
Ideal Extensions as Logical Programming Models

JUAN CARLOS NIEVES
Department of Computing Science

Umeå University
SE-901 87, Umeå, Sweden
jcnieves@cs.umu.se

MAURICIO OSORIO
Universidad de las Américas - Puebla

Depto. de Actuaría, Física y Matemáticas
Sta. Catarina Mártir, Cholula, Puebla, 72820 México

osoriomauri@gmail.com

December 13, 2013

Abstract

We show that the ideal sets of an argumentation framework can be character-
ized by two kinds of logical models: ideal models (2-valued logical models) and
p-stable models (2-valued logical models). We also show that the maximal ideal
set of an argumentation framework can be characterized by the well-founded+

model (a 3-valued logical model). These results argue for the logical foundations
of the ideal sets of an argumentation framework. Moreover, these results consoli-
date the strong relationship between argumentation semantics and logic program-
ming semantics with negation as failure. More accurately, we prove that the five
argumentation semantics suggested by Dung et al., grounded, stable, preferred,
complete and ideal semantics, can be characterized by the well-founded model,
stable-model, p-stable, Clark’s completion and well-founded+ model semantics,
respectively by using a unique mapping from argumentation frameworks into logic
programs. We observe that the labellings of these argumentation semantics can be
inferred by the logical models of a logic program.

1 Introduction
Recently, theoretical argumentation research has been strongly influenced by the ab-
stract argumentation theory of Dung [17]. This approach is mainly oriented towards
managing the interaction between arguments. In order to capture the interaction be-
tween arguments, Dung introduced a single structure called Argumentation Framework
(AF). An argumentation framework is basically a tuple of two sets: a set of arguments

1

and a set of disagreements between arguments called attacks. An argumentation frame-
work can be regarded as a directed graph in which the arguments are represented by
nodes and the attack relations are represented by the edges. In Figure 1, an example of
an argumentation framework and its graph representation is given.

Given an argumentation framework, a wide range of patterns of selection of argu-
ments has been proposed [2]. These patterns of selection of arguments have been called
argumentation semantics. Among them, ideal semantics has emerged as an alternative
for performing skeptical reasoning in argumentation reasoning [18, 20, 21]. As Dunne
et al. argue, ideal semantics suggests a rigorous basis for the notion of justifiably
accepted skeptical belief [21]:

“an argument must not only be skeptically accepted (as in the standard
sense), but also must belong to a set of internally consistent and self-
defending collection of skeptically accepted arguments”

The concept of an ideal set has been defined as an admissible set which is contained
in every preferred extension of a given argumentation framework. For instance, one
can see that the argumentation framework of Figure 1 has six admissible sets: {},
{a}, {b}, {d}, {a, d}, {b, d} and two preferred extensions: {a, d}, {b, d}. Therefore,
the argumentation framework of Figure 1 has two ideal sets: {}, {d}. Of these ideal
sets, the maximal ideal set is the more interesting one to infer from an argumentation
framework because it is a super set of the grounded extension.

c1

c2

c3

b1

b2

a1

a

b

c d e f

x y

a

b

c d

a

b

c d

Figure 1: Graph representation of AF :=
⟨{a, b, c, d}, {(a, b), (b, a), (a, c), (b, c), (c, d), (d, c)}⟩.

The inference of argumentation semantics has been explored from the point of view
of different theories, e.g., equation theory [26], graph theory [4], and logic program-
ming theory [10, 11, 17]. A basic requirement for exploring argumentation inference in
terms of another theory is to express argumentation frameworks in terms of the given
theory and to then characterize argumentation semantics in the given theory. For in-
stance, Gabbay introduced some mappings for expressing argumentation frameworks
in terms of numerical equations [26]. The solutions of these numerical equations char-
acterize different argumentation semantics. One of the main advantages of character-
izing argumentation inference from the point of view of another theory is that different
approaches are defined for computing argumentation semantics. It is worth mentioning
that the computational complexity of the decision problems of argumentation seman-
tics range from linear to Π

(p)
2 -complete [19]. By following Gabbay’s approach, one

can use tools such as MAPLE or MATLAB for computing argumentation semantics.

2

Dung showed that argumentation can be viewed as logic programming with nega-
tion as failure and vice versa. This strong relationship between argumentation and
logic programming has given way to intensive research in order to explore the relation-
ship between argumentation and logic programming [10, 11, 17, 31, 29, 35, 30, 38].
A basic requirement for exploring the relationship between argumentation and logic
programming is to identify proper mappings which allow us to transform an argumen-
tation framework into a logic program and vice versa. The flexibility of these map-
pings will restrict the understanding of argumentation as logic programming (and vice
versa). Therefore, defining simple and flexible mappings which regard argumentation
as logic programming (and vice versa) will impact the use of logic programming in
argumentation (and vice versa). Currently, we can find different mappings for regard-
ing argumentation as logic programming (and vice versa) [10, 11, 17, 26]. All of them
offer different interpretations of argumentation as logic programming (and vice versa).
Depending on these interpretations, one can identify direct relationships between the
argumentation inferences and the logic programming inferences.

In this paper, we will limit our attention to only the interpretation of argumentation
as logic programming. We will extend results which have shown that by considering
a unique mapping of an argumentation framework into a logic program (Πacc

AF), one
can characterize grounded, stable, preferred and complete semantics in terms of well-
founded, stable, p-stable, Clark-completion logical models, respectively. In particular,
following the mapping Πacc

AF and the characterization of argumentation semantics in
terms of logic programming semantics, a couple of research questions arise in the con-
text of ideal sets:

Q1: can the ideal sets of an argumentation framework be characterized by a credulous
logic programming semantics?

Q2: If so, is such semantics interesting or well known?

Let us observe that, by answering these questions, we identify logical foundations
to the ideal semantics in the sense that the ideal sets can be defined in terms of logical
models of a given logical theory (i.e. a logic program), and, therefore, using logic-based
tools for computing ideal semantics. Currently, it is known that logic-based tools, e.g.,
SAT Solvers, Answer Set Programming tools, offer solid solutions for computing high
complexity problems.

It is worth mentioning that if the ideal semantics is characterized by Πacc
AF and a

logic programming semantics, the ideal semantics will share the same mapping with
grounded, stable, preferred and complete semantics in order to be characterized by log-
ical models. This suggests that Πacc

AF defines a basic root for capturing argumentation
semantics based on admissible sets in terms of logical models.

In order to illustrate our approach, let us map the argumentation framework AF of
Figure 1 into the logic program Πacc

AF which is of the form:

3

def(a)← not def(b). def(a)← def(a).
def(b)← not def(a). def(b)← def(b).
def(c)← not def(a). def(c)← def(b).
def(c)← not def(b). def(c)← def(a).
def(c)← not def(d). def(c)← def(c).
def(d)← not def(c). def(d)← def(a), def(b), def(d).

acc(a)← not def(a) acc(b)← not def(b)
acc(a)← not def(c) acc(b)← not def(d)

Let us observe that the clauses of the form def(x) ← not d(y) suggest that the
argument x is defeated (which means that it cannot be part of an admissible set) if
the argument y is not defeated. In the same way, the clauses of the form def(x) ←
d(y1), . . . , d(yn) suggest that the argument x is defeated if the arguments y1, . . . , yn
are defeated. The last clauses of the form acc(x) ← not def(x) suggest that if
argument x is not defeated, it is an accepted argument which means that the argument
belongs to an admissible set.

One can see that the 2-valued models of Πacc
AF are: {def(a), def(b), def(c), def(d)},

{acc(a), def(b), def(c), def(d)}, {acc(b), def(a), def(c), def(d)}, {acc(d), def(a),
def(b), def(c)}, {acc(a), acc(d), def(b), def(c)}, {acc(b), acc(d), def(a), def(c)}.
If we observe only the atoms of the form acc(x) of each model, we can see that each
model of Πacc

AF characterizes an admissible set of AF . This suggests that Πacc
AF defines

an isomorphism of the admissible sets of AF in terms of the logical models of Πacc
AF .

Among the different logic programming semantics for performing skeptical rea-
soning, WFS is one of the well-accepted semantics [1, 14]. Besides WFS, WFS+ (also
called the Well-Founded-By-Cases Semantics) [14, 36] has shown itself to be a sound
logic programming semantics for performing skeptical reasoning. Indeed, Dix showed
that WFS+ is a well-behaved semantics [15], which means that it satisfies basic princi-
ples of non-monotonic reasoning (see [15] for a formal definition of a well-behaved se-
mantics). In addition to being a well-behaved semantics, Schlipf [36] showed that WFS
by cases (WFS+) is a logic programming semantics which satisfies a good number of
common sense goals. It is worth mentioning that, like WFS, WFS+ is a 3-valued se-
mantics. To relate WFS+ and argumentation inference may help to consolidate WFS+

as a sound skeptical reasoning approach.
Based on this background, we introduce new results w.r.t. argumentation as logic

programming with negation as failure. On the one hand, by following the ideal set defi-
nition, we introduce the concept of an ideal model of a logic program. The definition of
an ideal model will be based on 2-valued classical models and p-stable models. On the
other hand, by considering an argumentation framework AF and a uniform mapping
of an AF into a logic program Πacc

AF , we show that

• the ideal models of Πacc
AF characterize the ideal sets of AF (Theorem 5) and

• the WFS+ model of Πacc
AF characterizes the maximal ideal set of AF (Theorem

11).

• the well founded model of Πacc
AF characterizes the grounded extension of AF

(Theorem 3),

4

• the stable models of Πacc
AF characterize the stable extensions of AF (Theorem 3),

• the p-stable models of Πacc
AF characterize the preferred extensions of AF (Theo-

rem 3) and

• the supported models of Πacc
AF characterize the complete extensions of AF (The-

orem 3).

For instance, the ideal models of Πacc
AF are: {def(a), def(b), def(c), def(d)} and

{acc(d), def(a), def(b), def(c)}. If we only observe the atoms of the form acc(x)
which belong to these models, we can see that these models characterize the ideal
sets of AF , i.e. {} and {d}. On the other hand, we can see that WFS+(Πacc

AF) =
⟨{acc(d)}, {def(a), def(b), def(c)}⟩. By considering only the positive atoms of
WFS+(Πacc

AF), WFS+ characterizes the maximal ideal set of AF .
Based on these results, we show that the ideal sets of an argumentation framework

can be characterized in terms of p-stable models (Corollary 1). Since the p-stable mod-
els of Πacc

AF characterize the preferred semantics and the p-stable models also are able
to characterize the ideal sets of an argumentation framework, the p-stable semantics
introduces logical definitions of both the preferred semantics and ideal sets.

Let us observe that WFS+ suggests a different interpretation of the maximal ideal
set of an argumentation framework in terms of a logical model. More accurately,
WFS+ introduces a logical definition of the maximal ideal set of an argumentation
framework. From the logic programming point of view, this characterization argues
that WFS+ is a sound approach for performing non-monotonic skeptical reasoning.

Given that WFS+ can be characterized in terms of rewriting systems [16], our char-
acterization of the maximal ideal set of an argumentation framework in terms of WFS+

at least has the following implications:

• WFS+ introduces a simple equational approach for computing the maximal ideal
set of an argumentation framework.

• The rewriting system which characterizes WFS+ identifies a set of logical equiv-
alents which satisfies the maximal ideal set of an argumentation framework.

Rewriting is a very powerful method for dealing computationally with equations.
Oriented equations, called rewrite rules, are used to replace equals with equals, but only
in one direction. The theory of rewriting centers around the concept of normal form,
an expression that cannot be rewritten any further. Computation consists of rewriting
to a normal form; when the normal form is unique, it is taken as the value of the initial
expression. When rewriting equal terms always leads to the same normal form, the
set of rules is said to be convergent and rewriting can be used to decide validity of
identities in the equational theory. Rewriting has the computational power of Markov
algorithms and of recursive functions and Turing machines [13]. It is worth mentioning
that, unlike Gabbay’s approach, which is a numerical approach [24], our approach is
both a symbolic and logic-based approach. In Section 6, we argue more about the
similarities and differences between Gabbay’s approach and our approach.

