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Abstract. Some abstract argumentation approaches consider that ar-
guments have a degree of uncertainty, which impacts on the degree of
uncertainty of the extensions obtained from a abstract argumentation
framework (AAF) under a semantics. In these approaches, both the un-
certainty of the arguments and of the extensions are modeled by means
of precise probability values. However, in many real life situations the
exact probabilities values are unknown and sometimes there is a need
for aggregating the probability values of different sources. In this pa-
per, we tackle the problem of calculating the degree of uncertainty of
the extensions considering that the probability values of the arguments
are imprecise. We use credal sets to model the uncertainty values of ar-
guments and from these credal sets, we calculate the lower and upper
bounds of the extensions. We study some properties of the suggested
approach and illustrate it with an scenario of decision making.

Keywords: abstract argumentation · imprecise probability · uncertainty
· credal sets

1 Introduction

The AAF that was introduced in the seminal paper of Dung [3] is one of the
most significant developments in the computational modelling of argumentation
in recent years. The AAF is composed of a set of arguments and a binary relation
encoding attacks between arguments. Some recent approaches on abstract argu-
mentation assign uncertainty to the elements of the AAF to represent the degree
of believe on arguments or attacks. Some of these works assign uncertainty to
the arguments (e.g., [4][7][13][8][9][6][12][14]), others to the attacks (e.g., [9]),
and others to both arguments and attacks (e.g., [11]). These works use precise
probability approaches to model the uncertainty values. However, precise prob-
ability approaches have some limitations to quantify epistemic uncertainty, for
example, to represent group disagreeing opinions. These can be better repre-
sented by means of imprecise probabilities, which use lower and upper bounds
instead of exact values to model the uncertainty values.

For a better illustration of the problem, consider a discussion between a
group of medicine students (agents). The discussion is about the diagnose of
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a patient. In this context, arguments represent the student’s opinions and the
attacks represent the disagreements between such opinions. Figure 1 shows the
argumentation graph where nodes represent arguments and edges the attacks
between arguments. In the graph, two arguments represent two possible diag-
noses namely measles and chickenpox, there is an argument against measles and
two arguments against chickenpox, and there are three arguments that have no
attack relations with the rest of arguments.

A = The patient has measles

C = She has blisters

E = The patient

G = The patient has fever

H = The patient’s temperature is 39°

B= The patient has chickenpox

D = She only has small red spots

patient has brown eyes

F = The patient was
vaccinated for chickenpox

Fig. 1. Argumentation graph for the discussion about the diagnose of a patient.

Suppose that each opinion – i.e., argument – has a probability value between
0 and 1 that represents the degree of believe of each student. Since there is
more than one opinion, this means that each argument has associated a set of
probability values. Thus, we cannot model these degrees of believe by means
of an unique probability value (precise probability value), what we need is to
represent a range of the possible degrees of believe.

To the best of our knowledge, there is no work that models the uncertainty
values of arguments by using an imprecise probability approach. Therefore, we
aim to propose an approach for abstract argumentation in which the uncertainty
of the arguments is modeled by an imprecise probability value. Thus, the research
questions that are addressed in this paper are:

1. How to model the imprecise uncertainty values of arguments?
2. In abstract argumentation, several semantics have been proposed, which

return sets of arguments – called extensions – whose basic characteristic
is that these arguments do not attack each other, i.e. they are consistent.
The fact that the arguments that belong to an extension are uncertain,
causes that such extension also has a degree of uncertainty. How to
calculate the lower and upper bounds of extensions?

In addressing the first question, we use credal sets to model the uncertainty
values of arguments. Regarding the second question, we base on the credal sets of
the arguments to calculate the uncertainty values of extensions obtained under
a given semantics. These values are represented by lower and upper bounds.
The way to aggregate the credal sets depends on a causal relation between the
arguments.
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The remainder of this paper is structured as follows. Next section gives a brief
overview on credal sets and abstract argumentation. In Section 3, we present the
AAF based on credal sets and the causality graph concept, which are the base
for the calculation of the upper and lower bounds of extension. This calculation
is tackled in Section 4. We study the main properties of our approach in Sec-
tion 5. Related work is presented in Section 6. Finally, Section 7 is devoted to
conclusions and future work.

