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Abstract. In this paper, we introduce a possibilistic argumentation-based decision making frame-
work which is able to capture uncertain information and exceptions/defaults. In particular, we define
the concept of a possibilistic decision making framework which is based on a possibilistic default
theory, a set of decisions and a set of prioritized goals. This set of goals captures user preferences
related to the achievement of a particular state in a decision making problem. By considering the
inference of the possibilistic well-founded semantics, the concept of argument with respect to a de-
cision is defined. This argument captures the feasibility of reaching a goal by applying a decision
in a given context. The inference in the argumentation decision making framework is based on ba-
sic argumentation semantics. Since some basic argumentation semantics can infer more than one
possible scenario of a possibilistic decision making problem, we define some criteria for selecting
potential solutions of the problem.
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1. Introduction

Decision making can be regarded as a reasoning process for selecting an action among several alterna-
tives. Any decision problem looks for the best action(s) for pursuing a goal. In our common life, decision
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making processes are present in any moment and most of them have to deal with uncertainty. In fact, any
decisions that we make in our common life are based on beliefs concerning the likelihood of uncertain
events. In fact, we commonly use arguments such as “I think that . . . ”, “chances are . . . ”, “it is probable
that . . . ”, “it is plausible that . . . ”, etc., for supporting our decisions. In these kinds of arguments, we
usually appeal to our experience or our common sense. It is not surprising to think that a reasoning based
on these kinds of statements could reach biased conclusions. However, these conclusions could reflect
the experience or common sense of an expert. Pelletier and Elio pointed out in [34] that people simply
have tendencies to ignore certain information because of the (evolutionary) necessity to make decisions
quickly. This necessity gives rise to biases in judgments concerning what they really want to do.

From the common sense reasoning perspective, the decision making approaches based on cognitive-
states arise as flexible formalisms for supporting decision making based on beliefs of the world [38].
In particular, approaches based on argumentation theory [5, 22, 23, 37] seem to be flexible enough for
dealing with the different forms of information for justifying/explaining rational decisions. Indeed, from
a practical perspective, argumentation theory provides a versatile computational model for developing
advanced services for decision support and for computer human dialogues in which explanation and
rationale play a central role [23].

As far as we know, there are few attempts to formalize argument-based decision making under un-
certainty. Some of the most representative approaches are

• Bonet and Geffner’s approach [11],

• works based on Logic of Argumentation [24, 29] and more recently,

• works based on the Possibilistic Logic [1, 2, 5].

These approaches offer different features in the process of expressing a decision making problem.
However, some of these approaches have a quite limited specification language for expressing exceptions
(also called defaults in non-monotonic reasoning). The specification of exceptions in the representation
of a decision making problem takes relevance in domains in which the available information is incom-
plete [7]. On the other hand, the identification of exceptions of a given argument characterizes a relation
of undercut between arguments which is not based on strong negation [21].

The use of logic specification languages with negation as failure is a successful approach for en-
coding knowledge with exceptions/defaults. In the last two decades, one of the most successful logic
programming approaches has been Answer Set Programming (ASP) [7]. ASP is the realization of much
theoretical work on Non-monotonic Reasoning and Artificial Intelligence applications. It represents a
new paradigm for logic programming that allows, using the concept of negation as failure, the handling
of problems with default knowledge and the production of non-monotonic reasoning. ASP usually is
based on the so called Stable Model Semantics [27]. Another prominent logic programming semantics
in the context of ASP is the so called Well-Founded Semantics (WFS) [26]. Unlike the stable model se-
mantics which follows a credulous reasoning approach, WFS performs a skeptical reasoning approach.
WFS can be regarded as an approximation of the stable model semantics. Dix in [16] showed that WFS
satisfies a good set of expected properties in the context of non-monotonic reasoning.

In [33], a possibilistic framework for reasoning under uncertainty was proposed. This framework is
a combination of WFS and possibilistic logic [19]. Possibilistic logic is based on possibilistic theory,
in which, at the mathematical level, degrees of possibility and necessity are closely related to fuzzy sets
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[19]. Due to the natural properties of possibilistic logic and WFS, this approach allows us to deal with a
reasoning that is at the same time non-monotonic and uncertain. This possibilistic version of WFS has
some nice features: it can be regarded as an approximation of the possibilistic stable model semantics
[30, 31] and it is polynomial time computable. Another distinguishing characteristic of the approach
presented in [33] is that it makes possible the use of explicit labels such as certain, probable, plausible,
etc., in order to capture the incomplete state of a belief in a normal logic program. All these features of
the possibilistic WFS define a potential platform for defining an argument-based decision making under
uncertainty which can deal with default reasoning.

In this paper, we introduce a possibilistic argumentation-based decision making framework which is
able to capture uncertain information and exceptions/defaults. In particular, we define the concept of a
possibilistic decision making framework which is based on a possibilistic default theory, a set of decisions
and a set of prioritized goals. This set of goals captures user preferences related to the achievement of
a particular state in a decision making problem. By considering the inference of the possibilistic well-
founded semantics, the concept of argument with respect to a decision is defined. This argument captures
the feasibility of reaching a goal by applying a decision in a given context. Since the possibilistic well-
founded semantics is a three valued semantics, the relation of attacks between arguments is defined in
terms of complementary atoms and assumptions. The inference in the argumentation decision making
framework is based on basic argumentation semantics (following Dung’s style [21]). Since some basic
argumentation semantics can infer more than one possible scenario of a possibilistic decision making
problem, we define some criteria for selecting potential solutions to the problem.

The paper is organized as follows: after presenting the relevant concepts we will use throughout
the paper (Section 2), in Section 3, we introduce our proposal for a possibilistic argumentation decision
making framework for dealing with incomplete knowledge. In Section 4, some criteria for comparing
arguments and set of arguments are defined. In Section 5, we compare our work with other noticeable
approaches in the literature. Finally, Section 6 concludes the paper discussing the achieved results and
pointing out some future work. Along the paper we use a running example to exemplify our approach.

