
ARTÍCULO

Inferring Preferred Extensions by Pstable Semantics

1José Luis Carballido 2Juan Carlos Nieves

3Mauricio Osorio*

1Benemérita Universidad Autónoma de Puebla
Facultad de Ciencias F́ısico Matemáticas, Puebla, México

carballido@fcfm.uap.buap.mx

2Universitat Politècnica de Catalunya
Departament de Llenguatges i Sistemes Informàtics

c/Jordi Girona 1-3, E08034, Barcelona, Spain
jcnieves@lsi.upc.edu

3Universidad de las Américas - Puebla, CENTIA,
Sta. Catarina Mártir, Cholula, Puebla, 72820 México

osoriomauri@gmail.com

Abstract

When Dung introduced his argumentation approach, he proved that it can be regarded as a special form of
logic programming with negation as failure. In fact, he showed that the grounded and stable semantics can
be characterized by the well-founded and stable model semantics respectively. However, Dung did not give
any characterization of the preferred semantics in terms of logic programming semantics. In order to extend
Dung’s results, we will show that there exists a codification of an argumentation framework in terms of a
logic program able to infer the grounded, stable and preferred semantics by considering the well-founded,
stable-model and pstable semantics respectively. This result unifies, in logic programming with negation as
failure, the three principal argumentation semantics of Dung’s approach. Also the characterization of the
preferred semantics by the pstable semantics suggests a new perception of the preferred semantics in terms
of logic foundations.

1. Introduction

Argumentation theory has become an increasing-
ly important and exciting research topic in Ar-
tificial Intelligence (AI), with research activities
ranging from developing theoretical models, pro-
totype implementations, and application studies
[3, 23, 22, 4]. The main purpose of argumenta-
tion theory is to study the fundamental mecha-
nism, humans use in argumentation, and to ex-
plore ways to implement this mechanism on com-

puters.

Although several approaches have been proposed
for capturing representative patterns of inference
in argumentation theory, Dung’s approach, pre-
sented in [7], is a unifying framework which has
played an influential role on argumentation re-
search and AI. In fact the model suggested by
Dung has given rise to an extensive body research
with particular concentration on the following,
[3]:

*The authors are named by alphabetic order.

Inteligencia Artificial, Revista Iberoamericana de Inteligencia Artificial. No XX (200X), pp. XX-XX.
ISSN: 1137-3601. c©AEPIA (http://www.aepia.org/revista/)



2 Inteligencia Artificial Vol. XX, NoXX, 200X

Extension based semantics of argumenta-
tion.

Algorithmic and complexity issues in argu-
mentation.

Dialogue processes for deciding acceptabil-
ity.

Dung’s approach is regarded as an abstract model
where the main concern is to find the set of ar-
guments which are considered as acceptable i.e.,
to find sets of arguments which represent coher-
ent points of view. The strategy for analyzing the
attack relationships, and then inferring the sets
of acceptable arguments, is based on extension
based semantics.

The kernel of Dung’s framework is supported by
four extension based semantics (we will refer to
them also as abstract argumentation semantics):
grounded semantics (GS), stable semantics (SS),
preferred semantics (PS), and complete semantics
(CS). Although each abstract argumentation se-
mantics represents a different pattern of inference
in argumentation theory, all of them have as com-
mon point the concept of admissible set1. In fact
the grounded, stable, preferred and complete se-
mantics are nothing else than a set of admissible
sets i.e., a set of sets of arguments. An argumenta-
tion semantics can be regarded as mappings from
an argumentation framework into a set of sets of
arguments.

Regarding arguments as abstract concepts, as
it is done in Dung’s approach [7], is a power-
ful tool which affords a formalism that focuses
on the relationship between individual arguments
as a means of defining diverse ideas of accep-
tance. Some authors have pointed out that the
grounded, stable and preferred semantics are of
particular interest since they capture representa-
tive patterns of inference in argumentation theory
[8, 2, 3].

When Dung introduced his abstract argumenta-
tion approach, he proved that his approach can
be regarded as a special form of logic program-
ming with negation as failure. This result has at
least two main implications:

1. It defines a general method for generating
metainterpreters for argumentation systems
and

2. it defines a general method for studying ab-
stract argumentation semantics’ properties
in terms of logic programming semantics’
properties.

Possibly, the two main challenges of studying
Dung’s approach in terms of logic programming
are:

1. To find suitable logic programming cod-
ifications able to map an argumentation
framework AF into a logic program P such
that these codifications are polynomial time
computable, and

2. To find suitable logic programming seman-
tics able to capture the different patterns of
inference of the argumentation semantics.

It is worth to comment that any logic program-
ming semantics S can be regarded as a mapping
from a logic program P into a set H of sets of
literals, such that for each set of literals L in H,
P ∪L is consistent (in the strict sense of classical
logic). We call each of the above sets of literals
(such as L) a partial model of the program P .

In [7], Dung defined a logic programming codifi-
cation (PAF ) in order to map an argumentation
framework into a logic program. In fact by consid-
ering PAF , Dung showed that the well-founded se-
mantics (WFS) [9] is a proper logic programming
semantics to capture the grounded semantics and
the stable model semantics [10] is a proper logic
programming semantics to capture the stable se-
mantics. However, to the best of our knowledge,
there does not exist a logic programming seman-
tics able to capture the preferred semantics by us-
ing PAF . Recently, in [15], it was shown that the
preferred semantics can be captured by the min-
imal models of a propositional formula (α(AF )).
However, the minimal models of a propositional
formula do not suggest at all a logic programming
semantics with negation as failure.

In order to unify, in logic programming with nega-
tion as failure, the three principal argumentation
semantics of Dung’s approach, we identify the fol-
lowing problem:

Problem 1 Do there exist three logic program-
ming semantics S1, S2, S3, a logic program-

1An admissible set represents a coherent point of view in a conflict of arguments.



Inteligencia Artificial Vol. XX, NoXX, 200X 3

ming codification f and a polynomial time com-
putable function h, such that for every argumen-
tation framework AF the following three condi-
tions hold:

1. h(S1(f(AF))) = GS(AF)

2. h(S2(f(AF))) =SS(AF)

3. h(S3(f(AF))) = PS(AF)?

By Theorem 17 of [7], we can say that the well-
founded semantics can be an instance of S1 and
the stable model semantics can be an instance of
S2. However, to the best of our knowledge, an in-
stance of S3 has not been identified, neither has
f(AF ).

In this paper, we will identify a complete an-
swer to the question presented in Problem 1.
We will show that there exists a logic program
f(AF ) = ΨAF that represents an argumentation
framework AF such that

its well-founded model characterizes the
grounded extension of AF ;

its stable models characterize the stable ex-
tensions of AF ; and

its pstable models characterize the preferred
extensions of AF .

It is worth to comment that, to the best of
our knowledge, this is the first time that by us-
ing the same logic program, the three main ar-
gumentation semantics of Dung’s approach i.e.,
the grounded, stable and preferred semantics, are
captured.

Observe that the characterization of the preferred
semantics by the pstable semantics suggests a
new perception of the preferred semantics. The
pstable semantics is a recently introduced logic
programming semantics which is inspired in para-
consistent logics [21]. In fact, this semantics can
be characterized by paraconsistent logics as the
Cw and G′3 logics [18]. The pstable semantics can
be also characterized by modal logics as the S5
modal logic [20]. One important property of the
pstable semantics is that by considering a simple
transformation of a disjunctive logic program PD

into a normal logic program PN , the pstable se-
mantics of PN corresponds to the stable model
semantics of PD over the common language [17].

