3.4.4. Take the singular value decompositions of X, and

Y1:
X1:U<Ag1>vff, 171:Z(A(§1>WH, (3.4.26)
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where U = (U, Us) € U™ ™ with Uy € U™, Z = (Zy1, Zo) € U™ ™ with Z; € U™,

V,W e U, and
M, = diag(u;), vy 22>y > 0.

pr > > >0, Ny = diag(vy),

Then by the uniqueness of the polar decomposition, we have

pP=Uv2 I, =z2WH, (3.4.27)
By (3.4.26), we have
JAX) — V15| = ‘ ZHAU< ]‘gl ) _ < 2\51 ) WS,V (3.4.28)
F
Let
B=2"AU = (B,,B,), B) = ( gi ) , Bpec c=wtsv. (3.4.29)

Then from (3.4.28)

¢ v N C
|AX, —Yi¥||Fp =||B1M; — ( (1) )
F
_ Ny 0 Ni(B - C)
B (BlMl B ( 0 VlI > Bl) + ( Vl-321 P
> Mi{Bu = C) — | B1M; — N 0 B
v Ba 0 uyl
F F

C

Z w|Br = ( 0 ) — max |p; — vi|[| Bilp.
p Ok
(3.4.30)
Observe that
0 0
‘&-(%) - B<Io )_(10 )C
F F

0] O -
—zrav (1) = (1T YwEsv] by (3.4.29))

0 0 -
=||AP, ~ L5y ||r,  (by (3.4.27))

max |p; —vg| =5, (by (3.4.23))
]7
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and
IBillp = 12" AU || p = |AUV T ||p = |APL[|r = | AP P{T||r = | AP ||F-

Hence, (3.4.30) implies .
HH121 - APlHF S €1. (3431)

Similarly, we have )
||P121 - AHH1||F S €9. (3432)

The scalars €; and ez are defined by (3.4.24).

Combining (3.4.31) and (3.4.32) with (3.4.22) yields (3.4.25). 0

3.4.2 Residual Bounds

Let an approximate simple singular subspace pair {X],V;} of A be given, where
X, = R(Vl) and Y, = R(f]l) with V4 € U™ and Uy € U™*!. Then by using Theo-
rem 3.4.1 and appropriate forward perturbation results, such as the Mirsky theorem
on perturbations of singular values [81] (see below NR 3.4-3) and Theorem 3.3.3
on perturbation bounds for singular subspaces, we can determine how the singular
values &1,...,0; of [Nle AV, relate to those of A, and determine the accuracy of the
approximate singular subspaces X, and ).

By the proof of Theorem 3.4.1, the optimal backward perturbation Egpy; of
(3.4.10) satisfies

(A+ Bopt)V1 = UL(UTAV), (A + Bopt) U0 = V(U] AV)™.

These relations imply that the singular values of UIH AVi, as | approximate singular
values of A, are [ singular values of A + F,,;. Combining this fact with the Mirsky
theorem (see below NR 3.4-3) shows the following result which gives a residual
bound for the | approximate singular values &1, ...,d; of A.

Theorem 3.4.5. Let A, Vi,U1, R, S be as in Theorem 3.4.1, and let {231,571}
with X, = R(V1) and Y1 = R(U,) be an approzimate singular subspace pair of A.
If oy > -+ > o, are the singular values of A, and &1 > --- > &7 are the singular
values of 01HA‘71, then there are integers j1 < jo < -+ < j; such that

0 SH
<R . )H (3.4.33)

From (3.4.3) we see that the optimal backward perturbation E,p; of (3.4.10)
satisfies

|diag (61 — 0y ..., 00 — 05| <

I o 01[{14‘71 0 — 1211 0
U (A+Eopt)v_( 0 ora, )=\ 0 4 ) (3.4.34)
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and

(3.4.35)

~ ~ HN
UHEoptV:< 0 SVZ).

UIR 0
The relation (3.4.34) implies that {X},);} is a singular subspace pair of A + Eopy.
Moreover, if A; and the matrix Ay defined by

Ay if m=mn

(A3,0) € ctm=bx(m=D) if m >n

satisfy R
o(A1)(o(4z) =0, (3.4.36)
then the singular subspace pair {X;, Y} of A + Eopy is a simple singular subspace

pair.

Applying Theorem 3.3.3 to the matrices A + Fqp and A of (3.4.34) and (3.4.35)
shows the following result which gives residual bounds for the approximate singular
subspaces X7 and ).

Theorem 3.4.6. Let {2?1, 5/1} be an [-dimensional approzimate singular subspace
pair of A € C™*", where X, = R(ffl), Yy, = R(Ul), Vi € U and Uy € U™,
Define the matrices Ay and Ay by (3.4.34), and assume (3.4.36) is satisfied. Define
the residuals R and S by

R=UA — AV, S=VAF —Af[,,
and define the matrices Cy, Cy by

CNtl = ((A{ & Infl)K_lv (Il & Ag)z_l) 3
B (3.4.37)
Cy = ((Il ® A)K ', (A4 ® Im—l)ffl) ;

where
K=AAT @I, —~L0Al Ay, L=ATA @I, -1, ® A A,

Moreover, let

= s vec(VHS) A

by = ||Cy ( vee(TH R) 27 ¢ =|C1l2,

= - [ vec(VSS) . ~ (3.4.38)
b = ~ =

2 Cs ( vec(TH R) 27 ¢ = ||C2|2,

lN):l~)1+l~)2, 6:51-{—62,
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and define 77 by
7 = max{||R[|2, [|S]|2}- (3.4.39)

I )
4béiy < 1,

then there is a unique pair of singular subspaces X1 = R(V1), Y1 = R(U1) of A such

that Vi e U™, Uy e U™ !, and

pF(Xl,.)E‘l) S ||tan®(V1,‘71)||F S 61 +61ﬁ/§2 = Txy,
) ) (3.4.40)
pr(V1, 1) < |tan O (UL, T)||p < by + &0 = 7y,

where

2b

1+\/1—4(~)6ﬁ'

It is worth noting that by using Theorem 3.4.6 and Theorem 3.4.9 of the next
subsection (§3.4.3), we obtain the following result on residual bounds for singular
values which may be sharper than the estimate (3.4.33).

b

(3.4.41)

Theorem 3.4.7. Let A, X, Vi, Y1, U1, X1,Vi, Vi,Ui, R, S, Tx, and Ty, be as
in Theorem 3.4.0. If the singular values of A are o1 > -+ > oy, the singular values
of UL AV| are 61 > -+ > &, and if the scalars Ty, and Ty, satisfy

Ty, <1 and 1y <1,
then there are integers j1 < jo < --- < j; such that
max {7, [|Sl2, Ty, [ R]2}
)
mln{\/l —7'/2‘,1, \/1 — 7'32;1}

Proof. By Theorem 3.4.9 of the next subsection (§3.4.3) there are integers
g1 < jo < -+ < j; such that

=1,...,1L (3.4.42)

|6i - U]'z" <

max {pr (0, 2)ISll2, pr(V1,3)I1Rll2}
min{\/l — p%(X1, &), \/1 - ,0%(3}1,571)}

i=1,...,0, (3.4.43)

’61' - sz‘| <

where pp(-,-) is the generalized chordal metric defined by (1.3.3). Substituting
(3.4.40) into (3.4.43) shows (3.4.42). 0

Example 3.4.8. Consider the matrix

5/v6 10°/v3
A= ( -10/v6 10%/4/3 ) .
5/V/6 10%//3
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The vectors T
1 2 1
U:170T7 U:<—,——,—)
R W Y G
are unit right and left singular vectors of A belonging to the singular value o1 = 5. (Note.
The other singular value is oo = 10%.) Suppose that we have approximate right and left
singular vectors

1 =(1,100%7 g =(0.40825, —0.81496, 0.40824)T,

and let
o =31 /Elle, @ =01 /lTull, 61 = af AT
A calculation gives
sin@(vy,91) &~ 1.0000 x 1075, sin@(uy, @) ~ 8.8449 x 1074, (3.4.44)
and
|61 — 01| ~ 1.0713 x 107°. (3.4.45)

Choose @3 and Us so that (1, 0) € O**2 and (a1, Us) € @3*3. Compute
A =alAv, (=61), Ay =ULAvy, r=Aa — A, s=A10, —ATa,
and compute Cy, Cy, by, é1,ba, &2, b, & and 7 by (3.4.37)—(3.4.39). A calculation shows that
4béij ~ 6.2967 x 1074 < 1.

Consequently, applying Theorem 3.4.6, there are unit right and left singular vectors v and
u of A corresponding to the same singular value, such that

tan@(v,9,) < T4, ~ 1.0007 x 10°%,  tanB(u, ;) < Ty, ~ 8.8463 x 104, (3.4.46)
Moreover, applying Theorem 3.4.7, there is a singular value o of A such that
max {7, [[sll2, Ty, lI7ll2}
min{\/l—T‘jﬁ, \/1 —7'32,1}

Comparing (3.4.46) with (3.4.44) and comparing (3.4.47) with (3.4.45) we see that the esti-
mates obtained by applying Theorems 3.4.6 and 3.4.7 are fairly sharp.

~ 3.0276 x 10~ °. (3.4.47)

|5’1 —O’| S

Applying Theorem 3.4.5, there is a singular value o of A such that
|61 — 0| < max{||r||2, ||s||2} ~ 8.8445 x 107!, (3.4.48)

Comparing it with (3.4.45) shows that the estimate obtained by applying Theorem 3.4.5 is
a severe overestimate.

Note that by Theorem 3.4.2 (or Remark 3.4.3) we have
M2 (01, @1, 61) = max{||r|l2, ||sll2} ~ 8.8445 x 107,

which means that &, is an exact singular value and {0;,4;} is an associated unit singular
vector pair of a perturbed matrix A + E, with

|Ell2 = n2(1,@1,61) ~ 8.8445 x 1071

Combining this fact with the Mirsky theorem (see below NR 3.4-3) we get the same estimate
as that of (3.4.48).
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3.4.3 An Approximation Theorem on Singular Values
In this subsection we shall prove an approximation theorem on singular values that

can be used to establish the estimate (3.4.42) of Theorem 3.4.7.

Let {X1,)1} with &1 = R(X1) and Y1 = R(Y1) be a singular subspace pair
of A € C"™*", and let {Z;,W,} with 2| = R(Z1) and W, = R(W;) approximate
{X1, 01}, where X1, Z; € U™¥!, and Yy, Wy € U™ L. Let

A =YHAX,, K =w{Az,.
It is easy to see that
Y14 = AXq, XlA{I :AHY1, U(Al) CU(A).

However, in general, W1 K # AZ; and/or Z1K{' # A"W1, and (K1) ¢ o(A). In
such a case, we define the matrices R and S by

R=W\K, - AZ, S=2Z K- Alw,,
which are the residuals of A and A¥ with respect to {Z1, W1}, respectively.
The following result gives an upper bound for the distance between the sets

o(K1) and o(A;) in terms of [|R|l2, [[S]l2, p2(X1, 21) and p2(V1, Wh), where pa(, )
is the generalized chordal metric defined by (1.3.3).

Theorem 3.4.9. Let A,Xl,Yl,Zl,Wl,Al,Kl, R,S and /Yl, y17 Zl, W1 be the

above-mentioned matrices and subspaces. Let

o(A) ={a}h ), a > >,

o(K1) = {rjYicy, w1225
If p2(X1, 21) < 1 and po(Y1,W1) < 1, then
max {p2 (X1, 21)||S]l2, p2(V1, Wh)[|R|l2}

min{\/l — p3(X, 21), \/1 - p%(ylawl)}

Proof. 1) By Stewart [93, Appendix| (or see Stewart and Sun [97, Chapter I,
Theorem 5.2]), there are unitary matrices @, Uy, V1 such that

QXlUlz(éI) and QZ1V1=(£>7

where I' = diag(y;) and ¥ = diag(o;) have the expressions (2.5.58)—(2.5.60). Simi-
larly, there are unitary matrices P, i, G; such that

PY1F12(3> and PW1G1:<Z\]§>,

Coi=1,..,0 (3.4.49)

laj — k4] <
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where M = diag(p;) and N = diag(v;) have similar expressions as I' and ¥ in
(2.5.58)-(2.5.60). Without loss of generality we may assume that the matrices
A, X4,Y1, Z1, W1 have the following reduced forms:

(A O v (L (T (M
(8 1) mone(8). ae(2) me(¥)

Thus, we have

p2(X1, Z1) = [IZ]l2, p2(Vi,Wh) = ||IN|l2, (3.4.50)
and " "
[ MK, — AT [ TKF - Ay
R_<NK1_A22>, S‘(zzc{f—Ang . (3.4.51)

2) For T define the diagonal matrix I' by (2.5.64), and for M define the diagonal
matrix M similarly. Then there are the relations

SI'=I%, NM=MN. (3.4.52)
Moreover, let
T
7y = ( P ) . Z=(Z1, Zs), (3.4.53)
and
_NT
Wy = ( % ) , W= (W, Ws). (3.4.54)

Then the relations (3.4.52)—(3.4.54) imply that Y, W € U™*™, and from (3.4.51),
(3.4.53), (3.4.54) and K; = W AZ;

WHR = ( g ) AR ( g > : (3.4.55)

IRl =B, [ISI=IC]. (3.4.56)
From (3.4.51) and (3.4.53)—(3.4.55) we get

Thus,

MK, — AT = (I, )R = (I, O)W ( . )

= (I;, O)OWo,B = -N"B,
and

= (I;, 0)2,C = -¥7C;
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or equivalently,
r o 0 K"\ ([ 0 Af r o\ 0 -yTc
0 M Ki 0 A0 o M) \ -N'B 0 '
(3.4.57)
3) Taking the spectral norm || - ||2 on the two sides of (3.4.57), applying a result

due to Bhatia, Davis and Kittaneh [6] (see NR 2.5-5), and by the Mirsky theorem
[78] (see below NR 3.4-3) we obtain

r o 0 K 0 AH r o

0 M K. 0 ) \A o0 0 M
o (4 ar )| (2 ")
= T 0 M Kl—Al 0

— min {/T = 215, /1~ N3} 126~

2

2

(3.4.58)

> Hlln{\/1 - p%(‘)(lvzl)a \/1 - p%(y1,W1)} |K”j - &,
j=1,...,1,
where the relations of (3.4.50) are used.

On the other hand, using the relations of (3.4.50) and (3.4.56) we obtain

0 ->Tc
(L 57|, =t v
2

< max {[|Z[|2[[Cll2, [IN]l2]|B]l2}

= max {p2(X1, Z1)[|S|l2, p2(V1, W1)|R]2} .

Combining it with (3.4.57) and (3.4.58) shows the estimate (3.4.49). O

Notes and References

NR 3.4-1. Theorems 3.4.1 and 3.4.5 are proved by Sun [115].

NR 3.4-2. Let A, X,Y1,7,,W1, A1, K1, R, S be the matrices as in Theorem
3.4.9. Tt is easy to see that for any X = (X1, Xy) e U™ and Y = (Y1, Ys) e U™*™
we have

YHAX = diag(A;, Ay).
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Wedin [127] shows that if for some § > 0
o(Ky) Cla+4d, +00) and o(As) C (—o0, @], (3.4.59)

then

max{||Rll2, [|S]2}

max{|| sin ©(X1, Z1)||2, ||sin©(Yy, W1)||2} < 5 ,

(3.4.60)

which gives a residual bound for an approximate singular subspace pair. Combining
(3.4.60) with Theorem 3.4.9 we see that under the assumption (3.4.59) we have the
following corollary: If

max{||R|2, ||S]2} <
)

€= 1,

then )
(max{||R|l2, [S]l2})

V1 — €2 ’
where a; and k; are the singular values of Ay and Ky, respectively. (3.4.61) gives a
residual bound for approximate singular values.

laj — kj] < j=1,...,1, (3.4.61)

NR 3.4-3. Mirsky Theorem [78]. Let A and A be matrices of the same
dimensions with singular values

01209220y, 01202220
Then for any unitarily invariant norm || - ||,
Idiag(d; — o3)|| < | A - Al

(See, e.g., Stewart and Sun [97, Chapter IV, Theorem 4.11].)
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Chapter 4

Generalized Eigenvalue
Problems

This chapter is devoted to the generalized eigenvalue problem Az = aBz, where
(A, B) is an n x n regular pair, i.e., A, B € C"™*™ and there are «, 3 € C such that
det(BA — aB) # 0. Perturbation expansions and condition numbers of eigenvalues
and deflating subspaces, perturbation bounds for deflating subspaces, and backward
errors and residual bounds, are discussed in §4.1 — §4.4, separately. The chapter
concludes with a section on symmetric-definite generalized eigenproblems.