2. Background

In this section, we introduce the necessary terminology in order to have a self-contained document. We
assume that the reader has familiarity with basic concepts of classic logic and logic programming.

We start by introducing the syntax and a semantics for normal logic programs. After that, the syntax
and the semantics are extended for the setting of a possibilistic logic programming framework.

2.1. Non-Possibilistic Normal Logic Programs

The language of propositional logic has an alphabet consisting of

(i) propositional symbols: p0, p1, ...

(ii) connectives : ∨,∧,←,¬, not,>

(iii) auxiliary symbols : ( , ).
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in which ∨,∧,← are 2-place connectives, ¬, not are 1-place connectives and > is a 0-place connective.
The propositional symbols, >, and the propositional symbols of the form ¬pi (i ≥ 0) stand for the
indecomposable propositions, which we call atoms, or atomic propositions. Atoms negated by ¬ will
be called extended atoms. We will use the concept of atom without paying attention to whether it is an
extended atom or not. The negation sign ¬ is regarded as the so called strong negation by the ASP’s
literature and the negation not as the negation as failure. A literal is an atom, a (called positive literal),
or the negation of an atom not a (called negative literal). Given a set of atoms {a1, ..., an}, we write
not {a1, ..., an} to denote the set of literals {not a1, ..., not an}.

An extended normal clause, C, is denoted:

a ← b1, . . . , bj , not bj+1, . . . , not bj+n (1)

where j + n ≥ 0, a is an atom and each bi (1 ≤ i ≤ j + n) is an atom. When j + n = 0 the clause is an
abbreviation of a ← > such that > is the propositional symbol that always evaluates to true. In a slight
abuse of notation, we sometimes write the clause 1 as a ← B+, not B−, where B+ := {b1, . . . , bj} and
B− := {bj+1, . . . , bj+n}. An extended normal program P is a finite set of extended normal clauses.
When n = 0, the clause is called extended definite clause. An extended definite logic program is a finite
set of extended definite clauses. By LP , we denote the set of atoms in the signature of P . Let ProgL be
the set of all normal programs with atoms from L.

We will manage the strong negation (¬) in our logic programs as it is done in ASP [7]. Basically,
each atom of the form ¬a is replaced by a new atom symbol a′ which does not appear in the language of
the program. For instance, let P be the extended normal program:

a ← q. ¬q ← r. q ← >. r ← >.

Then replacing the atom ¬q with a new atom symbol q′, we will have:

a ← q. q′ ← r. q ← >. r ← >.

In order not to allow inconsistent models from logic programs, a normal clause of the form f ← q, q′, f
such that f /∈ LP is added.

2.2. Well-Founded Semantics

In this section, we present a standard definition of the well-founded semantics in terms of rewriting
systems. We start by presenting a definition w.r.t. a 3-valued logic semantics.

Definition 2.1. (SEM)
[18] For a normal logic program P , we define HEAD(P ) := {a| a ← B+, not B− ∈ P} — the set of
all head-atoms of P . We also define SEM(P ) = 〈P true, P false〉, where P true := {p| p ← > ∈ P} and
P false := {p| p ∈ LP \HEAD(P )}. SEM(P ) is also called a model of P.

In order to present a characterization of the well-funded semantics in terms of rewriting systems, we
define some basic transformation rules for normal logic programs.
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Definition 2.2. (Basic Transformation Rules)
[18] A transformation rule is a binary relation on ProgL. The following transformation rules are called
basic. Given a program P ∈ ProgL we define:

RED+: This transformation can be applied to P , if there is an atom a which does not occur in HEAD(P).
RED+ transforms P to the program where all occurrences of not a are removed.

RED−: This transformation can be applied to P , if there is a rule a ← > ∈ P . RED− transforms P to
the program where all clauses that contain not a in their bodies are deleted.

Success: Suppose that P includes a fact a ← > and a clause q ← body such that a ∈ body. Then we
replace the clause q ← body by q ← body \ {a}.

Failure: Suppose that P contains a clause q ← body such that a ∈ body and a /∈ HEAD(P ). Then we
erase the given clause.

Loop: We say that P2 results from P1 by LoopA if, by definition, there is a set A of atoms such that:

1. for each rule a ← body ∈ P1, if a ∈ A, then body ∩A 6= ∅,

2. P2 := {a ← body ∈ P1|body ∩A = ∅},

3. P1 6= P2.

Let CS0 be the rewriting system containing the basic transformation rules: RED+, RED−, Success,
Failure, and Loop.

We denote the uniquely determined normal form of a program P with respect to the rewriting system
CS0 by normCS0(P ). CS0 induces a semantics SEMCS0 as follows:

SEMCS0(P ) := SEM(normCS0(P ))

In order to illustrate the basic transformation rules, let us consider the following example.

Example 2.1. Let P be the following normal logic program:

b ← not a. c ← not b. c ← a.

Now, let us apply CS0 to P . Since a /∈ HEAD(P ), then we can apply RED+ to P . Thus we get:

b ← >. c ← not b. c ← a.

Observe that now we can apply RED− to the new program, thus we get:

b ← >. c ← a.

Finally, we can apply Failure to the new program, thus we get:

b ← >.

This last program is called the normal form of P w.r.t. CS0, because none of the transformation rules
from CS0 can be applied.
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WFS was introduced in [26] and it was characterized in terms of rewriting systems in [13]. This
characterization is defined as follows:

Lemma 2.1. [13] CS0 is a confluent rewriting system. It induces a 3-valued semantics that is the well-
founded semantics.

Given a normal logic program P , by WFS(P ), we denote the well-founded model of P .

Example 2.2. Let P be the normal logic program introduced in Example 2.1. As we saw in Example
2.1, normCS0(P ) is:

b ← >.

