W ~~Stable Semantics for propositional theories

Mauricio Osorio, Juan Carlos Nieves

Universidad de las Americas
CENTIA
Sta. Catarina Martir, Cholula, Puebla.
72820, México
josorio@mail.udlap.mx

Abstract

We define new semantics that extend the STABLE semantics in dif-
ferent directions. In particular, we introduce two semantics for general
propositional theories that we call ws, — stable and w. — stable. Our se-
mantics have the main properties: ws — stable and w. — stable are defined
over arbitrary propositional theories.

They agree with the stable model semantics when the given theory
has at least one stable model. Our proposed semantics are invariant over
intuitionistic equivalent theories. Finally, intuitionistic consistent theories
have at least one ws — stable model and one w. — stable model. Our results
naturally generalize to universal theories.

Keywords: Logic programming, intuitionistic logic, stable models.

1 Introduction

Applications using logic programming are wide, just to mention a recent one,
Kowalski and Sadri in [1] propose an approach to agents (KS-agents) within an
extended logic programming framework. Grosof in [2] observe that, logic pro-
grams, as a core declarative knowledge representation, has wide current presence
and major representational advantages compared to other rules approaches. The
stable semantics is among the most important semantics for logic programming,
and has proved to has appealing and enduring features [3].

Answer Set Programming (ASP) (Stable Logic Programming or A-Prolog)
is the realization of much theoretical work on Nonmonotonic Reasoning and
AT applications of Logic Programming in the last 12 years. It is based on
view of program statements as constraints on the solution of a given problem.
Subsequently, each model of the program encodes a solution to the program
itself. For instance, an ASP program encoding a planing scenario has as many
models as valid plans. This schema is similar to that underlying the applications

of SAT algorithms to AI, and in fact the range of applicability of these two
techniques is similar. However, thanks to the inherent causal aspect of Answer
Set semantics, we can represent default assumptions constraints, uncertainly
and non determinism in a direct way. Several ASP systems are now available,
among them are DeReS, dlv, smodels and XSB. Several others can be found
through the library of Logic Programming Systems and Test Cases. These
systems support provably correct inferences and are at least as fast and scalable
as SAT checkers. These are exciting results for NMR community and they are
attracting the attention of researchers from fields such as planning, product
configuration, verification of distributed systems, combinatorial problems and
logical cryptanalysis.

The term Answer Set Programming, that we use now, was coined by Vladimir
Lifschitz. It nicely captures two key ideas behind the approach: solution or an-
swers are sets and logic programming with the answer-set semantics (a general-
ization of stable models semantics) is an instantiation of the general approach.

However, it is well known that the stable semantics usually is too strong and
sometimes a program do not possess a stable model [4, 5, 6]. As an example, in
[7], the authors show that STABLE has some problems in modeling partial-order
programs [8, 5].

Some authors have even argued that STABLE does not even define the
intended models [9]. From the point of view of structural properties, Dix has
suggested the notion of well-behaved semantics [6]. It turns out that STABLE
is not well-behaved [6]. Some proposals to improve the stable semantics can be
found in [5, 10]. It is also possible that there is not a best semantics as [11]
comments.

In this paper we propose a solution to one problem of stable: That some
programs do not have stable models. We introduce two semantics for general
propositional theories that we call ws; — stable and w,. — stable. Our seman-
tics have the main properties: First, w; — stable and w. — stable are defined
over arbitrary propositional theories. Second, they agree with the stable model
semantics when the given theory has at least one stable model. Third, our
proposed semantics are invariant over intuitionistic equivalent theories. Finally,
intuitionistic consistent theories have at least one wy; — stable model and one
w,. — stable.

Our results naturally generalize to universal theories. The reason of this
claim is because in logic programming is standard to work on the grounded
form of a program.

Our paper is structured as follows: In section 2 we introduce our background.
In section 3 we introduce our proposed semantics. Finally, in section 4 we
present our conclusions.

2 Background

A signature £ in a finite set of elements that we call atoms. By Lp we under-
stand it to mean the signature of P, i.e. the set of atoms that occurs in P. A

literal is an atom or the negation of an atom a that we denote as —a. Given a
set of atoms {ay,...,a,}, we write ={ay, ..., a,} to denote the set {—ay, ..., 7a,}.