The rest of the paper is divided as follows: In
§2, some basic definitions of logic programming,
pstable semantics and stable model semantics are
presented; moreover a brief description of Dung’s
approach is presented. In §3, a mapping of an ar-
gumentation framework into a logic program is
defined. In §4, we present our main results. In
the last section, we present our conclusions.

2. Background

In this section, we define some basic concepts
of logic programming, pstable semantics, stable
model semantics and Dung’s argumentation ap-
proach. We assume familiarity with basic con-
cepts in classical logic and with semantics of logic
programs e.g., interpretation, model, etc. A good
introductory treatment of these concepts can be
found in [1, 14].

2.1. Logic programs: Syntax

A signature L is a finite set of elements that we
call atoms. A literal is an atom, a (positive lit-
eral), or the negation of an atom ¬a (negative
literal). Given a set of atoms {a1, . . . , an}, we
write ¬{a1, . . . , an} to denote the set of literals
{¬a1, . . . ,¬an}. A disjunctive clause is a clause
of the form:

a1 ∨ · · · ∨ am ← am+1, . . . , aj ,¬aj+1, . . . ,¬an

where ai is an atom, 1 ≤ i ≤ n. When n = m and
m > 0, the disjunctive clause is an abbreviation
of the fact a1 ∨ · · · ∨ am. When m = 0 and n > 0
the clause is an abbreviation of

⊥ ← a1, . . . , aj ,¬aj+1, . . . ,¬an

where ⊥ is an atom that always evaluate to false.
Clauses of this form are called constraints (the
rest non-constraints). A disjunctive logic program
is a finite set of disjunctive clauses. Sometimes,
we denote a clause C by A ← B+,¬B−, where A
contains all the head atoms, B+ contains all the
positive body literals and B− contains all the neg-
ative body literals. We also use body(C) to denote
B+,¬B−. When B− = ∅, the clause C is called a
positive disjunctive clause. A set of positive dis-
junctive clauses is called positive disjunctive logic
program. When A is a singleton set, the clause
can be regarded as a normal clause. A normal
program is a finite set of normal clauses. Also,



4 Inteligencia Artificial Vol. XX, NoXX, 200X

when A is a singleton set and B− = ∅, the clause
can be regarded as a definite clause. A finite set of
definite clauses is called a definite logic program.

We denote by LP the signature of P , i.e., the set
of atoms that occur in P. Given a signature L, we
write ProgL to denote the set of all the programs
defined over L.

2.2. Non Monotonic Reasoning:
the pstable and stable seman-
tics

In order to define the pstable semantics (intro-
duced in [21]), we define some basic concepts.
Logical inference in classical logic is denoted by
`. Given a set of proposition symbols S and a
theory (a set of well-formed formulæ ) Γ, Γ ` S
if and only if ∀s ∈ S Γ ` s. When we treat a
logic program as a theory, each negative literal
¬a is regarded as the standard negation operator
in classical logic. Given a normal program P, if
M ⊆ LP , we write P ° M when: P ` M and M
is a classical 2-valued model of P (i.e., atoms in
M are set to true, and atoms not in M to false;
the set of atoms M is a classical model of P if
the induced interpretation evaluates P to true).
A model M of P is called minimal if there does
not exist a model M ′ of P such that M ′ ⊂ M .

The pstable semantics was defined in terms of a
single reduction which is defined as follows:

Definition 1 [21] Let P be a normal program
and M be a set of literals. We define

RED(P, M) := {a ← B+,¬(B− ∩M)|
a ← B+,¬B− ∈ P}

Observe that M is model of P if and only if M
is a model of RED(P, M). For instance, let us
consider the set of atoms M1 := {a, b} and the
following normal program P1:

a ← ¬ b,¬ c.
a ← b.
b ← a.

We can see that RED(P1,M) is:

a ← ¬b.
a ← b.
b ← a.

As we can see, M1 is a model of P and also of
RED(P, M). By considering the reduction RED,
the pstable semantics for normal programs is de-
fined as follows:

Definition 2 [21] Let P be a normal program
and M be a set of atoms. We say that M is a
pstable model of P if RED(P, M) ° M . We use
pstable to denote the semantics operator of pstable
models.

Let us consider again M1 and P1 in order to illus-
trate the definition. We want to verify whether
M1 is a pstable model of P1. First, we can see
that M1 is a model of P1, i.e., ∀ c ∈ P1, M1

evaluates c to true. Now, we have to prove each
atom of M1 from RED(P1,M1) by using classi-
cal inference, i.e., RED(P1,M1) ` M1. Let us
consider the proof of the atom a, which belongs
to M1, from RED(P1,M1).

1. (¬b → a) → ((b → a) → a)
Tautology

2. ¬b → a
Premise from RED(P1,M1)

3. (b → a) → a
From 1 and 2 by Modus Ponens

4. b → a
Premise from RED(P1,M1)

5. a
From 3 and 4 by Modus Ponens

Remember that the formula ¬b → a corresponds
to the normal clause a ← ¬b which belongs to the
program RED(P1,M1). The proof for the atom
b, which also belongs to M1, is similar. Then we
can conclude that RED(P1,M1) ° M1. Hence,
M1 is a pstable model of P1.

An important property of any pstable model,
which was proved in [21], is that any pstable mod-
el is a minimal model.

Theorem 1 Let P be a normal program, and M
be a set of atoms. If M is a pstable model of P
then M is a minimal model of P .

Observe that the oppositive of this theorem does
not hold i.e., a minimal model might not be a
pstable model. For instance, let P be the follow-
ing program:



Inteligencia Artificial Vol. XX, NoXX, 200X 5

a ← ¬b

We can see that {b} is a minimal model but not
a pstable model of P .

The well known stable model semantics (see [10,
11]) is defined as follows.

Let P be any disjunctive program. For any set
S ⊆ LP , let PS be the positive logic program
obtained from P by deleting

(i) each rule that has a formula ¬l in its body
with l ∈ S, and then

(ii) all formulæ of the form ¬l in the bodies of
the remaining rules.

Clearly PS does not contain ¬. Then S is a stable
model of P if S is a minimal model of PS .

In order to illustrate this definition let us consider
the following example:

Example 1 For instance, let S = {b} and P be
the following logic program:

b ← ¬a. b.
c ← ¬b. c ← a.

We can see that PS is:

b ← >. c ← a.

Notice that PS has three models: {b}, {b, c} and
{a, b, c}. Since the minimal model amongst these
models is {b}, we can say that S is a stable model
of P .

Observe that we have defined the pstable seman-
tics for normal logic programs and the stable
model semantics for disjunctive logic programs.
One important property of the pstable semantics
is that by considering a simple transformation of
a disjunctive logic program PD into a normal logic
program PN , the pstable semantics of PN corre-
sponds to the stable model semantics of PD over
a common language. This result was introduced
in [17] and it is formalized as follows:

Theorem 2 [17] Let P be a disjunctive logic pro-
gram and M be a set of atoms of LP . Then there
exists a normal program Trans(P ) that depends

on P , such that M is a stable model of P if and
only if there exists a pstable model N of Trans(P )
such that M = N ∩ LP .