This means that WFS(P ) = 〈{b}, {a, c}〉

2.3. Possibilistic Logic Programs

In this section, we extend the syntax of extended normal logic programs in order to capture uncertain in-
formation. To this end, we start introducing some basic concepts in terms of possibilistic logic programs.
These concepts were first introduced in [30].

A possibilistic atom is a pair p = (a, q) ∈ A × Q, where A is a finite set of atoms and (Q,≤) is a
lattice1. We apply the projection ∗ over p as follows: p∗ = a. Given a set of possibilistic atoms S, we
define the generalization of ∗ over S as follows: S∗ := {p∗|p ∈ S}. Given a lattice (Q,≤) and S ⊆ Q,
LUB(S) denotes the least upper bound of S and GLB(S) denotes the greatest lower bound of S.

We define the syntax of a valid extended possibilistic normal logic program as follows. Let (Q,≤)
be a lattice. An extended possibilistic normal clause r is of the form:

α : a ← B+, not B− (2)

where α ∈ Q. The projection ∗ over the possibilistic clause r is: r∗ = a ← B+, not B−. n(r) = α is a
necessity degree representing the certainty level of the information described by r.

An extended possibilistic normal logic program P is a tuple of the form 〈(Q,≤), N〉, where (Q,≤) is
a lattice and N is a finite set of extended possibilistic normal clauses. The generalization of the projection
∗ over P is as follows: P ∗ := {r∗|r ∈ N}. Observe that P ∗ is an extended logic normal program. When
P ∗ is an extended definite program, P is called an extended possibilistic definite logic program.

Given an extended possibilistic normal logic program P = 〈(Q,≤), N〉, we define the α-cut and the
strict α-cut of P , denoted respectively by Pα and Pα, by

Pα = 〈(Q,≤), Nα〉 such that Nα := {r|r ∈ N and n(r) ≥ α}
Pα = 〈(Q,≤), Nα〉 such that Nα := {r|r ∈ N and n(r) > α}

In order to illustrate the expressiveness of the class of possibilistic normal logic programs, we intro-
duce the following example.

1In this paper we assume that the lattice is finite.
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Example 2.3. Let us consider Savage’s rotten egg decision problem [36] according to which: An agent
is preparing an omelette. 5 fresh eggs are already in the omelette. There is one more egg. The egg either
is fresh or rotten. The status of the egg is uncertain.

• The agent can

1. add it to the omelette which means the whole omelette may be wasted,

2. throw it away, which means one egg may be wasted, or

3. put it in a cup, check whether it is ok or not and put it into the omelette in the former case,
throw it away in the latter. In any case, a cup has to be washed.

• the agent prefers

– a six-egg omelette and a cup to wash, over one with five eggs and not to wash a cup over
having nothing to eat

In the example, decisions correspond to actions and states correspond to the possible states of the
egg, i.e. decisions C := {inOmelette, inCup, throwAway}, and states S := {fresh, rotten}. The
decision problem can be modeled by means of the following logic program:2

P :=





1 : inO ← not inC, not tA. 1 : 5o ← tA.

1 : inC ← not inO, not tA. 1 : 6o ← fr, inO.

1 : tA ← not inC, not inO. 1 : 0o ← ro, inO.

λ : ro ← not fr. 1 : 6o ← fr, inC.

γ : fr ← not ro. 1 : 5o ← ro, inC.

1 : w ← inC. 1 : ¬w ← not inC.





where 0 < λ ≤ 1, and 0 < γ ≤ 1.
This decision making problem has different possible solutions. Then, some decision strategies can be

defined taking into account the preferences of the agent. For instance, in [14], preferences are modeled by
means of the ordered disjunction connective × and a preference order between the solution is obtained.
However, in that model, no uncertainty about the state of the eggs can be taken into account, since all
states that are not negligible (i.e. excluded answer sets) are considered plausible. As such, the decision of
the best decision is based on empirical comparison criteria only (see [14] for details). In the following, we
propose an argumentation approach for making the best decision which considers the certainty degrees
of the plausible states. In the argumentation framework, we will construct arguments for supporting each
decision and we will show how a decision can be made considering uncertainty and preference degrees
of the arguments built. Since the solution to the problem depends on the problem formulation and on the
uncertainty in it, we do not expect to give a general solution of the problem. Nevertheless, some potential
solutions to the problem are outlined and discussed.

2In this program, we assume the lattice 〈Q,≤〉 such that Q = (0, 1] and ≤ is the classical relation between rational numbers.
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2.4. Possibilistic Well-Founded Semantics

In this section, the possibilistic Well-Founded Semantics is introduced. This definition is presented in
two steps: first, for the class of possibilistic definite logic programs and, after that, the definition is
extended for the class of possibilistic normal logic programs.

2.4.1. Extended Possibilistic Definite Logic Programs

In this subsection, we are going to deal with the class of extended possibilistic definite logic programs.
We start by introducing the fix-point operator ΠCn which is a fundamental concept for inferring the
possibilistic well-founded model.

In order to define the fix-point operator ΠCn, let us introduce some basic definitions. Given a
possibilistic logic program P and x ∈ LP ∗ , H(P, x) := {r ∈ P |head(r∗) = x}.

Definition 2.3. [33] Let P = 〈(Q,≤), N〉 be a possibilistic definite logic program, r ∈ N such that r is
of the form α : a ← b1, . . . , bn and A be a set of possibilistic atoms,

- r is β-applicable in A with β := GLB{α, α1, . . . , αn} if {(b1, α1), . . . , (bn, αn)} ⊆ A.

- r is ⊥Q-applicable otherwise.

And then, for all atom x ∈ LP ∗ we define:

App(P,A, x) := {r ∈ H(P, x)|r is β-applicable in A and β > ⊥Q}
⊥Q denotes the bottom element of Q.

Observe that this definition is based on the inferences rules of possibilistic logic. Now, we introduce
an operator which is based on Definition 2.3.

