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Abstract Extension-based argumentation semantics is a successful ap-
proach for performing non-monotonic reasoning based on argumentation
theory. An interesting property of some extension-based argumentation
semantics is that these semantics can be characterized in terms of logic
programming semantics. In this paper, we present novel results in this
topic. In particular, we show that one can induce an argumentation se-
mantics (that we call Stratified Argumentation Semantics) based on a
logic programming semantics that is based on stratified minimal mod-
els. We show that the stratified argumentation semantics overcome some
problems of extension-based argumentation semantics based on admissi-
ble sets and we show that it coincides with the argumentation semantics
CF2.

Keywords: Non-monotonic reasoning, extension-based argumentation
semantics and logic programming.

1 Introduction

Argumentation theory has become an increasingly important and exciting re-
search topic in Artificial Intelligence (AI), with research activities ranging from
developing theoretical models, prototype implementations, and application stud-
ies [3]. The main purpose of argumentation theory is to study the fundamental
mechanism, humans use in argumentation, and to explore ways to implement
this mechanism on computers.

Dung’s approach, presented in [6], is a unifying framework which has played
an influential role on argumentation research and AI. This approach is mainly
orientated to manage the interaction of arguments. The interaction of the ar-
guments is supported by four extension-based argumentation semantics: stable



semantics, preferred semantics, grounded semantics, and complete semantics.
The central notion of these semantics is the acceptability of the arguments. It is
worth mentioning that although these argumentation semantics represents dif-
ferent pattern of selection of arguments, all these argumentation semantics are
based on the concept of admissible set.

An important point to remark w.r.t. the argumentation semantics based on
admissible sets is that these semantics exhibit a variety of problems which have
been illustrated in the literature [17,2,3]. For instance, let AF be the argumenta-
tion framework which appears in Figure 1-a. In this AF there are two arguments:
a and b. The arrows in the figure represent conflicts between the arguments. We
can see that the argument a is attacked by itself and the argument b is attacked
by the argument a. Some authors as Prakken and Vreeswijk [17] suggest in a
intuitive way, that one can expect that the argument b can be considered as an
acceptable argument since it is attacked by the argument a which is attacked by
itself. However, none of the argumentation semantics suggested by Dung is able
to infer the argument b as acceptable.
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Figure 1. In a), it is presented the graph representation of the argumentation frame-
work: 〈{a, b}, {(a, a), (a, b)}〉. In b), it is presented the graph representation of the
argumentation framework: 〈{a, b, c, d, e}, {(a, c), (c, b), (b, a), (a, d), (c, d), (b, d), (d, e)}〉

Another interesting argumentation framework which has been commented
on literature [17,2] is presented in Figure 1-b.

Some authors, as Prakken and Vreeswijk [17], Baroni et al [2], suggest that
the argument e can be considered as an acceptable argument since it is attacked
by the argument d which is attacked by three arguments: a, b, c. Observe that
the arguments a, b and c form a cyclic of attacks.

We can recognize two major branches for improving Dung’s approach. On
the one hand, we can take advantage of graph theory; on the other hand, we can
take advantage of logic programming with negation as failure.

With respect to graph theory, the approach suggested by Baroni et al, in
[2] is maybe the most general solution defined until now for improving Dung’s
approach. This approach is based on a solid concept in graph theory which is
a strongly connected component (SCC). Based on this concept, Baroni et al,
describe a recursive approach for generating new argumentation semantics. For
instance, the argumentation semantics CF2 suggested in [2] is able to infer the
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argument b as an acceptable argument of the AF of Figure 1-a. Also CF2 regards
the argument e as an acceptable argument from the AF of Figure 1-b.

Since Dung’s approach was introduced in [6], it was viewed as a special form
of logic programming with negation as failure. For instance, in [6] it was proved
that the grounded semantics can be characterized by the well-founded semantics
[8], and the stable argumentation semantics can be characterized by the stable
model semantics [9]. Also in [4], it was proved that the preferred semantics can
be characterized by the p-stable semantics [16]. In fact, the preferred semantics
can be also characterized by the minimal models and the stable models of a
logic program [14]. By regarding an argumentation framework in terms of logic
programs, it has been shown that one can construct intermediate argumentation
semantics between the grounded and preferred semantics [12]. Also it is possible
to define extensions of the preferred semantics [15].