That is to say: Trans(P ) is a mapping that trans-
forms any disjunctive logic program into a normal
logic program. The details of this mapping can be
found in [17].

2.3. Argumentation theory

Now, we will define some basic concepts of Dung’s
argumentation approach. Mainly, we will define
the grounded, stable and preferred semantics, and
present Dung’s result about how to regard his ar-
gumentation approach as logic programming with
negation as failure.

The basic structure of Dung’s argumentation ap-
proach is an argumentation framework. An argu-
mentation framework captures the relationships
between the arguments (all the definitions of this
subsection were taken from the seminal paper [7]).

Definition 3 An argumentation framework is a
pair AF := 〈AR, attacks〉, where AR is a finite
set of arguments, and attacks is a binary relation
on AR, i.e., attacks ⊆ AR×AR.

Figure 1. Graph representation of

AF := 〈{a, b, c}, {(a, b), (b, c)}〉

Any argumentation framework could be regard-
ed as a directed graph. For instance, if AF :=
〈{a, b, c}, {(a, b), (b, c)}〉, then AF is represented
as in Figure 1. We say that a attacks b (or b is
attacked by a) if attacks(a, b) holds. Similarly, we
say that a set S of arguments attacks b (or b is
attacked by S) if b is attacked by an argument in
S. For instance in Figure 1, {a} attacks b.

Definition 4 A set S of arguments is said to be
conflict-free if there are no arguments a, b in S
such that a attacks b.

Dung defined his semantics based on the basic
concept of admissible set.



6 Inteligencia Artificial Vol. XX, NoXX, 200X

Definition 5 (1) An argument a ∈ AR is ac-
ceptable with respect to a set S of arguments if
and only if for each argument b ∈ AR: If b attacks
a then b is attacked by S. (2) A conflict-free set
of arguments S is admissible if and only if each
argument in S is acceptable w.r.t. S.

For instance, the argumentation framework of
Figure 1 has two admissible sets: {a} and {a, c}.

The (credulous) semantics of an argumentation
framework is defined by the notion of preferred
extensions.

Definition 6 A preferred extension of an argu-
mentation framework AF is a maximal (w.r.t. in-
clusion) admissible set of AF . The set of preferred
extensions of AF will be referred as the preferred
semantics of AF.

The only preferred extension of the argumenta-
tion framework of Figure 1 is {a, c}. The ground-
ed semantics is defined in terms of a characteristic
function.

Definition 7 The characteristic function, de-
noted by FAF , of an argumentation framework
AF = 〈AR, attacks〉 is defined as follows:

FAF : 2AR → 2AR

FAF (S) = {A| A is acceptable w.r.t. S }

Definition 8 The grounded extension of an ar-
gumentation framework AF, denoted by GEAF ,
is the least fixed point of FAF .

In order to illustrate the definition, let us consider
the argumentation framework of Figure 1. Then

F 0
AF (∅) := {a},

F 1
AF (F 0

AF (∅)) := {a, c},
F 2

AF (F 1
AF (F 0

AF (∅))) := {a, c},

since F 1
AF (F 0

AF (∅)) = F 2
AF (F 1

AF (F 0
AF (∅))), then

GEAF = {a, c}. Therefore the grounded exten-
sion of AF is {a, c}. We want to point out that one
can insure that FAF reaches a fixed-point by the
fact that FAF is monotonic and Tarsky’s Lattice-
Theoretical Fixpoint Theorem [25].

Another interesting semantics which was intro-
duced in [7] is the stable semantics.

Definition 9 A conflict-free set of arguments S
is called a stable extension if and only if S at-
tacks each argument which does not belong to S.
The set of stable extensions of AF will be referred
as the stable semantics of AF .

Dung showed that this semantics coincides with
the notion of stable solutions of n-person games
[7].

There is an interesting relationship between the
stable semantics and the preferred semantics
which is that every stable extension is a preferred
extension, but not vice versa. Let us consider the
following example.

Example 2 Let AF := 〈AR, attacks〉 be
an argumentation framework, such that
AR := {a, b, c, d, e} and attacks :=
{(a, b), (b, a), (b, c), (c, d), (d, e), (e, c)} (see Figure
2).

Figure 2. Graph representation of the

argumentation framework AF :=

〈{a, b, c, d, e}, {(a, b), (b, a), (b, c), (c, d), (d, e), (e, c)}〉.

As we can see, AF has just one stable extension
S1 = {b, d}; however, AF has two preferred ex-
tensions: S1 and S2 = {a}.

Remark 1 For the rest of the paper, we will say
that an argument a is “ acceptable” if a belongs to
E such that E is a preferred, stable or the ground-
ed extension. Hence an argument attacked by a
will be called “ defeated”.

In [7], Dung suggested a general method for gen-
erating metainterpreters in terms of logic pro-
gramming for argumentation systems. This is the
first approach which regards an argumentation
framework as a logic program. This method is
divided in two units: Argument Generation Unit
(AGU), and Argument Processing Unit (APU).
The AGU is basically the representation of the
argumentation framework’s attacks and the APU
consists of two clauses:



Inteligencia Artificial Vol. XX, NoXX, 200X 7

(C1) acc(x) ← ¬d(x)

(C2) d(x) ← attacks(y, x), acc(y)

The first one (C1) suggests that the argument x
is acceptable if it is not defeated, and the second
one (C2) suggests that an argument is defeated
if it is attacked by an acceptable argument2. The
predicate d(x) denotes that “x is a defeated ar-
gument”.

Definition 10 Given an argumentation frame-
work AF = 〈AR, attacks〉, PAF denotes the logic
program defined by PAF = APU + AGU where
APU = {C1, C2} and

AGU = {attacks(a, b)|(a, b) ∈ attacks}

For each extension E of AF (namely a set of ar-
guments), m(E) is defined as follows:

m(E) = AGU ∪ {acc(a)|a ∈ E}
∪ {d(b)|b is attacked by some a ∈ E}

The following theorem is the first result that sug-
gests a clear relationship between two3 argumen-
tation semantics and two logic programming se-
mantics.

Theorem 3 [7] Let AF be an argumentation
framework and E be an extension of AF. Then

1. E is a stable extension of AF if and only if
m(E) is a stable model of PAF

2. E is a grounded extension of AF if and on-
ly if m(E) ∪ {¬d(A)|A ∈ E} is the well-
founded model of PAF

3. Mapping from argumenta-
tion frameworks to logic
programs

As we commented in the previous section, Dung
defined a mapping (PAF ) in order to regard argu-
mentation frameworks as logic programs. In fact,
by Theorem 3, one can see that PAF is able to
characterize the grounded and stable semantics;

however, to the best of our knowledge, this map-
ping is unable to characterize the preferred se-
mantics by considering a logic programming se-
mantics with negation as failure.

In this section, we will present an alternative
mapping in order to regard an argumentation
framework as a logic programming. We will see
that this mapping is really close to PAF ; howev-
er, we will show that this unique mapping is able
to give answer to Problem 1 (presented in the in-
troduction).

Like PAF , our mapping will use the predicate
d(x), where the intended meaning of d(x) is “x
is a defeated argument”, moreover, it will use the
predicate acc(x), where the intended meaning of
acc(x) is “x is an acceptable argument”. First,
we define a transformation function w.r.t. an ar-
gument.