Definition 2.4. [33] Let P be a possibilistic definite logic program and A be a set of possibilistic atoms.
The immediate possibilistic consequence operator ΠTP maps a set of possibilistic atoms to another one
by this way:

ΠTP (A) := {(x, δ)|x ∈ HEAD(P ∗), App(P,A, x) 6= ∅,
δ = LUBr∈App(P,A,x){β|r is β-applicable in A}}

Then, the iterated operator ΠT k
P is defined by

ΠT 0
P = ∅ and ΠTn+1

P = ΠTP (ΠTn
P ), ∀n ≥ 0

Observe that ΠTP is a monotonic operator; therefore, ΠTP always reaches a fix-point which we call
the set of possibilistic consequences of P and we denote it by ΠCn(P ).

By considering the operator ΠCn, we define the possibilistic well-founded semantics for extended
possibilistic definite logic program as follows: Let (Q,≤) be a lattice such that >Q is the top-element of
Q and S be a set of atoms, then Q>Q

(S) := {(a,>Q)|a ∈ S}.
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Definition 2.5. [33] Let P be an extended possibilistic definite logic program. S1 be a set of possibilistic
atoms, S2 be a set of atoms such that 〈S∗1 , S2〉 is the well-founded model of P ∗. 〈S1, Q>Q

(S2)〉 is the
possibilistic well-founded model of P if and only if S1 = ΠCn(P ).

2.4.2. Extended Possibilistic Normal Programs

In this subsection, we are going to deal with the class of extended possibilistic normal programs. To this
end, we define a single reduction of an extended possibilistic normal logic program w.r.t. a set of atoms.
This reduction is defined as follows:

Definition 2.6. [33] Let P be an extended possibilistic logic program and S be a set of atoms. We define
R(P, S) as the extended possibilistic logic program obtained from P by deleting

i) all the formulae of the form not a in the bodies of the possibilistic clauses such that a ∈ S, and

ii) each possibilistic clause that has a formula of the form not a in its body.

Observe that R(P, S) does not have negative literals. This means that R(P, S) is an extended possi-
bilistic definite logic program.

By considering the fix-point operator ΠCn(P ) and the reduction R(P,A), the possibilistic version
of the well-founded semantics for extended possibilistic normal logic programs is defined as follows:

Definition 2.7. (Possibilistic Well-founded Semantics)
[33] Let P = 〈(Q,≤), N〉 be an extended possibilistic normal logic program, S1 be a set of possibilistic
atoms, S2 be a set of atoms such that 〈S∗1 , S2〉 is the well-founded model of P ∗. 〈S1, Q>Q

(S2)〉 is the
possibilistic well-founded model of P if and only if S1 = ΠCn(R(P, S2)). By P WFS(P ), we denote
the possibilistic well-founded model of P .

3. Possibilistic Argumentation-based Decision Framework

In this section, we introduce our main results, i.e. a framework for capturing a possibilistic decision
making problem by means of a possibilistic argumentation-based inference.

Generally speaking, a possibilistic decision making problem follows a structure of cognitive states,
namely beliefs, desires and intentions. In fact, the beliefs that an agent has about the world are captured
by a possibilistic knowledge base, while intentions and goals of the given agent are expressed in terms
of a set of decisions and a set of prioritized goals. Therefore, we can define:

Definition 3.1. A possibilistic decision making framework is a tuple 〈P,D,G〉 in which:

• P is a possibilistic normal logic program.

• D = {d1, . . . , dn} is a set of decision atoms such thatD ⊆ LP ∗ , D∗ denotes the set of all possible
decisions.

• G = {(g1, β1), . . . , (gm, βm)} is a set of possibilistic atoms such that G∗ ⊆ LP ∗ , G∗ denotes the
set of all possible goals and βj(1 ≤ j ≤ n) represents the priority of the goal gj .
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• D∗ ∩ G∗ = ∅.

This structure of a decision making framework was already explored under the inference of pos-
sibilistic logic in [5]. Unlike the possibilistic decision making framework presented in [5], which is
restricted to theories of possibilistic logic, the possibilistic decision making framework of Definition 3.1
is based on a possibilistic theory with negation as failure. Indeed, the user is able to express assumptions
by means of negation as failure.

In order to illustrate the concept of possibilistic decision making framework, let us consider the
following example.

Example 3.1. Let us consider the knowledge described by the program in Example 2.3 with certainty
values associate with each program rule. Then, we can define:

P :=





λ : ro ← not fr. 1 : 6o ← fr, inC.

γ : fr ← not ro. 1 : 5o ← ro, inC.

1 : 0o ← ro, inO. 1 : ¬w ← not inC

1 : 5o ← tA. 1 : 6o ← fr, inO.

1 : w ← inC.





G :=





(6o, 1), (w, 1),
(5o, β), (¬w, β),
(0o, δ),





D :=
{

inC, inO, tA
}

where 1 > β > δ. The goals are represented by prioritized atoms. Please observe how the priority
assigned to the goals reflects the preference ordering of the agent in Example 2.3.

Once we have defined a structure for capturing a decision-making problem, we can define an ar-
gumentation decision-making inference. As usual in an argumentation inference, our argumentation
decision-making inference consists of four steps:

1. Construction of arguments;

2. Definition of relationships between arguments;

3. Definitions of status of arguments;

4. Selection of decisions.

Since our possibilistic decision making framework is based on a possibilistic default theory, a possi-
bilistic default reasoning inference for building arguments is required. For this purpose, we consider the
possibilistic version of the well-founded semantics (Definition 2.7).

Definition 3.2. Let F = 〈P,D,G〉 be a possibilistic decision making framework. An argument of a
decision d ∈ D is a tuple A = 〈S, d, (g, α)〉 such that:

1. (g, α) ∈ T and g ∈ G such that P WFS(S ∪ {1 : d ← >.}) = 〈T, F 〉.
2. S ⊆ P such that S is a minimal set (⊆) among the subsets of P satisfying 1.
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By AF , we denote the set of all arguments built from F .