This paper is an improved and extended version of the paper [28]. In the new
version of the paper, in addition to the formal presentation of proofs, we introduce new

5

results of the relationship between ideal models and rewriting systems. We show that
WFS+ not only characterizes an ideal set of an argumentation framework AF , but also
characterizes the maximal ideal of AF . We present a related work section where we
compare our approach with the state of the art. Indeed, we observe that our approach
is able to infer the labellings of the five argumentation semantics suggested by Dung et
al.

The rest of the paper is divided as follows: In Section 2, a basic background of logic
programs and logic programming semantics is introduced. The definitions of grounded,
stable, preferred, complete and ideal semantics are presented. At the end of this section,
our mappings (ΠAF and Πacc

AF) of argumentation frameworks into logic programs are
presented. In Section 3, we explore the relationship between ideal models and ideal
sets. In Section 4, we explore how the minimal ideal model can be characterized by the
WFS+ model. This relationship will suggest a relationship between the WFS+ model
and the maximal ideal set of an argumentation framework. All the results of Section
4 are presented in terms of ΠAF . In Section 5, the characterization of the maximal
ideal set of an argumentation framework is introduced in terms of Πacc

AF . In Section
6, an overview of the related work is presented. In the last section, we outline our
conclusions.

2 Background
In this section, we first define the syntax of a valid logic program; after that the p-
stable, Well-Founded and Well-Founded+ Semantics are presented. In the context of
argumentation, we present some basic concepts of argumentation theory and a mapping
of argumentation frameworks into logic programs.

2.1 Basic Notions
A signature L is a finite set of elements that we call atoms. A literal is an atom a (called
a positive literal), or the negation of an atom not a (called a negative literal). Given
a set of atoms {a1, . . . , an}, we write not {a1, . . . , an} to denote the set of literals
{not a1, . . . , not an}. A normal clause is of the form:

a0 ← a1, . . . , aj , not aj+1, . . . , not an

in which ai is an atom, 0 ≤ i ≤ n. When n = 0 the normal clause is an abbreviation of
a0 ← ⊤, where ⊤ and ⊥ are the ever true and ever false propositions respectively. A
normal logic program is a finite set of normal clauses. Sometimes, we denote a clause
C by a ← B+, not B−, where B+ contains all the positive body literals and B−

contains all the negative body literals. We also use body(C) to denote B+, not B−.
When B− = ∅, the clause C is called a definite clause. A definite program is a finite
set of definite clauses. We denote by LP the signature of P , i.e. the set of atoms that
occurs in P. Given a signature L, we write ProgL to denote the set of all the programs
defined over L.

Logical consequence in classical logic is denoted by ⊢. Given a set of proposition
symbols S and a theory (a set of well-formed formulae) Γ, Γ ⊢ S if and only if ∀s ∈ S

6

Γ ⊢ s. When we treat a logic program as a logical theory, each negative literal not a is
replaced by ¬a such that ¬ is regarded as the classical negation in classic logic. Given
a normal logic program P, if M ⊆ LP , we write P
 M when: P ⊢ M and M is a
classical 2-valued model of P (i.e. atoms in M are set to true, and atoms not in M to
false; the set of atoms is a classical model of P if the induced interpretation evaluates
P to true).

2.2 P-stable semantics
An important logic programming semantics that we consider in the relationship be-
tween argumentation semantics and logic programming semantics is the so called p-
stable semantics [32]. There are some results which have shown that the preferred
extensions of an argumentation framework can be characterized in terms of p-stable
models [11]. The p-stable model semantics has its logical foundations in paraconsis-
tent logics.

P-stable semantics is defined in terms of a single reduction which is defined as
follows:

Definition 1 [32] Let P be a normal program and M be a set of literals. We define
RED(P,M) := {l← B+, not (B− ∩M)|l← B+, not B− ∈ P}.

Let us consider the set of atoms M1 := {a, b} and the following normal program P1:

a← not b, not c.
a← b.
b← a.

We can see that RED(P1,M1) is:
a← not b.
a← b.
b← a.

By considering the reduction RED, the p-stable semantics for normal logic pro-
grams is defined as follows:

Definition 2 [32] Let P be a normal program and M be a set of atoms. We say that
M is a p-stable model of P if RED(P,M)
 M . P -stable(P) denotes the set of
p-stable models of P .

Let us consider again M1 and P1 in order to illustrate the definition. We want to
show whether M1 is a p-stable model of P1. First, we can see that M1 is a model of
P1, i.e. ∀ C ∈ P1, M1 evaluates C to true. Now, we have to prove each atom of M1

from RED(P1,M1) by using classical inference, i.e. RED(P1,M1) ⊢ M1 . Let us
consider the proof of the atom a, which belongs to M1, from RED(P1,M1).

7

1. (a ∨ b)→ ((b→ a)→ a) Tautology
2. ¬ b→ a Premise from RED(P1,M1)
3. a ∨ b From 2 by logical equivalency
4. (b→ a)→ a) From 1 and 3 by Modus Ponens
5. b→ a Premise from RED(P1,M1)
6. a From 4 and 5 by Modus Ponens

Remember that the formula ¬ b → a corresponds to the normal clause a ← not b
which belongs to the program RED(P1,M1). The proof for the atom b, which also
belongs to M1, is similar. Then we can conclude that RED(P1,M1)
 M1. Hence,
M1 is a p-stable model of P1.

2.3 The Well-Founded Semantics and WFS+

The well-founded semantics (WFS) is a logic programming semantics which has shown
to be close to argumentation semantics. Let us recall that Dung showed that the
grounded semantics can be characterized by WFS [17]. In this section, we will present
a definition of WFS in terms of rewriting systems. In addition to WFS’ definition, an
extension of WFS will be presented which is called well founded+ semantics (WFS+)
[15]. We will show that WFS+ is also closely related to argumentation semantics.

Given that both WFS and WFS+ are 3-valued logic semantics, we start presenting
some definitions w.r.t. 3-valued logic semantics. A partial interpretation based on a
signature L is a disjoint pair of sets ⟨I1, I2⟩ such that I1 ∪ I2 ⊆ L. A partial interpre-
tation is total if I1 ∪ I2 = L. Given two interpretations I = ⟨I1, I2⟩, J = ⟨J1, J2⟩,
we set I ≤k J if, by definition, Ii ⊆ Ji, i = 1, 2. Clearly ≤k is a partial order. When
we look at interpretations as sets of literals then ≤k corresponds to ⊆. A general se-
mantics SEM is a function on ProgL which associates every program with a partial
interpretation.

Given a signature L and two semantics SEM1 and SEM2, we define SEM1 ≤k

SEM2 if for every program P ∈ ProgL, SEM1(P) ≤k SEM2(P).

Definition 3 (SEM) For any logic program P , we define HEAD(P) = {a| a ←
B+, not B− ∈ P} — the set of all head-atoms of P . We also define SEM(P) =
⟨P true, P false⟩, where P true := {p| p← ⊤ ∈ P} and P false := {p| p ∈ LP \HEAD(P)}.

Now, we define some basic transformation rules for normal logic programs which
will be considered for characterizing WFS and WFS+.

Definition 4 (Basic Transformation Rules) [16] A transformation rule is a binary
relation on ProgL. The following transformation rules are called basic. Let a pro-
gram P ∈ ProgL be given.

RED+: This transformation can be applied to P , if there is an atom a which does not
occur in HEAD(P). RED+ transforms P to the program where all occurrences
of not a are removed.

RED−: This transformation can be applied to P , if there is a rule a← ⊤ ∈ P . RED−

transforms P to the program where all clauses that contain not a in their bodies
are deleted.

8

Success: Suppose that P includes a fact a ← ⊤ and a clause q ← B+, not B−
such that a ∈ B+. Then we replace the clause q ← B+, not B− by q ←
B+ \ {a}, not B−.

Failure: Suppose that P contains a clause q ← B+, not B− such that a ∈ B+ and
a /∈ HEAD(P). Then we erase the given clause.

Loop: We say that P2 results from P1 by LoopA if, by definition, there is a set A of
atoms such that 1. for each rule a ← B+, not B− ∈ P1, if a ∈ A, then
B+ ∩A ̸= ∅, 2. P2 := {a← B+, not B− ∈ P1|B+ ∩A = ∅}, 3. P1 ̸= P2.

SUB : If P contains two clauses a ← B+
1 , not B−

1 and a ← B+
2 , not B−

2 , where
B+
1 ⊆ B

+
2 and B−1 ⊆ B

−
2 , then a← B+

2 , not B
−
2 is removed from P .

TAUT : Suppose P contains a rule C which has the same atom in its head and its
positive body. Then we remove this rule.

LC : Suppose P ⊢ a for an atom a. Then we add the rule a← ⊤ in P .

Let us observe that most of the basic transformations are syntactically applicable
in the sense that one can easily see when a given basic transformation is applicable
by a direct syntactic analysis of the rules of a given logic program. However, the
loop transformation is possibly the transformation rule which is not applicable in a
straightforward way. One can observe that the application of the loop transformation
depends on the set A which is basically an unfounded set [27]. Informally speaking,
an unfounded set consists of positive atoms which are not possibly true, i.e. cannot be
derived by assuming all negative literals to be true. In this sense, one can see that by
considering the greatest unfounded set of P1 for defining A, the loop transformation
maximizes the number of rules which can be removed from P1. This means that if P2

results from P1 by using the maximal A, one cannot apply once again LoopA to P2.
In [6], a general method for computing the maximal A of a given logic program was
introduced. The algorithm for computing the maximal A (which means the greatest
unfounded set of P1) works as follows:

1. P ′ = {a← B+|a← B+, not B− ∈ P1}

2. Let MMP be the minimal model of P ′1.

3. A = LP1 \MMP

By considering A, one can get P2 as follows:

P2 = {a← B+, not B−|a← B+, not B− ∈ P1 and B+ ∩A = ∅}

In the rest of the paper, whenever the loop transformation is applied, we assume
that the greatest unfounded set was used for defining A.

The transformation rules of Definition 4 will be used to define two rewriting sys-
tems as follows:

1Since P ′ is a definite program P ′ has a unique minimal model.

9

CS0 = {RED+, RED−, Success, Failure, Loop }

CS1 = CS0 ∪ {SUB, TAUT,LC}

The uniquely determined normal form of a normal logic program P with respect to
a rewriting system CS is denoted by normCS(P). By the normal form of a normal logic
program P , we mean the resulting normal logic program normCS(P) after applying
the transformation rules which belong to CS and none of the transformation rules which
belong to CS can be applied to normCS(P).

In order to illustrate the basic transformation rules, let us consider the following
example:

Example 1 Let P be the following normal program:

d(b)← not d(a). d(b)← ⊤. d(c)← not d(b).
d(c)← d(a).

Now, let us apply CS0 to P . Since d(a) /∈ HEAD(P), then, we can apply RED+ to
P . Thus we get:

d(b)← ⊤. d(c)← not d(b). d(c)← d(a).

Notice that we can apply RED− to the new program, thus we get:

d(b)← ⊤. d(c)← d(a).

Finally, we can apply Failure to the new program, thus we get:

d(b)← ⊤.

This last program is the normal form of P w.r.t. CS0, because none of the transforma-
tion rules from CS0 can be applied.

Every rewriting system CS induces a 3-valued logic semantics SEMCS as follows:

SEMCS(P) := SEM(normCS(P))

WFS was introduced in [27] and was characterized in terms of rewriting systems in
[7]. This characterization is defined as follows:

Theorem 1 [7] CS0 is a confluent rewriting system. It induces a 3-valued semantics
that is the Well-founded Semantics.

Example 2 Let P be the normal logic program that was introduced in Example 1. We
saw in Example 1 that normCS0(P) is:

d(b)← ⊤.

This means that SEMCS0(P) = ⟨{d(b)}, {d(a), d(c)}⟩. Let us observe that the atoms
d(a) and d(c) do not appear in normCS0(P); however, they belong to the signature of
P . Therefore, they are considered as atoms of the signature of normCS0(P). Hence,
by Theorem 1, WFS(P) = ⟨{d(b)}, {d(a), d(c)}

10

There is an extension of WFS called WFS+. This extension of WFS is a logic
programming semantics which, like WFS, is a well-behaved semantics2 [15]. WFS+

was introduced in [14] and characterized in terms of rewriting systems in [16].