Definition 11 Let AF := 〈AR, attacks〉 be an
argumentation framework and a ∈ AR. We de-
fine the transformation function Ψ(a) as follows:

Ψ(a) =
⋃

b:(b,a)∈attacks{d(a) ← ¬d(b)}∪⋃
b:(b,a)∈attacks{d(a) ← ∧

c:(c,b)∈attacks d(c)}

In the program Ψ(a), we can identify two parts
for each argument a ∈ AR:

1. The first condition of Ψ(a),⋃
b:(b,a)∈attacks{d(a) ← ¬d(b)}, suggests

that the argument a is defeated when any
one of its adversaries is not defeated.

2. The second condition of Ψ(a),⋃
b:(b,a)∈attacks{d(a) ← ∧

c:(c,b)∈attacks d(c)},
suggests that the argument a is defeated
when all the arguments that defend4 a from
one of its attackers b are defeated.

The direct generalization of the transformation
function Ψ to an argumentation framework is de-
fined as follows:

Definition 12 Let AF := 〈AR, Attacks〉 be an
argumentation framework. We define its associ-
ated normal program as follows:

ΨAF :=
⋃

a∈AR

{Ψ(a) ∪ {acc(a) ← ¬d(a)}}

2Dung uses the predicate defeat instead of the predicate d
3Dung presented results w.r.t. another semantics, but we just cite the results w.r.t. the stable extensions and the grounded

extension.
4We say that c defends a if there exists b such that b attacks a and c attacks b.



8 Inteligencia Artificial Vol. XX, NoXX, 200X

Example 3 Let AF := 〈AR, attacks〉 be the ar-
gumentation framework of Figure 1. We can see
that ΨAF is:

d(b) ← ¬d(a). d(b) ← >.
d(c) ← ¬d(b). d(c) ← d(a).
acc(a) ← ¬d(a). acc(b) ← ¬d(b).
acc(c) ← ¬d(c).

Observe that ΨAF has no normal clauses with
the atom d(a) in their head. This is essential-
ly because ΨAF is capturing the arguments which
could be defeated and the argument a will be al-
ways an acceptable argument because it has no
adversary. Now, let us consider the argumenta-
tion framework AF of Figure 2. We can see that
ΨAF is:

d(a) ← ¬d(b). d(a) ← d(a).
d(b) ← ¬d(a). d(b) ← d(b).
d(c) ← ¬d(b). d(c) ← ¬d(e).
d(c) ← d(a). d(c) ← d(d).
d(d) ← ¬d(c). d(d) ← d(b), d(e).
d(e) ← ¬d(d). d(e) ← d(c).
acc(a) ← ¬d(a). acc(b) ← ¬d(b).
acc(c) ← ¬d(c). acc(d) ← ¬d(d).
acc(e) ← ¬d(e).

In this case, ΨAF has normal clauses for all the
arguments of AF . This is because all the argu-
ments of AF at least has an adversary.

3.1. Preferred extensions as stable
models

In this section, we will present an important re-
lation between the preferred semantics and the
stable model semantics that was introduced in
[15]. This result will be useful to formalize the
fact that the pstable models of ΨAF characterize
the preferred extensions of AF .

We start by defining a mapping function which is
a variation of the mapping of Definition 11.

Definition 13 Let AF = 〈AR, attacks〉 be an
argumentation framework and a ∈ AR. We de-
fine the transformation function Γ(a) as follows:

Γ(a) =
⋃

b:(b,a)∈attacks{d(a) ∨ d(b)}∪⋃
b:(b,a)∈attacks{d(a) ← ∧

c:(c,b)∈attacks d(c)}

Now we define the function Γ in terms of an ar-
gumentation framework.

Definition 14 Let AF = 〈AR, attacks〉 be an
argumentation framework. We define its associ-
ated general program as follows:

ΓAF =
⋃

a∈AR

Γ(a)

In the following theorem, a characterization of the
preferred semantics in terms of stable model se-
mantics is formalized. Given an argumentation
framework AF = 〈AR, attacks〉 and E ⊆ AR,
compl(E) is defined as {d(a)|a ∈ AR\E}. Essen-
tially, compl(E) expresses the complement of E
w.r.t. AR.

Theorem 4 [15] Let AF = 〈AR, attacks〉 be an
argumentation framework and S ⊆ AR. S is a
preferred extension of AF if and only if compl(S)
is a stable model of ΓAF .

Example 4 Let AF be the argumentation frame-
work of Figure 2. We can see that ΓAF is:

d(a) ∨ d(b). d(a) ← d(a).
d(b) ∨ d(a). d(b) ← d(b).
d(c) ∨ d(b). d(c) ∨ d(e).
d(c) ← d(a). d(c) ← d(d).
d(d) ∨ d(c). d(d) ← d(b), d(e).
d(e) ∨ d(d). d(e) ← d(c).

ΓAF has two stable models which are
{d(a), d(c), d(e)} and {d(b), d(c), d(e), d(d))},
therefore {b, d} and {a} are the preferred ex-
tensions of AF.

4. Argumentation semantics
as logic programming se-
mantics with negation as
failure

In order to present our main results, we need the
following definition. For each extension E of AF
(namely a set of arguments), tr(E) is defined as



Inteligencia Artificial Vol. XX, NoXX, 200X 9

follows:

tr(E) = {acc(a)|a ∈ E}
∪ {d(b)|b is an argument and b 6∈ E}

Before proving that ΨAF is able to capture the
stable, preferred and grounded semantics, we will
present some interesting results w.r.t. stable mod-
el equivalence.

According to [12], P1 is stable equivalent to P2

if P1 and P2 have the same stable models. Also
we can say that P1 is strongly equivalent to P2 if
and only if for every logic program P , P1∪P and
P2∪P have the same stable models. The intuitive
idea of stable equivalence is that for any two pro-
grams which are stable equivalent we can replace
one by the other in any large program without
changing the stable models (declarative seman-
tics). By having in mind this idea, we present the
following lemmas:

Lemma 1 Let P be a normal program and r be
a normal rule of the form:

y ← ¬y1 ∨ · · · ∨ ¬ym

Suppose that y does not appear as the head of any
rule of P . Then P ∪ {r} is stable-equivalent to
P ∪ {y ↔ ¬y1 ∨ · · · ∨ ¬ym}.

Proof: Let P and r be as defined in the conditions
of the lemma. Let r′ be y ↔ ¬y1 ∨ . . .¬∨ ym. Let
M be a set of atoms. Let cl(M) denotes the com-
plement of M w.r.t. the language of P ∪ {r}. We
will prove that M is a stable model of P ∪ {r} if
and only if M is a stable model of P ∪ {r′}. To
this aim, we will freely use the characterization of
stable models for arbitrary propositional formulæ
in terms of Gödel logic G3, see [19]. The proof is
by cases:

(A) Suppose that there exists yi ∈ {y1, . . . , ym}
and yi /∈ M . Then {r} ∪ ¬cl(M) ∪ ¬¬M is
equivalent in G3 logic to {r′} ∪ ¬cl(M) ∪
¬¬M . Hence P ∪ {r} ∪ ¬cl(M) ∪ ¬¬M is
equivalent in G3 logic to P ∪{r′}∪¬cl(M)∪
¬¬M . Thus, M is a stable model of P ∪{r}
if and only if M is a stable model of P∪{r′},
as desired.