Observe that an argument is capturing the feasibility of reaching a goal by applying a decision in a
given state of the world. On the other hand, an argument by itself characterizes a justification/explanation
of a decision in a given context for reaching a goal. It is worth mentioning that the possibilistic well-
founded semantics is polynomial time computable; hence, the process of building arguments is quite
efficient.

In order to illustrate the construction of arguments, let us consider the following example.

Example 3.2. Following Definition 3.2 and the possibilistic decision making framework introduced in
Example 3.1, the following arguments can be obtained:

A1 = 〈{1 : 6o ← fr, inO.

γ : fr ← not ro.},
inO,

(6o, γ)〉

A2 = 〈{1 : 6o ← fr, inC.

γ : fr ← not ro.},
inC,

(6o, γ)〉

A3 = 〈{1 : w ← inC.},
inC,

(w, 1)〉

A4 = 〈{1 : 5o ← tA.},
tA,

(5o, 1)〉

A5 = 〈{1 : 5o ← ro, inC.

λ : ro ← not fr.},
inC,

(5o, λ)〉

A6 = 〈{1 : ¬w ← not inC.},
tA,

(¬w, 1)〉

A7 = 〈{1 : ¬w ← not inC.}
inO,

(¬w, 1)〉

A8 = 〈{1 : 0o ← ro, inO.

λ : ro ← not fr.},
inO,

(0o, λ)〉

An interesting property of any argument w.r.t. a decision is that the goal that is reached by the
argument can be inferred by cutting the possibilistic knowledge based at the certainty level of the goal
that is inferred by the given argument. In fact, the certainty of the goal follows the basic principle of
weakest link [19].

Proposition 3.1. Let F = 〈P,D,G〉 be a possibilistic decision making framework and A ∈ AF such
that A = 〈S, d, (g, α)〉. Then, the following conditions hold:

1. (g, α) ∈ T such that P WFS(Pα ∪ {1 : d ← >.}) = 〈T, F 〉
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2. α = GLB({β | β : r ∈ S})

Proof:
Let us start by introducing the following observations:

1. By Theorem 1 and Proposition 4 of [30], we know that if P is a possibilistic definite logic program
then ΠCn(P ) = ΠM(P ). ΠM(P ) denotes the possibilistic model of P such that for all (x, α) ∈
ΠM(P ), α = NP (a) in which NP (a) is the necessity measure of a w.r.t. P .

2. Let P be a possibilistic definite logic programs and ΠM(P ) be the possibilistic model of P . Hence
by Proposition 11 of [19], (x, α) ∈ ΠM(P ) if and only if (x, α) ∈ ΠM(Pα).

The proof is formalized as following:

1. Let P ′ = P ∪ {1 : d ← >.}. By definition of the possibilistic well founded model, if (g, α) ∈ T
such that P WFS(P ′) = 〈T, F 〉, then (g, α) ∈ ΠCn(R(P ′, T ∗)). Therefore, by Observa-
tion 1, α = NR(P ′,T ∗)(g) in which NR(P,T ∗)(g) is the necessity measure of g w.r.t. R(P, T ∗).
Then, by Observation 2, (g, α) ∈ ΠCn(R(P ′, T ∗)α). This means that (g, α) ∈ T such that
P WFS(P ′

α) = 〈T, F 〉

2. The proof directly follows from 1 and Observation 1.
ut

Once we have identified the set of arguments of our possibilistic default theory, the relationships
between these arguments need to be identified. These relationships are usually captured by the idea of
attack. In argumentation theory, there are two fundamental notions of attack: undercut and rebut [35]:

• Undercut is an attack which invalidates an assumption of an argument.

• Rebut is an attack which contradicts a conclusion of an argument.

By keeping in mind that an atom negated by negation as failure is an assumption, the attack relation
in our framework is defined as follows:

Definition 3.3. Let A = 〈SA, dA, gA〉, B = 〈SB, dB, gB〉 be two arguments, P WFS(SA ∪ {1 : dA ←
>.}) = 〈TA, FA〉 and P WFS(SB ∪ {1 : dB ← >.}) = 〈TB, FB〉. We say that A attacks B if one of
the following conditions holds:

• a ∈ TA and ¬a ∈ TB .

• a ∈ TA and a ∈ FB .

Observe that the first condition of the definition is capturing the idea of rebut and the second condition
is capturing the idea of undercut. The following example illustrates this definition.
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Example 3.3. Let us consider the arguments in Example 3.2. From these arguments, we can see that:3

P WFS(S1 ∪ {1 : inO ← >.}) = 〈{(inO, 1), (fr, γ), (6O, γ)}, {(ro, 1)}〉
P WFS(S2 ∪ {1 : inC ← >.}) = 〈{(inC, 1), (fr, γ), (6O, γ)}, {(ro, 1)}〉
P WFS(S3 ∪ {1 : inC ← >.}) = 〈{(inC, 1), (w, 1)}, {}〉
P WFS(S4 ∪ {1 : tA ← >.}) = 〈{(tA, 1), (5O, 1)}, {}〉
P WFS(S5 ∪ {1 : inC ← >.}) = 〈{(inC, 1), (ro, λ), (5O, λ)}, {(fr, 1)}〉
P WFS(S6 ∪ {1 : tA ← >.}) = 〈{(tA, 1), (¬w, 1)}, {(inC, 1)}〉
P WFS(S7 ∪ {1 : inO ← >.}) = 〈{(inO, 1), (¬w, 1)}, {(inC, 1)}〉
P WFS(S8 ∪ {1 : inO ← >.}) = 〈{(inO, 1), (ro, λ), (0o, λ)}, {(fr, 1)}〉

From these possibilistic well-founded models, the following attack relations can be identified: A1 attacks
A8, A1 attacks A5, A2 attacks A5, A2 attacks A6, A2 attacks A7, A2 attacks A8, A3 attacks A6, A3
attacks A7, A5 attacks A6, A5 attacks A7, A6 attacks A3, A7 attacks A3, A8 attacks A2 and A8 attacks
A1. A graph representation of these attacks is presented in Figure 1, in which arguments are represented
as nodes and attacks as edges.