Theorem 2 [16] The WFS+ semantics is induced by the confluent rewriting system
CS1.

Before moving on, let us observe that the consideration of rewriting systems which
are confluent and terminating defines a general methodology for characterizing dif-
ferent logic programming semantics. Observe that the differences between WFS and
WFS+ are three rewriting rules, i.e. SUB, TAUT, LC.

2.4 Argumentation theory
Now, we define some basic concepts of Dung’s argumentation approach. The first one
is an argumentation framework. An argumentation framework captures the relation-
ships between arguments.

Definition 5 [17] An argumentation framework is a pair AF := ⟨AR, attacks⟩, where
AR is a finite set of arguments, and attacks is a binary relation on AR, i.e. attacks
⊆ AR×AR.

a b c a b c

a) b)Figure 2: Graph representation of AF := ⟨{a, b, c}, {(a, b), (b, c)}⟩

Any argumentation framework can be regarded as a directed graph. For instance,
if AF := ⟨{a, b, c}, {(a, b), (b, c)}⟩, then AF is represented as it is shown in Figure
2. We say that a attacks b (or b is attacked by a) if attacks(a, b) holds. Similarly, we
say that a set S of arguments attacks b (or b is attacked by S) if b is attacked by an
argument in S.

Let us observe that an argumentation framework is a simple structure which cap-
tures the conflicts of a given set of arguments. In order to select coherent points of
view from a set of conflicts of arguments, Dung introduced a set of patterns of selec-
tion of arguments. These patterns of selection of arguments were called argumentation
semantics. Dung defined his argumentation semantics based on the basic concept of
admissible set:

Definition 6 [17]

• A set S of arguments is said to be conflict-free if there are no arguments a, b in S
such that a attacks b.

2The class of well-behaved semantics is a class of logic programming semantics which satisfies a set
of well-expected properties for performing non-monotonic reasoning. A study of these logic programming
semantics can be found in [15].

11

• An argument a ∈ AR is acceptable with respect to a set S of arguments if and
only if for each argument b ∈ AR: If b attacks a then b is attacked by S.

• A conflict-free set of arguments S is admissible if and only if each argument in
S is acceptable w.r.t. S.

By considering the concept of admissible set, in [17], Dung introduced four ba-
sic argumentation semantics: the grounded, stable, preferred and complete semantics.
Even though all of them are based on admissible sets, each of them represents a dif-
ferent pattern of selection of arguments. Three of them follow a credulous approach,
which means that given a set of conflicts of arguments, these semantics can suggest
different sets of arguments which can be regarded as coherent points of view. These
credulous argumentation semantics are defined as follows.

Definition 7 [17] Let AF := ⟨AR, attacks⟩ be an argumentation framework. An
admissible set of argument S ⊆ AR is:

• stable if and only if S attacks each argument which does not belong to S.

• preferred if and only if S is a maximal (w.r.t. inclusion) admissible set of AF .

• complete if and only if each argument, which is acceptable with respect to S,
belongs to S.

In [17], Dung introduced a skeptical argumentation semantics which means that,
given a set of conflicts of arguments, this semantics can suggest only one set of ar-
guments which can be regarded as a coherent point of view. This semantics is called
grounded semantics and is defined in terms of a characteristic function.

Definition 8 [17] The characteristic function, denoted by FAF , of an argumentation
framework AF = ⟨AR, attacks⟩ is defined as follows:

FAF : 2AR → 2AR

FAF (S) = {A| A is acceptable w.r.t. S }

Definition 9 [17] The grounded extension of an argumentation framework AF, de-
noted by GEAF , is the least fixed point of FAF .

From the semantics introduced in [17], the grounded semantics was the only se-
mantics which follows a skeptical approach. However in [18], an extension of the
grounded semantics, which is called ideal semantics, was introduced.

Definition 10 [18] Let AF := ⟨AR, attacks⟩ be an argumentation framework. S ⊆
AR is an ideal set if and only if S is admissible and it is contained in every preferred
set of AF .

Given that the set of ideal sets of an argumentation framework defines a join-semi-
lattice3, the maximal ideal set is usually the interesting ideal set to infer from an argu-
mentation framework.

3Dung et al. showed that the union of two ideal sets is an ideal set (see Lemma 2.1 from [18]).

12

Since the first argumentation semantics were introduced in [17], Dung’s argumenta-
tion semantics have given place to different formal studies about their properties. One
of these formal studies has been to regard them as formal non-monotonic reasoning
inferences. In this setting, one can find that the argumentation semantics are closely
related to logic programming semantics with negation as failure. In the following
sections, we will study different relations between ideal sets and logic programming
semantics with negation as failure.

2.5 Mapping from argumentation frameworks to normal programs
The first requirement for studying the structure of an argumentation framework as a
logic program is to manage an argumentation framework as a logic program. To this
end, a mapping from an argumentation framework into a logic program will be pre-
sented. Let us observe that this mapping basically is a declarative representation of
an argumentation framework by having in mind the ideas of conflictfreeness and rein-
statement which are the basic concepts behind the definition of admissible sets.

In this mapping, the predicate def(x) is used, with the intended meaning of def(x)
being “x is a defeated argument”. A transformation function w.r.t. an argument is
defined as follows.

Definition 11 Let AF := ⟨AR, attacks⟩ be an argumentation framework and a ∈
AR. We define the transformation function Π(a) as follows:

Π(a) =
∪

b:(b,a)∈attacks{def(a)← not def(b)}∪∪
b:(b,a)∈attacks{def(a)←

∧
c:(c,b)∈attacks def(c)}

Let us see that if a given argument a has no attacks, Π(a) = {}. This situation
happens because any argument that has no attacks is an acceptable argument which
means that it belongs to all admissible sets of AF . On the other hand, we can identify
two conditions in the mapping Π(a):

1. The first condition of Π(a) (
∪

b:(b,a)∈attacks{def(a)← not def(b)}) suggests
that the argument a is defeated whenever one of its adversaries is not defeated.

2. The second condition of Π(a) (
∪

b:(b,a)∈attacks{def(a)←
∧

c:(c,b)∈attacks def(c)})
suggests that the argument a is defeated when all the arguments that defend4 a
are defeated. Hence, one can see that if an argument a is attacked by an argu-
ment b which has no attacks, this condition generates the set {def(a) ← ⊤}.
This means that a cannot be part of an admissible set; hence, a is a defeated
argument.

The transformation function Π(a) with respect to an argumentation framework AF
is defined as follows:

4We say that c defends a if b attacks a and c attacks b.

13

Definition 12 Let AF := ⟨AR, attacks⟩ be an argumentation framework. We define
its associated normal program as follows:

ΠAF :=
∪

a∈AR

{Π(a)}

Let us observe that if we consider an argumentation framework of n arguments
in which all the arguments attack each other, the first part of the mapping ΠAF , i.e.
(
∪

b:(b,a)∈attacks{def(a) ← not def(b)}), generates n2 clauses of size 2, one atom
in the head and one atom in the body, and the second condition of the mapping ΠAF ,
i.e. (

∪
b:(b,a)∈attacks{def(a)←

∧
c:(c,b)∈attacks def(c)}), generates n clauses of size

n + 1, n atom in the body and one in the head. Hence, in this case the mapping ΠAF

generates at most n2 + n clauses5. Moreover, by considering the size of each of the
clauses, the size of the output, in this case, is 2n2 + (n+ 1)n.

As one can see in ΠAF , the language of ΠAF only identifies the arguments which
can be considered as defeated. By considering total interpretations, as the ones sug-
gested by logic programming semantics such as stable model semantics, p-stable se-
mantics, we can assume that any argument which is not defeated in a model of ΠAF

will be acceptable. This means that given an argumentation framework AF = ⟨AR,
Attacks⟩ if M is a model of ΠAF , then any atom def(x) which is false in M will
identify an argument x which is acceptable. This assumption suggests a normal clause
of the following form:

acc(x)← not def(x).

where acc(x) denotes that the argument x can be considered as accepted. This clause
essentially fixes as acceptable any argument which is not fixed as defeated in ΠAF . On
the other hand, this clause suggests an easy form for inferring the acceptable arguments
of AF . Being aware of these observations, we extend ΠAF as follows:

Πacc
AF := ΠAF ∪

∪
a∈AR

{acc(a)← not def(a)}

It is easy to see that Πacc
AF is basically a conservative extension of ΠAF . In other words,

the logical models of ΠAF can be inferred from the logical models of Πacc
AF by inter-

secting each model of Πacc
AF with the language of Πacc

AF .

Observation
For the sake of simplicity of the proofs, part of the results will be concentrated on ΠAF ;
however, as we have observed, Πacc

AF is a conservative extension of ΠAF .
In order to illustrate ΠAF and Πacc

AF , let us consider the following example.

Example 3 Let AF := ⟨AR, attacks⟩ be an argumentation framework such that
AR := {a1, b1, b2, c1, c2, c3} and attacks := {(c1, b1), (c2, b1), (c3, b2), (b1, a1),
(b2, a1)}. The graph representation of AF is presented in Figure 3.

5It is worth mentioning that in this case, the grounded program of the Dung’s mapping introduced in [17]
generates n2 clauses, counting only the clauses of the form def(x) ← acc(y), each of these clauses is of
size 2.

14

c1

c2

c3

b1

b2

a1

a

b

c d e f

x y

a

b

c d

a

b

c d

Figure 3: Graph representation of AF := ⟨{a1, b1, b2, c1, c2, c3}, {(c1, b1), (c2, b1),
(c3, b2), (b1, a1), (b2, a1)}⟩

One can see that ΠAF is:

def(b1)← not def(c1). def(b1)← not def(c2).
def(b1)← ⊤.
def(b2)← not def(c3). def(b2)← ⊤.
def(a1)← not def(b1). def(a1)← def(c1), def(c2).
def(a1)← not def(b2). def(a1)← def(c3).

On the other hand, Πacc
AF is ΠAF union with the following set of clauses:

acc(a1)← not def(a1).
acc(b1)← not def(b1).
acc(b2)← not def(b2).
acc(c1)← not def(c1).
acc(c2)← not def(c2).
acc(c3)← not def(c3).

Before moving on, let us observe that by considering either ΠAF or Πacc
AF , the

grounded, stable, preferred and complete semantics can be characterized by different
logic programming semantics [11, 35]. In order to introduce these characterizations,
we introduce the following notation:

Given a set of arguments E:

tr(E) = {acc(a)|a ∈ E} ∪ {def(b)|b is an argument and b /∈ E}

tracc(E) = {acc(a)|a ∈ E}

trdef (E) = {def(a)|a ∈ E}

Theorem 3 [11, 35] Let AF = ⟨AR,Attacks⟩ be an argumentation framework, E ⊆
AR and E+ = {b|a ∈ E and (a, b) ∈ Attacks}. Then:

• E is the grounded extension of AF iff ⟨tracc(E) ∪ trdef (E+), tracc(E+) ∪
trdef (E)⟩ is the well-founded model of Πacc

AF .

15

• E is a stable extension of AF iff tr(E) is a stable model of Πacc
AF .

• E is a preferred extension of AF iff tr(E) is a p-stable model of Πacc
AF .

• E is a complete extension of AF iff tr(E) is a Clark’s completion of Πacc
AF .

Let us observe that disregarding the apparent syntactic differences between the
Dung’s mapping and Πacc

AF , Πacc
AF basically is adding constraints to the Dung’s map-

ping (see Section 6). The authors in [11] showed that the constraints which are added
by Πacc

AF to the Dung’s mapping do not affect neither the well-founded nor stable mod-
els semantics for characterizing the grounded and the stable semantics, respectively. In
this sense, we can argue that Theorem 3 extends Theorem 62 from [17]. It is worth
mentioning that Theorem 62 from [17] introduced the first relationships between argu-
mentation semantics and logic programming semantics.

3 Ideal Sets as ideal models
The ideal semantics represents an extension of the grounded extension and is based on
the preferred semantics (see Definition 10). On the other hand, the ideal semantics has
shown to have important computational properties [20, 21]. Hence, we will explore
the ideal semantics in terms of logic programming semantics with negation as failure.
More accurately, we will prove that the ideal sets of an argumentation framework can
be characterized in terms of both ideal models (Theorem 4, Theorem 5) and p-stable
models (Corollary 1).