(B) Suppose on the other hand that
{y1, . . . , ym} ⊆ M . We have two subcas-
es:

(B1) Suppose y ∈ M , then {r}∪¬cl(M)∪
¬¬M is equivalent in G3 logic to
{¬¬y} ∪ ¬cl(M) ∪ ¬¬M . Hence nei-
ther y nor ¬y are provable in G3 by
P ∪ {r} ∪ ¬cl(M) ∪ ¬¬M (here it is
important the hypothesis that y does
not appear as the head of any rule of
P ). So, M is not a stable model of
P∪{r}. It is easy to verify that P∪{r′}
is inconsistent and so M is not a stable
model of P ∪ {r′}, as desired.

(B2) Suppose y /∈ M , then {r}∪¬cl(M)∪
¬¬M is equivalent in G3 logic to
{r′}∪¬cl(M)∪¬¬M . Hence P ∪{r}∪
¬cl(M)∪¬¬M is equivalent in G3 log-
ic to P ∪ {r′} ∪¬cl(M)∪¬¬M . Thus,
M is a stable model of P ∪ {r} if and
only if M is a stable model of P ∪{r′},
as desired.

Lemma 2 Let P be a normal program that in-
cludes the clause:

x ← ¬y

Suppose in addition that all the rules in P with
head equal to y are:

y ← ¬y1. . . . y ← ¬ym.

Then P is stable-equivalent to P ∪ {x ←
y1, . . . , ym}.

Proof: We will use freely one basic fact that is a
direct consequence of the results in [12]. If two
programs P1 and P2 are equivalent in Gödel logic
G3 then P1 is strongly equivalent to P2.

Suppose the hypothesis of the lema, namely that
P is of the form:

y ← ¬y1. . . . y ← ¬ym.
x ← ¬y.

and Q (that includes the rest of the rules).

Since (¬y1 → y) ∧ · · · ∧ (¬ym → y) is equivalent
in G3 to ¬y1 ∨ · · · ∨ ¬ym → y.

Then P is stable equivalent to P1:

y ← ¬y1 ∨ · · · ∨ ¬ym.
x ← ¬y.
Q.



10 Inteligencia Artificial Vol. XX, NoXX, 200X

By Lemma 1, P1 is stable equivalent to P2:

y ↔ ¬y1 ∨ · · · ∨ ¬ym.
x ← ¬y.
Q.

Since

y ↔ ¬y1 ∨ · · · ∨ ¬ym

¬y → x

is equivalent in G3 to:

y ↔ ¬y1 ∨ · · · ∨ ¬ym

¬¬y1 ∧ · · · ∧ ¬¬ym → x

Then P2 is stable equivalent to P3:

y ↔ ¬y1 ∨ · · · ∨ ¬ym.
x ← ¬¬y1 ∧ · · · ∧ ¬¬ym.
Q.

Since ¬¬y1 ∧ · · · ∧ ¬¬ym → x is equivalent in G3

to:

¬¬y1 ∧ · · · ∧ ¬¬ym → x
y1 ∧ · · · ∧ ym → x

We obtain that P3 is stable equivalent to P4:

y ↔ ¬y1 ∨ · · · ∨ ¬ym.
x ← ¬¬y1, . . . ,¬¬ym.
x ← y1, . . . , ym.
Q.

By similar reasoning as above we obtain the fol-
lowing chain of equivalences. P4 is stable equiva-
lent to P5:

y ↔ ¬y1 ∨ · · · ∨ ¬ym.
x ← ¬y.
x ← y1, . . . , ym.
Q.

P5 is stable equivalent to P6:

y ← ¬y1 ∨ · · · ∨ ¬ym.
x ← ¬y.
x ← y1, . . . , ym.
Q.

P6 is stable equivalent to P7:

y ← ¬y1.
. . .
y ← ¬ym.
x ← ¬y.
x ← y1, . . . , ym.
Q.

Hence, by transitivity we obtain our desired re-
sult.

Let us note that the program Q in the previous
proof is not arbitrary; it is the complement with
respect to P of a set consisting of special rules
in P . Therefore the lemma establishes the sta-
ble equivalence, but not strong stable equivalence,
between two programs.

Another interesting result w.r.t. stable equiva-
lence is formalized by the following lemma:

Lemma 3 Let P be a normal program, let
r1, r2, ..., rn be definite rules such that the two
programs P and P ∪ ri have the same stable
models for any i ∈ {1, 2..., n}. Then P and
P ∪ r1 ∪ r2 ∪ ...∪ rn have the same stable models.

Proof:

⇒ Let us assume that M is a stable model of P .
By definition this means that M is a min-
imal classical model for PM . Now by hy-
pothesis M is a minimal classical model for
each of the programs (P ∪ ri)M = PM ∪ ri,
for each i ∈ {1, 2, ..., n}.
From this, it is clear that M is a classical
model for PM ∪ r1 ∪ r2 ∪ ...∪ rn. Any prop-
er subset of M can not be a model of this
last program since that would contradict
our original assumption, hence M is min-
imal. Now the desired conclusion follows af-
ter observing that PM ∪ r1 ∪ r2 ∪ ... ∪ rn =
(P ∪ r1 ∪ r2 ∪ ... ∪ rn)M .

⇐ Now let us assume that M is a minimal clas-
sical model of (P ∪ r1 ∪ r2 ∪ ... ∪ rn)M =
PM ∪ r1 ∪ r2 ∪ ...∪ rn. Then it is clear that
M models PM . Let us assume for a moment
that M is not a minimal model of PM ; then
there would exist a set N  M such that N
is minimal model for PM .
Then by hypothesis N is a minimal model
of (P ∪ ri)M = PM ∪ ri for i ∈ {1, 2, ..., n}.
Hence N is a model for PM∪r1∪r2∪...∪rn,
that is to say: N is a model of (P ∪r1∪r2∪
... ∪ rn)M . This contradicts the minimality
of M and the result follows.



Inteligencia Artificial Vol. XX, NoXX, 200X 11

By considering Theorem 3, Lemma 2 and Lem-
ma 3, we will show that the stable modes of ΨAF

characterize the stable extensions of AF .

Theorem 5 Let AF be an argumentation frame-
work and E be a set of arguments. Then E is a
stable extension of AF if and only if tr(E) is a
stable model of ΨAF .

Proof: Let P be the grounding of the program
PAF (see §2.3). Hence, P is of the form:

P =
⋃

b:(b,a)∈attacks{d(a) ← acc(b)} ∪⋃
a∈AR{acc(a) ← ¬d(a)}

Now let P ′ be the program obtained from P by
applying the well-know principle of partial evalu-
ation (PPE) ([5]) to P :

P ′ =
⋃

b:(b,a)∈attacks{d(a) ← ¬d(b)} ∪⋃
a∈AR{acc(a) ← ¬d(a)}

Since the stable model semantics is closed under
PPE [5], then by Theorem 3, E is a stable exten-
sion of AF iff tr(E) is a stable model of PAF iff
tr(E) is a stable model of P ′.

Now, let ΨAF = P1∪P2 such that P1 contains all
the definite clauses of ΨAF and P2 = ΨAF \ P1.
This means that

P2 =
⋃

b:(b,a)∈attacks{d(a) ← ¬d(b)} ∪⋃
a∈AR{acc(a) ← ¬d(a)}

Observe that P2 = P ′, hence by Lemma 2 and
Lemma 3, P ′ is stable equivalent to ΨAF . There-
fore, E is a stable extension of AF iff tr(E) is a
stable model of P ′ iff tr(E) is a stable model of
ΨAF .