When we have a logic program which represents an argumentation frame-
work, it is natural to think that we can split this program into subprograms
where each subprogram could represents a part of an argumentation framework.
The idea of splitting a logic program into its component, in order to define logic
programming semantics, has been explored by some authors in logic program-
ming [5]. For instance, by splitting a logic program, Dix and Müller in [5] combine
ideas of the stable model semantics and the well-founded semantics in order to
define a skeptical logic programming semantics which satisfies the property of
relevance and the general principle of partial evaluation.

In this paper, we are going to explore the idea of splitting a logic program
into its components in order to achieve two main objectives:

1. To explore the definition of candidate argumentation semantics in terms of
logic programming semantics. In particular, we define an extension-based
argumentation semantics, that we call stratified argumentation semantics.
This semantics will be induced by the stratified minimal model semantics. We
will show that this new argumentation semantics coincides with CF2 which
is considered as the most acceptable argumentation semantics introduced in
[2].

2. To introduce a recursive construction which define a new logic programming
semantics, that we call stratified minimal models semantics. Based on the
construction of this semantics, we will show that there exists a family of logic
programming semantics that are always defined and satisfy the property of
relevance.

The rest of the paper is divided as follows: In §2, we present some basic
concepts w.r.t. logic programming and argumentation theory. In §3, we define the
stratified minimal model semantics and introduce our first main theorem. In §4,
we introduce the stratified argumentation semantics and present our second main
theorem of this paper. Finally in the last section, we present our conclusions.
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2 Background

In this section, we define the syntax of the logic programs that we will use in
this paper and some basic concepts of logic programming semantics and argu-
mentation semantics.

2.1 Syntax and some operations

A signature L is a finite set of elements that we call atoms. A literal is either
an atom a, called positive literal ; or the negation of an atom ¬a, called negative
literal. Given a set of atoms {a1, ..., an}, we write ¬{a1, ..., an} to denote the set
of atoms {¬a1, ...,¬an}. A normal clause, C, is a clause of the form

a ← b1 ∧ . . . ∧ bn ∧ ¬bn+1 ∧ . . . ∧ ¬bn+m

where a and each of the bi are atoms for 1 ≤ i ≤ n + m. In a slight abuse of
notation we will denote such a clause by the formula a ← B+ ∪ ¬B− where the
set {b1, . . . , bn} will be denoted by B+, and the set {bn+1, . . . , bn+m} will be
denoted by B−. We define a normal program P , as a finite set of normal clauses.
If the body of a normal clause is empty, then the clause is known as a fact and
can be denoted just by: a ←.

We write LP , to denote the set of atoms that appear in the clauses of P . We
denote by HEAD(P ) the set {a|a ← B+, ¬B− ∈ P}.

A program P induces a notion of dependency between atoms from LP . We say
that a depends immediately on b, if and only if, b appears in the body of a clause
in P , such that a appears in its head. The two place relation depends on is the
transitive closure of depends immediately on. The set of dependencies of an atom
x, denoted by dependencies-of (x), corresponds to the set {a | x depends on a}.
We define an equivalence relation ≡ between atoms of LP as follows: a ≡ b if
and only if a = b or (a depends on b and b depends on a). We write [a] to denote
the equivalent class induced by the atom a.

Example 1. Let us consider the following normal program,
S = {e ← e, c ← c, a ← ¬b ∧ c, b ← ¬a ∧ ¬e, d ← b}.

The dependency relations between the atoms of LS are as follows:
dependencies-of (a) = {a, b, c, e}; dependencies-of (b) = {a, b, c, e}; dependencies-
of (c) = {c}; dependencies-of (d) = {a, b, c, e}; and dependencies-of (e) = {e}.
We can also see that, [a] = [b] = {a, b}, [d] = {d}, [c] = {c}, and [e] = {e}.