A theory is built up using the constants A,V,—, = and atoms (from £). A
disjunctive clause is a clause of the form: a1 Vas V...Va, < li,l2, ..., Im" where
n > 1,m > 0, every a; is an atom and every [; is a literal. Sometimes, we denote
a clause C'by A < BT, -B~, where A contains all the head atoms, B* contains
all the positive body atoms and B~ contains all the negative body atoms. We
also use body(C) to denote BY U—=B~. When A is a singleton set, the clause
can be regarded as a normal clause. A definite clause [12] is a normal clause
with B~ = (). A disjunctive program is a finite set of disjunctive clauses. A
normal program is built up with normal clauses. A definite program is a set of
definite clauses [12]. Given a signature £, we write Proge to denote the set of
all programs defined over L.

Given a theory T defined over the signature £ we define an interpretation
over T as a set P U - such that PN N =¢ and PUN = L.

A semantics is a mapping that associated to each theory T a set of interpre-
tations. Given two theories 77 and Ty we define T7 =, T5 iff for all formula w,
T, b w iff Ty b, w where k|, is the provability relation in the same logic L.

If the set of interpretations that the semantics associates to P; is the same
as the set of interpretations that the semantics associates to P>, then we denote
this by P1 =sem PQ.

2.1 Stable Models

The Gelfond-Lifschitz transformation (GL-transformation) of a logic program
P w.r.t. an interpretation M is obtained from P by deleting

(i) each rule that has a negative literal =B in its body with B € M, and

(ii) all negative literals in the bodies of the remaining rules.

Clearly the program G L(P, M) resulting from applying the GL-transformation
is negation-free, so GL(P, M) has at least a model. M is a stable model iff M
is a minimal model of GL(P, M).

Definition 1 (Equivalence Transformation,[13]) Given a semantics SEM,

a program transformation — is a SEM-equivalence transformation iff for all P,
P’ with P — P': SEM(P) = SEM(P’).

The following transformations are defined in [14, 15] and generalize the cor-
responding definitions for normal programs.

Definition 2 (Basic Transformation Rules)
A transformation rule is a binary relation on Progy. The following transfor-
mation rules are called basic. Let a program P € Prog. be given.

I This clause represents the formula Iy Ala... Al — a1 Va2 V...V an.

RED'(R™"): Replace a rule A+ BT,-B~ by A« BT,-(B- "HEAD(P)).

RED (R): Delete a clause A < BT, =B~ if there is a clause A’ + true such
that A" C B~.

Subsumption(Sb): Delete a clause A < BT, ~B~ if there is another clause
Ay« B, =By such that A, C A, B C B+, B C B~.

Taut (Ta): Delete a rule A <+ BT, =B~ with ANB*T = ¢.

Failure (F): Suppose that P includes an atom a and a clause q < Body such
that a ¢ HEAD(P) and a is a positive literal in Body. Then we erase
the given clause.

Contradictions (Cn): Delete a rule A < BT, =B~ with BT N B~ # ¢.

Example 3 (Transformation)
Let £ = {a,b,c,d,e} and let P be the program:
aVb <« c,—c,—d.
aVc<b.
cVd ¢« —e.
b < —c,—d, —e.
then HEAD(P) = {a,b,c,d}.
We can apply REDT to get the program P :
aVb<¢ c,—c,d.
aVc << b.
cVd «true.
b < —c,—d, —e.
If we apply RED™T again, we get program Ps:
aVb<¢ c,—c,d.
aVc<b.
cVd < true.
b < —c,d.
Now, we can apply SUB to get program Ps:
aVc<b.
cVd ¢ true.
b ¢ —c,d.

Let Dsuc be the natural generalization of suc to disjunctive programs, for-
mally:

Definition 4 (Dsuc,[16])
Suppose that P is a program that includes a fact a < true and a clouse A +
Body such that a € Body. Then we replace this clause by the clause A <+

Body \ {a}.