Example 5 In order to illustrate this theorem,
let us consider the argumentation framework of
Figure 2. As we saw in Example 3, ΨAF is:

d(a) ← ¬d(b). d(a) ← d(a).
d(b) ← ¬d(a). d(b) ← d(b).
d(c) ← ¬d(b). d(c) ← ¬d(e).
d(c) ← d(a). d(c) ← d(d).
d(d) ← ¬d(c). d(d) ← d(b), d(e).
d(e) ← ¬d(d). d(e) ← d(c).
acc(a) ← ¬d(a). acc(b) ← ¬d(b).
acc(c) ← ¬d(c). acc(d) ← ¬d(d).
acc(e) ← ¬d(e).

Observe that ΨAF can be split in two subpro-
grams:

P1: d(a) ← d(a). d(b) ← d(b).
d(c) ← d(a). d(c) ← d(d).
d(d) ← d(b), d(e). d(e) ← d(c).

P2: d(a) ← ¬d(b). d(b) ← ¬d(a).
d(c) ← ¬d(b). d(c) ← ¬d(e).
d(d) ← ¬d(c). d(e) ← ¬d(d).
acc(a) ← ¬d(a). acc(b) ← ¬d(b).
acc(c) ← ¬d(c). acc(d) ← ¬d(d).
acc(e) ← ¬d(e).

It is easy to see that P2 has just one stable mod-
el: {d(a), d(c), d(e), acc(b), acc(d)}. By Theorem
3, we know that the stable models of P2 character-
ize the stable extensions of AF , therefore {b, d} is
the only stable extension of AF . Since by Lemma
2 and Lemma 3, P2 is stable equivalent to P1∪P2,
we can see that the stable models of ΨAF charac-
terizes the stable extension of AF .

Now, let us introduce the following lemma which
will be useful to prove that the pstable models of
ΨAF characterize the preferred extensions of AF .

Lemma 4 Let P be a normal program such that
there exist P1 and P2 satisfying:

1. P = P1 ∪ P2 and P1 ∩ P2 = {}.

2. The atoms in the head of P1 do not occur
in P2.

3. The atoms in the body of P1 do not occur
in the head of P1.

Then M is a pstable model of P if and only if
there exist M1 and M2 such that M = M1 ∪M2,
M2 is a pstable model of P2 and M1 = {x : x ←
α ∈ P1,M2(α) = 1}.

Proof:

⇒ Let us assume that M is a pstable mod-
el of P and let us define M2 = M ∩
LP2 and M1 = M \ M2. It is clear
that M2 models the rules of P2. Now,
from the fact that RED(P, M) |=



12 Inteligencia Artificial Vol. XX, NoXX, 200X

M2, it follows that RED(P1, M) ∪
RED(P2,M) |= M2, and by using the
equality RED(P2,M) = RED(P2,M2)
we conclude that RED(P1,M) ∪
RED(P2,M2) |= M2.
Let us denote by H(P1) the program con-
sisting of the heads that appear in P1, i.e.,
H(P1) = {a ←| a ∈ HEAD(P1)}. It is
clear that each of the rules in RED(P1, M)
follows as a consequence in classical logic
from H(P1).
From these facts we conclude that H(P1)∪
RED(P2,M2) |= M2, and since by hy-
pothesis H(P1) ∩ LP2 = ∅, it follows that
RED(P2,M2) |= M2. This proves that M2

is a pstable model of P2.
Now let us consider the set S = {x : x ←
α ∈ P1,M2(α) = 1}. All the rules in S
have bodies that are true with respect to
M2, hence they are true with respect to M ;
but by hypothesis M models all these rules,
then we conclude that S ⊆ M , and by con-
dition two in the hypothesis, it follows that
S ⊆ M1.
Now it is easy to see that S ∪ M2 models
all the rules in P , and it is also clear that
RED(P, S ∪ M2) = RED(P1, S ∪ M2) ∪
RED(P2, S ∪ M2) = RED(P1, S ∪ M2) ∪
RED(P2,M2) and that RED(P1, S∪M2)∪
RED(P2,M2) |= S ∪M2.
We conclude that S ∪M2 is a pstable mod-
el for P , and then using the minimality
property for pstable models, it follows that
S ∪M2 = M1 ∪M2, in particular M1 = S.
This finishes the first part of the proof.

⇐ According to the hypothesis, M2 models in
classical logic P2 and RED(P2,M2) |= M2.
In order to prove that M1 ∪M2 is a pstable
model of P we only need to show that
M1 ∪ M2 models P1 and that RED(P1 ∪
P2, M1 ∪M2) |= M1 ∪M2.
The rules of P1 that define the set M1

are clearly modeled by M1, and if we con-
sider a rule in P1 : x ← α such that
M2(α) = 0 then there are two possibilities,
first: (M1 ∪M2)(α) = 0, in which case the
rule is modeled by M1 ∪ M2, and second:
(M1 ∪ M2)(α) = 1; but in this case there
would exist an atom b in the body of the
clause such that M1(b) = 1, but this con-
tradicts the fact that the atoms in the body
of P1 do not appear in the the head of P1.
Thus we conclude that M1 ∪M2 models P1

and hence P in the classical sense.
To prove that RED(P1 ∪ P2,M1 ∪ M2) |=

M1 ∪ M2, we observe that RED(P1 ∪
P2,M1 ∪ M2) = RED(P1,M1 ∪ M2) ∪
RED(P2,M1 ∪ M2) = RED(P1,M2) ∪
RED(P2,M2) according to the hypothesis.
The conclusion now follows easily.

This lemma points out that we can split ΨAF into
two subprograms e.g., P1 and P2, such that the
pstable models of ΨAF can be constructed from
P1 and P2. For instance, let ΨAF be the normal
program of Example 5. A possible instantiation
of P1 and P2 w.r.t. Lemma 4 is:

P2 :

d(a) ← ¬d(b). d(a) ← d(a).
d(b) ← ¬d(a). d(b) ← d(b).
d(c) ← ¬d(b). d(c) ← ¬d(e).
d(c) ← d(a). d(c) ← d(d).
d(d) ← ¬d(c). d(d) ← d(b), d(e).
d(e) ← ¬d(d). d(e) ← d(c).

P1 :

acc(a) ← ¬d(a). acc(b) ← ¬d(b).
acc(c) ← ¬d(c). acc(d) ← ¬d(d).
acc(e) ← ¬d(e).

We can see that M2 = {d(a), d(c), d(e)} is a
pstable model of P2, hence, we can infer that
M1 = {acc(b), acc(d)}. This meas that M =
M2 ∪ M1 = {d(a), d(c), d(e)acc(b), acc(d)} is a
pstable model of ΨAF .

We have introduced Lemma 4 in order to prove
that the pstable models of ΨAF characterize the
preferred extensions of AF ; however, observe that
this lemma identifies a class of normal programs
which can be split in order to construct their
pstable models. Hence this results is relevant by
itself.