3.1 Ideal models
Let us start by studying the ideal extensions of an argumentation framework in terms of
logical models. To this end, a class of logical programming models that are called ideal
models will be defined. The definition of ideal models will be based on the p-stable
semantics. We will show that ideal models are able to characterize the ideal sets of an
argumentation framework.

For the sake of simplicity of the proofs, the formalization of the results will be based
on the mapping ΠAF ; however, at the end of the section, the main result is introduced
in terms of Πacc

AF .

Definition 13 Let P be a normal logic program and M ⊆ LP . M is an ideal model
of P if and only if M is a model of P and it contains every p-stable model of P .

Let us observe that the definition of an ideal model is quite similar to the definition
of an ideal set (see Definition 10). In particular, instead of talking about extensions
(set of arguments), in Definition 13, we are talking in terms of logical models. On
the other hand, instead of talking about preferred extensions in Definition 13, we are
talking in terms of p-stable models. The main difference that we can observe is the
contained relation (subset relation). In Definition 10, a given admissible set is an ideal
set of AF if it is contained in every preferred extension of AF . In Definition 13, a

16

model of P is an ideal model if it contains every p-model of P . In an abuse of the
language, we can say that the definition of an ideal model is a dual definition of an
ideal set. These similarities will define a direct relationship between the ideal sets of
a given argumentation framework AF and the ideal models of ΠAF . This relationship
will be formalized in Theorem 4.

In order to illustrate Definition 13, let us consider the following example.

Example 4 Let P be the following normal logic program6:

def(a)← not def(b). def(a)← def(a).
def(b)← not def(a). def(b)← def(b).
def(c)← not def(a). def(c)← def(b).
def(c)← not def(b). def(c)← def(a).
def(c)← not def(d). def(c)← def(c).
def(d)← not def(c). def(d)← def(a), def(b), def(d).

One can see that P has six 2-valued models: S1 = {def(a), def(b), def(c), def(d)},
S2 = {def(b), def(c), def(d)}, S3 = {def(a), def(c), def(d)}, S4 = {def(a),
def(b), def(c)}, S5 = {def(b), def(c)} and S6 = {def(a), def(c)}. Among these
models, one can see that only S5 and S6 are p-stable models. Observe that, both S5

and S6 are subsets of S1 and S4. This means that S1 and S4 are the ideal models of P .

A basic property of ΠAF w.r.t. ideal models is that ΠAF always has at least one
ideal model.

Lemma 1 Let AF := ⟨AR, attacks⟩ be an argumentation framework. ΠAF always
has an ideal model which is LΠAF

.

Proof. Since every p-stable model M is a subset of LΠAF
, the lemma follows by

the fact that LΠAF always is a model of ΠAF .
An important property of the ideal models is that they are able to characterize ideal

sets via ΠAF . In order to show this property of the ideal models, let us show that the 2-
valued models of ΠAF characterize the admissible sets of an argumentation framework
AF .

Lemma 2 Let AF := ⟨AR, attacks⟩ be an argumentation framework. S is a 2-valued
model of ΠAF if and only if AR \ {a|def(a) ∈ S} is an admissible set of AF .

Proof. By Proposition 6 from [5], S ⊆ AR is an admissible set of AF iff S is a model
of the formula:

β(AF) =
∧

a∈AR

((a→
∧

b:(b,a)∈attacks

¬b) ∧ (a→
∧

b:(b,a)∈attacks

(
∨

c:(c,b)∈attacks

c)))

6Let us observe that the program P is basically the program ΠAF where AF is the argumentation
framework introduced in Figure 1.

17

By the proof of Theorem 1 from [29], ΠAF is logically equivalent to g(β(AF)) where
g(T) denotes a theory obtained from T by replacing every occurrence of an atom x in
T by ¬def(x). Hence the lemma follows by Proposition 6 from [5] and the fact that
ΠAF is logically equivalent to g(β(AF)).

Let us consider the following example in order to illustrate how the ideal sets of an
argumentation framework can be characterized in terms of ideal models.

Example 5 Let AF := ⟨AR, attacks⟩ be an argumentation framework, where AR
:= {a, b, c, d} and attacks := {(a, b), (b, a), (a, c), (b, c), (c, d), (d, c)} (see Figure 1).
ΠAF corresponds to the program P of Example 4. We know that ΠAF has two ideal
models which are: Id1 = {def(a), def(b), def(c), def(d)}} and Id2 = {def(a),
def(b), def(c) }. One can see that:

AR \ {x|def(x) ∈ Id1} = {}
AR \ {x|def(x) ∈ Id2} = {d}

Therefore, {} and {d} are the two ideal sets of AF .

Formally, we can characterize ideal sets in terms of ideal models as follows:

Theorem 4 Let AF := ⟨AR, attacks⟩ be an argumentation framework. S is an ideal
model of ΠAF if and only if AR \ {a|def(a) ∈ S} is an ideal set of AF .

Proof. Let us start introducing some notation: Let M ⊆ LΠAF
. SM = {a|a ∈

AR and def(a) /∈ M}. Let S ⊆ AF . MS = {def(a)|a ∈ AR and a /∈ S}. Now let
us introduce a couple of observations:

1. If M1 and M2 are models of ΠAF such that M1 ⊆M2, then SM2 ⊆ SM1

2. If S1, S2 ⊆ AR such that S1 ⊆ S2, then MS2 ⊆MS1.

=> If MID is an ideal model of ΠAF , then SMID is an admissible set of AF (Lemma
2). Since MID is an ideal model, then for all M ∈ P -stable(ΠAF), M ⊆MID.
Therefore by Observation 1, for all M ∈ P -stable(ΠAF), SMID ⊆ SM . We
know that if M ∈ P -stable(ΠAF), then SM is a preferred extension of AF
(Theorem 3). Hence, since SMID is an admissible set and is a subset of every
preferred extension of AF , then SMID

is an ideal set of AF .

<= If S is an ideal set of AF , then S is an admissible set of AF . Therefore MS is a
model of ΠAF (Lemma 2). Moreover for all E ∈ Preferred(AF), S ⊆ E such
that Preferred(AF) denotes the set of preferred extensions of AF . We know
that if E ∈ Preferred(AF), then ME is a p-stable model of ΠAF (Theorem 3).
Since for all E ∈ Preferred(AF), S ⊆ E, then, by Observation 2, ME ⊆MS .
Therefore MS is an ideal model of ΠAF .

Given that the construction of the ideal models is based on P-stable models, a direct
consequence of Theorem 4 is that the ideal extensions of an argumentation framework
can be characterized in terms of P-stable models.

18

Corollary 1 Let AF := ⟨AR, attacks⟩ be an argumentation framework. If S is a
model of ΠAF and ∀M ∈ Pstable(ΠAF),M ⊆ S then AR \ {a|def(a) ∈ S} is an
ideal set of AF .

We will finish this section by introducing the result of Theorem 4 in terms of Πacc
AF .

To this end, let us introduce the following lemma which was proved in [11].

Lemma 3 [11] Let P be a normal logic program such that there exist P1 and P2

satisfying:

1. P = P1 ∪ P2 and P1 ∩ P2 = {}.

2. The atoms in the head of P1 do not occur in P2.

3. The atoms in the body of P1 do not occur in the head of P1.

Then M is a p-stable model of P if and only if there exist M1 and M2 such that M =
M1 ∪M2, M2 is a p-stable model of P2 and M1 = {x|x← α ∈ P1,M2(α) = 1}.

Theorem 5 Let AF := ⟨AR, attacks⟩ be an argumentation framework. S is an ideal
model of Πacc

AF if and only if {x|acc(x) ∈ S} is an ideal set of AF .

Proof. By definition of ideal model (Definition 13) and Lemma 3, M is an ideal model
of ΠAF if and only if M ′ is an ideal model of Πacc

AF and M = M ′ ∩ LΠAF
. Therefore,

the result follows from Theorem 4.

4 Ideal Sets and the WFS+ semantics
By considering the relationship between ideal models and ideal sets which is suggested
by Theorem 4, in this section, we will explore the relationship between ideal sets and
the WFS+ model. One of the main results of this section will be that WFS+ charac-
terizes the maximal ideal set of an argumentation framework using the mapping ΠAF

(Theorem 10). To this end, we will also show that WFS+ characterizes the minimal
ideal model of ΠAF (Theorem 8).

We start by considering a couple of examples in order to illustrate that WFS and
WFS+ are able to characterize ideal sets of an argumentation framework via the map-
ping ΠAF .

Example 6 Let AF := ⟨AR, attacks⟩ be an argumentation framework, in which
AR := {a, b, c} and attacks := {(a, a), (a, b), (b, c), (c, b)} (see Figure 4). Hence,
ΠAF is:

def(a)← not def(a). def(a)← def(a).
def(b)← not def(a). def(b)← not def(c).
def(b)← def(a). def(b)← def(b).
def(c)← not def(b). def(c)← def(c), def(a).

19

Figure 4: Graph representation of AF := ⟨{a, b, c}, {(a, a), (a, b), (b, c), (c, b)}⟩.

We can see that the argumentation framework AF has a preferred extension which is
{c} and the grounded extension is empty. It is obvious that this argumentation frame-
work has two ideal sets: {} and {c}. Now let us see in the following table which ideal
sets can be induced by WFS and WFS+.

Semantics 3-valued programming model Ideal Set
WFS(ΠAF) ⟨T = {}, F = {}⟩ {} = {x|def(x) ∈ F}
WFS+(ΠAF) ⟨T = {def(a), def(b)}, F = {def(c)}⟩ {c} = {x|def(x) ∈ F}

Following the idea that the negative atoms of WFS and WFS+ suggest (respectively)
a potential set of acceptable arguments, one can see from this table that WFS and
WFS+ characterize different ideal sets. Indeed, WFS+ is able to infer a non-empty
ideal set; moreover, the ideal set suggested by WFS+ is the maximal ideal set of the
argumentation framework AF .

Strictly speaking, one can formalize a relationship between the maximal ideal set
of an argumentation framework AF and the WFS+ model of ΠAF using the minimal
ideal model of ΠAF . In order to illustrate the important role of the minimal ideal model
of ΠAF for characterizing the maximal ideal set of an argumentation framework, let us
consider the following example:

Example 7 Let AF := ⟨AR, attacks⟩ be an argumentation framework in which AR :=
{a, b, c, d, e, f, x, y} and attacks := {(a, b), (b, a), (a, c), (b, c), (c, d), (d, e), (e, f),
(x, y)} (see Figure 5).

c1

c2

c3

b1

b2

a1

a

b

c d e f

x y

a

b

c d

a

b

c d

Figure 5: Graph representation of AF :=
⟨{a, b, c, d, e, f, x, y}, {(a, b), (b, a), (a, c), (b, c), (c, d), (d, e), (e, f), (x, y)}⟩.

One can see that ΠAF is:

20

def(a)← not def(b). def(a)← def(a).
def(b)← not def(a). def(b)← def(b).
def(c)← not def(a). def(c)← def(b).
def(c)← not def(b). def(c)← def(a).
def(d)← not def(c). def(d)← def(a), def(b).
def(e)← not def(d). def(e)← def(c).
def(f)← not def(e). def(f)← def(d).
def(y)← not def(x). def(y)← ⊤.

Hence, one can see that the normal form of ΠAF w.r.t. CS1 is the following normal
logic program normCS1(ΠAF):

def(a)← not def(b). def(f)← def(d).
def(b)← not def(a). def(d)← def(a), def(b).
def(c)← ⊤. def(e)← ⊤.
def(y)← ⊤.

One can notice that P -stable(ΠAF) = {{def(c), def(e), def(y), def(a)}, {def(c),
def(e), def(y), def(b)}}. On the other hand, from normCS1(P), one can see that
WFS+(ΠAF) = ⟨{def(c), def(e), def(y)}, {def(x)}⟩7.