We take <P to denote the strict partial order induced by ≡ on its equivalent
classes. Hence, [a] <P [b], if and only if, b depends-on a and [a] is not equal to
[b]. By considering the relation <P , each atom of LP is assigned an order as
follows:

– An atom a is of order 0, if [a] is minimal in <P .
– An atom a is of order n+1, if n is the maximal order of the atoms on which

a depends.
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We say that a program P is of order n, if n is the maximum order of its atoms.
We can also break a program P of order n into the disjoint union of programs
Pi with 0 ≤ i ≤ n, such that Pi is the set of rules for which the head of each
clause is of order i (w.r.t. P ). We say that P0, . . . , Pn are the relevant modules
of P .

Example 2. By considering the equivalent classes of the program S in Example 1,
the following relations hold: {c, e} <S {a, b} <S {d}. We also can see that: a is
of order 1, d is of order 2, b is of order 1, e is of order 0, and c is of order 0. This
means that S is a program of order 2.

The following table illustrates how the program S can be broken into the
disjoint union of the following relevant modules S0, S1, S2:

S S0 S1 S2

e ← e. e ← e.
c ← c. c ← c.
a ← ¬b ∧ c. a ← ¬b ∧ c.
b ← ¬a ∧ ¬e. b ← ¬a ∧ ¬e.
d ← b. d ← b.

Now we introduce a single reduction for any normal program. The idea of
this reduction is to remove from a normal program any atom which has already
fixed to some true value. In fact, this reduction is based on a pair of sets of atoms
〈T ; F 〉 such that the set T contains the atoms which can be considered as true
and the set F contains the atoms which can be considered as false. Formally,
this reduction is defined as follows:

Let A = 〈T ; F 〉 be a pair of sets of atoms. The reduction R(P, A) is obtained
by 4 steps:

1. We replace every atom x that occurs in the bodies of P by 1 if x ∈ T , and
we replace every atom x that occurs in the bodies of P by 0 if x ∈ F ;

2. we replace every occurrence of ¬1 by 0 and ¬ 0 by 1;
3. every clause with a 0 in its body is removed;
4. finally we remove every occurrence of 1 in the body of the clauses.

We want to point out that this reduction does not coincide with the Gelfond-
Lifschitz reduction [9].

Example 3. Let us consider the normal program S of Example 1. Let P be the
normal program S \ S0, and let A be the pair of sets of atoms 〈{c}; {e}〉. This
means that we obtain the following programs:

P : R(P, A):
a ← ¬b ∧ c. a ← ¬b.
b ← ¬a ∧ ¬e. b ← ¬a.
d ← b. d ← b.
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2.2 Semantics

From now on, we assume that the reader is familiar with the single notion of
minimal model. In order to illustrate this basic notion, let P be the normal
program {a ← ¬b, b ← ¬a, a ← ¬c, c ← ¬a}. As we can see, P has
five models: {a}, {b, c}, {a, c}, {a, b}, {a, b, c}; however, P has just two minimal
models: {b, c}, {a}. We will denote by MM(P ) the set of all the minimal models
of a given logic program P . Usually MM is called minimal model semantics.

A semantics SEM is a mapping from the class of all programs into the
powerset of the set of (2-valued) models. SEM assigns to every program P
a (possible empty) set of (2-valued) models of P . If SEM(P ) = ∅, then we
informally say that SEM is undefined for P .

Given a set of interpretations Q and a signature L, we define Q restricted to
L as {M ∩L | M ∈ Q}. For instance, let Q be {{a, c}, {c, d}} and L be {c, d, e},
hence Q restricted to L is {{c}, {c, d}}.

Let P be a program and P0, . . . , Pn its relevant modules. We say that a
semantics S satisfies the property of relevance if for every i, 0 ≤ i ≤ n, S(P0 ∪
· · · ∪ Pi) = S(P ) restricted to LP0∪···∪Pi

.

2.3 Argumentation basics

Now, we present some basic concepts with respect to extended-based argumen-
tation semantics. The first concept that we consider is the one of argumentation
framework. An argumentation framework captures the relationships between the
arguments.

Definition 1. [6] An argumentation framework is a pair AF = 〈AR, attacks〉,
where AR is a finite set of arguments, and attacks is a binary relation on AR, i.e.
attacks ⊆ AR×AR. We write AFAR to denote the set of all the argumentation
frameworks defined over AR.