4.1 Perturbation Expansions

4.1.1 Simple Eigenvalues

Let (A, B) be an n x n regular pair. If
BAx = aBzx

for (o, B) # (0,0) and a nonzero x € C™, then («, ) is called an eigenvalue of (A, B),
and z a right eigenvector associated with («, 5). Usually, z is called an eigenvector
of (A4, B) associated with («, ). The corresponding nonzero solution y € C™ of the
equation

py"A=oy"B

is called a left eigenvector associated with («, ).

A basic fact of the generalized eigenvalue problem is that any eigenvalue (a, )
lies on the complex projective plane, or equivalently, any eigenvalue («, ) lies on
the Riemann sphere; i.e., (a,3) and (za, z8) for any nonzero z € C represent the
same eigenvalue. If an eigenvalue («, ) satisfies § # 0, then A = «/f is a finite
eigenvalue; otherwise, (a, 8) is an infinite eigenvalue.

135
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The set of the eigenvalues of a regular pair (A, B) is denoted by A\(A, B).

Let p = (p1,...,pn)T € CY, and B(0) € CV be a neighborhood of the origin.
Let A(p), B(p) € C"*" be analytic functions of p and (A(p), B(p)) be a regular pair
for p € B(0). Assume that («, 3) is a simple eigenvalue of (A(0), B(0)), and z,y are
associated right and left eigenvectors satisfying

yTA(O)z =, y"B(0)z=p.

Then, as a consequence, there are X, Ys € C"*("~1) guch that

X =(z,X3) and Y = (y,Y2) are nonsingular, (4.1.1)
and
H . o 0 H 6 0
YA A0)X = ( 0 A > YHB(0)X = (0 BQ> (4.1.2)
where the pair (Ao, Bo) is regular, and
(ar, B) & AM(Az, Ba). (4.1.3)

First applying the implicit function theorem we prove the following result.

Theorem 4.1.1. Let A(p), B(p) € C™*™ be analytic matriz-valued functions of
p, and the matriz pair (A(p), B(p)) be a reqular pair for p € B(0), a neighborhood
of the origin in C. Assume that (o, 8) is a simple eigenvalue of (A(0), B(0)), and
T,y are associated right and left eigenvectors. Then

1) there exists a simple eigenvalue (a(p), 8(p)) of the regular pair (A(p), B(p)),
where a(p) and B(p) are analytic functions of p in some neighborhood By of the

origin, and a(0) = «, B(0) = B;

2) the functions a(p) and B(p) have power series expansions at p = 0 of the
forms

N
and N N
_ L1 9*B(p)
/3(p>—/3+j21( ) Zkz(apjap> S

(4.1.4)
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2 2 A
9”a(p) _ yH 0 A(p) x_i_yH dA(p) XQG_IYQHDkx
DiOPk ) _ DiOPk ) _ j _
op;0 p=0 op;0 p=0 op =0

A
+yH (—a (p)) XQG_IYQHDJ':L",
p=0

Opk,
(4.1.5)
2 2
(8 5(10)) —yH (8 B(P)> z+yf (33(17)) XQG_IYQHDk:z
ok ) Pk | ,_, Wi ) g
—H/H (_83(]))) X2G71Y2HDJ':L",
apk p=0
(4.1.6)
in which the matrices G' and D; are defined by
G = aBy — fAy (4.1.7)
and
py=p (AR (9BW iy N 1)
Wi ),y Opj )

Proof. 1) By the hypotheses there are matrices X = (z, X»),Y = (y,Ys2) € C"*"
and Ay, By € C("=1*("=1) gych that the relations (4.1.1)~(4.1.3) hold. For p € B(0)

we set

Ay _ [ au(p) ana(p) .
Alp) = YHA(p)X B ( a1 (p) ;122(10) ) ’ anlp) €€,

(4.1.9)

5 _ _ 511(29) 512(29) 1
Bip) = YHB(p)X B ( 521(29) B22(P) > 7 bulp) € €.

Using the same technique described by the proof of Theorem 2.1.1 we can show that
there are analytic functions z(p),w(p) € C"~! of p in some neighborhood By C B(0)
of the origin such that

1 0 - 1 0\ [ alp) *
<—w<p> f)A(p)<z<p> I)‘( 0 )

1 0\ = 1 0\ [ Blp) =
<—w<p> I)B(p)<z<p) I)‘( 0 )

(4.1.10)

From (4.1.10)

alp) = an(p) + a2(p)z(p),  B(p) = bi1(p) + bi2(p)z(p). (4.1.11)
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The relations of (4.1.10) show that («(p), B(p)) is an eigenvalue of (A(p), B(p)), and
the eigenvalue is simple provided that the neighborhood By is sufficiently small.
Moreover, the analyticity of the functions a1 (p), Gi2(p), b11(p), bi2(p) and z(p) im-
plies that a(p) and B(p) are analytic functions of p € By, and a(0) = «, (0) = 5.

2) From (4.1.11) and @12(0)” = 2(0) = 0 we obtain

da(p) ~ (9aw(p)
& )—( u! ) w112)

and

(8204(27)) _ (82&11(27)) n (35112(10)) (8,2_(@)
IpOpk ) Wik ), Wi ) g \ Pk J p=o

(4.1.13)
<35112(P)> <8z(p)>
+ (2l Lt
e Jp=0 \ 9j ),
Moreover, from (4.1.9) we obtain
(3511(29)) - (8 A(P)> .
Ip; 0 opj =0 ’
&*an(p) _— 9*A(p) . (4.1.14)
Ip;Opr ), Opiopr ) o o

dai2(p) _u (9 Alp)
( Opj >po_y ( Opj >poX2'

Combining (4.1.12) with the first formula of (4.1.14) shows the first formula of
(4.1.4).

From (4.1.13) and (4.1.14) it follows that for obtaining the formula (4.1.5) we
only need to find an explicit expression of (%E?) . By (4.1.10), the functions
p:

z(p) and w(p) satisfy the equations

d21(p) — @11 (p)w(p) + Az (p)z(p) — a12(p)z(p)w(p) =0,
(4.1.15)

b21(p) — b11 (p)w(p) + Baa(p)2(p) — bi2(p)z(p)w(p) =0,
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where p € By. Differentiating (4.1.15) at p = 0, we get

i} _ 0a21 (p)
(%f))p:o - —AQ 7 ! < Napj )p:()
(aw(p) ~\ =By, BI <3b§;<p))

j p=0

i ) p=0
—1v H [ 0A(p)
BI —al G Y2 ( apj )p:[)x
By —Aj GV (MBP

which gives

8Z_(1m _ =1 le 0A(p) . aB—@ -Ix
(3Pj >p0_G Y [ﬁ( Ip; >p0 ( ap; >p0J ; (4.1.16)

where G is the matrix defined by (4.1.7). Substituting (4.1.14) and (4.1.16) into
(4.1.13) shows the formula (4.1.5).

Similarly, we obtain the second formula of (4.1.4) and the formula (4.1.6). O

Remark 4.1.2. From (4.1.9) and (4.1.10)

B(p)A(p)z(p) = a(p)B(p)z(p), p € By, (4.1.17)

w(p):X< ! ) (4.1.18)

The relation (4.1.17) shows that the vector z(p) is an eigenvector of (A(p), B(p))
associated with (a(p), 8(p)), and the expression (4.1.18) shows that the eigenvector
is an analytic function of p € By satisfying z(0) = z. Moreover, (4.1.16) and (4.1.18)
imply that the eigenvector z(p) has the expansion of the form

N
z<p>=x+z(

=1

0z(p)

p]+7 pEBOa
ap] )po

where

<c‘)x(10)> _ X2G71Y2H
8p]- p=0

forj=1,...,N.

The following result, as a corollary of Theorem 4.1.1, gives modified forms of the
first order perturbation expansions of simple eigenvalues.
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Corollary 4.1.3. Let (A, B) be an n X n regular pair. Assume that («, ) is
a simple eigenvalue of (A, B), and x,y are associated right and left eigenvectors
satisfying
yTAz =a, "Bz =p.
IfE,F € C™*" and ||(E, F)||r is sufficiently small, then there exists a simple eigen-
value (&,5) of the regular pair (A+ E,B + F), and &, B have the expansions

&=a+y"Ex+O(I(E,F)|}),
i (4.1.19)
B=p+y"Fz+O(|(B,F)|),

where (E,F) — 0.

Let p(-,-) be the chordal metric defined by (1.3.4). Then the expansions of
(4.1.19) give

H H H H
e ‘y Ex-y"Br—y"Fz-y AIL"‘ )
p((@5), (. B)) = AT Ty Bl +0 (I8, F)I}),  (41.20)

where (E, F) — 0.

Remark 4.1.4 (Definite Pairs). Let A, B € H"*". The pair (A, B) is called
a definite pair if
¢(A,B) =  min ‘wH(A + zB)x‘ > 0.

x el

el =1
It is known (see, e.g., Crawford [23], Stewart and Sun [97, Chapter VI]) that any
eigenvalue of an n X n definite pair (A4, B) can be expressed by («, 5) # (0,0) with
a, 8 € R, and there is a nonsingular matrix X € C™*" such that

XTAX = diag(ay,...,a,), XTBX =diag(fi,...,0).

Let A(p) and B(p) be analytic matrix-valued functions, and (A(p), B(p)) be an
n x n definite pair for p € B(0), a neighborhood of the origin of R"Y. Assume that
(a, B) is a simple eigenvalue of (A(0), B(0)), and z is an associated eigenvector.
Then by using the same techniques described by the proofs of Theorem 3.1.1 and
Theorem 4.1.1 we can obtain the same results as in (4.1.4)-(4.1.8) with y = x and
Yy = Xo, where X = (z, X3) is a nonsingular matrix that

H . o 0 H . ,8 0
XAX_<0 A2>, XBX_<0 BQ>,

in which (As, Bs) is an definite pair, and (a, 8) € A(As, Bs). Note that in the proof
we only need to replace the transformation matrices

1 0 1 0
(—w(m I) and (z(m I>
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of (4.1.10) by

Similar to Corollary 4.1.3, we have the following result for definite pairs.

Corollary 4.1.5. Let (A, B) be an n x n definite pair. Assume that (o, 3) is a
simple eigenvalue of (A, B), and x is an associated eigenvector satisfying

Az =, "Bz =24.

IfE,F € H"™ and ||(E, F)||r is sufficiently small, then there exists a simple eigen-
value (&, B) of the definite pair (A+ E,B + F), and &, 3 have the expansions

& =a+z"Ex+ O(|(E, F)l7),

B =p+a"Fz+ O(|(E,F)|}),

where (E,F) — 0.

4.1.2 Deflating Subspaces

Let (A, B) be an n X n regular pair, («, 3) be an eigenvalue of (A, B), and z € C"
be an associated eigenvector. By the definition of eigenvalue and eigenvector, there
is a one-dimensional subspace ) C C™ such that

AR(z) C Y1 and BR(z) C V1.

The pair {R(z), V1 } is called a pair of one-dimensional deflating subspaces of (A, B).
Moreover, R(z) is called a one-dimensional eigenspace of (A, B). These definitions
extend in a natural way to higher dimensions.

Let AX},): be subspaces of C" with the same dimension. The pair {X;, )} is
called a pair of deflating subspaces of (A, B) if

AX, CcY, and BX|, C ).

The subspace &) in the deflating subspace pair {X7, Y1} is called an eigenspace (or
a generalized invariant subspace) of (A, B). (If B = I, then A&} is an invariant sub-
space of A.)

The deflating subspace pair { X1, Y1 } may be equivalently defined by X; = R(X)
and )} = R(Y1), in which X1,Y; € C"*! satisfy

rank(Xl) = rank(Yl) = and AX1 = YlAl, BX1 = YlBl
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for some [ x [ regular pair (A1, B1).

Let X1,Y; € U™, and let X, = R(X1), Y1 = R(Y1). Tt can be verified that the
subspace pair {&7,)} is a deflating subspace pair of a regular matrix pair (4, B)
if and only if there are matrices X = (X1, Xs), Y = (Y1,Y3) € U™*™ such that

YHAX = ( AOH ﬁ;z > ., YABX = ( BOH g;z > , Ay, By e

Moreover, (A11, B11) and (Agg, Bag) are regular pairs.

If A\(A11, B11) N A(A22, Ba2) = 0, then the deflating subspace pair {X, )V} is
called a simple deflating subspace pair. In this chapter we only consider simple de-
flating subspace pairs.

The main result of this subsection is the following perturbation expansion theo-
rem.

Theorem 4.1.6. Let (A,B) be an n x n regular matriz pair, and let X =
(X1, X2),Y = (Y1,Y2) € U™™ with X,,Y; € U™ such that

A A By1 B
H _ 11 A H _ 11 B2
YHAX = < o ) YABX = ( o B ) (4.1.21)
where Ay1, Bi1 € C™*!, and
A(A11, Bi) () M(Asz, Bag) = 0. (4.1.22)

Moreover, let X1 = R(X1),Y1 = R(Y1), for M, N € C"*" let

VEMX — ( M1 Mo )7 VANY — ( Ni1 Nio >7 My, Ny € C7

M1 Moo No1 Noo
(4.1.23)
and define the linear operator T : Cn=0xl y o(n=U)xl _y o(n—U)xl y o(n—l)xl by
Z . WAH — A22Z (n—1)x1
o(2)= (b2 ). mweemre

Then

(1) there is a unique l-dimensional simple deflating subspace pair {X1(7), Y1(7)}
of (A+7M,B+ 7N) (1 € C) such that X1(0) = X1,Y1(0) = Vi, and the basis vec-
tors 1(7),...,x(1) of X1(7) and the basis vectors yi(7),...,y(7) of Y1(T) may be
chosen to be analytic functions of T in some neighborhood B(0) of the origin of C;
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(2) the analytic matriz-valued functions

Xi(r) = (@1(7),....m(7),  Yi(r) = (i(7),... (7))
have the perturbation expansions
Xi(r)=X1+XoY Kjv!, Yi(r)=V1+Yy Y L7’ (4.1.25)
j=1 j=1

for T € B(0), in which

Ky _1 [ Mxn
T ’

Ko\ _por [ MKy = LiMyy — LAk,
Noo Ky — LiN11 — L1 B1o Ky

=2 j—1
K. MK | —Lj 1My — Y Lj_1_ MKy — 3 Lj_pA1pKy
( j ) _ -1 E=1 L=
j_ j— bl
NooKj 1 — Lj_1N1i1 — > Lj 1y N1oKy — > Lj_pB12K},
k=1 k=1

j =3
(4.1.26)
Proof. 1) Let
A(ty=A+1M, B(r)=B+71N
and - -
~ A (T) A12(7')
Ay =YHA(N)X = SH o ,
(r) = V¥ A(7) ( e
(4.1.27)
~ B (T) 312(7')
B(r)=Y"B(r)x = 2" - ,
(7—) (7—) < B21 (7_) B22(7-)
where 12111(7'), BH(T) € Cle, and
fijk(T) = Ajk + TMjk, Bjk(T) = Bjk + TNjk, A9y = Boy = 0. (4.1.28)

Using the same technique described by the proof of Theorem 2.1.5 we can show that
there are analytic matrix-valued functions Z(7) and W (7) of 7 in some neighborhood
B(0) of the origin such that

I 0 & I 0\ _ [ A(r) Aw()
(—W(T) 1)‘4(7)(2(7) 1>_< 0 Ay(r) )

(4.1.29)
I 0\ = I 0\ [ Bi(r) Bia(r)
(—W(T) I)B(T)(Z(T) I>_( 0  B(r) >
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and Z(0) = W(0) = 0. Moreover, the functions Z(7) and W (7) are uniquely deter-
mined; and (A1 (7), B1(7)) N A(A2(7), Ba(7)) = 0 provided that the neighborhood
B(0) is sufficiently small.

Define
Xi(r) = X ( Zé) ) . Y=Y ( WZ) ) . (4.1.30)

Then from (4.1.27) and (4.1.29)
AN X1 (1) = Vi(N)Ai(r),  B(r)X1(7) = Yi(7)Bu(7).
Consequently, we have proved that the pair {X;(r), Y1 (7)} with
(1) = R(X1(7)),  Ni(r) = R(Y1(7))

is the unique pair of deflating subspaces of (A(7), B(7)) in B(0) satisfying X;(0) =
X1, Y1(0) = Vi, and X1(7), Yi(7) are analytic matrix-valued functions of 7 € B(0).

2) From (4.1.27)-(4.1.29) we get the basic equations for Z(7) and W (r):

W(r) (A2 + 7Mi2)Z(7) + W(T)(A11 + TM11) — (A2 + TM22) Z(7) — TM21 = 0,
W (r)(Biz + 7N12)Z(7) + W(7)(B11 + 7N11) — (Bag + TN22) Z(1) — TN21 =0,

(4.1.31)
where 7 € B(0).