According to WFS+, the set of atoms I = {def(a), def(b), def(d), def(f)}
identifies the atoms which are considered undefined8. In order to clarify some proper-
ties of the elements of I , let us split I into two sets of atoms:

• I1 = {def(a), def(b)} such that I1 contains the atoms which appear in the head
of a rule r ∈ normCS1(ΠAF) of the form x← not y.

• I2 = {def(d), def(f)} such that I2 = I \ I1.

From the WFS+ model of ΠAF and P -stable(ΠAF), one can observe that:

1. {def(c), def(e), def(y)} is a subset of the minimal ideal model of ΠAF .

2. Each atom of I1 belongs to a p-stable model of ΠAF ; hence, I1 is also a subset
of the minimal ideal set of ΠAF .

3. Hence, by the previous observations and the fact that each p-stable model of
ΠAF is a subset of every ideal model ΠAF , {def(c), def(e), def(y), def(a), def(b)}
is also a subset of the minimal ideal model of ΠAF .

Now, let us split I2 into two sets of atoms:

• I∗2 = {def(d)} such that I∗2 contains the atoms which appear as no-negated in
the bodies of the clauses of normCS1(ΠAF) and do not belong to I1

7Let us observe that the atom def(x) does not appear in normCS1 (ΠAF); however, def(x) belongs
to the signature of ΠAF . Hence def(x) is considered as an atom of the signature of normCS1 (ΠAF).

8Let us observe that the elements of I belong to neither the true atoms nor the false atoms of
WFS+(ΠAF).

21

• I∗∗2 = {def(f)} such that I∗∗2 = I2 \ I∗2 . Observe that the elements of I∗∗2 only
appear in the head of definite clauses.

Now let us observe that since Loop ∈ CS1 then Loop cannot be applied to normCS1(ΠAF).
Let us remember that Loop is a transformation rule which looks for atoms which ap-
pear in the bodies of positive clauses that can be considered false. Hence if we cannot
apply Loop to normCS1(ΠAF), it means that none of the positive atoms which appear
in the bodies of the positive clauses can be false. Hence the elements of I∗2 cannot
be false in the minimal ideal model of ΠAF by the assumption that the minimal ideal
model of ΠAF contains I1. Hence, I∗2 is a subset of the minimal ideal model of ΠAF .
By the definition of I∗∗2 , the elements of I∗∗2 have to be true if the atoms of I1 and I∗2 are
true in the minimal ideal model of ΠAF . Therefore, I∗∗2 also belongs to the minimal
ideal set of ΠAF .

Hence, one can see that {def(c), def(e), def(y)} ∪ I is the minimal ideal set of
ΠAF . This means that the atoms which are fixed to false by WFS+ define a maximal set.
Hence by Theorem 4, one can see that {x} is the maximal ideal set of the argumentation
framework AF .

In the following sections, we will formalize the intuitive ideas introduced in Exam-
ple 7. In particular the relationship between the minimal ideal model of ΠAF and the
maximal ideal set of AF will be explored.

4.1 Ideal Models and the normal form of ΠAF

The aim of this subsection is to show that the minimal ideal model of the normal form
ΠAF w.r.t. CS1 can be characterized using WFS+ (Theorem 6).

Given that the definition of the ideal models is based on p-stable models, we will
show some properties of the p-stable semantics w.r.t. CS1. Hence, let us show that the
p-stable semantics is preserved with respect to the transformation rules which belong
to CS1.

Lemma 4 Let AF = ⟨AR, attacks⟩ be an argumentation framework. M is a p-stable
model of ΠAF iff M is a p-stable model of normCS1(ΠAF).

Proof. The proof is direct by Proposition 3 to Proposition 9 of [12]. These propositions
show that the p-stable semantics is preserved with respect to each transformation rule
which belongs to CS1.

An important transformation rule which belongs to CS1 is classical logical impli-
cation (LC). One can see that if an atom is inferred from a given logic program P , it
can be inferred from the normal form of P with respect to CS1.

Lemma 5 Let P be a normal logic programs and a ∈ LP . If P ⊢ a then normCS1(P) ⊢
a.

Proof. The proof is direct by the construction of normCS1(P) and the fact that LC ∈
CS1.

A relevant property w.r.t. the p-stable models of ΠAF and the minimal models of
ΠAF is that both sets of models coincide.

22

Lemma 6 Let AF = ⟨AR, attacks⟩ be an argumentation framework. M is a minimal
model of ΠAF iff M is a p-stable model of ΠAF .

Proof. By Theorem 1 of [29], M is a minimal model of ΠAF iff AR\{a|def(a) ∈M}
is a preferred extension of AF . By Theorem 6 of [11], AR \ {a|def(a) ∈ M} is a
preferred extension of AF iff M is a p-stable model of ΠAF . Therefore, Theorem 1 of
[29] and Theorem 6 of [11], M is a minimal model of ΠAF iff M is a p-stable model
of ΠAF .

As we saw in Example 7, the rules def(a)← not def(b) and def(b)← not def(a)
belong to normCS1(ΠAF). On the other hand, we also observed that def(a) and
def(b) belong (respectively) to a p-stable model of P -stable(normCS1(ΠAF)). This
property can be formalized as follows:

Lemma 7 Let AF be an argumentation framework. If x← not y ∈ normCS1(ΠAF)
then ∃M ∈ P -stable(normCS1(ΠAF)) such that x ∈M .

Proof. Given that x ← not y ∈ normCS1(ΠAF) and the transformation rule LC ∈
CS1, one cannot apply LC to normCS1

(ΠAF) and normCS1
(ΠAF) 0 y9. Moreover,

by Lemma 5, P 0 y. Hence, there is a model N of P such that y is false w.r.t. N .
Then there is a minimal model M of P such that y is false w.r.t. M . By Lemma 6, the
minimal models of ΠAF coincide with P -stable(ΠAF), then M is a p-stable model of
ΠAF . By Lemma 4, we know that M ′ is a p-stable model of ΠAF iff M ′ is a p-stable
model of normCS1(ΠAF); then, M is a p-stable model of P -stable(normCS1(ΠAF)).
Therefore, since y is false w.r.t. M then x is true w.r.t. M . This means that x ∈M .

By considering the previous results, we can show that the minimal ideal model of
the normal form ΠAF w.r.t. CS1 can be characterized via WFS+.

Theorem 6 Let AF = ⟨AR, attacks⟩ be an argumentation framework, WFS+(ΠAF) =
⟨Tr, F l⟩, I = {def(x)|x ∈ AR}\(Tr∪Fl). If TrI = Tr∪I , then TrI is the minimal
ideal model of normCS1

(ΠAF).

Proof. Let us observe that TrI = LnormCS1
(ΠAF) such that LnormCS1

(ΠAF) is the set
of atoms which appear in normCS1(ΠAF). Therefore, we will show that each atom in
LnormCS1

(ΠAF) must belong to the minimal ideal model of normCS1(ΠAF). One can
see that there are four kinds of atoms in normCS1(ΠAF):

1. Atoms which are facts: An atom a is a fact in normCS1(ΠAF) if a ← ⊤ ∈
normCS1(ΠAF); hence, for all M ∈ P -stable(normCS1(ΠAF)), a ∈ M .
Therefore, a must belong to the minimal ideal model of normCS1(ΠAF).

2. Atoms x which appear in x ← not y ∈ normCS1(ΠAF). By Lemma 7, there
is M ∈ P -stable(normCS1(ΠAF)) such that x ∈ M . Therefore, x belongs to
the minimal ideal model of normCS1(ΠAF).

9Let us observe that if it was the case that normCS1 (ΠAF) ⊢ y, then by LC,y ← ⊤ ∈
normCS1 (ΠAF) and RED− have removed x← not y from normCS1 (ΠAF).

23

3. Atoms x which appear positively in the body of a clause r ∈ normCS1
(ΠAF).

Given that the transformation rule Loop cannot be applied to normCS1(ΠAF), x
does not belong to the greatest unfounded set of ΠAF . Therefore x belongs to the
minimal model of Poss(normCS1(ΠAF)) such that Poss(normCS1(ΠAF)) is
the definite logic program obtained from normCS1(ΠAF) by deleting each neg-
ative literal which appears in the bodies of the clauses r ∈ normCS1(ΠAF).
Therefore, by this observation and case 2, it is clear that x belongs to the mini-
mal ideal model of normCS1(ΠAF).

4. The remainder of atoms x which do not fall into the previous cases are atoms
which occur in the head of positive clauses x ← body ∈ normCS1(ΠAF). One
can see that body only contains atoms which fall in case 2 and case 3; hence, x
must belong to the minimal ideal model of normCS1(ΠAF).

From the previous four observations, for all x ∈ LnormCS1 (ΠAF), x belongs to the
minimal ideal model of normCS1

(ΠAF). Moreover, clearly no other atom belongs
to the minimal ideal model of normCS1(ΠAF). Therefore, TrI is the minimal ideal
model of normCS1

(ΠAF).

4.2 Ideal Models between ΠAF and normCS1(ΠAF)

Now in this section, we will show that the ideal models of ΠAF are closed w.r.t.
CS1. This means that if M is an ideal model of ΠAF , then M is an ideal model
of normCS1(ΠAF) (Theorem 7).

We start by showing an important property of normCS1(P) w.r.t. P . Specially,
we will show that the signature of normCS1(P) (the set of atoms which appears in
normCS1(P)) defines a model of the logic program P .

Lemma 8 Let P be a normal logic program. If L is the set of atoms which occur in
normCS1(P), then L is a model of P .

Proof. The proof is by induction w.r.t. the number of steps n (applications of transfor-
mation rules) for getting the normal form of P w.r.t. CS1:

Base case: If n = 0, then P is in its normal form. Hence, it is trivial that L is a
model of normCS1(P) . Therefore L is a model of P , by the fact that P =
normCS1(P).

Inductive step: Let us suppose that P is transformed by one step to P1. Since normCS1(P) =
normCS1(P1) and L is a model of normCS1(P), then L is a model of normCS1(P1)
and, by inductive hypothesis, L is a model of P1. By verifying each transforma-
tion rule r ∈ CS1, one can confirm that L is a model of P . In particular, the
relevant transformation rule to verify is the loop transformation rule: let P1 be
the resulting program by applying the transformation rule loop to P such that
P−
loop is the set of clauses which were deleted by loop. One can see that each

clause r ∈ P−
loop has a positive atom a in its body such that a /∈ HEAD(P1).

Therefore, a does not occur in normCS1(P1). Then, a is false w.r.t. L. Hence,

24

the body of r is false w.r.t. L. Then r is true w.r.t. L. Therefore P−
loop is true

w.r.t. L. Hence L is a model of P1 ∪ P−
loop. Then L is a model of P .

Now let us show that WFS+(ΠAF) defines an ideal model of ΠAF .

Lemma 9 Let AF = ⟨AR, attacks⟩ be an argumentation framework, WFS+(ΠAF) =
⟨Tr, F l⟩, I = f(AR) \ (Tr ∪ Fl). If TrI = Tr ∪ I , then TrI is an ideal model of
ΠAF .

Proof. By Theorem 6, TrI is an ideal model of normCS1(ΠAF). By Lemma 8, TrI
is a model of ΠAF . By Lemma 4, M is a p-stable model of ΠAF iff M is a p-stable
model of normCS1(ΠAF). Since TrI is an ideal model of normCS1(ΠAF), then
every model M which is a p-stable model of normCS1(ΠAF), M ⊂ TrI . Therefore,
TrI is an ideal model of ΠAF .

In the following lemma, we will show that the models of ΠAF are closed w.r.t. the
transformation rules of CS1.

Lemma 10 Let AF = ⟨AR, attacks⟩ be an argumentation framework. If M is a
model of ΠAF , then M is a model of normCS1(ΠAF).

Proof. By definition, CS1 = {RED+, RED−, Success, Failure,Loop, SUB,
TAUT, LC}. Let CS′

1 = CS1 \ {RED+}. If t ∈ CS′
1 and Πt

AF is the resulting
program after applying t, then the following observation holds:

Observation 1: If M is a model of ΠAF then M is a model of Πt
AF . Notice that

the transformation rules RED−, Failure, Loop, SUB, TAUT mainly remove
rules from ΠAF ; therefore, the observation is straightforward w.r.t. these trans-
formation rules. On the other hand, the transformation rules Success and LC
define logically equivalent theories; hence, the observation also holds with w.r.t.
Success and LC.