2 Background

In this section, we revise concepts of credal sets and abstract argumentation.

2.1 Credal sets

Assume that we have a finite set of events E = {E1, ..., En} and a probability
distribution p on this set, where p is a mapping p : E → [0, 1]. According to
Levi [10], a closed convex set of probability distributions p is called a credal set.
Given an event E, a credal set for E – denoted K(E) – is a set of probability
distributions about this event and K = {K(E1), ...,K(En)} denotes a set of all
credal sets. Every credal set has the same number of elements. In this work, we
assume that the cardinality of the credal sets of K is the same (let us denote it
by m); moreover, we assume that pi(E) denotes the suggested probability of the
agent i w.r.t the event E such that 1 ≤ i ≤ m and E ∈ E. Given a credal set
K(E), the lower and upper bounds for event E are determined as follows:

Lower probability: P (E) = inf{p(E) : p(E) ∈ K(E)} (1)
Upper probability: P (E) = sup{p(E) : p(E) ∈ K(E)}

Given l events {E1, ..., El} ⊆ E and their respective credal sets
K(E1) = {p1(E1), ..., pm(E1)}, ...,K(El) = {p1(El), ..., pm(El)}. If {E1, ..., El}
are independent events, the lower and upper probabilities are defined as follows:

P ({E1, ..., El}) = min1≤j≤m{
∏i≤l

i=1 pj(Ei)} where pj ∈ K(Ei) (2)

P ({E1, ..., El}) = max1≤j≤m{
∏i≤l

i=1 pj(Ei)}

On the other hand, when the independence relation is not assumed, the first
step is to calculate a credal set for {E1, ..., El} as follows:

K({E1, ..., El}) = {pE |pE = min1≤j≤m{pj(E1), ...pj(El)}} where
pj(Ei) ∈ K(Ei) (3)

Based on K({E1, ..., El}), we obtain the lower and upper probabilities:

P ({E1, ..., El}) = min(K({E1, ..., El})) (4)
P ({E1, ..., El}) = max(K({E1, ..., El}))

Example 1. Let {E1, E2, E3} be three events and K(E1) = {p1(E1), p2(E1),
p3(E1)},K(E2) = {p1(E2), p2(E2), p3(E2)}, and K(E3) = {p1(E3), p2(E3), p3(E3)}
their respective credal sets. Next table shows the values of the probability dis-
tributions for each event.



4 Mariela Morveli-Espinoza et al.

E1 E2 E3

p1 0.3 0.5 0.75
p2 0.6 0.7 0.55
p3 0.45 0.65 0.8

Assuming that E1, E2, and E3 are independent, the lower and upper prob-
abilities of (E1, E2, E3) are calculated as follows: P (E1, E2, E3) = min{0.3 ×
0.5× 0.75, 0.6× 0.7× 0.55, 0.45× 0.65× 0.8} = min{0.1125, 0.231, 0.234}; hence
P (E1, E2, E3) = 0.1125 and P (E1, E2, E3) = max{0.1125, 0.231, 0.234} = 0.234.

On the other hand, if we assume that E1, E2, and E3 are not independent,
then the lower and upper probabilities are calculated as follows: K(E1, E2, E3) =
{min{0.3, 0.5, 0.75},min{0.6, 0.7, 0.5},min{0.45, 0.65, 0.8}} = {0.3, 0.55, 0.45}.
Thus, P (E1, E2, E3) = 0.3 and P (E1, E2, E3) = 0.55.

2.2 Abstract argumentation

In this subsection, we will recall basic concepts related to the AAF defined by
Dung [3], including the notion of acceptability and the main semantics.

Definition 1. (Abstract AF) An abstract argumentation framework AF is a
tuple AF = 〈ARG,R〉 where ARG is a finite set of arguments and R is a binary
relation R ⊆ ARG×ARG that represents the attack between two arguments of ARG,
so that (A,B) ∈ R denotes that the argument A attacks the argument B.

Next, we introduce the concepts of conflict-freeness, defense, admissibility
and the four semantics proposed by Dung [3].