Figure 1. Graph representation.

By having a set of arguments and their relations, a possibilistic decision making framework can be
instantiated into a possibilistic argumentation decision making framework. Since any pair of arguments
can be compared by different criteria (such as the certainty level of the goal that is reached by the given
argument), a possibilistic argumentation decision making framework is provided with a partial order
relation. Hence, given a set of arguments AF , ¹AF

denotes a partial order in AF .

Definition 3.4. A possibilistic argumentation decision making framework is a tuple PF = 〈F,AF , Att,
¹AF

〉, where F is a possibilistic decision making framework, and Att denotes the binary relations of
attacks (according to Definition 3.3) in AF , i.e. Att ⊆ AF ×AF .

Essentially, a possibilistic argumentation decision making framework is an extension of a possibilistic
decision making framework. However, this structure allows us to tackle a decision making problem from
3We assume that each argument is of the form Ai = 〈Si, d, (g, α)〉.
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another perspective. In particular, the problem can be regarded as a set of pros and cons arguments w.r.t.
a set of decisions in which different patterns of selection of arguments can be applied. These patterns of
selection are usually called argumentation semantics.

In order to define a basic requirement of any argumentation semantics of a possibilistic argumentation
decision making framework, the idea of context-free is defined. Given a set of arguments AF , a subset
of arguments E ⊆ AF is context-free if and only if there are no arguments A,B ∈ E such that A attacks
B.

Definition 3.5. Let PF = 〈F,AF , Att,¹AF
〉 be a possibilistic argumentation decision making frame-

work. A basic argumentation semantics SEMArg of PF is a function from PF to 22AF such that the
following condition holds: if E ∈ SEMArg(PF ), then ∀E ∈ E , E is context-free.

Since the property of context-free is considered a fundamental property of any argumentation seman-
tics [8, 35], this is the only restriction that we impose on a basic argumentation semantics. Essentially, a
basic argumentation semantics is a pattern of selection of arguments such as the argumentation semantics
defined in [9, 21, 32].

Observe that SEMArg is a set of subsets ofAF . Any set of arguments E which belongs to SEMArg

is called an extension. In our setting, an extension denotes a possible solution to a decision making
problem.

An interesting property of any extension belonging to a basic argumentation semantics is that the set
of goals which are supported by an extension can be inferred by considering a subset of the possibilistic
default theory. In order to formalize this property, let us introduce the following notation. Given a set of
arguments A:

P(A) := {S ∪ {1 : d ← >.}|〈S, d, (g, α)〉 ∈ A}

D(A) :=
⊔

〈S,d,(g,α)〉∈A
{(g, α)}4

Proposition 3.2. Let PF = 〈F,AF , Att,¹AF
〉 be a possibilistic argumentation decision making frame-

work, SEMArg be a basic argumentation semantics. If E ∈ SEMArg(PF ) then D(E) ⊆ T such that
P WFS(P(E)) = 〈T, F 〉.

Proof:
(Sketch) Let us start by introducing some notation w.r.t. relevant rules. Let P be a possibilistic logic pro-
gram. P induces a notion of dependency between atoms from LP ∗ . We say that a depends immediately
on b if and only if b appears in the body of a clause in P , such that a appears in its head. The two place
relation depends on is the transitive closure of depends immediately on. The set of dependencies of an
atom x, denoted by dependencies-of (x), corresponds to the set {a | x depends on a}. Given x ∈ LP ∗ ,
rel rul(P, x) is the set of relevant rules of P with respect to x, i.e. the set of rules that contain an a ∈
dependencies-of (x).

4Given two sets of possibilistic atoms A and B: A tB = {(x, α)|(x, α) ∈ A and x /∈ B∗} ∪ {(x, α)|x /∈ A∗ and (x, α) ∈
B} ∪ {(x,LUB({α, β})|(x, α) ∈ A and (x, β) ∈ B}.
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The main part of the proof consists as follows: by Lemma 5.30 of [17], we know that the well
founded semantics satisfies relevance. Hence, given a possibilistic normal logic program P and x ∈ LP ∗ ,
P WFS(P )(x) = P WFS(rel rul(P, x))(x). This means that the semantic value of any atom x in
LP ∗ w.r.t. P WFS depends on the relevant rules of x. Therefore, since P(E) are the relevant rules of
D(E)∗, the semantic values of D(E)∗ w.r.t. P WFS depends only on P(E). ut

Observe that P(E) is denoting the relevant knowledge base of the extension E and D(E) denotes
a set of decisions which are supported by P(E). This property of modularity of a given possibilistic
default theory w.r.t. a basic argumentation semantics is inherited from the well founded semantics which
satisfies the property of relevance [17]. It is worth mentioning that relevance is a desired property for per-
forming non-monotonic reasoning [17]. In fact, the property formalized by Proposition 3.2 has practical
applications, e.g. for the interchange of knowledge between intelligent agents.

In order to characterize a particular argumentation semantics for a possibilistic argumentation frame-
work, we define a version of the preferred semantics (introduced in [21]).

Definition 3.6. Let PF = 〈F,AF , Att,¹AF
〉 be a possibilistic argumentation decision making frame-

work.

• We say that A defeats B if and only if A attacks B, B does not attack A, and A ºAF
B.

• An argument A ∈ AF is acceptable with respect to S ∈ AF , if ∀B ∈ AF which defeats A there
exists C ∈ S such that C defeats B.

• A conflict-free S ⊆ AF is admissible if and only if each argument in S is acceptable with respect
to S.

• A preferred extension of PF is a maximal admissible set of PF . SEMpreferred denotes the set
of preferred extensions of PF .

We illustrate the inference of the preferred semantics in the following example.