We say that a attacks b (or b is attacked by a) if (a, b) ∈ attacks holds.
Usually an extension-based argumentation semantics SArg is applied to an ar-
gumentation framework AF in order to infer sets of acceptable arguments from
AF . An extension-based argumentation semantics SArg is a function from AFAR

to 2AR. SArg can be regarded as a pattern of selection of sets of arguments from
a given argumentation framework AF .

Given an argumentation framework AF = 〈AR, attacks〉, we will say that an
argument a ∈ AR is acceptable, if a ∈ E such that E ∈ SArg(AF ).

3 Stratified Minimal Model Semantics

In this section, we introduce a constructive logic programming semantics, called
stratified minimal model semantics, which is based on minimal models. This
semantics has some interesting properties as: it satisfies the property of rele-
vance, and it agrees with the stable model semantics for the well-known class of
stratified logic programs (the proof of this property can be found in [12,13]).
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In order to define the stratified minimal model semantics MMr, we define
the operator ∗ and the function freeTaut as follows:

– Given Q and L both sets of interpretations, we define Q ∗ L := {M1 ∪
M2 | M1 ∈ Q,M2 ∈ L}.

– Given a logic program P , freeTaut denotes a function which removes from
P any tautology.

The idea of the function freeTaut is to remove any clause which is equivalent
to a tautology in classical logic.

Definition 2. Given a normal logic program P , we define the sstratified mini-
mal model semantics MMr as follows: MMr(P ) = MMr

c (freeTaut(P )∪{x ←
x | x ∈ LP \HEAD(P )} such that MMr

c (P ) is defined as follows:

1. if P is of order 0, MMr
c (P ) = MM(P ).

2. if P is of order n > 0, MMr
c (P ) =

⋃
M∈MM(P0)

{M}∗MMr
c (R(Q,A)) where

Q = P \ P0 and A = 〈M ;LP0 \M〉.

We call a model in MMr(P ) a stratified minimal model of P .

Observe that the definition of the stratified minimal model semantics is based
on a recursive construction where the base case is the application of MM . It
is not difficult to see that if one changes MM by any other logic programming
semantics S, as the stable model semantics, one is able to construct a relevant
version of the given logic programming semantics (see [12,13] for details).

In order to introduce an important theorem of this paper, let us introduce
some concepts. We say that a normal program P is basic if every atom x that
belongs to LP , then x occurs as a fact in P . We say that a logic programming
semantics SEM is defined for basic programs, if for every basic normal program
P then SEM(P ) is defined.

The following theorem shows that there exists a family of logic programming
semantics that are always defined and satisfy the property of relevance.

Theorem 1. For each semantics SEM that is defined for basic programs, there
exists a semantics SEM ′ that satisfies the following:

1. For every normal program P , SEM ′(P ) is defined.
2. SEM ′ is relevant.
3. SEM ′ is invariant under adding tautologies.

An instantiation of SEM and SEM ′ of Theorem 1 are the semantics MM
and MMr respectively. Observe that essentially this theorem is suggesting that
given any logic programming semantics SEM , such as MM , that is defined for
basic program, one can construct a relative similar semantic SEM ′, such as
MMr, to SEM satisfying the three properties described in this Theorem 1.
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4 Stratified Argumentation Semantics

In this section, we show that by considering the stratified minimal model seman-
tics, one can induce an argumentation semantics. In fact, we show that this new
argumentation semantics will take advantage of the properties of the stratified
minimal model semantics.

As the stratified minimal model semantics is a semantics for logic programs,
we require a function mapping able to construct a logic program from an argu-
mentation framework. Hence, let us introduce a simple mapping to regard an
argumentation framework as a normal logic program. In this mapping, we use
the predicates d(x), a(x). The intended meaning of d(x) is: “the argument x is
defeated” (this means that the argument x is attacked by an acceptable argu-
ment), and the intended meaning of a(X) is that the argument X is accepted.

Definition 3. Let AF = 〈AR, attacks〉 be an argumentation framework, P 1
AF =

{d(a) ← ¬d(b1), . . . , d(a) ← ¬d(bn) | a ∈ AR and {b1, . . . , bn} = {bi ∈
AR | (bi, a) ∈ attacks}}; and P 2

AF =
⋃

a∈AR{a(a) ← ¬d(a)}. We define:
PAF = P 1

AF ∪ P 2
AF .