Definition 5 (CS»)
Let CSy be the rewriting system based on the transformations {Sb, R*, R,
Dsue, F, Ta, Cn }.

2.2 Intuitionistic logic

Intuitionistic logic is based on the concept of proof. Given a property P and an
element F, intuitionistic logic does not accept the decidability whether E has
the property P or not. Due to Brouwer, intuitionistic logic must exhibit the
object of our pertained proof, or at least, indicates a method by which one could
in principle find our object. Valid formulas in intuitionistic logic, will be also
valid in classical logic. For intuitionistic logic, the concept of truth in not used
for explain the meaning and the use of the logical constants or quantifiers. We
use the concept of proof. We denote Fr to denote provability in intuitionistic
logic. Ten axioms are defined in intuitionistic logic:

e A= (B—= A
e (A B—=C) > (A= B)—= (A—=0))
ANB — A

ANB =B

A= (B— (AADB))
A— (AVB)

B— (AVB
(A—=C)
(A—B)
o - A— (A— B)?

)
(B—=C)— (AvB—=0())
(

_>
= (A= =B) > —A)

Lemma 6 In intuitionistic logic every consistent theory has a complete and
consistent extension

Proof. Let T be a consistent theory, and 77 a maximal consistent theory of T,
then T} is complete. The proof of this fact is by contradiction. Suppose T; is
maximal consistent but it is not complete. Then, there is formula « such that
Ty t/1 a and Ty /1 —a. Since T; is maximal consistent, 77 U {a} Fr —a. But
then Ty Fra — ~aand so Ty Fr —a. m

2.3 Characterization of stable semantics based on intu-
itionist logic
Pearce showed the following: a formula is entailed by a program in the stable

model semantics if and only if it belongs to every intuitionistically complete and
consistent extension of the program formed by adding only negated atoms [17].

2If we replace this axiom schema by ——A — A then we obtain classical logic.

2.4 Transformation of Programs

The following lemma is well known for normal programs [18], and recently it
has been generalized to disjunctive programs [19].

Lemma 7 (STABLE is closed under CS, transformations,[19]) Let P,
and Py two programs related by any transformation in CSy. Then Py and Ps
have the same STABLE models.

The following result (taken from [19])suggests that it makes sense to reduce
a program by CSs, because this reduction can be computed efficiently.

Lemma 8 (CS- is polynomial time computable, [19]) Let P be a pro-
gram and Py a reduced form of P under CSy (namely, that Py is obtained from
P by a sequence of reductions from P and Py is already irreducible by CS>).
Then Py is obtained in polynomial time computable with respect to the size of
P.

3 A proposal for a new semantics
First of all, let us consider some definitions:

Definition 9 Let P be a theory. We denote A an appendiz of P any set of
literals over the signature L.

Definition 10 Given an appendiz I of P,we use Positive(I) to denote the set
of positive literals in I.

Definition 11 Given a theory P, we define two different partial order among
appendices of P as follows: I <, J iff Positive(I) C Positive(J), another
partial order I <. .J is defined iff | Positive(I) | < | Positive(J) |

Definition 12 We say that a theory P is literal-complete w.r.t. intuitionistic
logic iff Va € Ly, PFra or Pty —a.

Definition 13 We say that a theory P is consistent w.r.t. intuitionistic logic
T iff there is no formula a such that PFr a and Pt -«

Definition 14 Given a program P we define a L — completion of P as (P,I')
such that PUI = P where I is an appendiz of P, and P is literal complete
and consistent with respect to intuitionistic logic.

Definition 15 Given x € {s,c} and a program P we define a suitable Ly —
completion of P' := (P,I') of P iff (P,I') is a Ly — completion of P and for
any other Ly — completion P" := (P,I") of P it is false that I <, T .

Definition 16 Given x € {s,c}, A wy—stable model for P is the set of provable
literals in a suitable L, — completion P.

The following results show that our proposal semantics satisfies suitable
properties with respect to the original stable semantics. Hence, it is an adequate
generalization of the above semantics.

Theorem 17 If P admits stable models, then M is a wg — stable — model iff
M is a stable — model.