Differentiating (4.1.31) at 7 = 0, and writing

A A : dIW (1 .
7=0 7=0
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we get

(1) My,
o )= (3)

( 7(2) > _, ( Moy ZD — WDy — WD Az )

w@ NooZD —wON,, — WD B,z

My 20D — w6 O, 5 (770 ) Wi m,z®)
70 ‘ 22 n- X s 12
we |~

J - .
NQQZ(j—l) o W(j_nN11 _ 722 < J ; 1 > W(J'—l—k)lez(k)
k=1

Jj—1 j .
¥ . WUk A, 7 k)
i . J>3,

ST G
k=1 k

where T is the linear operator defined by (4.1.24).

(4.1.32)

The hypothesis (4.1.22) implies that the operator T is invertible. Define

Then from (4.1.32) we get the relations (4.1.26) and the power series expansions of
Z(r) and W(r) at 7 =0:

~> 7 =YK, W= 3 W =Y e
j=1 j j=1 =1 J
This together with (4.1.30) shows (4.1.25). O

The following result, as a corollary of Theorem 4.1.6, gives modified forms of the
first order perturbation expansions of simple deflating subspaces.

Corollary 4.1.7. Let (A,B),X,Y, A11, Ass, B11, Boo and T be as in Theorem
4.1.6, and let Xy = R(X1), Y1 = R(Y1). Moreover, for E,F € C™*" let

I I
YHEX:<gi g;), YHFX:<F£ Fz), By iy € O,

If (B, F)||F is sufficiently small, then there ewists a unique l-dimensional pair of
deflating subspaces X; = R(X1), Y1 = R(Y1) of the pair (A+ E,B + F), and X,
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Yy have the eTPansions

X =X+ X7, + O(H(E’F)H%')u
(4.1.33)
Y =Y+ oW, + O(|(E, F)||%),

where (E,F) = 0, and Z;,W; € C"=0X gre defined by

Z1 et [ Eo
( W ) =7} < [y ) : (4.1.34)

Observe that by using the Kronecker product and vec operator, the matrix rep-
resentation T' of the linear operator T defined by (4.1.24) can be expressed by

~L®A»n Al @1,
T = . 4.1.35
( —1,® By BL ® 1, ( )

Consequently, the relation (4.1.34) can be written in an equivalent form:
vec(Z1) \ vec(For)
( vec(W7) > N C( vec(Fy) )’ (4.1.36)
where

Cy

= 71:
ceri (G

) , Ci=(Cu, Ci2), Cy=(Cy, Co),

Ci=BLeL )M, Cup=(Al,@L_ )M, (4.1.37)
Co1 = (Il ® BQQ)M_I, Coy = (—Il X AQQ)M_I,
M = AT, ® By — BT, ® Ags.

Notes and References

NR 4.1-1. The formulas of (4.1.4) are given by Liu [72, Theorem 3.5].

NR 4.1-2. The notion of the deflating subspaces of a regular pair is introduced
by Stewart [91].

NR 4.1-3. Theorem 4.1.6 is proved by Sun [119, Theorem 3.1.1].
NR 4.1-4. Crawford [23] first discusses perturbation properties of eigenvalues

of definite pairs. For basic perturbation results, see Stewart and Sun [97, Chapter
VI
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4.2 Condition Numbers

4.2.1 Simple Eigenvalues

Let (A, B) be a regular pair, and (o, 3) be a simple eigenvalue of (A, B). Let
(A, B) = (A+E, B+ F) be a perturbation of (4, B), and (&, ) be the corresponding
perturbation of («, 3). Then by §1.8 we define the condition number ¢(«, 8) for (v, )
by the following approach: Define the vector v by

T

FE F

_ (el 1ee\" (121
N B

and then define ¢(«, 3) as

(a 5) = lim sup ((d’ﬁ)’ (avﬁ))’

4.2.2
6—0 llv]|2<6 ) ( )

where 7, and 7y are positive parameters, and p(-,-) denotes the chordal metric de-
fined by (1.3.4).

From the definition (4.2.2) it follows that in first order approximation the in-
equality

() (5 H HEHF, ||F||F>

2
holds.

If one is interested in the sensitivity of («, 8) to perturbations in each individual
member of A and B, then by §1.8 we define the partial condition numbers c4(«, 3)
and cp(a, B) for (a, B) as

p((@,5), (@, )
(5 )

cala,B) =lim  sup
00 Pl<s, r=0

(4.2.3)

p((@,5), (@, )

cp(a,f) =lim  sup 5

0—0 E—o0, mg(s
B
where v, and vy are positive parameters.

Let (A, B) be a regular pair, and (a, 3) be a simple eigenvalue of (A4, B) with
right eigenvector = and left eigenvector y. The following results (Theorems 4.2.1
and 4.2.2) give explicit expressions of the condition numbers c(a, ), ca(a, 8) and

cp(a, B).



148 CHAPTER 4. GENERALIZED EIGENVALUE PROBLEMS

Theorem 4.2.1. The condition number c(«, 3) can be expressed by

H(WBy Az, 7AyHBgU)H lzll2llyll2
ly" Az|? + |y Bz|?

cla,B) = (4.2.4)
Proof. By Corollary 4.1.3 and (4.1.20), we have

p((@ ), (e,)) _ | (my™ Az, a0 Bz, Islallyla
= |y Az|? + |yH Bx|?

H(HEHF ||F||F>

and the equalities in (4.2.5) are achieved for the specific perturbations

(4.2.5)

< 0;
2

_5'yAay:1:H and B (5’yBTy$H

E=
[ 12 [lyll2 I ll2llyll2

with 1/2
o= ’yAyHBx H (fyAy Buz, fyByHAx) H

T =Ry yH Az H(’y y" Bz, 'yByHAx)H 1/2

Combining these facts with the definition (4.2.2) shows the expression (4.2.4). O

Theorem 4.2.2. The partial condition numbers ca(a, ) and cp(a, B) can be
expressed by

Yaly™ Ba|llz2]lyll2

CA(avﬂ) = |yHA$|2 + |yHBIL"|2’
(4.2.6)

(o) = Dol Aalle el

P T Al + Ty Bof

Proof. By Corollary 4.1.3 and (4.1.20), we have
(@ 5). (. 8) _ valy" Ballzallyll2 o)
) = |y Az]? + |yH Bz|?

(4.2.7)

E
it WPl 5«1 and F=0,
Ta

and the equalities in (4.2.7) are achieved for the specific perturbations

57Any

and F =0.
zll2llyll2

E=
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Moreover, we have

p((&, B), (o, B)) < Yely™ Az|||z|l2|lyll2
) |y Az|? + |yH Bx|?

+0(6)
(4.2.8)

F
if BE—0 and o501,
B

and the equalities in (4.2.8) are achieved for the specific perturbations

~ _ Syyzt
E=0 and F= 2BY
zll2]|yll2

Combining these facts with the definition (4.2.3) shows the expressions of (4.2.6).
a

Taking v, = v5 = 1 in (4.2.1)-(4.2.2) and (4.2.4) yields the absolute condition

number
zll2llyll2

VIl Azl + yF B2
and taking v, = [|Al|r and vy = [|B||F in (4.2.1)-(4.2.2) and (4.2.4) yields the

relative condition number

(181" 42, 14lry" B2, bl
Iy Az |2 + |yH Bx|?

Cabs(au /B) =

(4.2.9)

crel(@, B) = (4.2.10)

Moreover, taking v, = vy = 1 in (4.2.3) and (4.2.6) yields the absolute partial con-
dition numbers cfjbs)(a B) and cgbs)(a f3), and taking v, = |[|[A||F and v, = || B||F
in (4.2.3) and (4.2.6) yields the relative partial condition numbers czel (o, B) and

rel (a B), respectively.

Example 4.2.3 (Parlett [83, p.304-305]). Consider the regular pair (A, B) with

10 10
A‘(o 10—8)’ B‘(o 2><10—8)'

The matrix pair has the eigenvalues (ay,3;1) = (1,1) and (a2, 32) = (1078,2 x 1078), or
equivalently, Ay = a1/61 = 1 and A2 = as/f2 = 1/2. It is easy to see that a change of
107® in A and/or in B changes the eigenvalue 1 by 10*, while the eigenvalue 1/2 changes
completely. In other words, the eigenvalue 1 is well-conditioned, and the eigenvalue 1/2 is
violently ill-conditioned. By (4.2.9), (4.2.10) and (4.2.6), we have

Cabs(@1, B1) = 1/V2, e, B1) = 1/V/2,
& (ar, B1) =1/2, 8™ (a1, 81) = 1/2,

c el)(alaﬂl) ~1/2, cgel)(al,ﬂl) ~1/2,
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and

Cabs(Q2, f2) = \/Lg x 108, crel(an, B2) = % x 108,

A (@9, B2) = 2 x 108, 5" (s, B2) = L x 108,

cgel) (az,B2) = 2 x 108, cgel) (az,B2) = £ x 108
Obviously, for this example the condition numbers defined in this subsection reflect the sen-
sitivity of the eigenvalues.

The following result shows an important fact that if («, ) is a simple eigenvalue
of a regular pair (A, B), then the distance from (A, B) to a matrix pair which has an
eigenvalue (a, 8) of multiplicity at least two is approximately bounded by the scalar

IAB)>
(s O) /Il [BP

Theorem 4.2.4. Let (A, B) be an n X n reqular pair with the generalized Schur
decomposition

_ a aff _ g b
A_Q(O A2>ZH, B_Q<0 B2>ZH, (4.2.11)

where Q,7 € U™™, and («, B) is a simple eigenvalue of (A, B). If the condition

number caps(, B) satisfies \/|a|? + |B|?caps(v, B) > 1, then there exist E, F € C™*"
such that the pair (A+ E, B+ F) has (o, ) as an eigenvalue of multiplicity at least

two and P
[(a™,67)ll2

V(Ie? + 1B)[cas (o, B)]7 — 1

- I(A, B)ll2 |
V([a? + [B)[cans (e, B)? — 1

Proof. Since (a, ) is a simple eigenvalue of (A, B), there are v,w € C"~! such

that
1 wh a a 1 of [ a O
0 I,-4 0 A 0 I, /] \0 Ay )’
1 wf g b 1 of (B 0
0 I,-1 0 By 0 I,.. /] \0 By |’

Write Q = (q1,Q2) and Z = (z1,73), where ¢1,21 € C". Then by (4.2.11) and
(4.2.13) we have the relations

(CI{I-l-wHQgI)A(Zl’ *):(‘8‘ ,4(1) )7
* 2

(qf*“@§>3uhw=(§ §>’
* 2

I(E,F)l2 =
(4.2.12)

(4.2.13)
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which show that the vectors
r=z and y=q + Qw (4.2.14)

are right and left eigenvectors of (A, B) belonging to the simple eigenvalue (a, ).
Thus, by (4.2.9) and (4.2.14), the condition number cyps(c, 3) can be expressed by

cans(, B) = /(1 + [w]3)/ (|l + |B]2). (4.2.15)

Moreover, the relations (4.2.11), (4.2.14) and py" A = ay™ B imply

H H
A1) ( o ) = a(tuw") ( b 5 ) ,

or equivalently,

l|lwl|5 l|lwl|5
Take
0 0 . 0 0 .
E=Q wal )27, F=Q wbf | 2. (4.2.16)
T 0 w2

Then (a, ) is an eigenvalue of (A + E, B+ F') of multiplicity at least two, and from
(4.2.15) and (4.2.16) we get the estimates (4.2.12). 0

Remark 4.2.5 (Definite Pairs). Let (A, B) be a definite pair, and («, 3) be
a simple eigenvalue of (A4, B). Then by (4.2.1)-(4.2.3) we may define the structured
condition number ¢(«, 5) and the structured partial condition numbers c4(a, 8) and
cp(a, B) by using Hermitian perturbations E and F. Using the same technique
described in the proof of Theorems 4.2.1 and 4.2.2, and applying Corollary 4.1.5, we
obtain the same formulas as (4.2.4) and (4.2.6), where y = z; i.e.,

Yol Az, 7,2 Ba)| w3
(zt Az)? + (21 Bx)? ’

C(a,,@) — H(

and

Va2 Ba| |13 vgle™ Az|||z3

calenf) = (zH Az)? 4 (xH Bx)?’ (@) = (z7 Az)? + (z7 Bz)*’

4.2.2 Deflating Subspaces

Let (A, B) be a regular pair, and {X1,)1} be a simple deflating subspace pair of
(A,B). Let (A,B) = (A + E, B+ F) be a perturbation of (A, B), and {X1, )1} be
the corresponding perturbation of {X;,)1}. Then by §1.8 we define the condition
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number ¢(X;) for X7 by the following approach: Define the vector v by (4.2.1), and
then define c¢(&}) as

X, X
c(X1) = lim sup 7PF( L)

. 4.2.17
05 0 10

The condition number ¢(Y;) for )i can be defined in the same way.

From the definition (4.2.17) we see that in first order approximation the inequal-

ity
|E|r ||IF|F
Yo g

holds. For pp (Y1, 571) we have a similar estimate.

pr (X1, &) < c(A) ‘

2

Moreover, we may define the partial condition numbers c4(X}1) and cg(X)) for
X1 as i
ca(X)) =lim  sup m@

?
A [

(4.2.18)
cp(X) =lim  sup  2elindi)

6—0 ’

=0, I71E <5

where v, and ~y, are positive parameters. The partial condition numbers c4 (1)
and cp(Y) for )1 can be defined in the same way.

Take X = (Xl,XQ),Y = (Yl,YQ) € U™ " with X1, € Z/{”Xl so that X} =
R(Xl), yl = R(Yl), and

YTAX = ( AOH ﬁ; ) YiBX = ( BO” g; ) (4.2.19)

where Ai1, Bii € C™!, and A(Au1, Bi1) N A(Aga, Bag) = 0. For E, F € C™*" let

En FEis o Fi1 Fio
YEEX = , YUFX = :
< E31  Ea ) Fy1  Fy

where Eip1,F1; € C™*™. Moreover, define the linear operator T by (4.1.24). It
is noted in §4.1.2 that the linear operator T has the matrix representation T of
(4.1.35), T is invertible, and the inverse of T' is expressed by (4.1.37). We now use
the expressions of (4.1.37) to give computable formulas of the condition numbers

c(X1), c(V1), ca(X1), cp(X1), ca(V1) and cp()1).

Theorem 4.2.6. The condition numbers c¢(X1) and c¢(J1) can be expressed by

_ Yo I 0 Yol 0
c(X) = HC1 ( 0 7ol )‘2 Co ( 0 7yl , (4.2.20)

2

;o) = ‘
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where the matrices Cy and Co are defined by (4.1.37).

Proof. Let A, B have the decomposition (4.2.19), (A+ E, B+ F) be a perturba-
tion of (A, B) with sufficiently small || (E, F)||, and let {X;, Y} be the corresponding
perturbation of {X1, V1 }. By (4.2.17), Theorem 1.3.3 (see the relation (1.3.17)) and
Corollary 4.1.7 (see the expansions of (4.1.33)), we have

YA
¢(X1) = lim sup 7” e
020 jufly<s 0

where v is the vector defined by (4.2.1), and Z; by (4.1.34). Thus,

v.L 0 vec(Eo1) /7y
Cl( 6 'yBI> ( VQC(FQl)/’}’g >

=
< vee(E) /7, )
vec(F) /yB ,

_llc 'yAI 0
! 0 gl 2'

Similarly, we obtain the computable formula of ¢());). O

2
<1

Theorem 4.2.7. The partial condition numbers c4(X1), cg(X1), ca(Y1) and
e (Y1) can be expressed by

ca(X1) =7, ICull2,  es(X1) = v5l|Chzll2,
(4.2.21)

caV1) = 7, IC2ll2,  eB(D1) = yllCazll2,
where the matrices C11,Clro,Ca1 and Cos are defined by (4.1.37).

Proof. By (4.2.18) and the same argument described in the proof of Theorem
4.2.6, we have

[[vee(Z1) 2

ca(X1) =lim  sup 5

020 1Blp 5 1y
YA —

=7, sup  [[Crivec(Ear)ll2 = v, [IC11ll2-
[[vec(E21)]|2<1

Similarly, we obtain the other formulas of (4.2.21). O

Remark 4.2.8. By Stewart [91], the simple deflating subspace pair {X1, )}
has the (absolute) condition number ¢(X7, Y1) which can be expressed by

(X1, Y1) = [|C]|2, (4.2.22)
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where the matrix C' is defined by (4.1.37). However, the conditioning of the two
subspaces X7 and ); may be quite different, and the condition number ¢(Xy, Y1)
is governed by the ill-conditioning of the most sensitive subspace of the deflating
subspace pair. By (4.1.37), we have

[Cill2 < MICll2 and  [|Cafl2 < ICl2; (4.2.23)

and in some cases
ICill2 < |ICll2 or [|Calla < [|C|2, (4.2.24)

which means that in some cases ¢(X7,Y;) may be a severe overestimate of the sen-
sitivity of X1 or Y (see Example 4.2.10 below).