The intended meaning of the clauses of the form d(a) ← ¬d(bi), 1 ≤ i ≤ n,
is that an argument a will be defeated when anyone of its adversaries bi is
not defeated. Observe that, essentially, P 1

AF is capturing the basic principle of
conflict-freeness (this means that any set of acceptable argument will not contain
two arguments which attack each other). The idea P 2

AF is just to infer that any
argument a that is not defeated is accepted.

Example 4. Let AF be the argumentation framework of Figure 1-b. We can see
that PAF = P 1

AF ∪ P 2
AF is:

P 1
AF : P 2

AF :
d(a) ← ¬d(b). a(a) ← ¬d(a).
d(b) ← ¬d(c). a(b) ← ¬d(b).
d(c) ← ¬d(a). a(c) ← ¬d(c).
d(d) ← ¬d(a). a(d) ← ¬d(d).
d(d) ← ¬d(b). a(e) ← ¬d(e).
d(d) ← ¬d(c).
d(e) ← ¬d(d).

Two relevant properties of the mapping PAF are that the stable models of
PAF characterize the stable argumentation semantics and the well founded model
of PAF characterizes the grounded semantics [12].

Once we have defined a mapping from an argumentation framework into logic
programs, we are going to define a candidate argumentation semantics which is
induced by the stratified minimal model semantics.

Definition 4. Given an argumentation framework A, we define a stratified ex-
tension of AF as follows: Am is a stratified extension of AF if exists a stratified
minimal model M of PAF such that Am = {x|a(x) ∈ M}. We write MMr

Arg(AF )
to denote the set of stratified extensions of AF . This set of stratified extensions
is called stratified argumentation semantics.
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In order to illustrate the stratified argumentation semantics, we are going to
presents some examples.

Example 5. Let AF be the argumentation framework of Figure 1-b and PAF

be the normal program defined in Example 4. In order to infer the stratified ar-
gumentation semantics, we infer the stratified minimal models of PAF . As we can
see PAF has three stratified minimal models : {d(a), d(b), d(d), a(c), a(e)}{d(b), d(c), d(d),
a(a), a(e)}{d(a), d(c), d(d), a(b), a(e)}, this means that AF has three stratified
extensions which are: {c, e}, {a, e} and {b, e}. Observe that the stratified argu-
mentation semantics coincides with the argumentation semantics CF2.

Let us consider another example.

a b c a b c

a) b)

a b

x

z d

u

y

r

s

j a b

a b c

Figure 2. Graph representation of AF = 〈{x, y, z, u, d}, {(x, z), (z, y), (y, x), (u, x),
(z, d), (d, u)}〉.

Example 6. Let us consider the argumentation framework of Figure 2. It is not
difficult to obtain its PAF = P 1

AF ∪ P 2
AF where P 1

AF and P 2
AF correspond to the

following programs:
P 1

AF : P 2
AF :

d(x) ← ¬d(y). a(x) ← ¬d(x).
d(y) ← ¬d(z). a(y) ← ¬d(y).
d(z) ← ¬d(x). a(z) ← ¬d(z).
d(x) ← ¬d(u). a(d) ← ¬d(d).
d(d) ← ¬d(z). a(u) ← ¬d(u).
d(u) ← ¬d(d).

Now let us compute the argumentation semantics MMr
Arg. Since MMr(PAF ) =

{ {d(y), d(z), d(u), a(x), a(d)}, {d(x), d(z), d(d), a(y), a(u)}, {d(u), d(x), d(z),
a(y), a(d)}, {d(x), d(y), d(d), a(z), a(u)} } then, MMr

Arg(AF ) = { {x, d}, {y, u},
{y, d}, {z, u} }. Notice that MMr

Arg coincides with the argumentation semantics
CF2.

We are going to present our second main theorem of this paper. This theorem
formalizes that the stratified argumentation semantics and the argumentation
semantics CF2 coincide.
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Theorem 2. Given an argumentation framework AF = 〈AR, Attacks〉, and
E ∈ AR, E ∈ MMr

Arg(AF ) if and only if E ∈ CF2(AF ).