Formally, the proof is by induction w.r.t. the number of the steps (applications of
transformation rules) for getting the normal form of ΠAF ; however, the proof is trivial
and by Observation 1, the main transformation to see is the RED+ transformation.
Hence, the proof is reduced to prove that normCS1

(ΠAF) = normCS′
1
(ΠAF). In

order to prove this equality, we can see that the following observation holds:

Observation 2: RED+ cannot be applied to normCS′
1
(ΠAF).

Hence, by Observation 2 and the fact that it is known that CS1 is a confluent and
terminating rewriting system, normCS1(ΠAF) = normCS′

1
(ΠAF).

Now we will show that the ideal models of ΠAF are closed w.r.t. CS1.

Theorem 7 Let AF be an argumentation framework. If M is an ideal model of ΠAF ,
then M is an ideal model of normCS1(ΠAF).

25

Proof. Let M be an ideal model of ΠAF . Hence, by Definition 13, M is a model of
ΠAF and ∀M ′ ∈ P -stable(ΠAF), M ′ ⊆ M . By Lemma 4, M is a model of ΠAF ,
∀M ′ ∈ P -stable(normCS1

(ΠAF)) and M ′ ⊆ M . By Lemma 10, M is a model of
normCS1(ΠAF) and ∀M ′ ∈ P -stable(normCS1(ΠAF)) and M ′ ⊆ M . Therefore,
M is an ideal model of normCS1(ΠAF).

In accordance with Theorem 7, we can see that an ideal model of ΠAF is also an
ideal model of normCS1(ΠAF); however, the reverse of the implication is not true. To
illustrate this observation, let us consider the following example:

Example 8 Let AF = ⟨{a, b, c}, {(a, b), (b, c)}⟩ be an argumentation framework.
Hence, ΠAF is:

def(b)← ⊤. def(c)← not def(b).
def(c)← def(a).

One can see that normCS1(ΠAF) is:

def(b)← ⊤.

Now let us observe that ΠAF has three ideal models:

{def(b)} {def(b), def(c)} {def(a), def(b), def(c)}

On the other hand, normCS1(ΠAF) has four ideal models:

{def(b)} {def(a), def(b)} {def(b), def(c)} {def(a), def(b), def(c)}

It is clear that the ideal models of ΠAF are ideal models of normCS1(ΠAF); however,
normCS1(ΠAF) has an ideal model which is not a model of ΠAF , i.e. , {def(a), def(b)}.

4.3 The maximal ideal set using ΠAF

So far, we have seen that WFS+(ΠAF) characterizes the minimal ideal model of
normCS1(ΠAF) (Theorem 6). On the other hand, we have seen that the ideal models
of ΠAF are closed w.r.t. CS1 (Theorem 7). These results will be fundamental in
proving the main result of this section: WFS+(ΠAF) characterizes the maximal ideal
set of the argumentation framework AF (Theorem 10).

Let us start by showing that WFS+(ΠAF) also characterizes the minimal ideal set
of ΠAF .

Theorem 8 Let AF be an argumentation framework, WFS+(ΠAF) = ⟨Tr, F l⟩, I =
LΠAF

\ (Tr ∪ Fl). If TrI = Tr ∪ I , then TrI is the minimal ideal model of ΠAF .

Proof. By Theorem 6, TrI is the minimal ideal model of normCS1(ΠAF) and, by
Lemma 9, it is an ideal model of ΠAF . Hence, we will prove that TrI is the minimal
ideal model of ΠAF . The proof is by contradiction. Let us suppose that there is M ⊂
TrI such that M is an ideal model of ΠAF . By Theorem 7, M is an ideal model of

26

normCS1
(ΠAF). Since M is a strict subset of TrI , then TrI is not the minimal ideal

model of normCS1(ΠAF). This is a contradiction w.r.t. Theorem 6.
Given that the p-stable semantics extends logic programming semantics such as

WFS, WFS+, one can formalize a relationship between the ideal models and WFS,
WFS+.

Theorem 9 Let AF be an argumentation framework and M ⊆ LΠAF
. If M is an

ideal model of ΠAF , then the following conditions hold:

a. if WFS+(ΠAF) = ⟨Tr, F l⟩, then Tr ⊆M .

b. if WFS(ΠAF) = ⟨Tr, F l⟩, then Tr ⊆M .

Proof.

a. By Theorem 8, we know that if I = LΠAF
\ (Tr ∪ Fl), then TrI = Tr ∪ I is

the minimal ideal model of ΠAF . Hence, Tr ⊆ TrI and TrI ⊆ M . Therefore,
Tr ⊆M .

b. It is known that WFS(P) ≤k WFS+(P); hence, the proof is direct by a.

A couple of obvious relationships between the WFS (and WFS+) model of ΠAF

with ideal sets are the following:

Lemma 11 Let AF := ⟨AR, attacks⟩ be an argumentation framework.

1. if WFS(ΠAF) = ⟨Tr, F l⟩, then {x|d(x) ∈ Fl} is an ideal set of AF .

2. if WFS+(ΠAF) = ⟨Tr, F l⟩, then {x|d(x) ∈ Fl} is an ideal set of AF .

Proof. (1) It follows by Theorem 7 from [11] which proves that WFS and ΠAF charac-
terize the grounded extension and the fact that the grounded extension is an ideal set.
(2) It is direct by Theorem 4 and Theorem 8.

A straightforward implication of Theorem 4 and Theorem 8 is the characterization
of the maximal ideal set via WFS+.

Theorem 10 Let AF be an argumentation framework. If WFS+(ΠAF) = ⟨Tr, F l⟩,
then S = {a|def(a) ∈ Fl} is the maximal ideal set of AF .

Proof. The proof is direct by Theorem 4 and Theorem 8.

5 The maximal ideal set using Πacc
AF

In Section 4, we have shown that WFS+ using ΠAF characterizes the maximal ideal
set of the argumentation framework AF . In this section, we present the results of
Theorem 10 in terms of the mapping Πacc

AF . To this end, let us start by introducing an
example.

27

Example 9 Let AF be the argumentation framework which was introduced in Exam-
ple 6. As we saw in Example 6, ΠAF is:

def(a)← not def(a). def(a)← def(a).
def(b)← not def(a). def(b)← not def(c).
def(b)← def(a). def(b)← def(b).
def(c)← not def(b). def(c)← def(c), def(a).

Hence, Πacc
AF is ΠAF union with the following set of clauses:

acc(a)← not def(a).
acc(b)← not def(b).
acc(c)← not def(c).

One can see that normCS1(Π
acc
AF) is:

def(a)← ⊤.
def(b)← ⊤.
acc(a)← ⊤.

Hence, WFS+(Πacc
AF) = ⟨{def(a), def(b), acc(c)}, {acc(a), acc(b), def(c)}⟩. By

considering the atoms of the form acc(X) which belong to the true atoms of WFS+(Πacc
AF),

we can see that the set {acc(c)} is characterizing an ideal set. Indeed, we can see that
this set is characterizing the maximal ideal set of AF which is {c}. This means that
WFS+(Πacc

AF) characterizes the maximal ideal set of an argumentation framework.
This property of WFS+(Πacc

AF) will be formalized in the following theorem.

Theorem 11 Let AF be an argumentation framework. If WFS+(Πacc
AF) = ⟨Tr, F l⟩,

then S = {a|acc(a) ∈ Tr} is the maximal ideal set of AF .

Proof. By definition:

Πacc
AF := ΠAF ∪

∪
a∈AR

{acc(a)← not def(a)}

Since CS1 is a confluent rewriting system and there is a stratification in Πacc
AF ,

normCS1(Π
acc
AF) = normCS1(normCS1(ΠAF) ∪

∪
a∈AR{acc(a)← not def(a)}).

In order to infer normCS1(Π
acc
AF), we only have to reduce each rule of the form

acc(a)← not def(a) by considering the grounded atom def(a) w.r.t. normCS1(ΠAF)
and CS1. There are three cases:

1. if def(a) does not occur in HEAD(normCS1
(ΠAF)), then the rule acc(a) ←

not def(a) is reduced to acc(a) ← ⊤ by RED+. This means acc(a) ← ⊤ ∈
normCS1

(Πacc
AF).

2. if def(a) ← ⊤ ∈ normCS1(ΠAF), then the rule acc(a) ← not def(a) is
removed by RED−. This means acc(a) /∈ HEAD(normCS1(Π

acc
AF)).

3. if def(a) ← body ∈ HEAD(normCS1(ΠAF)) such that body ̸= ⊤, then
acc(a)← not def(a) ∈ normCS1(Π

acc
AF).

28

Let SEMCS1
(ΠAF) = ⟨Tr1, F l1⟩, SEMCS1

(Πacc
AF) = ⟨Tr2, F l2⟩, S1 = {a|

def(a) ∈ Fl1} and S2 = {a|acc(a) ∈ Tr2}. From the previous analysis, we can
observe that S1 = S2. By Theorem 10, S1 is the maximal ideal set of AF ; therefore,
S2 is the maximal ideal set of AF .

6 Related Work
In this section, we are going to identify some of the approaches, in the argumentation
research literature, which are closely related to the results presented in this paper10.

6.1 Argumentation Frameworks as Logic Programs
We start with the approaches which regard argumentation as logic programming. The
usual way to study argumentation as logic programming is to map argumentation
frameworks into logic programs (also called logical theories). Currently, we can find
different mappings of argumentation frameworks into logical theories. Dung intro-
duces the following basic meta-interpreter (or mapping) in terms of logic programs
with negation as failure:

(C1) acc(X)← not def(X).

(C2) def(X)← attack(Y,X), acc(Y).

By using this mapping, Dung characterized the grounded and the stable semantics
in terms of the well-founded and stable model semantics respectively. This mapping
basically is the first mapping which was suggested for regarding argumentation frame-
works as logic programs. An obvious question is: what is the relationship between
Dung’s mapping and the mapping introduced by Definition 11? In order to illustrate
this relation, let us consider the argumentation framework introduced by Figure 1. By
considering Dung’s mapping and the argumentation framework of Figure 1, we can get
the following grounded program:

acc(a)← not def(a). acc(b)← not def(b).
acc(c)← not def(c). acc(d)← not def(d).
def(b)← acc(a). def(a)← acc(b).
def(c)← acc(a). def(c)← acc(b).
def(c)← acc(d). def(d)← acc(c).

If we apply partial evaluation to this program, we get:

acc(a)← not def(a). acc(b)← not def(b).
acc(c)← not def(c). acc(d)← not def(d).
def(b)← not def(a). def(a)← not def(b).
def(c)← not def(a). def(c)← not def(b).
def(c)← not def(d). def(d)← not def(c).

10We apologize if we omit a relevant reference which could be important for this section.

29

As we can see, this program is basically a subprogram of the program Πacc
AF which

was introduced in the introduction section. Indeed, we can say that the mapping in-
troduced by Definition 11 adds more constraints to Dung’s mapping. More accurately,
Dung’s mapping is only aware of conflict-freeness, i.e. an extension of an argumenta-
tion semantics cannot include conflicting arguments; on the other hand, the mapping
of Definition 11 is aware of both conflict-freeness and reinstatement (i.e. the argu-
ments defeated by an extension E (set of acceptable arguments) play no role in the
selection of arguments to be included in E). In general terms, we can say that the
mapping of Definition 11 is an extension of Dung’s mapping. It is worth mention-
ing that if we consider a mapping M from an argumentation framework into a logic
program and two argumentation frameworks AF1 and AF2, M is called modular iff
M(AF1 ∪AF2) =M(AF1) ∪M(AF2). In this setting, it is obvious that the Dung’s
mapping is modular. On the other hand, Πacc

AF is not modular; however, since Πacc
AF

is basically an extension of Dung’s mapping, the part of Πacc
AF which coincides with

Dung’s mapping is also modular.
Besnard and Doutre introduced a set of mappings of an argumentation framework

into propositional theories [5]. By using maximal and minimal 2-valued models of
the resulting propositional theories, they characterized Dung’s argumentation seman-
tics introduced in [17]. Currently there are several meta-interpreters in terms of answer
set programs [22, 37]. These meta-interpreters allow us to compute different argumen-
tation semantics in terms of answer sets. These meta-interpreters do not include ideal
semantics; however, in [23], an approach for computing ideal semantics in terms of
answer sets was introduced. It is worth mentioning that by considering answer set pro-
grams, one can infer argumentation semantics which are not based on admissible sets
such as CF2 [34].