Remark 4.2.9. Taking v, =y, = 1 in (4.2.17), (4.2.18), (4.2.20) and (4.2.21)

yields the absolute condition numbers caps(X1), caps(V1), and c(jbs)(/lﬁ), cgbs)(Xl),

3" (), 5™ (1), For example, we have

Cabs(Xl) = H01H27 Cabs(yl) = ||C2||2 (4.2.25)

Example 4.2.10. Let (A, B) be a 4 x 4 regular pair having the generalized Schur
decomposition (4.1.21) with

An =107 x 1, By=( 90 0 Asy = Byy = I
1= 2, n=\ 1904 10¢ ) 22 = Bag = Io.
According to Remark 4.2.9, we have
(abs) (abs) 1
Cabs(X1) ~ 1.8960, ey (X1) ~ 1.8929, cp (X)) ~ 1.8883 x 1071,

Cars (V1) & 2.6705 x 104, ™9 ())) ~ 1.8883 x 10%, {27 ())) ~ 1.8883 x 10%;

and by (4.2.22),
c(X1, V1) ~ 2.6705 x 10%.

Obviously, for this example the condition number ¢(X;,)) is a severe overestimate of the
(absolute) sensitivity of the eigenspace Xj.

Notes and References

NR 4.2-1. The chordal metric p((d&, ), (o, 8)) is first used in the perturbation
theory for matrix pairs by Stewart [92]. The condition number cyps(c, 5) of (4.2.9)
is given by Stewart and Sun [97, Chapter VI]; and it is also proved by Dedieu [28,
Corollary 7.3].

NR 4.2-2. Let (4, B) be a regular pair, and (, 3) be a simple eigenvalue of
(A,B). Let (A,B) = (A+ E,B + F) be a perturbation of (4, B), and (&, ) be
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the corresponding perturbation of («, ). Define v by (4.2.1), and then define the
condition number c,(a, 5) of a simple eigenvalue («, ) by

cp(e, ) = lim sup (@, B), (0‘75))7

660””” <5 )

(4.2.26)

where ||- ||, is the p-norm (p > 1), and v, , ¥ are positive parameters. The following
result gives a computable formula of ¢, (e, ).

Theorem 4.2.11. The condition number cy(c, 3) can be expressed by

T
| (w2, 7,7 Ba)" | Jollalvl
4 , (4.2.27)

[y Az|? + |yH Bx|?

Cp(avﬁ) =

where q satisfies 1/p+1/q =1, and x and y are right and left eigenvectors of (A, B)
associated with A.

Proof. The proof is completed by the following three steps.

1. On ¢y(e, B) for p = 1. By Corollary 4.1.3 and (4.1.20), we have

p((@ ). (0.8)) _ (" BzlIEl +1y" AalIF]) =]yl
)

_|_
S T (T AP 1 [y BaP) )
max {vBlyHAfEI, vAlyHB:BI} |E|| |F|| s
|y Az|? 4 |yH Bz |? Ya ’ B ) -
(4.2.28)

On the other hand, if v, |y Bz| > y,|y” Az| then the equalities in (4.2.28) are
achieved for the specific perturbations

~ I zH ~
B= YT d FPeo;
[l ]l2]lyl2

if v, |y" Bx| < v5|y" Az| then the equalities in (4.2.28) are achieved for the specific
perturbations

N ~ Sypyxt

E=0 and F=_1BY_

I [l2llyll2

Consequently, using the definition (4.2.26) with p = 1 we derive the computable
formula of ¢1(«, ).
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2. On ¢,(a, B) for 1 < p < 0o. By Corollary 4.1.3 and (4.1.20), we have
p((& ), (e,

T
8)) H('YB -yHAI, ’}’A.yHBI> H llzll2|y |2
< q
g ly" Az|? + |y" Bx|?

T
FE F
¢ (e E
A B
tions

On the other hand, the equalities in (4.2.29) are achieved for the specific perturba-

+0(5)

(4.2.29)
<4

~ oy, oyxt? ~ Sy, ryxt
E:—’yAy and F = TBTY
zll2llyll2

with

 lzllzllyll2

1
q_1q T
(raly Bal)e H('YA y" Ba, -y Ax)

q4_1q T
. (’}’B’yHAlE’)p ' H (,YA ' yHBma B - yHAx) )
Consequently, using the definition (4.2.26) we derive the computable formula of
cp(a, B) for 1 < p < oo.

o=, y!Bx

T =gyl Az

14
q

q

3. On cxo(a, 8). By Corollary 4.1.3 and (4.1.20), we have
(@ B), (@ 8) _ (Tl Azl + v, ly" Be) llzllslly]
Y - (ly" Az|* + |y" Bx|?

0(5)

_|_
(4.2.30)
NS
T | S e < 6.
Ya B -

On the other hand, the equalities in (4.2.30) are achieved for the specific perturba-
tions

~

B 5,yAe—iarg(yHBac)y$H

yz'!
I [l2llyll2 '
Consequently, using the definition (4.2.26) with p = oo we derive the computable
formula of coo (@, ). 0

NR 4.2-3. Frayssé and Toumazou [39], and D. Higham and N. Higham [46]
consider finite non-zero simple eigenvalues of a regular pair (4, B). Let (A, 8) and
(&, ) be as in NR 4.2-2 with 88 # 0, and let

a ~
A=2, A=
5

o &
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Frayssé and Toumazou [39] define the relative condition number K (A) by

. A=)\
K(\) =lim 4.2.31
( ) 6_>OHUHO<>§5 ’)\’(S ( )
where v is the vector defined by (4.2.26), and || - || denotes any vector norm and

subordinate matrix norm. Frayssé and Toumazou [39, Lemma 3.1] prove that K ()

can be expressed by

(va + Avp)lllllyll”
|Ally" Bz| ’

where x and y are right and left eigenvectors of (A, B) associated with X, and || - ||”
denotes the dual norm of || - ||.

K(\) = (4.2.32)

D. Higham and N. Higham [46] define the componentwise condition number
cond(A) for a finite non-zero simple eigenvalue A = a/f by

A=

cond(A) :%13[1) |E’s1;p5q) Y (4.2.33)
|F| < oW

where ® and ¥ are two proper matrices. D. Higham and N. Higham [46, Theorem
3.2] prove that cond(X) can be expressed by

_ [y"[Bla] + [Mly" | Flz]

cond(A) Ay Bal

(4.2.34)

Moreover, structured condition numbers of simple eigenvalues of some special matrix
pairs (for example, Hermitian matrix pairs, Toeplitz matrix pairs, or banded matrix
pairs) are also studied by D. Higham and N. Higham [46, §4].

Note that the computable formulas (4.2.32) and (4.2.34) can be proved by ap-
plying Corollary 4.1.3. In fact, by (4.1.19), we have
‘yHEw — )\yHFw‘
18]

where (E, F) — 0. Combining (4.2.31) with (4.2.35) shows (4.2.32), and combining
(4.2.33) with (4.2.35) shows (4.2.34).

A=Al =

+0 (I, 7)|1?), (4.2.35)

NR 4.2-4. Consider the regular pair (A, B) with

1 0 1078 0

It is easy to see that (ag,B1) = (1,107%) and (a9,f2) = (2,1), or equivalently,
A = ai/B1 = 10® and Ay = ay/B; = 2, are simple eigenvalues of the matrix pair.
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Taking v, = [|All2, 75 = [Bll2 and || - || = || - [[2 in (4.2.32) gives the condition
numbers

K(\) =108, K(\) =2,

which mean that the eigenvalue Ao is well-conditioned but A; is ill-conditioned ac-
cording to the prevailing point of view. Observe that the generalized eigenvalues of
a matrix pair lie on the Riemann sphere. Hence, to use the chordal metric is more
appropriate for investigating perturbation behavior of generalized eigenvalues. By
(4.2.10), we have the condition numbers

crel(a1, B1) = 1, crel(a2, B2) = 0.6,

which show that both the eigenvalues (aq, 51) and (ag, 82) are well behaved in the
chordal metric sense.

NR 4.2-5. Let {&7,)1} be a simple deflating subspace pair. For estimates of
the condition number c¢(X7, V1) of (4.2.22), see Kagstrom and Poromaa [59] and [60].
The problem of how to compute or estimate the condition numbers ¢(X7), ¢(Y;) of
(4.2.20), as well as the partial condition numbers c4(X1), cp(X1), ca(Y1) and cg(V1)
of (4.2.21), efficiently, is a research problem.

4.3 Perturbation Bounds for Deflating Subspaces

A perturbation bound for simple deflating subspace pairs has been obtained by
Stewart [91, Theorem 5.7]. We now apply Theorem 3.3.5 to derive a new result.
The difference between the new result and Stewart’s result is that the new result
gives an individual perturbation bound for each subspace in a deflating subspace
pair, separately.

Theorem 4.3.1. Let (A,B),X = (Xl,XQ),Y = (Yl,YQ),Aij,Bij,Xl,yl be as
in Theorem 4.1.6. For E,F € C™*" let

En E Fi, F
H _ 11 12 H _ 11 12
YPEX = ( B B ) YIFX = ( B R ) (4.3.1)

where Eyy,Fiy € C™L. Moreover, let capg(X1), cans(V1) be the condition numbers
expressed by (4.2.25), and let

Ea

Fy

,  n=max{|Awzlz + | Er2ll2, [|Bizll2 + [[Fi2ll2} - (4.3.3)
F

Cx = \/[Cabs(-)(vl)]2 + [Cabs(yl)]Qa €= ||(E11, F11)||2 + , (4.3.2)

2

and

Y= Ey
Fy
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If
co (2071 +€) < 1, (4.3.4)

then there is a unique pair of l-dimensional deflating subspaces X, = R(X'l) and
Vi =RMY1) of (A+ E,B + F) such that

2Cabs (A1)
e+ (1 = co6)? — 4c2yny’

~ ~ 2Cabs(y1)’7
1) < | tan ©(Y1, V) |F < :
PN < [ tan O(Y1, Y1) [F < 1 —coe + /(1 — cu€)? — 4c2yn

p(X1, A1) < [[tan ©(Xy, X1)||F < -
(4.3.5)

where O(-,-) is defined by (1.3.1).

Proof. Let T be the linear operator defined by (4.1.24). Tt is easy to verify that

Z o\ . . .
W] sa solution of the equation

o 2 V- [ En n ~WEn+ EpZ \ [ W(Ai2+ En)Z (4.3.6)
w Fy —WF + FoZ W(312+F12)Z o
if and only if Z and W satisfy
I 0 A+ By Ao+ Eqo I 0 . *
-W I FEy Aoy + Foo Z I (0 ’
I 0 B+ Fy1 Big+ Fio I 0 . *
-Ww I F21 B22 + FQQ Z 1 o 0
The relations of (4.3.7) imply that the pair of the subspaces

wesb (1)) 3x(0(4)

is an [-dimensional deflating subspace pair of (A + E, B + F). Consequently, by
Theorem 1.3.3 (see the relation (1.3.16)), the problem of proving (4.3.5) is reduced

*  *

(4.3.7)

* %
N——

*

to the problem of finding a solution V?/* of (4.3.6) in a certain neighborhood of

the origin.
Let C1,C5y be the matrices defined by (4.1.37), and let
z=vec(Z), w=vec(W), es =vec(Fa1), for=vec(Fs),

z(z,w) =vec(—WE + ExnZ), y(z,w)=vec(—WF| + FyZ7), (4.3.8)
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and
u(z,w) = vec(W (A2 + E12)Z), v(z,w) = vec(W(Byz + Fi12)Z). (4.3.9)

Then the equation (4.3.6) can be written in an equivalent form

_ €91 z(z,w) \ [ u(z,w)
e K an ) * ( ) ) (W,w) )]
_ ea1 z(z,w) \ [ ulz,w)
v K I ) * ( ) ) ( e )] ‘
Define the functions f and A by
=) =)

Observe that f and h satisfy the conditions (3.3.21) and (3.3.22), where the scalars
e and 7 are defined by (4.3.2) and (4.3.3), respectively. Hence, by Theorem 3.3.5, if

(4.3.10)

4c2vyn

Cci€ < 1 and m

<1,

or equivalently, if c,,~,n, € satisfy the condition (4.3.4), then the equation (4.3.10)
*
has a unique solution 5)* (or equivalently, the equation (4.3.6) has a unique

*

solution ( fo* >) satisfying

. . ZCabs(Xl)7
Z¥p =22 < ’
127 =127l < === VI = c.e)? — 4y
2Caps (V1)
- s < abs .
W= llp = llwllz < — cee + /(1 — cre)? — dcZyn
Combining it with (1.3.12) and (1.3.16) shows the inequalities of (4.3.5). .

Remark 4.3.2. The estimates (4.3.5) imply that if ¢, (2,/77 + €) is sufficiently
small, or more intuitively, if ||(E, F)|| is sufficiently small, then

Itan ©(X1, X1)||r S cas(X1)7, [ tan (Y1, V1)llp S cans(D1)7- (4.3.11)
Note that by Stewart [96, Theorem 5.7], we have

(56050 )] s

F
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when [[(E, F')|| is sufficiently small, where ¢(X1,)) is defined by (4.2.22). From
(4.2.22)-(4.2.25) we see that the bounds (4.3.11) and (4.3.12) are, in general, qual-
itatively the same, but in some cases the result (4.3.11) is better (even much bet-
ter) than (4.3.12) if one needs to bound perturbations of each subspace of the pair
{X1,)1}, separately. The drawback of the bound (4.3.12) is that it is governed by
the ill-conditioning of the most sensitive subspace of the deflating subspace pair.

If the matrices E;; and Fj of (4.3.1) are known, then we can apply Theorem
3.3.4 to derive the following result on perturbation bounds for deflating subspaces
which will be used in §4.4.2.

Theorem 4.3.3. Let (A,B),X,Y,Ajk,Bjk,Xl,yl,E,F and E]kaF]k (],]{,‘ =
1,2) be as in Theorem 4.3.1, and Cy,Co be the matrices of (4.1.87). Moreover,

let
. VecE21 .
by = ||Cy ( vecFy, ) 27 c1 = ||Chl2,
o VecE21 _ (4313)
by = ||Ca ( vecFy, ) 27 c2 = ||Ca|2,
b:bl+627 c=c + ¢y,
and let
n = max {||A12 + E12ll2, ||Bi2 + Fiz||2},
4.3.14
e [ 1Enll2 (122212 (43.14)
[Fulle [1Fa2llz ),
If
4ben
ce < ]. and m < ]., (4315)

then there is a unique pair of deflating subspaces Xl = R(X1), V1 = R(Y1) of the
matriz pair (A+ E,B + F) such that X, e U™, Y, e U™, and

pr(X1, X)) < || tan©(X 1, X1)||F < by + c1 (e +n6?),
] ) (4.3.16)
pr(V1, V1) < [|tan ©(Y1, Y1)|lr < ba + co(eB + n5?),

where

2b
1 —ce++/(1 —ce)? — dbey

p= (4.3.17)

Proof. From the proof of Theorem 4.3.1 we see that it only needs to show the
following fact: Under the assumptions (4.3.15) the system (4.3.10) has a unique
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*

solution ( Z* ) satisfying

12*[|l2 < b1 + c1(eB +vB%),
(4.3.18)

lwlla < by + ca(eB +767),
where 3 is the scalar defined by (4.3.17).

Applying Theorem 3.3.4 to the system (4.3.10), and using the assumptions
(4.3.15), we get the estimates (4.3.18) immediately. O

Notes and References

NR 4.3—-1. The first perturbation bound for deflating subspace pair is obtained
by Stewart [91, Theorem 5.7]. Theorem 4.3.1 is proved by Sun [119, Theorem 3.4.1].

4.4 Backward Errors and Residual Bounds

4.4.1 Backward Errors

In this subsection we discuss several kinds of normwise backward errors which are
defined by using some information of approximate deflating subspaces and associ-
ated eigenmatrices of a matrix pair (A4, B).