Example 3.4. Let PF = 〈F,AF , Att,¹AF
〉 be a possibilistic argumentation decision making frame-

work such that F is the possibilistic decision making framework presented in Example 3.1,AF is the set
of arguments presented in Example 3.2, Att is the set of attacks presented in Example 3.3 and¹AF

is the
equality relation.5 It is easy to see that SEMpreferred(PF ) = {{A4, A8, A5, A3}, {A4, A1, A2, A3}}

Since the preferred semantics’ definition is based on admissible sets, the following property is
straightforward.

Proposition 3.3. Let PF = 〈F,AF , Att,¹AF
〉 be a possibilistic argumentation decision making frame-

work. SEMpreferred is a basic argumentation semantics of PF .

Proof:
If E ∈ SEMpreferred, then E is an admissible set; therefore, E is a conflict-free set. ut

In the following subsections, we introduce some criteria for prioritizing/contrasting arguments and
extensions.
5We assume the equality relation for the sake of simplicity.
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4. Preferences between Decisions

So far, we have shown that a decision making problem can be captured in a possibilistic default theory.
Such possibilistic default theory can be instantiated in a possibilistic argumentation decision making
framework. On the other hand, by applying a basic argumentation semantics to a possibilistic argumen-
tation decision making framework, one can infer different scenarios (called extensions) which represent
potential solutions to a given decision making problem. Since an extension has different arguments that
argue for a particular decision, some criteria for selecting a suitable decision are worth defining.

4.1. Preferences between Arguments

We start by defining a preference relation between arguments. To this end, we will define the notion of
strength of an argument.

Definition 4.1. Let PF = 〈F,AF , Att,¹AF
〉 be a possibilistic argumentation decision making frame-

work and A ∈ AF such that A = 〈S, d, (g, α)〉. The strength of A is a pair 〈Lev(A),Wei(A)〉 such
that:

• The certainty level of the argument is Lev(A) = α.

• The weight of the argument is Wei(A) = β such that (g, β) ∈ G.

The use of a dual value for dealing with the strength of an argument, as it is done by Definition 4.1,
was explored in the context of possibilistic theories in [5]. The strength of an argument allows us to
compare pairs of arguments. Informally, an argument is all the better as it uses more certain knowledge
and refers to an important goal. This can be formally captured by a Pareto-based comparison criterion.

Definition 4.2. Let PF = 〈F,AF , Att,¹AF
〉 be a possibilistic argumentation decision making frame-

work, SEMArg be a basic argumentation semantics and let A,B ∈ E such that E ∈ SEMArg(PF ). A
is stronger than B (denoted A Âp B) if and only if 〈Lev(A),Wei(A)〉 >pareto 〈Lev(B),Wei(B)〉

The condition in the above definition follows the principle of Pareto optimality according to which
an argument is preferred if it is better or equal to another in all attributes and strictly better in at least
one attribute. The set of best arguments is represented by the Pareto frontier which contains arguments
which are not dominated by any other arguments. A way for computing the Pareto frontier is by means
of the skyline operator [12].

It is important to observe that the Pareto relation can be used for defining the acceptability of ar-
guments. This means that a possibilistic argumentation decision making framework can be instantiated
as PF = 〈F,AF , Att,≺p〉. In this case, any basic argumentation semantics applying to PF could
use >pareto for defining the acceptability of arguments from AF (see the concept of defeat presented in
Definition 3.6).

We illustrate the idea of Pareto relation in the following example.

Example 4.1. Let PF = 〈F,AF , Att,≺p〉 be a possibilistic argumentation decision making framework
such that F is the possibilistic decision making framework presented in Example 3.1, AF is the set of
arguments presented in Example 3.2, Att is the set of attacks presented in Example 3.3, and ≺p is the
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preference/acceptability relation of arguments according to Definition 4.2. Let us consider preferred
extensions E1 = {A4, A8, A5, A3} and E2 = {A4, A1, A2, A3} in Example 3.4. Then:

• in E1, A3 Âp A4 Âp A5 Âp A8

• in E2, A3 Âp {A4, A1, A2}

Therefore, the best argument for both extensions is A3.

More generally, the following property holds.

Proposition 4.1. Let PF = 〈F,AF , Att,≺p〉 be a possibilistic argumentation decision making frame-
work, SEMArg be a basic argumentation semantics and E ∈ SEMArg(PF ). Then, ≺p is a partial order
relation over arguments in E .

Proof:
Straightforward by Pareto ordering definition. ut

4.2. Preferences between Extensions

Sometimes, it is desirable to compare extensions based on the arguments which support a decision d with
a level of certainty α or a priority level β of satisfied goals. There exist many different ways to induce a
preference relation over extensions.

To this end, we define for a decision d the set of arguments in an extension E as Ei
X(d) = {A ∈ E |

A = 〈S, d, (g, α)〉 ∧ X(A) = i}, in which X(A) can be either the level or the weight of an argument
according to Definition 4.1.

The first comparison criterion is based on the cardinality of the set of arguments which satisfy a goal
to a particular degree.

Definition 4.3. Let E1 and E2 be two extensions of a possibilistic argumentation decision making frame-
work PF . Given a decision d, E1(d) is cardinality-preferred to E2(d) (E1(d) Âc E2(d)) if and only if
there exists a maximal i such that |Ei

1X
(d)| 6= |Ei

2X
(d)| and |Ei

1X
(d)| > |Ei

2X
(d)|.

In certain applications, counting does not provide the best way of defining an order between exten-
sions. Therefore, a more cautious preference relation can be defined (in the sense that fewer extensions
are considered better than others) based on set inclusion of the arguments that support a decision.

Definition 4.4. Let E1 and E2 be two extensions of a possibilistic argumentation decision making frame-
work PF . Given a decision d, E1(d) is inclusion-preferred to E2(d) (E1(d) Âi E2(d)) if and only if a
maximal i exists such that Ei

1X
(d) 6= Ei

2X
(d) and Ei

1X
(d) ⊃ Ei

2X
(d).