Since our formalization of the characterization of
the preferred semantics by the pstable seman-
tics will consider Theorem 4 and this theorem is
based on positive disjunctive logic programs and
the stable model semantics, we will introduce a
lemma which will show how to recover the stable
models of a positive disjunctive logic program by
considering pstable models.

As we know by Definition 2, the pstable seman-
tics is defined for normal programs. Hence, for a



Inteligencia Artificial Vol. XX, NoXX, 200X 13

disjunctive positive rule

r = a1 ∨ a2 ∨ ... ∨ as ← b1 ∧ b2 ∧ · · · ∧ bn

we define the closure of r as the union of the s
rules:

ai ← ∧bk

∧
(∧¬aj){j 6=i}

for i : 1, 2, . . . , s and k : 1, 2, . . . , n. In the case
in which the rule r is normal, its closure is the
same r. The closure CL(P ), of a disjunctive pro-
gram P , is the union of the closures of its rules.
Observe that this program is normal. Our lemma
then says:

Lemma 5 For a positive disjunctive program P ,
one can recover its stable models from the pstable
models of CL(P ), specifically, the stable models
of P are exactly the pstable models of CL(P ).

Proof: Let us consider along with the given pro-
gram P , the programs P1 = CL(P ) and P2 =
{a′ ← a | a ∈ LP } where each a′ is a new atom,
in other words a′ does not appear in LP . Also let
P3 be the following program:

P3 = {u ← a′,¬a : a ∈ LP } ∪




x ← u,¬y.
y ← u,¬z.
z ← u,¬x.





Here x, y, z, u are special atoms that do not oc-
cur in LP . According to Theorem 2 (see [17] for
details), the stable models of P are found by inter-
secting the pstable models of P3∪P2∪P1 with the
language of P . Formally M is a stable model of P
iff there exists a pstable model N of P1 ∪P2 ∪P3

such that M = N ∩ LP .

According to Lemma 3.3 of [17], the pstable mod-
els of P1∪P2∪P3 correspond to the pstable mod-
els of the program (extended with constraints)
P1 ∪ P2 ∪R, where R is defined as:

R = {⊥ ← a′,¬a : a ∈ LP }

By Lemma 4, for every pstable model M of
P1∪P2, the truth value of each pair of atoms a′, a
agree. Hence R is redundant. Hence, the pstable
models of P1 ∪ P2 ∪ P3 correspond to the pstable
models of the program P1 ∪ P2.

Again, by Lemma 4, the pstable models of pro-
gram P1 ∪P2 restricted to the language of P cor-
respond to the pstable models of program P1.

From all this we conclude that the stable mod-
els for P correspond to the pstable models of P1.
This finishes the proof.

Observe that the result of Lemma 5 is important
by itself since it suggests a strict relationship be-
tween stable models and pstable models for the
class of positive disjunctive logic programs. In
fact this lemma is a weak version of Theorem 2.

For the rest of the paper we need the following no-
tation. Let AF be an argumentation framework
and E be a set of arguments. We write tr1(E)
to denote the set {d(a)|a is an argument and a 6∈
E}. For a given set of atoms M , we write cl(M)
to denote the set LP \M . A normal clause which
has an atom of the form acc(x) in its head will be
called acc-rule.

By considering Lemma 4, we will prove that: Giv-
en an argumentation framework AF , then the
preferred extensions of AF correspond exactly to
the pstable models of ΨAF . More formally:

Theorem 6 Let AF be an argumentation frame-
work and E be a set of arguments. E is a preferred
extension of AF if and only if tr(E) is a pstable
model of ΨAF .

Proof: Let P be ΨAF minus the acc rules of these
translations. Let CLO(P ) be P ∪ {x ← ¬y : y ←
¬x ∈ P}. By Theorem 4 and Lemma 5, one can
immediately see that E is a preferred extension
of AF iff tr1(E) is a pstable model of CLO(P ).
We will now see that M is pstable model of P iff
M is pstable model of CLO(P ).

Suppose that M is a pstable of P . It is immediate
to see that M is a pstable model of CLO(P ).

The interesting case is the converse. Suppose that
M is a pstable model of CLO(P ) and let us try to
prove that M is a pstable model of P . By our as-
sumption and the definition of pstable model, M
is a model of CLO(P ) and RED(CLO(P ),M) |=
M . Clearly M is a model of P . We only need to
prove that RED(P,M) |= M . This follows since
RED(P, M) |= RED(CLO(P ), M) and this fin-
ishes this first part of the proof. It is worth to
explain the last step in some more detail.



14 Inteligencia Artificial Vol. XX, NoXX, 200X

In order to prove that RED(P,M) |=
RED(CLO(P ),M), let r1 be any rule that be-
longs to CLO(P ) such that it does not belong
to P . Then r1 must be of the form x ← ¬y.
Clearly r2 (of the form y ← ¬x) belongs to
both P and CLO(P ). Let s1 be the result of
r1 after the reduction RED. Similarly, let s2 be
the result of r2 after the reduction RED. So,
s2 ∈ (RED(P, M) ∩ RED(CLO(P ),M)) and
s1 ∈ RED(CLO(P ),M). We have two cases:

A) r1 = s1. Then clearly s2 |= s1. Hence
RED(P,M) |= s1.

B) Suppose that r1 is different from s1. Then
r2 = s2. In addition s1 should be the fact x
which belongs to RED(CLO(P ),M). Necessar-
ily y /∈ M . Let x ← ¬z1, ...,x ← ¬zm be all
the non definite rules of P such that x is in the
head. Then y ← z1, ..., zm ∈ P . Since M is a
model of P then there exists z ∈ {z1, ..., zm}
such that z /∈ M . Hence x ← ¬z ∈ P and so
x is a fact of RED(P,M). Hence, x |= s1 and so
RED(P,M) |= s1.

From both cases RED(P, M) |= s1, so it follows
that RED(P,M) |= RED(CLO(P ),M).

As a consequence of the above reasoning E is a
preferred extension of AF iff tr1(E) is a pstable
model of P .

Finally, by Lemma 4 one can extend our final re-
sult from tr1, P to tr,ΨAF respectively to obtain
our desired result, namely that E is a preferred
extension of AF iff tr(E) is a pstable model of
ΨAF .

Example 6 In order to illustrate this theorem,
let ΨAF be the normal program of Example 5. As
we can see ΨAF has two pstable models:

{d(a), d(c), d(e), acc(b), acc(d)}
{d(b), d(c), d(d), d(e), acc(a)}

This means that AF has two preferred extensions:
{{b, d}, {a}}.

We can formalize the fact that the well-founded
model of ΨAF characterizes the grounded exten-
sions of AF .

Theorem 7 Let AF be an argumentation frame-
work and E be a set of arguments. Then E is the

grounded extension of AF if and only if tr(E) is
the well-founded model of ΨAF .

Proof: The proof is direct by Lemma 2 of [16].

As we can see by Theorem 5, Theorem 6 and The-
orem 7, the mapping ΨAF is a suitable codifica-
tion able to characterize the grounded, stable and
preferred semantics. These results extend the re-
sults of Theorem 17 of [7]. It is worth to comment
that, to the best of our knowledge, ΨAF is the
first codification able to infer three argumenta-
tion semantics of Dung’s framework by consider-
ing three different logic programming semantics
with negation as failure.