4.4.1.1 The Backward Errors 77(9)()?1,5/1) and 6(“’)(2’31,571)
Let (A, B) be an nxn regular pair, and let {X;, Y } approximate an [-dimensional

deflating subspace pair of (4, B). By §1.9, we define the backward errors n® (X, 1)
and 6(“’)(2’(1,))1) of (A4, B) with respect to {X1,V1} by

n(X,01) = min H( 0? ) ', (4.4.1)
( 7 >6g
and
@& P) =  mi IE]
(X, ) = %nm M<w||F|| , (4.4.2)
P

where 0, w are positive parameters, u(-) is any absolute norm on R?, and the set G
is defined by

G= {( g > . B, FeC™™ (A+E)X, Cc ), (B+F)x, cj}l}. (4.4.3)
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The following result gives a computable formula of 77(9)(2?1, 571)

~ Theorem 4.4.1. Let (A, B) be an n x n regular pair. Let X, = R(V}) and
V1 = R(Uy) with Vi,U; € U™, and let

Ry =U(UFAV)) — AV, Rp=U(UfBV}) - BV (4.4.4)

be the residuals of (A, B) with respect to Vi and U,. Then the backward error
@ (X1, 1) can be expressed by

@ (X, 1) = H ( ng ) H : (4.4.5)

The expressions (4.4.4) and (4.4.5) imply that the backward error 77(92(2’?1,571)
defined by (4.4.1) is independent of the choice of the matrices Vi and U, whose
column vectors form orthonormal bases of X} and Y, respectively.

Proof of Theorem 4.4.1. From (4.4.3) it follows that a matrix < ? ) e gif

and only if ( E

r > is a solution to the equation

A+E\ o U4,
B+F | '\ B
FE .
7 > satisfies

E\- [ UA —AV
(£) = (L), "

Applying Theorem 1.5.1 to the equation (4.4.6) we see that the equation is

for some A1, B; € C**!, or equivalently, (

solvable, and any solution ( ) of the equation can be expressed by

F

E\ [ UA — AV \ 55 7 som
where Z, W € C"*".

Choose Vo, Us so that V = (V1,V3),U = (Uy,Usz) € U™ ™. Then from (4.4.7)
. A -0 A U zv,
umroo B\ _ U AV U2V,
0o Ut OF | 8B -U'BV)) 0U{'WV,
—0UE BV, OUF WV,
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By the definition (4.4.1) and Theorem 1.2.1, we have
- E E Ra ) -
X, ) = opt ith ort ) — [ A ) A 448
77( 1 yl) H( eFopt >H w1 ( Fopt RB 1 ( )
where R4, Rp are the residuals defined by (4.4.4).

Combining (4.4.8) with
Ra \om) Ra

shows (4.4.5). O
The following result gives a computable formula of 8) (X}, ;).

Theorem 4.4.2. Let (A,@),fa,f/l,jil,ﬁl, R4, Rp be as in Theorem /4.4.1.
Then the backward error ﬁ(“)(Xl,yl) can be expressed by

ﬂmmajg:M<wmxH>. (4.4.9)

The expression (4.4.9) shows that the backward errorﬁ(“)(é’a,yl) defined by
(4.4.2) is independent of the choice of the matrices V1 and U; whose column vectors
form orthonormal bases of A7 and )i, respectively.

Proof of Theorem 4.4.2. From the definition (4.4.2) and the proof of Theorem
4.4.1 we see that

(U1 A, — AV)VHE + Z(I — Vv

B, P) = min 1
Ay, By €C™ O\ |0 By — BW)VH + W (I — VAV
Z,W e cnxm
(4.4.10)
Observe the following facts: (i) By the proof of Theorem 4.4.1, we have
(U141 = AV + Z(1 = Vi) | > |[RaVT,
(4.4.11)

1(01B1 = BV + W (I = ViVi") | > | ReVi" I
(ii) The equalities in (4.4.11) are achieved when Ay, By, Z, W satisfy
A, =UAV,, B, =UIBVi, ZVy=WV,=0;
(iii) By the hypothesis p(-) is an absolute norm. (iv) From

oy (RaV") =04 (Ra), oy(RBV") =01 (Rp)
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it follows that B R
IRAVH| = ||Rall, IRV | = |Rall.

Hence, from (4.4.10) we obtain (4.4.9). 0.

We now define the relative backward errors (X1, V1) and 101 (X1, V1) of (A, B)
with respect to A7, Vi1 by
E
) F

N (X, Y1) =  min  —%F,
G
and
w30 = g | (1Ll
’ B IEN=/I1BlF )|,
P |

where G is the set defined by (4.4.3). From (4.4.1), (4.4.2), (4.4.5) and (4.4.9) we
get the computable formulas

- 1
Mret (X1, V1) = 7 AT E (4.4.12)
B

- 1 o Rallr/]|A
et (A, 1) = HAHFI@(HAHF/HBHF)(XI,yl) _ H( |!|!R2H§§”BI|I|§ )

and

(4.4.13)

2

Remark 4.4.3. Let {X;,);} approximate an 1-dimensional deflating subspace
pair of (A4, B), where X, = R(#1),Y1 = R(@1), and 1,4, are unit vectors. By
the formulas (4.4.12) and (4.4.13), the relative backward errors n%,(&, ;) and
nrel(é’a,jﬁ) of (A, B) with respect to X1, Y can be expressed by

Irall3 + [Ir5113
A
B

ra = (W Ao i — A%y, 7y = (@'Bo))a, — Biy

i (X1, V1) = lrall2/I|All 7 )

o Mre(X, M) = H( Irsll2/lBllF

)
2

F

where

are the residuals. Moreover, the optimal backward perturbation is

Eopt _ rA o
F opt B L
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4.4.1.2 The Backward Errors 77(9) (Xla?lajll,él) and ,B(w) (Xl,}}l,zil,él)

Let (A, B) be an n x n regular pair, and let X7, Yy be [-dimensional subspaces of
C". It is known that the pair {X}, )1} is a deflating subspace pair of (A4, B) if and
only if there are matrices X;,Y; € C**! and Ay, B; € C**! such that

Xl = R(Xl), yl = R(Yl), and AX1 = YlAl, BX1 = YlBl, (4414)
where (A1, By) is a regular pair.

The matrix pair (A;, B1) may be called the eigenmatriz pair of (A, B) associated
with Xl, Yl.

Let X,Y; € C"*F, rank(Xl) = rank(Yl) = [, and let (Al,Bl) be an | x [ regular
pair. Moreover, let {Xl,yl} with X} = R(Xy) and Y1 = R(Y1) approximate a
deflating subspace pair of (A, B), and (A;, B;) be the associated elgenmatrlx pair.
By §1.9, we define the backward errors 77( )(Xl, Yl,Al,Bl) and S (Xl, Yl,Al,Bl)
of (A, B) with respect to X1,Y; and (A;, B;) by

n(X,,Y1,A;,B)) = min H( E) , (4.4.15)
B OF
F
and
@K, Vi A By = : 1]
B (X1, Y1, A1, By) %nln u(wHFH , (4.4.16)
7 ex

where 6, w are positive parameters, u(-) is any absolute norm on R2, and the set K
is defined by

]C:{(E> . E,F eV, (A+E)X1:Y1A1, (B—{—F)XH:?iBl

F
(a4
The following result gives a computable formula of 7(?) (X, Y}, 41, By).
Theorem 4.4.4. Let
Ry=YA; — AX,, Rp=Y B, - BX, (4.4.18)

be the residual of (A, B) with respect to X1,Y, and (A1, By). Then the backward
error n")(X,,Y1, A1, By) can be expressed by

(4.4.19)

()(X17Y17A17B1 H( eRB >XT .
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Proof. From (4.4.17) it follows that a matrix < g ) € K if and only if ( g >

( g >X1 = ( g;‘ > : (4.4.20)

where R4 and Rp are the residuals defined by (4.4.18).

satisfies

Applying Theorem 1.5.1 to the equation (4.4.20) we see that the equation is

solvable, and any solution ( ) of the equation can be expressed by

F
E Ra ) - 7 -
( - > = ( R;‘ )XH ( W > (I-X,XD), (4.4.21)
where Z, W € C"*".

Take an orthogonal decomposition X, = UL, where U; € U™t and L € C*L.
Further, choose Uy so that U = (U, Uz) € U"*™. Then from (4.4.21)

(2)-{( ) (F)o)er

By the definition (4.4.15) and Theorem 1.2.1, we have

with
Eopt Ry —177H Rao \ &1t
= LU = Xy,
which shows (4.4.19). O

The following result gives a computable formula of 8 (X,,Y;, A, B).

Theorem 4.4.5. Let (A,Bi),):(l,l:/l,él,fh, RA,Rp be as in Theorem 4.4.4.
Then the backward error &) (X1,Y1, A1, By) can be expressed by

w||RpX]|

Proof. From the definition (4.4.16) and the proofs of Theorems 4.4.4 and 4.4.2
we get

S al
5(w)(X1’Y1,A1,Bl):M( IRaXy] ) (4.4.22)

I(RAL™Y, ZT0)| >

@(X,. Y, A B)) = mi J
FrL AL B = R “(wn(RBLl, W) |

Z,Wecnxn

o IRAZT (IR
wl|RpL™"| w||RpX]|
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The proof is completed. O

We now define the relative backward errors n;‘el(X' LY, Ay, Bl) and nrel(X' LY, Ay, Bl)
of (A, B) with respect to X1, Y7 and (A, By) by

E
n;kel(XlaYhAl)Bl) -

min i

9

(5)

Met(X1,Y1, A1, B1) = min 1B/ 1Al
( n ) IFll/|1Bllr
PR

where KC is the set defined by (4.4.17). From (4.4.19) and (4.4.22) we get the com-
putable formulas

ex

F F

and

?

2

v A 1 . i p Ry
nrel(XhYlaAlaBl) = 477(1)(X15Y17A1731) =

(3], ()

. 1 oo s IRAX]|| /Il Allp
Meet (X1, Y1, Ay, By) = ———UAIR/IBIR) (X, ¥y, Ay, By) = ( X
e( 1,141,441 1) ||A||F ( 1, 41,41 1) HRBXIHF/HBHF

(4.4.24)

E (4.4.23)

F

and

2

Example 4.4.6. Consider the regular pair (A4, B) with

15 70.0  79.96 —-20.001 —60.0000
0 0.7  39.92 0.000 19.9998

A= 30 139.3 120.00 —40.001 —120.0006
-15 -70.0 -79.92 9.999  —20.0002
300 2.1 120.04 —9.998 —0.0002

and
0.1 1.00 1.999  2.0001  3.00000
0.0 0.01 0.998  0.0000 —0.99999
B = 0.2 1.99 3.000 4.0001  6.00003
—-0.1 —-1.00 -1.998 -0.9999  1.00001
2.0 0.03 3.001 0.9998  0.00001

where B is nonsingular. Using the MATLAB file “qz” (which is an implementation of the
QZ method) to the pair (A, B), we get the computed results:
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where X1,Y; € R®*% | A1, By € R¥*% | =1,2,3,4,5. By (4.4.23) and (4.4.24) we compute
i (X1, Y1, Aq, Br) and nre (X1, Y1, A1, B1) which are listed in Table 4.1.

Table 4.1
k| mig (X1, Y1, A, By) | neet(X1, Y1, Av, By)
1 1.34 x 10716 1.35 x 1016
2 3.39 x 10~16 3.49 x 10~1°
3 3.88 x 10716 4.51 x 1016
4 3.94 x 10~16 4.97 x 10719
5 4.41 x 10716 6.46 x 1016

The results listed in Table 4.1 show that each computed {R(X;), R(Y1)} and associated
(fL , Bl) by applying the MATLARB file “qz” are an exact deflating subspace pair and an as-
sociated eigenmatrix pair of a very slightly perturbed matrix pair of (A, B); in other words,
the computation has proceeded quite stably.

4.4.1.3 The Backward Error 7(?) (Xl,fh,él)

Let (A, B) be an n x n regular pair. By the definition introduced in §4.1.2, an I-
dimensional subspace X is called an eigenspace of (A, B) if there is an [-dimensional
subspace ) such that

AX, C V1, BX, C ).

Let Xy = R(X;) C C", where X; € C™ ! and rank(X;) = [. Tt is known
(see Stewart and Sun [125, Chapter VI, Theorem 2.10]) that the subspace A] is an
eigenspace of (A, B) if and only if there is an [ x [ regular pair (A1, B1) such that

AX1B; = BX, AL (4.4.25)
The matrix pair (A1, B1) may be called an eigenmatriz pair of (A, B) associated

with Xl.

Let X; € ¢ and A, B, € C"! be given, where rank(X;) = [, and the pair
(A1, By) is regular. Moreover, let X, = R(X) approximate an eigenspace of (4, B),
and (A;, B;) be an associated eigenmatrix pair. By §1.9, we define the backward
error (X, A1, By) of (A, B) with respect to X, and (A, B;) by

O(x, A. B = ;
0% A B) = min [(2.6F)]| (4.4.26)

where the set L is defined by

L= {(E,F) . E,F €C™", (A+E)X\B) = (B+ F)XI/L} : (4.4.27)

The following result gives a computable formula of n(?) (X, A, B).
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Theorem 4.4.7. Let o o
R=BX1A, — AX 1B (4.4.28)

be the residual of (A, B) with respect to X, and (A1, By). Then the backward error
n® (X, A, By) can be expressed by
o xBY
1% A

Proof. From (4.4.27) it follows that a matrix pair (E,F) € L if and only if
(E, F) satisfies

n"(Xy, Ay, By) = (4.4.29)

X1y \ _
(E,0F) ( 1A, ) =R, (4.4.30)

where R is the residual defined by (4.4.28).

By the hypothesis the matrix pair (4;, B;) is regular, so we have rank ( gl > =
1

[. Applying Theorem 1.5.1 to the equation (4.4.30) we see that the equation is
solvable, and any solution (F,0F) to the equation can be expressed by

_— o - N
_ X1By _ X1By X1By
(E,0F) —R< %A, ) ny (I ( %A ) ( %A ) ) . (4.4.31)

where Z € C"*2n,

By the definition (4.4.26) and Theorem 1.2.1, from (4.4.31) we obtain

).

We now define the relative backward error nrel(f( 1A, Bl) of (A, B) with respect
to X1 and (A1, By) by

77(9)()21’141’31) = ||(E0pt7 HFopt)H

_—
X1B, 1
(Bopt, Fopt) = R( —%leh ) ( 0

which shows (4.4.29). 0.

with

= O

X, A, By) =
el (X1, A1, B1) A

<||EHF ||F||F>
IAllF" I Bllr

where L is the set defined by (4.4.27). Obviously, if we take || || = || [|F in (4.4.26),
then from (4.4.29) we get a computable formula of 7. (X1, 41, B1):

N
r( NAlrXiB:i
—IBllr X144 .

(4.4.32)

)
2

L 1 o
el (X1, A1, B1) = TAlr UAl=/IBIR) (X, Ay, By) =
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Remark 4.4.8. Let (a1,08;) be an approximate eigenvalue of (4, B), and
71 be an associated eigenvector. Then by (4.4.32), the relative backward error
Nrel (Z1, @1, B1) of (A, B) with respect to 1 and (&7, 1) can be expressed by

L [P
V0 PIBIE + 1521 Al1% 121l

Thel (1, 61, B1) = (4.4.33)

where .

r = dlBil — ,81145‘1
is the residual. Moreover, the optimal backward perturbation (Eopt, Fopt) in (4, B)
is expressed by

r (1140133, ~I1BIF(@a)")
(18 2BI3. + 1B 1Al ) ll2:4113

The formula (4.4.33) will be illustrated by the following example.

(Eopta Fopt

Example 4.4.9. Consider the regular pair (A, B) of Example 4.4.6. The eigenvalues of
(A, B) are 150, 70,40, —10, —20, and the associated eigenvectors are 655), eé ), (5), ef), 6&5),
the columns of the identity matrix I5, respectively. Using the MATLAB file “qz” to the
pair (A, B), we obtain the computed eigenvalues (&;,3;) and associated eigenvectors &;;
and then applying (4.4.33) we get

Mret (E1, G, Br) ~ 2.69 x 10718, et (F2, Gz, Bo) ~ 7.72 x 10717,
el (&3, &3, B3) ~ 9.70 x 10717, el (#4, A, Ba) & 6.30 x 10717, (4.4.34)

el (&5, Az, B5) ~ 1.55 x 10716

From (4.4.34) we see that each computed eigenvalue (d@;, 3;) and associated eigenvector ;
are an exact eigenvalue and an associated eigenvector of a very slightly perturbed matrix
pair of (4, B); in other words, the computation has proceeded quite stably.

4.4.2 Residual Bounds

Let an /-dimensional simple approximate deflating subspace pair X, = (‘71), YV, =
R(U,) of (A, B) be given, where Vi,U; € U™, Then by using Theorem 4.4.1 and
an appropriate forward perturbation result we can determine the accuracy of the
approximate deflating subspaces Xl, V.