As final result of this paper, we show an important result w.r.t. the decision
problem of knowing if a set of arguments is a stratified extension.

Lemma 1. Given an argumentation framework AF = 〈AR,Attacks〉 and a set
of argument E ⊆ AR, the decision problem of knowing if E is a stratified exten-
sion of AF is polynomial time computable.

Observe that by this lemma and Theorem 2, one can infer that the decision
problem of knowing if a set of arguments belongs to CF2 is polynomial time com-
putable. Recall that on the other hand, the corresponding complexity decision
problem for the preferred semantics is CO-NP-Complete [7].

5 Conclusions

It is well-accepted that extension-based argumentation semantics is a promising
approach for performing non-monotonic reasoning. However, since in the litera-
ture of argumentation has been exhibited a variety of problems of some of the
existing argumentation semantics, nowadays it has increased the number of new
argumentation semantics in the context of Dung’s argumentation approach. We
have to recognize that many of these new argumentation semantics are only
motivated by particular examples, and also these introduced argumentation se-
mantics lack of logic foundations. In this paper, we show that one can induce
novel argumentation semantics by considering logic programming semantics. In
particular, we introduce a novel argumentation semantics (stratified argumenta-
tion semantics) based on a new logic programming semantics (stratified minimal
model semantics). In fact, we show that the stratified argumentation semantics
coincides with the argumentation semantics CF2 which was introduced in terms
of graph theory’s terms (Theorem 2). It is worth mentioning that the stratified
argumentation semantics is just one of the multiples candidate argumentation
semantics that can be induced by the family of logic programming semantics
identified by Theorem 1 (for more details about other new candidate argumen-
tation semantics see [12,13]).

An important property of the stratified argumentation semantics is that the
decision problem of knowing if a set of arguments is a stratified extension is
polynomial time computable. This means that this semantics is computationally
less expensive than the preferred semantics. This result also suggests that the
decision problem of knowing if a set of arguments belongs to CF2 is polynomial
time computable. We believe that the study of argumentation semantics in terms
of logic programming semantics could help to explore the non-monotonic prop-
erties of the argumentation semantics. The study of non-monotonic properties
of an argumentation semantics could suggests some guidelines in order to find
suitable argumentation semantics for the applications of these to real domains.
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Appendix A: Proof of theorem 1

Proof. The proof is by construction.
First of all, we recall some definitions about the notion of generalized S

model.
Let S be a logic programming semantics, P be a logic program and A be a set

of atoms (called abductives) such that A ⊆ LP . We say that MB is a generalized
S model1 of P with respect to A if M ∈ S(P ∪ B) where B ⊆ A and M ⊆ LP .
It is also possible to define a partial order between generalized S models (with
respect to A) of a program according to the set inclusion with respect to the
subindex B. We say that M is a minimal generalized S model of P with respect
to A if there exists a set of atoms B, such that MB is a generalized S model of
P with respect to A and MB is minimal with respect to the partial order just
defined.

We write S∗ to denote the minimal generalized S semantics, where A = LP .
Namely S∗(P ) is the collection of minimal generalized S models of P with respect
to LP . Observe that in our definition we are not instantiating the definition to
a particular logic programming semantics.

It is immediate to verify that for every semantics S and program P , S∗(P )
is defined.

Now, let S be a semantics that is always defined. We define the associate Sr

semantics recursively as follow: Given a program P of order 0, Sr(P ) = S(P ).
For a program P of order n > 0 we define Sr(P ) =

⋃
M∈S(P0)

{M}∗Sr(R(Q,A))
where Q = P \ P0 and A = 〈M ;LP0 \M〉.

Note that if S is always defined then Sr is always defined. More over Sr is
relevant by construction.

Our final semantics is the following: Let P be a normal program. Let freetaut(P )
be program P after removing every tautology. Let tautp(P ) = freetaut(P ) ∪
{x ← x : x ∈ LP }. Then

S′(P ) = S∗
r

(tautp(P )).

Clearly S′(P ) is always defined and relevant and invariant under adding
tautologies.

1 The concept of generalized S model is closely related to the semantics of abductive
logic programming [11,10], in particular to the concept of generalized answer set.
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Appendix B: Proof of theorem 2

In order to present the proof of Theorem 2, we are going to present some defini-
tions w.r.t. the argumentation semantics CF22, and we are going to show some
lemmas.