In [10, 38], the authors have explored the relationship between argumentation and
logic programming. Unlike our approach, which makes direct relationships between
logical models and extensions of argumentation semantics, the authors in [10, 38] use
a labeling approach in which extensions of argumentation semantics are expressed in
terms of 3-valued labellings; after this, the 3-valued labellings are expressed in terms
of 3-valued logical models. In this approach, argumentation frameworks are also trans-
formed into logic programs. For instance in [38], the authors use the following map-
ping: Given an argumentation framework AF := ⟨AR, attacks⟩:

PAF =
∪

x∈AR

{x←
∧

(y,x)∈attacks

not y}

This mapping was first introduced in [31] in order to show that the answer sets
of PAF correspond to the stable extensions of AF (see Theorem 1 of [31]). In [38],
the authors showed that the complete semantics can be characterized in terms of the
3-valued stable semantics and PAF . This mapping was also explored by Gabbay in
order to map argumentation frameworks into logic programs [26].

From the declarative point of view, the transformation PAF only specifies a ba-
sic specification of why an argument can belong to an extension of an argumentation
semantics. Indeed, like Dung’s mapping, PAF is only capturing the idea of conflict-
freeness. On the other hand, the transformation introduced by Definition 11 specifies

30

why an argument cannot belong to an extension of an argumentation framework; more-
over, this transformation captures two basic ideas which must satisfy an admissible set:
conflict-freeness and reinstatement.

Understanding argumentation semantics from a logic programming point of view
depends on two variables:

1. The declarative specification of an argumentation framework in terms of logic
programs and

2. The logic programming semantics which infers the given argumentation seman-
tics.

For instance in [38], the authors were able to characterize the complete semantics
by using a specification of only conflict-freeness and the 3-valued stable model seman-
tics. In this setting, it seems that the 3-valued stable model semantics does not require
the reinstatement principle in order to capture the complete semantics. In contrast, the
Clark’s Completion Semantics requires both conflict-freeness and reinstatement princi-
ples in order to capture the complete semantics [35]. Indeed, we know that the answer
set semantics also only require conflict-freeness for characterizing the stable seman-
tics [31]; however, we also already know that the answer set semantics require both
conflict-freeness and reinstatement for inferring the preferred semantics [29].

Comparing PAF and the mapping introduced by Definition 11, what can we ob-
serve? First, we want to point out that all the 2-valued models of ΠAF characterize
the admissible sets of AF (see Lemma 2). Hence, regardless of the logic program-
ming semantics which we use, ΠAF will characterize argumentation semantics based
on admissible sets. Regarding PAF , we can observe that the models of PAF only char-
acterize the conflict free set of AF . Therefore, the characterization of the admissible
sets of an argumentation framework strongly depends on the logic programming se-
mantics which is used for consulting PAF . Having mappings whose models are able
to characterize conflict-free sets gives place to characterizing argumentation semantics
such as CF2. For instance, by considering only the first part of the mapping introduced
in Definition 11: ∪

b:(b,a)∈attacks

{def(a)← not def(b)}

the authors in [30] were able to characterize CF2 by using a logic programming se-
mantics based on minimal models. At this point, let us observe that by considering
basic principles, i.e. conflict-freeness and reinstatement, in a declarative specification
of an argumentation frameworks, we can explore pseudo-argumentation semantics.
By pseudo-argumentation semantics, we mean argumentation semantics which do not
have a definition in terms of Dung’s style; however, these semantics can be motivated
by a particular specification and a given logic programming semantics. For example,
in [33], the authors introduced the so called stable-abducible argumentation semantics,
which is an intermediate semantics between stable semantics and preferred semantics.
The relevance of this new semantics is that it is always defined for any argumentation
framework, and coincides with the stable argumentation semantics whenever this is
non-empty. Moreover, it satisfies the notion of relevance introduced by Caminada [8].

31

These observations point out the importance of both the transformation of an argu-
mentation framework into a logic program and the logic programming semantics which
are used for understanding a given argumentation semantics from a logic programming
point of view.

Dunne showed that the ideal semantics has a high computational complexity [20];
hence, to identify computational algorithms which can compute the ideal semantics is
a relevant research issue in order to use the ideal semantics in real applications. Due
to the fact that WFS+ is an extension of WFS, one can use WFS’ algorithms for com-
puting WFS+. As we observed in Section 2.3, the main difference between WFS and
WFS+ is isolated by the transformation rules: SUB, TAUT , LC. From a naive point
of view, one can observe that both SUB and TAUT can be implemented in an efficient
and straightforward way; however, LC is a computationally expensive transformation
due to the fact that it depends on the computational cost of classical logical infer-
ence. In this setting, let us point out that, currently, classical logical inference can be
computed by different logic-based algorithms, e.g., SAT algorithms, Hyper-resolution-
based algorithms. Therefore, the characterization of the ideal semantics in terms of
WFS+ offers a direct approach for computing the ideal semantics.

Dix showed that WFS+ is a well-behaved semantics. This means WFS+ satisfies
cut, closure, weak model-property, isomorphy, MP -extension, transformation, rele-
vance, PPE and modularity (see [15] for the formal definition of these properties).
All these properties have been motivated in order to identify non-monotonic reasoning
inferences with a flavor of common-sense reasoning. Dix also showed that WFS+ co-
incides with the Well-Founded-By-Cases Semantics [36]. According to Schlipf Well-
Founded-By-Cases Semantics is a reasonable logic programming semantics for pur-
suiting common-sense reasoning. Indeed, he showed that Well-Founded-By-Cases
Semantics obeys some goals for common-sense semantics. In this setting, we point
out that, with the results of this paper, we are converging three different inferences of
common-sense reasoning: the ideal semantics, WFS+ and the Well-Founded-By-Cases
Semantics.

6.2 Labellings Argumentation
Recently, Caminada et al. has also explored using a 3-valued labeling approach in
order to regard argumentation as logic programming and vice versa [10, 38]. In this
approach, a labeling is a function Lab from a set of arguments to {in, out, undec} in
which the labels in,out,undec denote states of an argument, mainly accepted, defeated
and undecidable, respectively.

In order to explore argumentation as logic programming, Caminada et al. have
explored 3-valued logic programming semantics and the mapping PAF . In this setting,
they have defined a strict relationship between 3-valued labellings and 3-valued models
[10, 38]. More accurately, let AF = ⟨AR,Attacks⟩ be an argumentation framework
and I = ⟨T, F ⟩ be a 3-valued interpretation of PAF . For all a ∈ AR, the following
conditions hold:

1. Lab(a) = in iff a ∈ T .

2. Lab(a) = out iff a ∈ F .

32

3. Lab(a) = undec iff a ∈ LPAF
\ {T ∪ F}.

Given that there are different labellings which characterize different argumentation
semantics [9, 38], the main idea is to identify the proper 3-valued semantics which infer
the proper 3-valued interpretations in order to characterize argumentations semantics.
For instance, Caminada et al. showed that the complete labelling (which characterizes
the complete semantics) can be directly inferred by the 3-stable semantics and PAF

[38].
A good question to ask is: can we infer the 3-valued labellings of the Dung’s se-

mantics from the logical models of Πacc
AF ? To answer this question, let us introduce

the function labelling MOD2LABacc as follows: Let AF = ⟨AR,Attacks⟩ be an
argumentation framework and M ⊆ LΠacc

AF
:

IN(M) = {x|x ∈ AR ∧ acc(x) ∈M}
OUT (M) = {x|x, y ∈ AR ∧ (y, x) ∈ Attacks ∧ x ∈ IN(M)}
UNDEC(M) = AR \ {IN(M) ∪OUT (M)}

Let M ⊆ LΠacc
AF

; hence, MOD2LABacc(M) = ⟨IN(M), OUT (M), UNDEC(M)⟩.
Let us observe that like the labelling function Ext2Lab which takes as input a set of
arguments and returns a labelling [38], MOD2LABacc(M) takes M as input and re-
turns a labelling. In this setting, M is regarded as a set of arguments. Given the results
around Ext2Lab [9, 38] and the properties of the models of Πacc

AF (Theorem 3 and
Theorem 11), we can observe the following corollary:

Corollary 2 Let AF = ⟨AR,Attacks⟩ be an argumentation framework.

• ⟨T, F ⟩ is the well-founded model of Πacc
AF then MOD2LABacc(T) is the grounded

labelling of AF . This result follows by Theorem 2.12 from [9] and Theorem 3.

• M is a stable model of Πacc
AF then MOD2LABacc(M) is a stable labelling of

AF . This result follows by Theorem 2.12 from [9] and Theorem 3.

• M is a p-stable model of Πacc
AF then MOD2LABacc(M) is a preferred labelling

of AF . This result follows by Theorem 2.12 from [9] and Theorem 3.

• M is a Clark’s completion of Πacc
AF then MOD2LABacc(M) is a complete la-

belling of AF . This result follows by Theorem 8 from [38] and Theorem 3.

• ⟨T, F ⟩ is the WFS+ model of Πacc
AF then MOD2LABacc(T) is the ideal la-

belling of AF . This result follows by Theorem 3.7 from [9] and Theorem 11.

This corollary argues that we can use logic-based tools for computing the five la-
belligs related to Dung’s semantics. Unlike Caminada et al.’s approach [10, 38] which
requires computing 3-valued models, our approach only requires 2-valued models. In
this setting, let us highlight that, currently, SAT-problem, which is mainly oriented to
compute 2-valued logical models, is the prototypical and best-researched NP-complete
problem.

33

6.3 Argumentation Frameworks as Equations
Another branch of the argumentation research in which argumentation frameworks
have been transformed into other theories is in regarding argumentation frameworks
as equations. Given that WFS+ can be characterized in terms of rewriting systems,
we argue that our suggested approach introduces a simple equational approach for
computing the maximal ideal set of an argumentation framework. In this setting, it is
important to point out the numerical equational approach introduced by Gabbay for
computing argumentation semantics [24]. From Gabbay’s approach, we can highlight
the following observations:

• In both Gabbay’s approach and our approach, the argumentation frameworks
are mapped into numerical equations and logic programs, respectively. At this
point, let us observe that in Gabbay’s approach, the manipulation is done by
arithmetic operations, and, in our approach, the manipulation is done by syntactic
operations (by the so called Basic Transformation Rules, see Definition 4).

• In both approaches, two different mappings may not yield the same argumenta-
tion semantics. This means that, in both approaches, finding proper mappings is
a central issue.

• In both Gabbay’s approach and our approach, it is an important issue to identify
criteria for selecting meaningful mappings (equations) for inferring argumenta-
tion semantics.

• Given that our approach is logical model oriented, we can use logic-based solvers
such SAT-solvers for inferring argumentation semantics; on the other hand, Gab-
bay’s approach requires numerical mathematical tools such as MAPLE and MAT-
LAB for inferring argumentation semantics. This means that both approaches
offer different strategies for computing argumentation semantics.

• In both approaches, if we change the mapping from argumentation frameworks
into equations (logic programs), we may get something different from Dung se-
mantics. In this setting, unlike Gabbay’s approach, which considers different
mappings for different argumentation semantics, in our approach we have show
that we can consider only one mapping (based on the definition of admissible
sets) and different logic programming semantics for inferring different argumen-
tation semantics based on admissible sets.

• Both approaches give place to exploring pseudo-argumentation semantics. By
pseudo-argumentation semantics, we mean argumentation semantics which do
not have a definition in terms of Dung’s style; however, these semantics can be
motivated by a particular specification or a set of equations. In this setting, in
our approach, we can also build pseudo-argumentation semantics by considering
different logic programming semantics [30, 33].

• Both approaches can characterize semantics which are not based on admissible
sets such as CF2 [25, 30].