Choose Vi, Us so that V = (‘71,172), U = (01,U2) € U"*". By the proof of
Theorem 4.4.1, the optimal backward perturbation (Eopy, Fopt) of (4.4.8) satisfies

- - Ul Aavy UF AV Ay —SaV

H 1 1 1 2 _ 11 AV2

A+ E = Z ~ = >

U ( + opt)V ( 0 UQ}[AV'Q ) ( 0 AQQ )

(4.4.35)

H [’1 L1 Ll LQ _ 11 BLQ
U B+ F V = = ~
( opt) ( 0 U BVQ > ( 0 BQQ >7
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and

- - 0 0 - . 0 0
" _ N H = ~
U EopV = ( UQHRA 0 ) ,  UTFonV ( UQHRB 0 ) , (4.4.36)

where R4 and Rp are the residuals defined by (4.4.4), and S4 and Sp are the
residuals of (A, B) with respect to Vi and U/’ defined by

Sy=UHAW)WVH —UFA,  Sp=UEBWVE -UEB

The relation (4.4.35) shows that the subspace pair {X;,);} is a deflating sub-
space pair of (A + Eqpt, B + Fopt). Moreover, if

A(A11, Bir) [ MAzz, Baz) = 0, (4.4.37)

then {221, 5/1} is a simple deflating subspace pair of (A + Eopt, B + Fopt).

The following result gives residual bounds for the approximate deflating sub-
spaces X; and ;. The result is obtained by applying Theorem 4.3.3 to the matrix
pairs (A + Eopt, B+ Fopt) and (A, B) of (4.4.35) and (4.4.36).

Theorem 4.4.10. Let {)El, 571} be an approximate simple deflating subspace pair
of (A4, B), where X, = R(V}), Y1 = R(U1), and V1,U, € U™*!. Define the matrices
fljj and Bjj by (4.4.85), and assume (4.4.37) is satisfied. Define the residuals
Ra,Rp, Sa,Sp by

Ry =UiAy — AW, Rp =UBy — BV,
Sa=Apvi"' —vl'A,  Sp=BuV -U/'B,
and define the matrices Cy,Cy by

C~’1 = ((B{I ® Infl)M_la (_A{l ® Infl)M_1> )

(4.4.38)
Ch = <(Il ® Bo)M™, (-, ® AQQ)M_I) ,
where i i N ) ]
M= AlTl ®BQQ - Bﬂ ®A22.
Moreover, let
5 - [ vec(U¥ Ry4) . -
b = ~ _
! Cr ( vec(UF Rp) 2’ & = ||Cillz,
= - [ vec(U¥ Ry4) . ~ (4.4.39)
by = ~ _
2 s ( vec(UF Rp) 2’ &2 = || Callz,




4.4. BACKWARD ERRORS AND RESIDUAL BOUNDS 173

and define 77 by
1 = max{[|Sall2, [|SBll2}- (4.4.40)

If

b < 1,
Then there is a unique pair of deflating subspaces X = R(V1) and Y1 = R(U1) of
(A, B) such that Vi,U; € U™*!, and

pF(Xl,.)E‘l) S ||tan®(V1,‘71)||F S 61 +61ﬁ/§2 = Txy,
(4.4.41)
pr(V1, 1) < |tan O (UL, T)||p < by + &0 = 7y,

where

2b
14 1/1 — 4béij
By the way, the relation (4.4.35) shows that the eigenvalues (a1, B1),..., (&, )
of (A11,B11), as | approximate eigenvalues of (A, B), are [ eigenvalues of (A +

Eopt, B+ Fopt). How to obtain a sharp error bound for the approximate eigenvalues
(&1, P1),-..,(ay, B;) is a research problem.

B = (4.4.42)

Example 4.4.11. Consider the matrix pair (A4, B) with

0 17 20 -15 18 2 1 -1 4 2
-6 -2 17 7T 4 -3 2 5 —6 -2
A= 0 3 -1 -11 5 |, B= 01 3 1 13 |,
0 0 2 -1 7 0 0 2 -6 12
0 0 0 -4 4 0 0 0 -4 4

and let
r; = (1.75, —0.25, —0.75, —0.25, —0.25)7, ¢, =(1, 0, 0, 0, 0)7,
v =1 /||zll2, wi =y, X =R(vi), Vi =R(w).

The 1-dimensional subspace pair {X1, Y } is a deflating subspace pair of (A, B) correspond-
ing to the eigenvalue A\; = 10. Suppose that we have an approximate deflating subspace
pair {Xl,yl} with A} = R(i‘l) and V| = R(]jl), where

1 = (1.74999, —0.24999, 0.7499999, —0.24999, —0.250001)7,
ji1=(1, =1.0x 1077, 1.0 x 1075, —=1.0 x 1076, 1.0 x 10~%)7.

Let
0y = 21 /|Z1ll2, @1 = G1 /Tl

A calculation gives

sin@(vy,71) ~ 5.0260 x 107%  sinf(uy, ;) ~ 1.4178 x 107°. (4.4.43)



174 CHAPTER 4. GENERALIZED EIGENVALUE PROBLEMS

Choose Vs and U, so that (41, V3), (41, Uz) € O>*%. Compute
Ay = af Aty Ay = UQTAV%
Bll = 17,,{3171, BQQ = UZTB‘;},
and - -
ra=u1Ay — Av, rp=u1 B — By,
sa=Anof —al'A, sp=DBusf —afB,
and compute Cy,Cy, by, &1, ba, &2, b, & and 7j by (4.4.38)—(4.4.40). A calculation shows that
4béij ~ 71745 x 1072 < 1.

Consequently, applying Theorem 4.4.10, there are unit vectors v and u such that R(v) and
R(u) are deflating subspaces of (A, B) corresponding to the same eigenvalue, and

tan @(v,01) < Ta, & 5.1609 x 1076,
(4.4.44)
tan @(u, 1) < Ty, ~ 1.4401 x 1075,

Comparing (4.4.44) with (4.4.43) shows that the estimates obtained by applying Theorem
4.4.10 are fairly sharp.

Remark 4.4.12. Let (d,B) be an approximate eigenvalue of (A, B), and & be
an associated eigenvector; i.e., BAHU ~ aBz. It may well be asked: How to determine
the accuracy of the approximate solution? A similar result to Theorem 2.4.10 can be
derived, but there is the same drawback as Theorem 2.4.10 that it needs to compute
the Moore-Penrose inverse of an n x (n + 1) matrix. Therefore, the problem of
how to find nearly optimal residual bounds with less effort for computed generalized

eigenvalues and eigenvectors is worth studying.

Notes and References

NR 4.4-1. Theorem 4.4.1 is proved by Sun [115].

NR 4.4-2. Cao [13] generalizes Theorem 2.4.5 to matrix pairs. Let (A, B) be
an n x n regular pair. By [13], a subspace pair {X1,V;} with &} = R(X;) and
V1 = R(Y7) is called an [-dimensional right deflation pair of (A, B) if there is an
[ x [ regular pair (A11, B11) such that

AX1 = Y1A11 and BX1 = Y1B11;

a subspace pair {Z;,W,} with Z; = R(Z;) and W; = R(W;) is called an I-
dimensional left deflation pair of (A, B) if

ZHA =AW and ZIB =B W{.
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Here Ai; and Bj; are called Rayleigh components of (A, B). For a given regular
pair (A, B), consider approximate right and left deflation pairs and the correspond-
ing Rayleigh components. Cao [13] shows that under certain hypothesis these ap-
proximate quantities for (A, B) are accurate ones for a perturbation matrix pair
(A—E, B —F). Furthermore, bounds for | F||r and ||F||r as well as || F||2 and || F'||2
can be expressed in terms of the corresponding norms of residual matrices.

NR 4.4-3. Let (A, B) be a definite pair of order n, and Z; be an n x | ma-
trix with full column rank whose column vectors span an approximate eigenspace
of (A, B). Some relations between the eigenvalues of the Rayleigh quotient matrix
pair (Z{TAZ,, ZH¥ BZ;) and those of (A, B) are given by Li [69]. Residual bounds
for the eigenvalues of (Z# AZ;, ZH BZ;) and for the approximate eigenspace R(Z)
are given by Sun [112].

NR 4.4-4. Let (A, B) be a regular pair, and let X and Z approximate a finite
eigenvalue and associated eigenvector of (A, B). Frayssé and Toumazou [39] define

the normwise backward error n(zZ, ) and the optimal backward error npt () by

i (A+ E)i = M(B + F)i,
n(Z,A) = min< € : ,
1E]| < ea, [[F|| < ef

and ~

. Ju#0, (A+ F)u = A(B + F)u,

Nopt(A) = min | € : ,
1E|| < ea, [|[F|| <eB

respectively, where o and 8 are positive parameters, and || - || is any vector norm
and subordinate matrix norm. By [39], 7(Z, A) can be expressed by

_« ||ABi — Af
(@A) = ———=——-,
(e + [AIB) [ 7]
and 7opt(A) can be expressed by
~ 1
Nopt (A) = = = .
(a+A18) |[(4 = 3B)~|

These results are generalized by D. Higham and N. Higham [46] to any mixed sub-
ordinate matrix norm. Moreover, D. Higham and N. Higham [46] give some results
on componentwise backward error and structured backward error for the generalized
eigenvalue problem.

4.5 Symmetric-Definite Generalized Eigenproblems

In the generalized eigenvalue problem fAxr = aBx it is frequently the case that
A,B € §"" and B is positive definite. By Golub and Van Loan [52, Chapter 8],
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this problem is called the symmetric-definite generalized eigenproblem. Since the
eigenvalues of this eigenproblem are finite, we can write the problem as

Az =ABz with A,B € 8"" and B > 0. (4.5.1)

It is known that the eigenvalues of the problem (4.5.1) are real, and there is a
matrix X € R™ "™ such that

XTAx =A, XTBX =1, (4.5.2)

where A = diag(A1,...,Ay), and Aq,..., A\, are the eigenvalues of the eigenvalue
problem (4.5.1). (See Golub and Van Loan [41, §8.7.2] for numerical methods for
computing the matrices X and A.)

In this section we investigate perturbation properties of multiple eigenvalues and
associated eigenspaces of the symmetric-definite generalized eigenproblem (4.5.1).

4.5.1 Local Behavior of Multiple Eigenvalues

Let p = (p1,...,pn)T € RN. Suppose that A(p), B(p) € S™*" are real analytic
matrix-valued functions of p in some neighborhood B(p*) of the point p* € RN and
B(p) > 0 for any p € B(p*). Without loss of generality we may assume that the
point p* is the origin of RY. The eigenproblem

A(p)xz(p) = AMp)B(p)z(p), p € B(0) (4.5.3)

arises often in structural design, and it is often desirable to be able to estimate
the sensitivity of the available designs A(p) to changes in the system parameters

b15---,PN-

If \; € R is a simple eigenvalue of the matrix pair (A(0), B(0)), then by using the
same technique described in §4.1.1 we can prove that there is an analytic function
A1(p) in some neighborhood By C B(0) of the origin that is a simple eigenvalue of
the matrix pair (A(p), B(p)), and A1 (0) = A;. Moreover, we can derive the formulas
of the partial derivatives of Ai(p) with respect to each p; at p = 0.

However, if A; is an eigenvalue of (A(0), B(0)) with multiplicity r > 1, then the
situation becomes complicated. Rellich [86] first gives an example to show that the
local behavior of a multiple eigenvalue is different from that of a simple eigenvalue
for a symmetric eigenvalue problem depending analytically on several parameters.

The following example is a slight modification of the example given by Rellich
[86] (or see Rellich [87, p.37]).
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Example 4.5.1. Consider the matrix

1+2p; + 2ps D2 T 2
A(p) = . p=(pi,p)T €R2.

Here we assume B(p) = I. It is easy to see that the elements of A(p) are real analytic
functions of p € R?, the matrix A(0) has the eigenvalue 1 with multiplicity 2, and the
eigenvalues of A(p) are

M) =1+p1+2p +1/07 +03,  Aa(p) = L+p1 +2p2 — 1/ P} + 5.

Obviously no arrangement of these eigenvalues could make them analytic functions of p in
some neighborhood of the origin, even no arrangement of these eigenvalues could make them
differentiable at p = 0.

Let A1 be an eigenvalue of (A(0), B(0)) with multiplicity ». We shall prove in
this subsection that there are r continuous functions A (p), ..., A+(p) in some neigh-
borhood of the origin that are the eigenvalues of (A(p), B(p)) satisfying As(0) = Ay
for s = 1,...,r, and every As(p) has directional derivatives at each point of the
neighborhood. Moreover, we shall derive expressions of the directional derivatives.

Before the statement of our result (Theorem 4.5.2) we introduce the definition
of directional derivatives. Let A(p) be a function defined in an open set S C RY.
The directional derivative DyA(p*) of A(p) at p* € S in the direction v is defined by

A(p* - Ap*
DyA(pY) = Tim 2TV ZA@T) (4.5.4)

7—0 T

where v € RY with ||v||s = 1, and 7 is a positive scalar.

Theorem 4.5.2. Let p = (p1,...,pn)" € RY, and let A(p), B(p) € S™*" be
real analytic functions of p in some neighborhood B(0) of the origin of RY, where
B(p) > 0 for p € B(0). Suppose that there is a matriz X = (X1, Xo) € R™™ with
X1 € R™T such that

XTA0)X = ( ”\BI’“ X ) , XTB(0O)X =1, M €A (A). (4.5.5)
2
Then there exist r continuous functions A\ (p), ..., Ar(p) in some neighborhood By C

B(0) of the origin that are the eigenvalues of the eigenproblem (4.5.3) satisfying
)\5(0):)\1, 821,...,’1",
and for any v = (v1,...,vn)T € RN with ||v|ls = 1 there is a permutation © of

{1,...,7} dependent on v such that

N
Dv)\s(O) = >‘7r(s) (Z I/J'XlTSj(Al)Xl) s s = 1, sy Ty (456)
j=1
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where A\ (+), ..., A\r(-) denote the eigenvalues of an r X r matriz, DyAs(0) denote the
directional derivatives of As(p) at p = 0 in the direction v, and the matrices S;(A\1)
are defined by

Sj()\l) = (%) -\ (ag—p(]p)> , j=1,...,N. (4.5.7)
p—0 p=0

Proof. The proof consists of the following three steps.

1) Let
) ~ 5 T
Alp) = XTA(p)X = < ﬁ;gi 1%212(18) )
(4.5.8)
) . 5 T
mm=x%@ﬂ=(gﬂgl%$>>

By using the implicit function theorem (Theorem 1.6.2) and the same technique
described by the proof of Theorems 4.1.1 and 4.1.6 we can prove that there exists a
unique pair of real analytic matrix-valued functions Z(p), W (p) € R("~")*" in some
neighborhood By C B(0) of the origin of RY satisfying Z(0) = W (0) = 0 such that

the matrix

I owe)?'\ - I wo)T\ [ Ak o
(Z(p) f>A(p)<Z(p) f>_< 10p Az(}?))’

(4.5.9)
I owe?r\ - I W'\ _ (B o
( Z(p) I ) Blp) < Z(p) I ) B < 10 Bs(p) )
where A;(p), B1(p) € S™*", B1(p) > 0 for p € By, and
Ai(p) = A1 (p) + Z(p)" Ao1(p) + A21(0)T Z(p) + Z(p)" Asa(p) Z(p), ( |
4.5.10

Bi(p) = Bui(p) + Z(p)" Ba1(p) + Bai(p)" Z(p) + Z(p)" Baz(p) Z(p).

From (4.5.9)
A(p) ( pr) ) = B(p) ( pr) >B1(p)‘1A1(p)-

Combining it with (4.5.8) and writing

&@:X(2b>’ (4.5.11)
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we get
A(p)X1(p) = B(p)X1(p)Bi(p) " A (p) (4.5.12)
and
A(0) = M\, Bi(0)=1I., X;(0)=X. (4.5.13)
From (4.5.12)
Bip) ' Aip) = [Xi0)"BOXi(0)] | [X1(0)" AD) X1 ()] (4.5.14)

Let
A(Bi(p) T Ai0)) = 0)}imy, pE By,

Then the relations (4.5.5), (4.5.8) and (4.5.9) show that
)\S(p) € A(A(p)uB(p))a )\5(0) :>\17 S = 1,---,7’,

and A1(p),..., \r(p) are near \; provided that By is sufficiently small.