Definition 2. (Argumentation Semantics) Given an argumentation frame-
work AF = 〈ARG,R〉 and a set E ⊆ ARG:

– E is conflict-free if ∀A,B ∈ E , (A,B) 6∈ R.
– E defends an argument A iff for each argument B ∈ ARG, if (B,A) ∈ R,

then there exist an argument C ∈ E such that (C,B) ∈ R.
– E is admissible iff it is conflict-free and defends all its elements.
– A conflict-free E is a complete extension iff we have E = {A|E defends A}.
– E is a preferred extension iff it is a maximal (w.r.t set inclusion) complete

extension.
– E is a grounded extension iff it is the smallest (w.r.t set inclusion) complete

extension.
– E is a stable extension iff E is conflict-free and ∀A ∈ ARG and A 6∈ E , ∃B ∈ E

such that (B,A) ∈ R.

In this article, there is a set of agents that give their opinions (degrees of
belief) regarding each argument in ARG by means of probability distributions.
The set of arguments can be compared with the events of set E; hence, we can
say that E = ARG. The number of agents that give their opinions determines the
cardinality of credal sets. Thus, given m agents and an argument A ∈ ARG, the
credal set for A is represented by K(A) = {p1(A), ..., pm(A)}. Finally, K denotes
all the credal sets of the arguments in ARG.
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3 The Building Blocks

In this section, we present the definitions of AAF based on credal sets and
causality graph. These concepts are important for the calculation of the lower
and upper bounds of extensions.

We use credal sets to model the opinions (degrees of belief) of a set of agents
about a set of arguments. Thus, each argument in an AAF has associated a
credal set, which contains probability distributions that represent the opinions
of the agents about it.

Definition 3. (Credal Abstract Argumentation Framework) An AAF based
on credal sets is a tuple AFCS = 〈ARG,R,K, fCS〉 where (i) ARG is a set of argu-
ments, (ii) R is the attack relation presented in Definition 1, (iii) K is a set of
credal sets, and (iv) fCS : ARG→ K maps a credal set for each argument in ARG.

Recall that the cardinality of every credal set depends on the number of
agents. Since all the agents give their opinions about all the arguments, all the
credal sets have the same number of elements.

Definition 4. (Agent’s opinions) Let AFCS = 〈ARG,R,K, fCS〉 be a Credal
AAF and AGT = {ag1, ..., agm} a set of agents. The opinion pi of an agent agi
(for 1 ≤ i ≤ m) is ruled as follows:

1. If A ∈ ARG, there is pi(A) ∈ K(A) where K(A) ∈ K.
2. ∀A ∈ ARG, 0 ≤ pi(A) ≤ 1.

Regarding the probability values given to the arguments, it is important to
consider the notion of rational probability distribution given in [8]. According
to Hunter [8], if the degree of belief in an argument is high, then the degree
of belief in the arguments it attacks is low. Thus, a probability function p is
rational for an AFCS iff for each (A,B) ∈ R, if p(A) > 0.5 then p(B) ≤ 0.5
where p(A) ∈ K(A) and p(B) ∈ K(B).

Example 2. Consider that AGT = {ag1, ag2, ag3, ag4}. The Credal AAF for the
example given in Introduction is AFCS = 〈ARG,R,K, fCS〉 where:

- ARG = {A,B,C,D,E, F,G.H}
- R = {(A,B), (B,A), (F,B), (D,B), (C,A)}
- K = {K(A),K(B),K(C),K(D),K(E),K(F ),K(G),K(H)}. The table be-

low shows the credal set of each argument
- fCS(A) = K(A), fCS(B) = K(B), ..., fCS(H) = K(H)

K(A) K(B) K(C) K(D) K(E) K(F ) K(G) K(H)
p1 0.2 0.8 0.2 0.75 0.8 0.75 0.7 0.8
p2 0.7 0.25 0.75 0.15 0.65 0.2 0.8 0.9
p3 0.55 0.45 0.4 0.5 0.8 0.55 1 1
p4 0.75 0.1 0.2 0.8 0.7 0.8 0.9 0.9

In a Credal AAF, besides the attack relation between the arguments, there
may be a causality relation between them. To make this discussion more concrete,
consider the following conflict-free sets:
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– {G,E}: Having fever does not have to do with the eyes’ color of the patient
and vice-verse, so there is no relation between these arguments. This means
that they are independent from each other.