More generally, the following property holds.

Proposition 4.2. Let E1 and E2 be two extensions of a possibilistic argumentation decision making
framework PF . Given a decision d, then E1(d) Âi E2(d) implies E1(d) Âc E2(d).
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Proof:
Ab absurdo: let us suppose that E1(d) Âi E2(d) does not imply E1(d) Âc E2(d). Thus, given a maximal
i and A(X) = Lev(A) (resp. A(X) = Wei(A)) there must exist an element a ∈ Ei

2Lev
(d) such that

either |Ei
2Lev

(d)| = |Ei
1Lev

(d)| or |Ei
2Lev

(d)| > |Ei
1Lev

(d)|. But both theses contradict the hypothesis
that the set Ei

1Lev
(d) contains more elements than Ei

2Lev
(d). ut

5. Related work

In the literature, argumentation has been used for different purposes and a good survey is presented
in [10]. Among the argumentation proposals, several frameworks address inconsistency in knowledge
bases [4], non-monotonic reasoning [21], and qualitative decision making under uncertainty [5]. Since
the argumentation framework proposed in this paper aims to address decision making under uncertainty,
the closest works to our proposal are, to the best of our knowledge, the proposals of Amgoud and Prade
in [5] and Alsinet et al.in [2].

Amgoud and Prade in [5] have proposed a unified argumentation-based model for different decision
problems such as decision making under uncertainty, multiple criteria decisions, and rule-based deci-
sions. The proposed framework follows two main steps: the building of arguments and their comparison
by means of decision criteria. These criteria support the definition of a complete preorder on a set of
candidate decisions based on the inferred arguments. One of the nicest features of their approach is the
definition of a complete and unified framework. However, it seems to lack a practical point of view (at
least in an efficient way). The inference of arguments is indeed based on the inference of a purely logical
approach, whereas in our approach arguments inference is done on the basis of the non-monotonic infer-
ence of the possibilistic well founded semantics (which is polynomial computable). Another remarkable
difference is in the argument selection supporting the best decision. In fact, in their framework, a pes-
simistic and optimistic criteria, from a qualitative decision making under uncertainty point of view [20],
are used to select the best argument. Instead, in our approach, argument selection is based on the strength
of argument only.

On the other hand, the proposal of Alsinet et al., in [2], is an argumentation approach which com-
bines features from argumentation theory and logic programming (without negation as failure). The
specification language of this approach is based on a possibilistic logic programming approach. It is
worth mentioning that this possibilistic logic programming approach is defined over the possibilistic
Gödel logic [3]. Indeed, the construction of arguments is based on the inference of the possibilistic
Gödel logic. The inference over conflicting arguments is based on a dialectical analysis which defines a
skeptical reasoning process.

In [15], a probabilistic argumentation approach was proposed. This approach is useful when the
application domain permits the definition of probabilistic links between premises and conclusions of an
argument. In our definition of argument, we also make a direct relation between the degree of certainty of
the argument’s conclusion (the reached goal) and the degree of certainty of the argument’s premises (see
Proposition 3.1). It is important to point out that sometimes, when a probability approach is used, one
of the hardest parts of solving a problem is identifying the probability relations6. However, sometimes
it is enough to have just relative likelihoods for modeling different levels of evidence/uncertainty e.g.
possible, probable, plausible, etc., in which each relative likelihood is a possible class of beliefs. In

6We refer to [28] for a discussion about the difficulties related of finding a numerical representation for uncertainty.
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this case, the possibilistic approaches such as the suggested approach in this paper and in [2, 5] take
relevance.

6. Conclusions

In this paper, we have proposed an argumentation-based possibilistic decision making framework which
is able to capture uncertain information and exceptions/defaults. In fact, one of the noticeable features
in our approach, as we have claimed in the paper, is that we can deal with a reasoning that is at the
same time non-monotonic and uncertain. Unlike standard argumentation approaches which are based
on the monotonic inference of classical logic for building arguments, our approach is based on the non-
monotonic inferences of the possibilistic well founded model. As claimed before, this semantics owns
some nice features such as its complexity class which is polynomial. As a result, since the construction
of arguments is based on the possibilistic Well-Founded semantics, we have obtained a computable
argumentation framework for building arguments, constructing attack relations, and comparing set of
arguments, and extensions.

We have defined the concept of a possibilistic decision making framework, which is based on a
possibilistic default theory, a set of decisions and a prioritized set of goals. This set of goals captures
user preferences in achieving a particular state in a decision making problem.

We have defined the concept of argument w.r.t. a decision by considering the inference of the pos-
sibilistic well-founded semantics. This argument captures the feasibility of reaching a goal by applying
a decision in a given context. An interesting property of any argument w.r.t. a decision is that the goal
that is reached by the argument can by inferred by cutting the possibilistic knowledge based at certainty
level of the goal that is inferred by the given argument. In fact, the certainty of the goal follows the basic
principle of weakest link (Proposition 3.1).

Since the possibilistic well-founded semantics is a three valued semantics, the relation of attacks
between arguments has been defined in terms of complementary atoms and assumptions. This relation
of attack captures the idea of rebut and undercut.

The inference in our argumentation-based decision making framework relies on basic argumentation
semantics (following Dung’s style). An interesting property of any extension which belongs to a basic
argumentation semantics is that the set of goals which are supported by an extension can be inferred by
considering a subset of the possibilistic default theory (Proposition 3.2). This property of modularity
w.r.t. a given possibilistic default theory of any basic argumentation semantics is inherited from the well
founded semantics which satisfies the property of relevance.

We have been working in the support of decision making process for deciding whether an industrial
wastewater is safe for being discharged into the system [6, 25]. Our experience suggests that in the
environmental domain, we require a qualitative theory of default reasoning for modeling incomplete
information and an uncertain theory like possibilistic logic for modeling uncertain events. Hence, as part
of our future work, we will consider applying our possibilistic decision making framework to the domain
of environmental systems.
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