2) Let v € RN be any fixed direction. Take p = 7v in which 7 € [—¢,¢] and ¢ is
a small positive scalar such that 7v € By for 7 € [—€,€]. Let

ps(T) = As(1v),  s=1,...,r (4.5.15)
and R
Hy(p) = Bi(p) "*Ai(p)Bi(p) /%, Hi(r) = Hi(rv). (4.5.16)
Then clearly

AMHL(T)) = {ps()}imr, T E-eel ps(0) = A1 Vs,

But, on the other hand, since H(7) € S™*" is real analytic on [—¢, €] and H;(0) =
Aily, by the Rellich theorem (see below NR 4.5-3) there is a positive scalar €1 < €
and real analytic functions A\ (7),..., A (7) on [—€1, €1], such that

~

AH (1)) = {5\1}(7’)}::1, T € [—er,e1], A(0) = A Vi

Observe the following facts: (i) Since the zeros of a real analytic function of one
real variable are isolated (see, e.g., Cartan [15, p.41]), we have

Xi(r) # 5\]’(7—) V7 e (0,e], i#J

provided that (1) # j\j(T) for 7 € (0,€;1] and the positive scalar €; is sufficiently
small; (ii) The functions pi(7),...,ur(7) are continuous on [0,€;]; (iii) The sets
{1s(T)Y_, and {\/(7)}'_, are just the same for any point 7 € [0, 1], and there is a
one-to-one correspondence between the elements of the two sets. Hence, there is a
permutation 7 of {1,...,r} depending on the direction v such that

ps(T) = Ap(sy (1) Vs, 7 €[0,€1]. (4.5.17)
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Consequently, from (4.5.4), (4.5.15) and (4.5.17), we get

DoA(0) = tim 22T =20 e 1) = 15(0)

70 T T—0 T
) ) . (4.5.18)
A - A dX
. w()(T) = An()(0) _ ( 7r(s)(7-)> Ce—lr
T7—0 T dr o
3) Let )
Gi(p) = Bi(p) ' Ai(p), Gi(r) = Gi(7v). (4.5.19)

Combining it with (4.5.16) shows
MG (7)) = MH (7)) V7 e0,q.
By (4.5.19), (4.5.5), (4.5.7), (4.5.11), (4.5.13) and (4.5.14), we have

dGy (t dGy (Tv N G (
() (54) -0 (5)_ -t

Opj
(4.5.20)
which shows R
dGl(T) c ST
dr 7=0 ,
and hence there is a matrix W7 € O™*" such that
il
WlT < GZ;(T)> Wy = diag(d1,...,0,), 01 <--- <4y (4.5.21)
T
7=0

We now write )
WG (M)W = (va(7)) 1 <pi<r »
in which the functions 74 (7) are real analytic and so may be written as the following
convergent power series:

Vit (T) = 'y,(g[l)) —|—’Y,$)T + ’)/,S)TQ +e, kI=1,...,m
From R
(WlT el (T)Wl)T: =M1,
and .
[d(WfGMWl)] ()
== W1 Wl
dr dr 0
7=0 T=
as well as (4.5.21), it follows that
A il k=1, o if k=1,
0) _ (1) _
Vel = et =

0 otherwise, 0 otherwise.
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Therefore
Mo ST ) AT i k=1,
() = (4.5.22)
7,2?72 + 71&?)73 + .- otherwise.
Assume that
51 :"':57‘1 <57‘1+1 :"':57‘1—1—7‘2 < e
(4.5.23)
< 5T1+---+Tq_1+1 == 6T‘1+---+Tq_1+7“q7 r+---+ Tq =T,
and write
67‘1 = Wi, 57"1+T2 = W2, ... 767‘1+---—|—7‘q = Wgq; (4524)
then by the Gerschgorin theorem (see below NR 4.5-5) from (4.5.22)-(4.5.24) we
see that there are precisely ¢ circular disks Dy, ..., D, with centers
)\1+w17, ey )\1+qu

q
and with radii of magnitude O(7?) such that the union |J D; contains all of the
i=1
eigenvalues A\i(7),..., A (7). Besides, the disks Di,..., D, are mutually disjoint
provided that 7 belongs to a sufficiently small segment [—e€1, €], and in such a case
every disk D; contains exactly r; eigenvalues which may be written as the following
convergent power series:
(2) 2, (3 3 —
Al +w]7—+g7'1++7"]_1+k7— +g 1+,,,+7.j_1+k.7— + trty k — 1,...,Tj, (4.5.25)

T

where 7 € [—e1,€61], j=1,...,q, and 7y = 0.

Combining (4.5.25) with (4.5.23) and (4.5.24), we may rewrite the expressions
of (4.5.25) as

5\t:)q+5t7+g§2)72+g§3)73+---, t=1,...,r.

Consequently, we obtain

(dAt(T)> =6, t=1,...,r (4.5.26)
7=0

Combining (4.5.18) with (4.5.26), (4.5.21) and (4.5.20), shows the formulas (4.5.6).
a

From Theorem 4.5.2 we get the following corollary.
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Corollary 4.5.3. Under the hypotheses of Theorem 4.5.2, there are permutations
7 and @ of {1,...,r} such that the relations

D 0 As(0) = Mg (XTS;00X1) D As(0) = Aprgs) (XTS5 (M) X1)
J J

are valid for 5 =1,...,N and s = 1,...,r, where the functions A1 (p), ..., \-(p) and
Sj(A1) are described in Theorem 4.5.2. Especially, if r = 1 then the eigenvalue i (p)
has the partial derivatives with respect to p; at the origin

(aAl(p)> =z{S;(A)z1, j=1,...,N, (4.5.27)
apj p=0

where 1 is the associated eigenvector with A1 satisfying (4.5.5).

Let A(p), A1(p), A2(p) be as in Example 4.5.1. Straightforward calculations show
that, for any direction v = (cos #,sin#)” € R? with 6 € [0,27), the functions A (p)
and A(p) have the directional derivatives at p = 0:

DyX1(0) =cos@ +2sinf +1, DyAa(0) =cosf +2sinf — 1. (4.5.28)

On the other hand, applying Theorem 4.5.2 we have

2 0 i 2 1
D20 =A(0089(o 0>+Sm9<1 2))

= {cos0 +2sinf + 1, cosf +2sinf — 1},

which coincides with (4.5.28).

4.5.2 Structured Condition Numbers

Let the symmetric-definite generalized eigenproblem (4.5.1) have a multiple eigen-
value A\; of multiplicity r, and let (A, B) be slightly perturbed to a symmetric pair
(A, B). Then, in general, \; will spawn r simple eigenvalues, and the new eigen-
values will be found at varying distance from the original eigenvalue. For example,
the eigenproblem (4.5.1) with A = diag(2,2000) and B = diag(1, 1000) has a double
eigenvalue A\; = 2. But one of the eigenvalues of the matrix pair (A4, B) is usually
much more sensitive than the other. Therefore, it may well be asked: How to make
this observation precise?

In this subsection we shall define r condition numbers of the multiple eigenvalue
A1 that measure the sensitivity of A; to small perturbations in A and B, and derive
explicit expressions of the r condition numbers.
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By the hypothesis the eigenproblem (4.5.1) has a multiple eigenvalue A; of mul-
tiplicity 7. As a consequence, there is a matrix X € R™*™ such that

Al 0

T —
XAX_<0 Ay

) ., XTBX =1 X\ ¢€XA4y). (4.5.29)

Let &, ¥ € """, and let
Alp) = A+p®, B(p)=B+p¥, peR. (4.5.30)

Moreover, let A(p), B(p) be the matrices of (4.5.8). Then from the proof of Theorem
4.5.2 we see that there exist real analytic matrix-valued functions Z(p), W(p) €
R=1X" in some neighborhood By of the origin of R such that Z(0) = W(0) = 0
and the relations of (4.5.9) hold, in which A;(p) and Bj(p) are expressed by (4.5.10),
and Bi(p) > 0 for p € By. Observe that

A1(0) = ML, Bi(0) =L, A(Bi(p)™ A1(p)) C MA(), B(p))-

Hence, the multiple eigenvalue A\ of (A4, B) will be perturbed to the eigenvalues of
Bi(p)~'Ai(p) as the real symmetric pair (A, B) is perturbed to (A(p), B(p)). From
(4.5.8), (4.5.10), (4.5.29) and (4.5.30) it follows that

Ai(p) = M1 + pXT®X, + O(p?), Bi(p) =1, + pXI X, + 0p?),
which imply
Bi(p) ' Ai(p) = M, +p (XTOX1 = MXTUX1) +0(?), p—0.

We now assume that the real symmetric pair (A, B) is slightly perturbed to a
real symmetric pair (A + F, B + F). Let

p=|(E,F)l2, ®=E/p, ¥=F/p

Then the above discussion shows that under sufficiently small symmetric perturba-
tions F and F' in A and B, the multiple eigenvalue A1 of (A, B) will be perturbed
to

Al —|—>\1(H),...,)\1 —i—)\T(H),

where

H=X{EX; - X FX, +0 (|[(B, F)3) € §7, (4.5.31)
and \;(H) are the eigenvalues of H satisfying
()] > - > ()] (45.32)

Hence, the multiple eigenvalue A; of multiplicity r can have r condition numbers
that reflect the different sensitivities of its progeny.
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Referring to §1.8, we define the condition numbers ¢;(A1) of A1 by

i (H
¢j(A1) = lim sup M, j=1,...,7 (4.5.33)
6—0 E|l» ’7(5
B 2

where «, 3,7 are positive parameters, and the eigenvalues \;(H) satisfy (4.5.32).
By (4.5.31), the definition (4.5.33) can be equivalently stated as

MN(XT(E - MF)X
ci(h) = sup A3 (X7 ( 1F) 1)|, j=1,...,m (4.5.34)

15l v
(2 )
B

where \;(XT(E — A\ F)X1) are the eigenvalues of X{ (F — A\ F)X; satisfying

<1
2

MXT (B = MF)X1)| > > [\ (X (B - MF)Xy)).
The following result gives another characterization of the condition numbers

Cj ()\1)

Theorem 4.5.4. Let cj(\1) be the condition numbers of the multiple eigenvalue
A1 defined by (4.5.34), and let X1 have the singular value decomposition

&1
_ Xo \ o1 _ .
X1 =U 0 V't with X, = . , & >-->¢& >0, (4.5.35)
&
where the matrices U = (Uy,Usy) and V' are real orthogonal, and Uy € O™*". Then
¢j(A1) can be expressed by

ol +A1p? .
Cj()\l) = Uj(X()WX()), ] = 1,...,’1", (4.5.36)

=X sup
Y W e §rxr
W2 <1

where 0j(XoW Xq) are the singular values of XoW Xq satisfying
O'l(XQWXQ) Z e Z O’T(X()WX()).
Proof. Define d;(\{) by

o2 + A3p2 ‘
di(M) = ———— sup i (XoWXo), j=1,...,m (4.5.37)

B Y W e S'<r
Wil <1
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Then we only need to prove ¢;(A1) = d;(A) for j =1,...,7.

We first note that by (4.5.35) we have

N (XT(E = MF)X1) = )\( XU (E — M F)U1 Xo). (4.5.38)

5y

Then the matrix W € 8™ defined by

Suppose that

<1.

2

_ U (E - M F)U;

w \/72 (4.5.39)
a? 4+ A\ip2?
satisfies
1 o T/ B2 IE]l2
||W||2g4< ) ( q )s ( ﬁ) <1,
Jo2+2p2 \ M8 gt 5= /1,
and

IN(XT(E - MF)X1)| = /a2 + X282\ (XoW Xo)| (by (4.5.38) and (4.5.39))
=/ + X% (XoW X)), j=1,...,m
Combining this fact with (4.5.34) and (4.5.37) shows ¢;(A1) < d;(A1).

Conversely, for any W € S"*" satisfying |W |2 < 1, the n x n real symmetric
matrices F, F' defined by

E:ngU(V(;/ 8>UT, F:qu(Vg 8>UT

with
6= a42 = —sign()\l)|)\1|52
Jo? + 2262 Va2 + B2
satisfy

JIEIES
H( 1 ) =Wl <1 and UNE - MNF)U, = /a2 + \252W.
B

2
Combining this fact with (4.5.34), (4.5.37) and (4.5.38) shows d;(A1) < ¢;(A1). Con-
sequently, ¢; (A1) = d;(A1). O
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The following result gives computable formulas of the condition numbers ¢;(A1).

Theorem 4.5.5. Let (A, B), X = (X1, X3) and A1 be as in (4.5.29), and let X,
have the singular value decomposition (4.5.35). Define m; by

m; = min kEi—k+1, ) =1,...,m, 4.5.40

J 1§k§[7%]§ f] +1 J ( )
where %] denotes the greatest integer not greater than % Then the condition
numbers cj(A1) defined by (4.5.34) can be expressed by

ol + A8 .
Cj()\l) =Ty, ] = 1,...,’1". (4.5.41)

v
Proof. For an arbitrarily fixed integer j on [1,r], define w; by
Wwj = sup Uj(X()WX()). (4.5.42)
W E ST‘X’I”
W2 <1

Then by (4.5.36) we only need to prove w; = ;.

Let W € 8™*", and ||W||2 < 1. Then by Theorem 4.5.16 (see below NR 4.5-9),

we have

5 (XoW Xp) Slfglljgj{ak(XoW)ﬁj—k+1}

< miil {(min ilaklﬂ(W)) fjk:ﬂ}

1<i<k

< min i = T;.
< 1§k§j{fk§j k1) = T

Combining it with (4.5.42) shows w; < 7;.

On the other hand, the r x r matrix W; = diag(W7),0) with

1
1
w0 = c §ixi
1
1
satisfies W; € 8™ | ||Wj|l2 =1, and
&1&;
§28j-1
X[)WjX() = dlag , 0 5

§i—18&2

i1
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which implies 0;(XoW;X() = 7;. Combining this fact with (4.5.42) shows w; > =;.
Consequently, w; = ;. O

Remark 4.5.6. Theorem 4.5.5 implies that if A; is a simple eigenvalue of the
eigenproblem (4.5.1), and if z; is an associated eigenvector satisfying z{! Bz, = 1,
then the simple eigenvalue A\; has the condition number ¢(A1), and

2+>\22
wmzqun=£17ﬂi

= = 11in (4.5.34) and (4.5.41), we get the
1) o he multiple eigenvalue A1, which can be

1 [[5-

Remark 4.5.7. Taking o = 8
A

absolute condition numbers c (

expressed by
SO =L+ N, =1 (4.5.43)

where 7; are defined by (4.5.40). Taking o = ||Al|2, = ||Bl|2 and v = |A| in
(4.5.34) and (4.5.41), we get the relative condition numbers c( )(Al) of the multiple
eigenvalue Ay (if A1 # 0), which can be expressed by

" IANI3 + AZIIBIIS :
g el (A1) = \/ ] 5,  j=1,...,rm (4.5.44)

Moreover, from the definition (4.5.34) it follows that for sufficiently small perturba-
tions E, F € §™*"  the matrix pair (A + E, B + F) has the eigenvalues Ay,...,\,
such that

Y b b .
% =Ml S OOVIER +IFIZ = 8%, G=1,...,n, (4.5.45)

and

BYEN < (rel) <||EH2> <||F||2)2 (e .
] S (M) 14l + 1Bl =47, j=1...,r,  (45.46)

where it is assumed that A; # 0 in (4.5.46). The scalars ﬁj(.abs) and ﬁj(.rel) are the
first order absolute and relative perturbation bounds for the multiple eigenvalue Ay,
respectively.

Remark 4.5.8. Let 7; be the scalars defined by (4.5.40). Then it follows from
&L > >& > 0that my > -+ > m, > 0. Moreover, it can be proved that if

51 = ... :é’m >€m+1 > .. >£m+l
for some integer [ satisfying m + 1 < r, then

Tl =" =Ty > Mgl > -0 > Tyt
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and by (4.5.41)—(4.5.46) we have

c1(A1) = =cm(M) > ey (M) > - > empr(M1),
B = = B > B > > B,
B — = gl s gl s 57(::2

Remark 4.5.9. From the proof of Theorem 4.5.5 we see that for every integer j
on [1,r] there is a matrix W; € §™*" with ||W}||2 < 1 such that o;(XW;Xo) = 7,
where the scalars m; are defined by (4.5.40). It is worth pointing out the following
facts:

(i) If the singular values &; of X (see (4.5.35)) satisfy & = -+ = &, for some
integer m on [2,r], then there is a matrix W € 8" (e.g., W = diag([,,,,0)) with
W2 < 1 such that 0;(XoWXp) =m; =& forall j=1,...,m.