Proof. Is P admits a stable model said M then, by [17], P has a suitable
Ls — completion P using an appendix I with no positive literals. Therefore
Positive(I) = B, and so there is no suitable £, — completion P that includes
positive literals. m

Corollary 18 For stratified normal programs,
wg — stable — models(P) = stratified — models(P).

Proof. If P is a stratified program, then it has exactly one stable model
M which corresponds with the stratified model. The conclusion follows imme-
diately from the last theorem. m

Theorem 19 Every consistent theory has at least one ws — stable — model.

Proof. If T is a consistent theory, then by lemma 6 it has a complete and
consistent extension T”. Let I := {l|l is a literal and T' 1 1}. So (T,I') is a
L — completion of T. Therefore T has a suitable £; — completion. Hence T has
ws — stable model. m

Corollary 20 Every disjunctive program has at least one ws — stable — model.
Proof. Just note that a disjunctive program is consistent. m
Theorem 21 Given two programs such that Py =1 Py then Py =y, _stabie P2

Proof. It is enough of show that if PyUI; is a suitable Ls—completion of Py
then P, U I also is a suitable Ls— completion for P». First, note that P, U Iy
is literal complete, for hypothesis, P, =; P> then P, UI; =; P, UI;. Given that
P UI is a Lg — completionof Py, then P, UI; is a Ls — completionof Ps.

Moreover, P, U I; is a suitable completion, for if not, 3 I' such that I’ < Ii
and also P, U I' would be a suitable Ls — completionof P;. Contradiction. m

Theorem 22 Let P, be a logical program. Given any transformation T €
{R™,Sb, Dsuc,Ta,Cn} then T is a ws — stable — equivalence transformation.

Proof. By cases: For Sclet { a,a Aa — B} C P, 3. It is enough prove
that {a,a A a — beta} = {a,a = B}*. So a,a = (a = B) F; a = B and

3We use o, ... to denote conjunction of literals in the body of any clause and the dis-
junction of atoms in the head of any clause
‘aAa —band a — (a — b)

a = B,a Fr a - (@ = B). The result follows immediately. For T'a : Then
Po=P\{a— (L = (2 = (.., > a)...). SoaAa bt a For R, let
P =PU{b, a— (-b—a)}, then P, =PU{b }. Given that a = (a = a)
in an axiom, a — a,a Fr a follows. For Sb, the proof straightforward follows
from 7 —=b — (b — a) and two successive applications of Modus ponens. m

Remark 23 The reader could prove directly that the last result can be also be
proved if we change I <; J by I <. J

Lemma 24 Let P a program. Then M is a w., — stable of P then M is a
ws — stable model.

Proof. Straightfoward. m

Remark 25 Note that the converse is not true as it is shown in the following
example:
Let P the following program:

[« e~f
d + ¢
d <+ -c¢

c <« d,—e
Note that My := {—e,d,~f,c} and M> := {e, f, ~c,d} are the ws— stable models
of P. However, only M is a w. — stable model of P.

Due to lack of space, we present only two examples where the stable models
semantics has no models but there are wg — stable — models.

Example 26 Let P be the program:

a <+ b
b « b
b « a

then the unique ws — stable is {a, b}.

Example 27 Let P be the program:

p <
a <« b

b <+

h <+ -d

then the unique ws — stable is {p, h}.

4 Conclusion

We defined two new semantics that generalized the stable semantics such that
for every (stable) consistent disjunctive program our new semantics agree with
the original stable semantics. However our new semantics also give a meaning to
programs where the original stable semantics is inconsistent. Furthermore, our

new semantics can give a meaning to any propositional theory. Our approach
is based on intuitionistic logic and open new lines of research. Our theorems
17, 19, 21 and 22 show that our semantics is an adequate generalization of the
stable semantics.

Acknowledgments

This research is sponsored by the Mexican National Council of Science and
Technology, CONACyT (project 35804-A).

References

[1] Sadri Kowalsky. Towards a unified agent architecture that combines ratio-
nality with reactivity. In Logic in databases, Intl. Workshop LID 96, LNCS
1154, pages 137-149. Berlin, 1996.