5. Conclusions

When Dung introduced his abstract argumenta-
tion approach, he proved that his approach can be
regarded as a special form of logic programming
with negation as failure. In fact, he showed that
the grounded and stable semantics can be char-
acterized by the well-founded and stable mod-
el semantics respectively. This result is impor-
tant because it defines a general method for gen-
erating metainterpreters for argumentation sys-
tems [7]. Concerning this issue, Dung did not give
any characterization of the preferred semantics in
terms of logic programming semantics.

In this paper, we present an extension of the re-
sults presented in Theorem 17 of [7]. In our case,
we prove that by considering an argumentation
framework as a logic program, it is possible to
identify a unique codification (ΨAF ) such that

the well-founded model of ΨAF character-
izes the grounded extension of AF (Theo-
rem 7);

the stable models of ΨAF characterize the
stable extensions of AF (Theorem 5); and

the pstable models of ΨAF characterize the
preferred extensions of AF (Theorem 6).

This means that the main patterns of inference
in argumentation semantics can be totally cap-
tured by logic programming with negation as fail-
ure. These results suggest that one can explore
argumentation semantics by considering the re-
sults of logic programming with negation as fail-
ure. For instance, since the pstable semantics can



Inteligencia Artificial Vol. XX, NoXX, 200X 15

be characterized by paraconsistent logics (as the
Cw and G′3 logics [18]) or modal logics (as the S5
modal logic [20]), one can explore argumentation
constructions in terms of paraconsistent logics or
modal logics.

In general we believe that our results w.r.t. ar-
gumentation semantics are relevant for at least
two reasons: First, it shows a very close relation
between two well-known Non Monotonic Reason-
ing approaches. Second, it gives mechanisms to
compute argumentation semantics since there are
implementations of WFS, stable models ([6, 24])
and pstable semantics [13].

In the context of logic programming semantics,
it is worth to comment that we identify a pair
of stable-equivalences between normal programs
(Lemma 2 and Lemma 3). We also identify a class
of normal programs which can be split to con-
struct their pstable models (Lemma 4) and final-
ly a strict relationship between stable models and
pstable models for the class of positive disjunctive
program is formalized (Lemma 5).
Finally, as future work we plan on exploring the
relation between supported models and pstable
models for normal and disjunctive programs.

Acknowledgement

We are grateful to anonymous referees for their
useful comments. J.C. Nieves thanks to CONA-
CyT for his PhD Grant.

Referencias

[1] Chitta Baral. Knowledge Representation,
Reasoning and Declarative Problem Solv-
ing. Cambridge University Press, Cam-
bridge, 2003.

[2] Pietro Baroni, Massimiliano Giacomin, and
Giovanni Guida. SCC-recursiveness: a gen-
eral schema for argumentation semantics.
Artificial Intelligence, 168:162–210, October
2005.

[3] Trevor J. M. Bench-Capon and Paul E.
Dunne. Argumentation in artificial in-
telligence. Artificial Intelligence, 171(10-
15):619–641, 2007.

[4] Carlos Iván Chesñevar, Ana Gabriela Magui-
tman, and Ronald Prescott Loui. Logical
models of argument. ACM Comput. Surv.,
32(4):337–383, 2000.

[5] Jürgen Dix. A classification theory of se-
mantics of normal logic programs: II. weak
properties. Fundam. Inform., 22(3):257–288,
1995.

[6] System DLV. Vienna
University of Technology.
http://www.dbai.tuwien.ac.at/proj/dlv/,
1996.

[7] Phan Minh Dung. On the acceptability
of arguments and its fundamental role in
nonmonotonic reasoning, logic programming
and n-person games. Artificial Intelligence,
77(2):321–358, 1995.

[8] Paul E. Dunne and Trevor J. M. Bench-
Capon. Complexity in value-based argument
systems. In JELIA, volume 3229 of LNCS,
pages 360–371. Springer, 2004.

[9] Allen Van Gelder, Kenneth A. Ross, and
John S. Schlipf. The well-founded seman-
tics for general logic programs. Journal of
the ACM, 38(3):620–650, 1991.

[10] Michael Gelfond and Vladimir Lifschitz. The
Stable Model Semantics for Logic Program-
ming. In R. Kowalski and K. Bowen, editors,
5th Conference on Logic Programming, pages
1070–1080. MIT Press, 1988.

[11] Michael Gelfond and Vladimir Lifschitz.
Classical Negation in Logic Programs and
Disjunctive Databases. New Generation
Computing, 9:365–385, 1991.

[12] Vladimir Lifschitz, David Pearce, and
Agust́ın Valverde. Strongly equivalent log-
ic programs. ACM Trans. Comput. Log.,
2(4):526–541, 2001.

[13] Alejandra López. Implementing pstable. In
Rogelio Dávila, Mauricio Osorio, and Clau-
dia Zepeda, editors, Workshop in Logic, Lan-
guage and Computation, volume 220. CEUR
Workshop Proceedings, 2006.

[14] Elliott Mendelson. Introduction to Math-
ematical Logic. Chapman and Hall/CRC,
Fourth edition 1997.

[15] Juan Carlos Nieves, Mauricio Osorio, and
Ulises Cortés. Preferred extensions as sta-
ble models. Theory and Practice of Logic
Programming, 8(4):527–543, July 2008.



16 Inteligencia Artificial Vol. XX, NoXX, 200X

[16] Juan Carlos Nieves, Mauricio Osorio, and
Ulises Cortés. Studying the grounded
semantics by using a suitable codifica-
tion. Research report LSI-08-6-R, Univer-
sitat Politècnica de Catalunya, Software De-
partment (LSI), Barcelona, Spain, January
2008.

[17] Mauricio Osorio, José R. Arrazola, and
José Luis Carballido. Logical Weak Com-
pletions of Paraconsistent Logics. Journal
of Logic and Computation, doi: 10.1093/log-
com/exn015, 2008.

[18] Mauricio Osorio and Jose Luis Carballido.
Brief study of G’3 logic. Journal of Applied
Non-Classical Logics, 18(4):79–103, 2008.

[19] Mauricio Osorio, Juan Antonio Navarro, and
José Arrazola. Safe beliefs for propositional
theories. Journal of Pure and Applied Logic,
2005.

[20] Mauricio Osorio, Juan Antonio Navarro,
José R. Arrazola, and Verónica Borja.
Ground Nonmonotonic Modal Logic S5: New
Results. Journal of Logic and Computation,
15(5):787–813, 2005.

[21] Mauricio Osorio, Juan Antonio Navarro,
José R. Arrazola, and Verónica Borja. Log-
ics with Common Weak Completions. Jour-
nal of Logic and Computation, 16(6):867–
890, 2006.

[22] Henry Prakken and Gerard A. W. Vreeswi-
jk. Logics for defeasible argumentation.
In D. Gabbay and F. Günthner, editors,
Handbook of Philosophical Logic, volume 4,
pages 219–318. Kluwer Academic Publish-
ers, Dordrecht/Boston/London, second edi-
tion, 2002.

[23] Iyad Rahwan and Peter McBurney. Argu-
mentation technology: Introduction to the
special issue. IEEE Intelligence Systems,
22(6):21–23, 2007.

[24] System SMODELS. Helsin-
ki University of Technology.
http://www.tcs.hut.fi/Software/smodels/,
1995.

[25] Alfred Tarski. A lattice-theoretical fixpoint
theorem and its applications. Pacific Journal
of Mathematics, 5(2):285–309, 1955.