(ii) If & = - -+ = &y > &y for some integer m on [1,r — 1], then there is no a
single W € 8" with ||[W||2 < 1 such that

Uj(X()WX()) =T for j=1,...,m+ 1. (4547)
We now prove the fact by contradiction. Assume that the relation (4.5.47) holds for
some W € 8" with ||[W]|s < 1. Then by (4.5.40) and & = - - = &, we have

m+1 m+1

II oi(XoWXo) = ] 7 = & & (4.5.48)

j=1 3=1

On the other hand, by Theorem 4.5.17 (see below NR 4.5-9) 0,(Xo) = &5, 0;(W) <
1,and & =+ =& > &ny1, We have

m—+1 m—+1
[I oi(XoW Xo) < T 0j(Xo)oj(W)aj(Xo) < &m0 < €™ e,
which contradicts the equality (4.5.48). The proof is completed. |

Combining the above-mentioned fact (ii) with Theorems 4.5.4 and 4.5.5 shows
that if the singular values &1,...,&, of X; are not mutually equal, then there is no
a single W € §™*7 with ||W||2 < 1 such that

\/ a2 + A2p2
—0j (XOWXO)

v

ci(M) = for j=1,...,7

Consequently, the condition numbers ¢; (A1), .., ¢ (A1) may be called the worst-case
condition numbers of the multiple eigenvalue A;.
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We now use a simple numerical example cited from [97, p.300] to test our results.

Example 4.5.10. Consider the eigenproblem (4.5.1) with
2 0 1 0
A= ( 0 2000 ) B = ( 0 1000 ) : (4.5.49)

XTAX = diag(2,2), X'BX =1,
where X = diag(&;, &) with the singular values

& =1, & =1/v/1000 =~ 0.0316.

We have

Obviously, the real symmetric pair (A, B) has a double eigenvalue A; = 2. It is known (see
Stewart and Sun [97, p.300]) that one of the eigenvalues is very sensitive to perturbations
of order 0.1, whereas the other is not. We now use the results of this subsection to analyze
the phenomenon.

By (4.5.40), (4.5.43) and (4.5.44) we have

AP () = /1 + 2262 ~ 2.2361,

c;abs) ()\1) =/1+ )\%5152 ~ 7.0711 x 10_27

dre () = VAL HAABIE 2y 4y49 5 107,

! | Al

i AR+ X208
C; el)()\l) — || ||2|/_\|'1| 1|| ||z£1€2 ~ 4.4721 % 10.

Let (E, F) be any symmetric perturbation satisfying ||E||> = ||F||s = 0.1, and let Ay, Ay be
the eigenvalues of (A + E,B + F). Then by (4.5.45) and (4.5.46) we have the first order
perturbation estimates

A= M| S8 431623 x 1078, Ay — M| S AU & 1.0000 x 102,
5 <l (4.5.50)
| A1

Aa — A

< B8 ~5.0000 x 1073,
| AL

< B ~ 15811 x 107,

From the estimates of (4.5.50) we can understand why one of the eigenvalues of the matrix
pair (4.5.49) is usually much more sensitive than the other. Hence, the results of this sub-
section give an answer to the open research problem proposed in [97, p.300].

Remark 4.5.11. For the multiple eigenvalue A\; we can use the Frobenius norm
| - ||7 to define the condition numbers ¢;(A1) by

A (H)]

¢i(A1) = lim sup "

0—0 1Bl r
‘( Rals )
B
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where H is the matrix of (4.5.31), the eigenvalues A;(H) satisfy (4.5.32), and «, 3,
are positive parameters. A conjecture: The condition numbers ¢;(A1) can be ex-

pressed by
Vo + A2B2
é‘)\l = = Ty, j:]_’...,’l”,
i o
where the scalars m; are defined by (4.5.40), in which & for k = 1,...,7 are the

singular values of X1 (see (4.5.35).

4.5.3 Structured Backward Errors

Let A1 be a nonzero eigenvalue of the eigenproblem (4.5.1) with multiplicity r > 1,

and z1,...,x; be associated eigenvectors. Suppose that Ai,..., A, are approxima-
tions of A1, and Z,,...,Z, are associated approximate eigenvectors, among which
Z1,...,T, are linearly independent. Then there is a question: Are A,..., A and
Z1,...,T, the eigenvalues and associated eigenvectors of a “nearby” generalized sym-
metric eigenvalue problem?

In this subsection we suggest a measure for appraising the quality of the approx-
imate solution {Zy,...,Z,; A}, where X is defined by

A=A+ +A)/r,

and assume X # 0.

Let N
Xy = (Z1,...,2).

By §1.9, we define the backward error 8)(X ,A) by

D (T R — mi 1Bl
B (X1, N) _mln{H< Wl|F s )

where w is a positive parameter.

E, F e 8%,
(A+E)X; = \B+F)X; }  (45:50)

2

For deriving a computable formula of (@) (X 1, 5\), we first consider a special case
where only the matrix A is perturbed. Define the corresponding backward error

Bo(X1,X) by
Bo(X1,\) = min{||E|]z : E€S8™", (A+ E)X, = ABX,}. (4.5.52)
Take the QR factorization of X;:
X1 = QiRy, (4.5.53)

where Q1 € O™*" and R; € R™" is upper triangular and nonsingular. The follow-
ing result gives a computable formula of Gy(X1, A).
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Theorem 4.5.12. Let By(X1,\) be the backward error defined by (4.5.52), and
let R be the residual defined by

R=(AB - A)Q. (4.5.54)

Then o
Bo(X1,A) = || Rll2. (4.5.55)

Proof. Using the QR factorization (4.5.53), the constraint (4 + E)X; = ABX,
in (4.5.52) is equivalent to
EQ, = R.

Consequently, the definition (4.5.52) can be written

Bo(X1,3) = min || 5], (4.5.56)

where the set Gg is defined by
Go={E e€S8"" : EQ, =R}.

Choose Q2 so that Q = (Q1,Q2) € O"*". By Theorem 1.5.2, Gy # 0, and any
E € Gy can be expressed by

E=RQT + Q1RT - Q1RTQ:1QT + Q.01 TQ.0Q7,
where T' € §"*™. Thus, from (4.5.56)

Bo(X1,A) = min 1QTEQ|2 = ooin

= |Rll2, (4.5.57)
egnxn

2

QTR R"Qy
QIR QITQ:
where we have applied Theorem 1.2.3, and used the fact that the matrix T =

QW QY satisfies T € S™™ and QI TQy = W for any W € Sln=r)x(n=1) The proof
is completed. O

Define the set G by
G={(E,F) : E,FeS8"™", EQ, = \FQ, + R}, (4.5.58)
and for an arbitrarily fixed F' € S™*", define the set Gr by
Gr={E €S8 : EQ, = \FQ, + R}, (4.5.59)

where )1 and R are defined by (4.5.53) and (4.5.54), respectively. The following
result gives a computable formula of 5() (X, \).

Theorem 4.5.13. The backward error ) (Xl,j\) defined by (4.5.51) has the
exTpression

w

VA2 4+ w?

B (X1, ) = IR|2, (4.5.60)
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where R is the residual defined by (4.5.54).

Before we give a proof of Theorem 4.5.13, we first prove the following lemma.

Lemma 4.5.14. Let G € R™*" and v > 0 be given. Then for any matriz norm

| || we have
i Z+ G| +412)12) = —L—|G|%. 4.5.61
Jain (12 + GIP +9121°) = 161 (45.61)
Proof. It is easy to verify that the inequality
T (a+ )% < a?+p? (4.5.62)

I+~

holds for any «, 8,y > 0. We now use the inequality (4.5.62) to prove (4.5.61).

For any Z € R™*™ we have

Y Y
mIIGII2 < m(llz +G|l +112])*
(4.5.63)
<IZ+GR+AIZIE (by (45.62))
Moreover, the matrix
= 1
Z=——"2a_ 4.5.64
1 _|_fy ( )
satisfies y
Z+GIP+4)7)? = ——|G|*
| 17+ 112l 1+7|| |
Combining it with (4.5.63) shows (4.5.61). O

Proof of Theorem 4.5.13. From (4.5.51), (4.5.58) and (4.5.59) it follows that

~  ~72 .
[5(w)(X17 A)} - (EH#)neg (HEH% + wZHFH%)
= min <w2||F||% + min ||E||§)
FesSnxn EcGr

Observe the following facts: (i) Using the QR factorization (4.5.53) of X1, the
constraint (A + E)X, = MB + F)X; in (4.5.51) is equivalent to

EQI = 5\I7621 + Ra
where R is the residual defined by (4.5.54); (ii) By Theorem 4.5.11, we have

in [|E|y = |\F R|s:
]gglgnpll l2 = [IANFQ1 + R|2;
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(iii) The spectral norm is a unitarily invariant norm. Hence,

%N = min (WIQTFQIB + QT (AFQ: + R)3)

Fesnxn
2
2

= min (w2 min |H|3 +

2

I
=
=}
/N
gl\'.)
=
_l’_

s Hin T
A + R

Hoo ES<"7T)X (n—r)

2
)
2

(4.5.65)

Hy HI

. By Theorem 1.2.3, we have
Hy H22> y

Hy, HE Hyy
Hyy  Hao Hoy

Substituting it into (4.5.65) shows

[B(W)(Xl,j\)r = min (H ( gn > + Q"R
Hy € Sr><r 21
H21 E R n— 7" Xr

min
Hso cSn—r)x(n—r)

2

2)
(4.5.66)

Further, by Lemma 4.5.14 and (4.5.64)), the minimum in (4.5.66) is achieved for

Hy A T
- - R,
< Hyy ) >\2+w2Q

Hi=QTR=QT(\B - A)Q: € 8™";

where

and we have

I3,

_ 12
I:/B(W)(Xh)‘)} =3
which gives (4.5.60). O

Remark 4.5.15. Taking w — oo forces F' = 0 in (4.5.51) and (4.5.60), we get
the expression (4.5.55) of the backward error fo(X1,\) defined by (4.5.52).

Remark 4.5.16. Let X and X be as in (4.5.51). We now define the absolute
backward error n,ps(X1, A1) by

e | VE| BE s

X1,M) = =z >

Nabs (X1, A1) mln{H( 1F |2 ) (A+ )Xy = M (B + F)Xy,
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and define the relative backward error nrel(X 1, 5\1) by

o sov— o [ 1EI/141
e (X1, ) —m“{H< 171/ 11B] )

then by (4.5.60) we have the computable formulas

E,F € §vn,
(A+E)X, =M[B+F)X,, [’

2

- - R
o (K1, 30) = B0 (X, Ry) = Iz (45.67)
V1+ A7
and
L 1 .
(X, &) = T BUAR/IE) (5, ) = IRl (4.5.68)
1Al VIAIB +321B]2

where R is the residual defined by (4.5.54).

Example 4.5.17. Consider the symmetric-definite generalized eigenproblem (4.5.1)
with

9 —-19 -23 33 =20 -2 =5

-19 56 5 0 6 —2 0

—23 5 26 5 41 0 5

A= 33 0 5 94 30 0 —-20

20 6 41 30 65 -2 20

-2 =2 0 0 -2 4 0

-5 0 5 —20 20 0 10

and

8 -3 -7 -1 -4 -2 -1

-3 12 1 0 2 =2 0

-7 1 11 1 5 0 1

B = -1 0 1 34 6 0 —4

—4 2 5 6 23 -2 4

-2 =2 0 0 -2 4 0

-1 0 1 -4 4 0 2

The eigenvalues of the eigenproblem are
AM=X=X=5 M=3 =1 XI=-6, \r=-14

We compute X € R7™*7 and A = diag(\i,..., A7) of (4.5.2) by the following steps (see
Golub and Van Loan [41, Algorithm 8.7.1]):

Compute the Cholesky factorization B = GG”, where G is a lower triangular
matrix with positive diagonal elements.

Compute C = G—1AGT.

Use the symmetric QR algorithm to compute the Schur decomposition QTCQ =
diag()\l, ey )\7)

Set X =G~ TQ.
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Write the computed X and A; as X and 5\]- (j=1,...,7), respectively. By (4.5.53) and
(4.5.54) we compute the residual R, and then applying (4.5.67) and (4.5.68) we get

Nabs (X1, A) =7.63 x 1075 (X1, A) = 1.74 x 10716,

where A = (A + 5\% + 5\3)/3 is an approximation of A, and X; consists of the associated
eigenvectors of A1, Az, As.

Similarly, for A4, A5, A6, A7 and associated &y, &5, &g, F7, we get
Nabs (Fa, Aa) = 3.27 X 1071, et (g, \g) = 6.22 x 10717,
Nabs (5, As) = 8.95 x 107'%,  nper(E5, A5) = 9.93 x 10717,
Nabs (F6, A6) = 1.99 X 1071%, et (g, Ng) = 4.71 x 10717,

Nabs (E7, A7) = 2.80 x 107, e (&7, A7) = 7.28 x 10717,

The results show that each computed eigenvalue and associated eigenvector are an exact
eigenvalue and an associated eigenvector of a very slightly perturbed symmetric generalized
eigenproblem; in other words, the computation has proceeded quite stably.

Remark 4.5.18. For the approximate solution {#1,...,%; A} given at the be-

ginning of this subsection we can use the Frobenius norm [|-||r to define the backward
error 5 (X1, ) by

Aw) 1E||F
/8 (XlaA) - mln{H( WHFHF >

where X| = (#1,...,%,), and w is a positive parameter It can be proved that there
s a computable formula for the backward error ﬁ (Xl, )\)

WMRHF — QT RIZ,
M +w

where R is the residual defined by (4.5.54), and Q1 is the orthogonal factor of X,
in its QR factorization (see (4.5.53)). The proof is left as an exercise.

E, F eS8,
(A+E)X, =XB+F)X; [’

6( Xla

Notes and References

NR 4.5-1. §4.5.1 and §4.5.2 are based on Sun [107].
NR 4.5-2. Example 4.5.1 is cited from Wang and Garbow [126, p.606].

NR 4.5-3. Rellich Theorem [87]. Let A(¢) € S"*" be an analytic matriz-
valued function of a single real variable & in a neighborhood of the origin, and let
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A1 be an eigenvalue of A(0) with multiplicity r. Then there exist r real analytic
functions A1 (€), ..., A\ (§) in a neighborhood of the origin, such that A\ (£),..., A\ (€)
are eigenvalues of A(§) and

AS(O):Al, 821,...,’1".

NR. 4.5-4. The Rellich theorem stated in NR 4.5-3 is only a real form of Rel-
lich’s result on the eigenvalues of a Hermitian matrix-valued function of a single
real variable. By Rellich [87, p.31], the general result can be stated as follows: Let
A(&) € H™™ for real & with small |£|, and let the elements of A(&) be convergent
power series for small |£|. Then the eigenvalues of A(£) can be considered as power
series in & convergent for small |£]. Wimmer [132] gives a short proof of the Rel-
lich theorem based on the fact that the ring H () of complex functions which are
holomorphic in a region () is an elementary divisor domain. Besides, the Rellich
theorem is extended to normal matrices by Lancaster and Tismenetsky [67, Chapter
11, Theorem 2].

NR 4.5-5. Gerschgorin Theorem. For A = (a;;) € C"*" let

Gi(A) ={z €C: |z —ay] < |ay|}-
j#i

Then

Moreover, if m of the Gerschgorin discs G;(A) are isolated from the other n —m
discs, then there are precisely m eigenvalues of A in their union. (See, e.g., Stewart

and Sun [97, Chapter IV, Theorem 2.1].)
NR 4.5-6. The relations of (4.5.27) are obtained by Fox and Kapoor [38].

NR 4.5-7. The perturbation analyses of eigenvalues of real symmetric posi-
tive definite matrices are made by Polak and Wardi [85], and these analyses can be
carried over to the cases of symmetric matrices and bilinear forms (e.g., the local
Lipschitz continuity of the eigenvalues and the generalized gradient introduced by
Clarke [22] of multiple eigenvalues).

NR 4.5-8. Some results on the generalized gradients of multiple eigenvalues of
the symmetric-definite generalized eigenproblem (4.5.3) are given by Sun [108].

NR 4.5-9. The following two theorems on singular values are cited from the
literature. The first one is used to prove Theorem 4.5.5, and the second one is used
to show the fact (ii) in Remark 4.5.9.
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Theorem 4.5.16. Let K, L € C™*™ (m > n) be given, let the ordered singular
values of K, L and KLY be

o (K) > > o0n(K), o1(L)>--->o0,(L),

and
A (KLH) > o > 0u(KLH) > 00y (KIT) = - = 0 (KLH) =0,

respectively. Then
oj(KL) < 1I<nkil<1j{0k(K)Uj—k+1(L)}a j=1....,n
See Horn and Johnson [55, p.423] for the proof of Theorem 4.5.16.

Theorem 4.5.17. Let K, L € C™" be given, let the ordered singular values of
K,L and KL be

o (K) > - >o0n(K), oi1(L)>--->o0,(L),

and

respectively. Then

Z;zlo-k(KL) Snizlak(K)ak(L% j:]-’"'an_]-7

[Ti=10%(KL) = [Tg=1 ok (K)ok(L).

This result is proved by Horn [54]. An alternative proof can be found in Marshall
and Olkin’s book [75].
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