[2] B. Grosof. Applications of declarative logic programs to multi-agent e-
commerce: Opportunities ans challenges. In Toni Rochefoert, Sadri, editor,
Multi- Agent Systems in Logic Programming. 1999.

[3] D. Pearce. Back and forth semantics for normal, disjuntive and extended
logic program. In APPIA-GULP-PRODE. 1998.

[4] Jia-Huai You and Li-Yan Yuan. A three-valued semantics for deductive
databases and logic programs. Journal of Computer and System Sciences,
49(2):334-361, 1994.

[5] J. Dix, Mauricio Osorio, and Claudia Zepeda. A general theory of confluent
rewriting systems for logic programming and its applications. Annals of
Pure and Applied Logic, 108(1-3):153-188, 2001.

[6] Jiirgen Dix. A Classification-Theory of Semantics of Normal Logic Pro-
grams: II. Weak Properties. Fundamenta Informaticae, XXII(3):257-288,
1995.

[7] Mauricio Osorio and Bharat Jayaraman. Aggregation and negation-as-
failure. New generation computing, 17(3):255-284, 1999.

[8] Bharat Jayaraman Mauricio Osorio and David Plaisted. Theory of partial-
order programming. Science of Computer Programming, 34(3):207-238,
1999.

[9] Teodor Przymusinski. Well-founded completions of logic programs. In Pro-
ceedings of the Eigth International Logic Programming Conference, Paris,
France, pages 726744, Cambridge, Mass., July 1991. MIT Press.

[10]

[19]

Jiirgen Dix and Martin Miiller. Partial Evaluation and Relevance for Ap-
proximations of the Stable Semantics. In Z.W. Ras and M. Zemankova,
editors, Proceedings of the 8th Int. Symp. on Methodologies for Intelligent
Systems, Charlotte, NC, 199/, LNAI 869, pages 511-520, Berlin, 1994.
Springer.

P. M. Dung. On the relations between stable and wellfounded semantics of
logic programs. Theoretical Computer Science, 105:7-25, 1992.

John W. Lloyd. Foundations of Logic Programming. Springer, Berlin, 1987.
2nd edition.

Gerd Brewka, Jiirgen Dix, and Kurt Konolige. Nonmonotonic Reasoning:
An Querview. CSLI Lecture Notes 73. CSLI Publications, Stanford, CA,
1997.

Stefan Brass and Jiirgen Dix. Characterizations of the Disjunctive Stable
Semantics by Partial Evaluation. Journal of Logic Programming, 32(3):207—
228, 1997. (Extended abstract appeared in: Characterizations of the Stable
Semantics by Partial Evaluation LPNMR, Proceedings of the Third Inter-
national Conference, Kentucky, pages 85-98, 1995. LNCS 928, Springer.).

Gerhard Brewka and Jiirgen Dix. Knowledge representation with logic pro-
grams. Technical report, Tutorial Notes of the 12th European Conference
on Artificial Intelligence (ECAT ’96), 1996. Also appeared as Technical
Report 15/96, Dept. of CS of the University of Koblenz-Landau. Will ap-
pear as Chapter 6 in Handbook of Philosophical Logic, 2nd edition (1998),
Volume 6, Methodologies.

J. Arrazola, Jurgen Dix, and Mauricio Osorio. Confluent term rewrit-

ing systems for non-monotonic reasoning. Computacion y Sistemas, I1(2-
3):299-324, 1999.

David Pearce. Stable inference as intuitionistic validity. Logic Program-
ming, 38:79-91, 1999.

Stefan Brass, Ulrich Zukowski, and Burkhard Freitag. Transformation-
based bottom-up computation of the well-founded model. In Jiirgen Dix,
Luis Moniz Pereira, and Teodor C. Przymusinski, editors, Non-Monotonic
Extensions of Logic Programming (NMELP’96), number 1216 in LNAT,
pages 171-201. Springer, 1997.

Mauricio Osorio, J. C. Nieves, and Chis Giannella. Useful transformations
in answer set programming. In Alessandro Provetti and Tran Cao Son,
editors, Proceedings of the AAAI 2001 Spring Symposium Series, pages
146-152. AAAT press, Stanford, E.U., 2001.