34

7 Conclusions and Future Work
Since Dung introduced his abstract argumentation approach, he proved that his ap-
proach can be regarded as a special form of logic programming with negation as fail-
ure. In fact, he showed that grounded and stable semantics can be characterized by
the well-founded and stable models semantics, respectively. This result is important
because it defined a general method for generating metainterpreters for argumentation
systems and regards argumentation semantics as non-monotonic reasoning inferences.

In this paper, we introduce new results about argumentation inference as logic pro-
gramming with negation as failure. By considering an argumentation framework AF
and a unique mapping of AF into a logic program Πacc

AF , we show that:

• the ideal models of Πacc
AF characterize the ideal sets of AF (Theorem 5),

• the WFS+ model of Πacc
AF characterizes the maximal ideal set of AF (Theorem

11).

• the well founded model of Πacc
AF characterizes the grounded extension of AF

(Theorem 3),

• the stable models of Πacc
AF characterize the stable extensions of AF (Theorem 3),

• the p-stable models of Πacc
AF characterize the prefer extension of AF (Theorem

3) and

• the supported models of Πacc
AF characterize the complete extensions of AF (The-

orem 3).

Around these results, we show that:

• The ideal sets of an argumentation framework can be characterized in terms of
p-stable models (Corollary 1).

• The ideal models are closed with respect to the transformation rules: RED+,
RED−, Success, Failure, Loop, SUB, TAUT , LC (Theorem 7).

• The minimal ideal model of ΠAF is characterized by WFS+ (Theorem 8).

The characterization of argumentation semantics in terms of logic programming
semantics does not only contribute to the inference of the well-accepted argumentation
semantics but this approach also contributes to the study of non-monotonic reasoning
properties of the argumentation semantics. For instance, we have shown that WFS+

characterizes the maximal ideal set of an argumentation framework. It is known that
WFS+ is a well-behaved semantics [15]. From a non-monotonic reasoning point of
view, since WFS+ introduces a logical definition of the maximal ideal set of an argu-
mentation framework, the maximal ideal set of an argumentation framework can be re-
garded as a well-behaved semantics. Besides being a well-behaved semantics, Schlipf
[36] showed that WFS by cases (WFS+) is a logic programming semantics which sat-
isfies a good number of common sense goals. In this setting, one can argue that the

35

maximal ideal set of an argumentation framework follows a common sense reasoning
approach. A part of our future work is to study the interpretation of the properties of
a well-behaved semantics and the properties introduced by Schlipf as argumentation
inference properties.

With the results of this paper, we have shown that the five argumentation seman-
tics suggested by Dung et al. can be characterized uniformly by considering a unique
mapping from argumentation frameworks into logic programs (Πacc

AF). There are ar-
gumentation semantics such as semi-stable semantics which, like Dung’s semantics,
are based on admissible sets. Therefore, a good research question is: can semi-stable
semantics be characterized by Πacc

AF and a logic programming semantics? Even in the
worst case that semi-stable semantics could not be characterized by Πacc

AF and a logic
programming semantics; it will be important to observe why semi-stable could not be
characterized by Πacc

AF and a logic programming semantics. Indeed, a good question
could arise, which are the properties that share grounded, stable, preferred, complete
and ideal semantics that allow them to be characterized by a unique logic program
(Πacc

AF)?
Characterizing Dung’s semantics with Πacc

AF argues that Πacc
AF defines a common

root of Dung’s semantics. In this setting, by considering this common root among
Dung’s semantics, one can define new argumentation semantics. In [33], the authors
introduced the so called stable-abducible argumentation semantics. This argumenta-
tion semantics is based on Πacc

AF and a logic programming semantics. Moreover, this
semantics is an intermediate semantics between stable semantics and preferred seman-
tics. This evidence suggests that stable-abducible argumentation semantics is similar
to semi-stable semantics. Part of our future work will be to explore the similarities and
differences between stable-abducible argumentation semantics and semi-stable seman-
tics.

Let us observe that, nowadays, the number of new argumentation semantics in the
context of Dung’s argumentation approach [3, 2] has increased. However, many of
these new argumentation semantics are only motivated by specific examples; hence,
the identification of non-monotonic reasoning properties, that a particular argumenta-
tion semantics satisfies, will have relevance supporting the well-behaviour of an argu-
mentation semantics. In [3], a set of basic principles was defined in order to evaluate
argumentation semantics. We believe that the set of principles described in [3] can
be enriched by the identification of the non-monotonic reasoning properties that must
satisfy any argumentation semantics. Of course, this study could be explored by the
characterization of argumentation semantics in terms of logic programming semantics.

Acknowledgment
We are grateful to anonymous referees for their useful comments. This research has
been partially supported by VINNOVA (The Swedish Governmental Agency for Inno-
vation Systems), the Swedish Brain Power and CONACyT (the Mexican Governmental
Agency for science and technology) [CB-2008-01 No.101581].

36

References
[1] C. Baral. Knowledge Representation, Reasoning and Declarative Problem Solv-

ing. Cambridge University Press, Cambridge, 2003.

[2] P. Baroni, M. Caminada, and M. Giacomin. An introduction to argumentation
semantics. Knowledge Eng. Review, 26(4):365–410, 2011.

[3] P. Baroni and M. Giacomin. On principle-based evaluation of extension-based
argumentation semantics. Artificial Intelligence., 171(10-15):675–700, 2007.

[4] P. Baroni, M. Giacomin, and G. Guida. SCC-recursiveness: a general schema for
argumentation semantics. Artificial Intelligence, 168:162–210, October 2005.

[5] P. Besnard and S. Doutre. Checking the acceptability of a set of arguments. In
Tenth International Workshop on Non-Monotonic Reasoning (NMR 2004),, pages
59–64, June 2004.

[6] S. Brass, J. Dix, B. Freitag, and U. Zukowski. Transformation-based bottom-up
computation of the well-founded model. TPLP, 1(5):497–538, 2001.

[7] S. Brass, U. Zukowski, and B. Freitag. Transformation-based bottom-up com-
putation of the well-founded model. In T. C. P. Jürgen Dix, Luís Moniz Pereira,
editor, Non-Monotonic Extensions of Logic Programming, NMELP ’96, volume
1216 of Lecture Notes in Computer Science, pages 171–201, 2007.

[8] M. Caminada. Semi-Stable semantics. In P. E. Dunne and T. J. Bench-Capon,
editors, Proceedings of COMMA, volume 144, pages 121–130. IOS Press, 2006.

[9] M. Caminada. A labelling approach for ideal and stage semantics. Argument and
Computation, 2(1):1–21, 2011.

[10] M. Caminada, S. Sá, and J. Alcântara. On the equivalence between logic pro-
gramming semantics and argumentation semantics. In Symbolic and Quantita-
tive Approaches to Reasoning with Uncertainty - 12th European Conference, EC-
SQARU 2013, volume 7958 of Lecture Notes in Computer Science, pages 97–108.
Springer, 2013.

[11] J. L. Carballido, J. C. Nieves, and M. Osorio. Inferring Preferred Extensions by
Pstable Semantics. Iberoamerican Journal of Artificial Intelligence (Inteligencia
Artificial) ISSN: 1137-3601, (doi: 10.4114/ia.v13i41.1029), 13(41):38–53, 2009.

[12] J. L. Carballido, M. Osorio, and J. Arrazola. Equivalence for the G’3-stable
models semantics. J. Applied Logic, 8(1):82–96, 2010.

[13] N. Dershowitz and D. A. Plaisted. Handbook of Automated Reasoning, chapter
Rewriting. Elsevier Science Publishers, 2001.

[14] J. Dix. A classification theory of semantics of normal logic programs: I. strong
properties. Fundam. Inform., 22(3):227–255, 1995.

37

[15] J. Dix. A classification theory of semantics of normal logic programs: II. weak
properties. Fundam. Inform., 22(3):257–288, 1995.

[16] J. Dix, M. Osorio, and C. Zepeda. A general theory of confluent rewriting systems
for logic programming and its applications. Ann. Pure Appl. Logic, 108(1-3):153–
188, 2001.

[17] P. M. Dung. On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artificial Intelli-
gence, 77(2):321–358, 1995.

[18] P. M. Dung, P. Mancarella, and F. Toni. Computing ideal sceptical argumentation.
Artificial Intelligence, 171(10-15):642–674, 2007.

[19] P. E. Dunne. Computational properties of argument systems satisfying graph-
theoretic constraints. Artificial Intelligence, 171(10-15):701–729, 2007.

[20] P. E. Dunne. The computational complexity of ideal semantics. Artificial Intelli-
gence, 173(18):1559–1591, 2009.

[21] P. E. Dunne, W. Dvorák, and S. Woltran. Parametric properties of ideal semantics.
Artificial Intelligence, 202:1–28, 2013.

[22] U. Egly, S. Alice Gaggl, and S. Woltran. Answer-set programming encodings for
argumentation frameworks. Argument and Computation, 1(2):147–177, 2010.

[23] W. Faber and S. Woltran. Manifold answer-set programs and their applications. In
Logic Programming, Knowledge Representation, and Nonmonotonic Reasoning
- Essays Dedicated to Michael Gelfond on the Occasion of His 65th Birthday,
volume 6565 of Lecture Notes in Computer Science, pages 44–63. Springer, 2011.

[24] D. M. Gabbay. Equational approach to argumentation networks. Argument and
Computation, 3(2-3):87–142, 2012.

[25] D. M. Gabbay. The Equational Approach to CF2 Semantics. volume 245 of
Frontiers in Artificial Intelligence and Applications, pages 141–152. IOS Press,
2012.

[26] D. M. Gabbay and A. S. d’Avila Garcez. Logical modes of attack in argumenta-
tion networks. Studia Logica, 93(2-3):199–230, 2009.

[27] A. V. Gelder, K. A. Ross, and J. S. Schlipf. The well-founded semantics for
general logic programs. Journal of the ACM, 38(3):620–650, 1991.

[28] J. C. Nieves and M. Osorio. Studying ideal semantics via logic programming
semantics. In 10th Mexican International Conference on Artificial Intelligence,
pages 3–8. IEEE Press, 2011.

[29] J. C. Nieves, M. Osorio, and U. Cortés. Preferred Extensions as Stable Models.
Theory and Practice of Logic Programming, 8(4):527–543, July 2008.

38

[30] J. C. Nieves, M. Osorio, and C. Zepeda. A Schema for Generating Relevant
Logic Programming Semantics and its Applications in Argumentation Theory.
Fundamenta Informaticae, 106(2-4):295–319, 2011.

[31] J. C. Nieves, M. Osorio, C. Zepeda, and U. Cortés. Inferring acceptable arguments
with answer set programming. In Sixth Mexican International Conference on
Computer Science (ENC 2005), pages 198–205. IEEE Computer Science Press,
September 2005.

[32] M. Osorio, J. A. Navarro, J. R. Arrazola, and V. Borja. Logics with Common
Weak Completions. Journal of Logic and Computation, 16(6):867–890, 2006.

[33] M. Osorio, J. C. Nieves, and J. L. Carballido. The stable abducible argumentation
semantics. In Latin American Workshop on Non-Monotonic Reasoning 2011,
volume 804 of CEUR Workshop Proceedings, pages 57–68, 2011.

[34] M. Osorio, J. C. Nieves, and I. Gómez-Sebastià. CF2-extensions as Answer-
set Models. In Computational Models of Argument - COMMA, volume 216 of
Frontiers in Artificial Intelligence and Applications, pages 391–402. IOS Press,
2010.

[35] M. Osorio, J. C. Nieves, and A. Santoyo. Complete Extensions as Clark’s Com-
pletion Semantics. In Mexican International Conference on Computer Science,
page IN PRESS. IEEE Computer Science Press, 2013.

[36] J. S. Schlipf. Formalizing a logic for logic programming. Ann. Math. Artif. Intell.,
5(2-4):279–302, 1992.

[37] T. Wakaki and K. Nitta. Computing Argumentatoin Semantics in Answer Set
Progamming. In JSAI’2008, volume 5447 of Lecture Notes in Computer Science,
pages 254–269, 2009.

[38] Y. Wu, M. Caminada, and D. M. Gabbay. Complete extensions in argumentation
coincide with 3-valued stable models in logic programming. Studia Logica, 93(2-
3):383–403, 2009.

39