– {A,G} and {A,F}: In both cases the arguments are related in some way. In
the first case, having fever (G) is a symptom of (causes) measles (A) and in
the second case, the fact that the patient is vaccinated for chickenpox (F )
causes that he may have measles and not chickenpox (A).

Definition 5. (Causality Graph) Let AFCS = 〈ARG,R,K, fCS〉 be a Credal
AAF, a causality graph C is a tuple C = 〈ARG,RCAU〉 such that:
(i) ARG = ARG← ∪ ARG→ ∪ ARG◦ is a set of arguments,
(ii) RCAU ⊆ ARG×ARG represents a causal relation between two arguments of ARG

(the existence of this relation depends on the domain knowledge), such that
(A,B) ∈ RCAU denotes that argument A causes argument B. It holds that if
(A,B) ∈ R, then (A,B) /∈ RCAU and (B,A) /∈ RCAU,

(iii) ARG← = {B|(A,B) ∈ RCAU}, ARG→ = {A|(A,B) ∈ RCAU}, and
ARG◦ = {C|C ∈ ARG− (ARG← ∪ ARG→)},

(iv) ARG← and ARG→ are not necessarily pairwise disjoint; however,
(ARG← ∪ ARG→) ∩ARG◦ = ∅.

Example 3. A causality graph for the Credal AAF of Example 2 is C = 〈{A,B,C,
D,E, F,G,H}, {(D,A), (F,A), (H,A), (G,A), (H,G), (G,B), (C,B)}〉 (see Fig-
ure 2), where ARG← = {A,B,G}, ARG→ = {D,F,H,G,C}, and ARG◦ = {E}.

A

GF

D

H

B

C
G E

Fig. 2. Causality graph for Example 3. Traced edges represent the causality relation.

4 Lower and Upper Bounds of Extensions

Section 2 presented the definition of conflict-free (cf) and admissible (ad) sets
and complete (co), preferred (pr), grounded (gr), and stable (st) semantics.
Considering the causality graph, the arguments of an extension Ex (for x ∈
{cf, ad, co, pr, gr, st}) may belong to ARG→, ARG←, or ARG◦. Depending on it,
the calculation of the probabilistic lower and upper bounds of each extension is
different. Thus, we can distinguish the following cases: (i) the extension is empty,
(ii) the extension has only one argument, and (iii) the extension includes more
than one argument.
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Definition 6. (Upper and Lower Bounds of Extensions) Let AFCS =
〈ARG,R,K, fCS〉 be a Credal AAF, C = 〈ARG,RCAU〉 a causality graph, and
Ex ⊆ ARG (for x ∈ {cf, ad, co, pr, gr, st}) an extension under semantics x. The
lower and uppers bounds of Ex are obtained as follows:

1. If Ex = {}, then P (Ex) = 0 and P (Ex) = 1, which denotes ignorance.
2. If |Ex| = 1, then P (Ex) = P (A) and P (Ex) = P (A) s.t. A ∈ Ex, where

P (A) and P (A) are obtained by applying Equation (1).
3. If |Ex| > 1, then (P (Ex), P (Ex)) = UL BOUNDS(Ex) (see Algorithm 1).

Consider the following functions:

- fCAU(A) = {B|(B,A) ∈ RCAU ∪ fCAU(B)}
- TOP CAU(Ex) = {A|A ∈ ARG← ∩ Ex and ∀B s.t. A ∈ fCAU(B), B /∈ Ex}
- FREE CAU(Ex) = {A|A ∈ ARG→ ∩ Ex and ∀B ∈ fCAU(A), B /∈ Ex}

TOP CAU and FREE CAU consider only the arguments of Ex and their causal
relations restricted to Ex. The former returns the arguments that are caused by
any of the other argument in Ex but do not cause other argument(s) in Ex. If
there is an argument that belongs to ARG← and ARG→ in C but the argument(s)
caused by it are not in Ex, then it is returned by TOP CAU. The latter returns the
arguments that belong to ARG→ but whose caused arguments do not belong to
extension Ex.

Algorithm 1 Function UL BOUNDS

Input: An extension Ex and a causality graph C = 〈ARG,RCAU〉
Output: (P (Ex), P (Ex))
1: if (Ex ∩ ARG←) 6= ∅ then
2: ARG′′← = TOP CAU(Ex)
3: for i = 1 to |ARG′′←| do
4: Ei

A = A ∪ (fCAU(A) ∩ Ex)
5: Calculate K(Ei

A) //Calculate the credal set for Ei
A by applying Equation (3)

6: end for
7: end if
8: ARG′◦ = Ex ∩ ARG◦
9: if (Ex ∩ ARG→) 6= ∅ then

10: ARG′′→ = FREE CAU(Ex)
11: end if
12: //* — Ex contains only one set of related arguments — *//
13: if |ARG′′←| == 1 && ARG′◦ == ∅ && ARG′′→ == ∅ then
14: // Apply Equation (4) for obtaining the lower and upper bounds of Ex
15: P (Ex) = P (ARG′′←), P (Ex) = P (ARG′′←)
16: else
17: //Apply Equation (2) for obtaining the lower and upper bounds of Ex
18: P (Ex) = P (

⋃i≤|ARG′′←|
i=1 Ei

A ∪ ARG′◦ ∪ ARG′′→),

19: P (Ex) = P (
⋃i≤|ARG′′←|

i=1 Ei
A ∪ ARG′◦ ∪ ARG′′→)

20: end if
21: return (P (Ex, P (Ex)
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Example 4. (Cont. Example 2 considering the causality graph of Example 3). Af-
ter applying the semantics presented in Definition 2, we obtain that
ECO = EPR = EGR = EST = {C,E, F,D,H,G}. Since this extension has more
than one element, the Algorithm 1 has to be applied:

– We first evaluate the number of the caused arguments: Ey ∩ ARG← = {G}
(for y ∈ {CO, PR, GR, ST}), then we obtain TOP CAU(Ey) = {G} and fCAU(G) =
{H}; hence, EG = {G,H}. At last, we calculate the credal set for EG by
applying Equation (3): K(EG) = {0.7, 0.8, 1, 0.9}.

– Next, we obtain those arguments that belong to the extension and that
neither cause any other argument nor are caused by any other argument:
ARG′◦ = {E}.

– Then, we evaluate the number of causing arguments: Ey∩ARG← = {C,D, F}
and we obtain FREE CAU(Ey) = {C,D, F}.

– Since Ey do not contains only related arguments, we apply Equation (2)
considering K(EG),K(E),K(C),K(D), and K(F ).

– Finally, we obtain: (P (Ey), P (Ey) = [0.0117, 0.0806].

Let us also take some conflict-free sets: E1CF = {A,F,H,D,E,G},
E2CF = {A,F,H,D,G}, E3CF = {B,C,G,H}, and E4CF = {A}. The lower and upper
bounds for these extensions are: (P (E1CF), P (E1CF)) = [0.13, 0.525], (P (E2CF), P (E2CF))
= [0.2, 0.75], (P (E3CF), P (E3CF)) = [0.02, 0.1875], and (P (E4CF), P (E4CF)) = [0.2, 0.75].

So far, we have calculated the lower and upper bounds of extensions obtained
under a given semantics. The next step is to compare these bounds in order to
determine an ordering over the extensions, which can be used to choose an exten-
sion that resolves the problem. In this case, the problem was making a decision
about a possible diagnosis between two alternatives: measles or chickenpox. We
are not going to tackle the problem of comparing and ordering the extensions
because it is out of the scope of this article; however, we can do a brief analysis
taking into account the result of the previous example. Arguments A and B
represent each of the alternatives. The unique extension under any semantics y

does not include any of the alternatives. On other hand, free-conflict sets E1CF,
E2CF and E4CF include argument A and conflict free set E3CF includes argument B.
We can notice that there is a notorious difference between the lower and upper
bounds of Ey and the lower and upper bounds of any of the other conflict-free
sets. In fact, the lower and upper bounds of the conflict-free sets have a better
location. This may indicate that lower and upper bounds of extensions that in-
clude one of the alternatives are better than others of extensions that do not
include any of the alternatives. This in turn indicates that using uncertainty in
AAF may improve the resolutions of some problems, which was demonstrated
in [7] for precise uncertainty and it is showed in the example by using imprecise
uncertainty.
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5 Properties of the Approach

In this section, we study two properties of the proposed approach that guarantee
(i) that the approach can be reduced to the AAF of Dung and (ii) that the values
of both the lower and upper bounds of the extensions are between 0 and 1.

Given a Credal AAF AFCS = 〈ARG,R,K, fCS〉, AFCS is maximal if ∀A ∈ ARG

it holds that pi = 1 (1 ≤ i ≤ m) where pi ∈ K(A) and K(A) = fCS(A) andAFCS
is uniform if 0 ≤ pi ≤ 1. Be maximal transforms an AFCS into a standard AAF
of Dung, which means that every agent believes that every argument is believed
without doubts. The next proposition shows that a AFCS can be reduced to an
AAF that follows Dung’s definitions.

Proposition 1. Given a credal AAF AFCS = 〈ARG,R,K, fCS〉 and a extension
Ex (x ∈ {cf, ad, co, pr, gr, st}). If AFCS is maximal, then ∀Ex ⊆ ARG, P (Ex) =
P (Ex) = 1.

Proof. Since AFCS is maximal, then ∀A ∈ ARG,K(A) = {11, ..., 1m}. In or-
der to obtain the P (Ex) and P (Ex), Equations (1), (2), or (4) have to be ap-
plied. For Equation (1): the inf{1, ..., 1} = sup{1, ..., 1} = 1. For Equation (2):
∀A,

∏
{1, ..., 1} = 1, so the minimum and maximum of a set composed of 1s is

always 1. The same happens with Equation (4).

Proposition 2. Given a credal AAF AFCS = 〈ARG,R,K, fCS〉 and a extension
Ex (x ∈ {cf, ad, co, pr, gr, st}). If AFCS is uniform, then ∀Ex ⊆ ARG, 0 ≤
P (Ex) ≤ 1 and 0 ≤ P (Ex) ≤ 1.

Proof. In order to obtain the P (Ex) and P (Ex), Equations (1), (2), or (4) have
to be applied. Since AFCS is uniform, we can say that the minimums (infimums)
and maximums (supremums) are always between 0 and 1. Besides, the product
of two numbers between 0 and 1 is always between 0 and 1.

6 Related work

In this section, we present the most relevant works – to the best of our knowl-
edge – that study probability and abstract argumentation. These works assign
probability to the arguments, to the attacks, or to the extensions and all of them
use precise probabilistic approaches. Thus, as far as we know, we are introducing
the first abstract argumentation approach that employs imprecise probabilistic
approaches.

Dung and Thang [4] propose an AF for jury-based dispute resolution, which
is based on probabilistic spaces, from which are assigned probable weights –
between zero and one – to arguments. In the same way, Li et al. [11] present and
extension of Dung’s original AF by assigning probabilities to both arguments and
defeats. Hunter [7] bases on the two articles previously presented and focuses on
studying the notion of probability independence in the argumentation context.
The author also propose a set of postulates for the probability function regarding
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admissible sets and extensions like grounded and preferred. Following the idea
of using probabilistic graphs, the author assigns a probability value to attacks
in [9].

Thimm [13] focuses on studying probability and argumentation semantics.
Thus, he proposes a probability semantics such that instead of extensions or
labellings, probability functions are used to assign degrees of belief to arguments.
An extension of this work was published in [14]. Gabbay and Rodrigues [6] also
focus on studying the extensions obtained from an argumentation framework.
Thus, they introduce a probabilistic semantics based on the equational approach
to argumentation networks proposed in [5].

7 Conclusions and Future Work

This work presents an approach for abstract argumentation under imprecise
probability. We defined a credal AAF, in which credal sets are used to model the
the uncertainty values of the arguments, which correspond to opinions of a set of
agents about their degree of believe about each argument. We have considered
that – besides the attack relation – there also exists a causality relation between
the arguments of a credal AAF. Based on the credal sets and the causality rela-
tion, the lower and upper bounds of the extensions – obtained from a semantics
– are calculated.

We have done a brief analysis about the problem of comparing and ordering
the extensions based on their lower and upper bounds; however, a more complete
analysis and study are necessary. In this sense, we plan to follow this direction
in our future work. We also plan to further study the causality relations, more
specifically in the context of credal networks [2]. Finally, we want to study the
relation of this approach with bipolar argumentation frameworks [1].
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