Definition 5. A set S of arguments is said to be conflict-free if there are no
arguments a, b in S such that a attacks b.

We will denote by max conflict freeSets(AF ) the set of maximal conflict
free sets (w.r.t. set inclusion) of an argumentation framework AF .

Given an argumentation framework AF = 〈AR, attacks〉, the binary relation
of path-equivalence between nodes, denoted as PEAF ⊆ (AR × AR), is defined
as follows:
— ∀α ∈ AR, (α, α) ∈ PEAF ,
— given two distinct nodes α, β ∈ AR, (α, β) ∈ PEAF if and only if there is a
path from α to β and a path from β to α.

Given an argumentation framework AF = 〈AR, attacks〉, the strongly con-
nected components of AF are the equivalence classes of nodes under the relation
of path-equivalence. The set of the strongly connected components of AF is de-
noted as SCCSAF . Given a node α ∈ AR, the strongly connected component α
belongs to is denoted as SCCAF (α).

Now, given an argumentation framework, let AF = 〈AR, attacks〉, and S ⊆
AR, the restriction of AF to S is the argumentation framework AF ↓S= 〈S, attacks∩
(S × S)〉.

Considering an argumentation framework, AF = 〈AR, attacks〉, a set E ⊆
AR and a strongly connected component S ∈ SCCSAF , the set DAF (S, E)
consists of the nodes of S attacked by E from outside S, the set UAF (S, E)
consists of the nodes of S that are not attacked by E from outside S and are
defended by E (i.e., their defeaters from outside S are all attacked by E), and
PAF (S, E) consists of the nodes of S that are not attacked by E from outside S
and are not defended by E (i.e., at least one of their defeaters from outside S
is not attacked by E). Finally, UPAF (S, E) = (S \DAF (S, E)) = (UAF (S, E) ∪
PAF (S, E)).

Here, we define GF (AF, C) for an argumentation framework AF = 〈AR, attacks〉
and a set C ⊆ A, representing the defended nodes of AF: two cases have to be
considered in this respect.

If AF consists of exactly one strongly connected component, it does not admit
a decomposition where to apply the directionality principle, therefore it has to
be assumed that GF (AF, C) coincides in this case with a base function, denoted
as BFS(AF,C), that must be assigned in order to characterize a particular
argumentation semantics S.

On the other hand, if AF can be decomposed into several strongly connected
components, then, GF (AF, C) is obtained by applying recursively GF to each

2 The details of these definitions are presented in [2].
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strongly connected component of AF , deprived of the nodes in DAF (S, E). For-
mally, this means that for any S ∈ SCCSAF , (E∩S) ∈ GF (AF ↓UPAF (S,E), C

′),
where C ′ represents the set of defended nodes of the restricted argumentation
framework AF ↓UPAF (S,E). The set C ′ can be determined taking into account
both the attacks coming from outside AF and those coming from other strongly
connected components of AF.

Definition 6. A given argumentation semantics S is SCC-recursive if and only
if for any argumentation framework AF = 〈AR, attacks〉, ES(AF ) = GF (AF, AR),
where for any AF = 〈AR, attacks〉 and for any set C ⊆ AR, the function
GF (AF, C) ⊆ 2AR is defined as follows: for any E ⊆ AR, E ∈ GF (AF, C)
if and only if

– in case |SCCSAF | = 1, E ∈ BFS(AF, C),
– otherwise,∀S ∈ SCCSAF (E ∩ S) ∈ GF (AF ↓UPAF (S,E) , UAF (S, E) ∩ C).

where BFS(AF, C) is a function, called base function, that, given an argumenta-
tion framework AF = 〈AR, attacks〉 such that |SCCSAF | = 1 and a set C ⊆ AR,
gives a subset of 2AR.

Observe that Definition 6 does not define any particular semantics, essentially
it defines a general schema for defining argumentation semantics. In particular,
when BFS(AF,C) is instantiated by the function which returns the maximal
conflict free sets of AF w.r.t. C, Definition 6 defines CF2.

The following lemma shows that the number of strongly connected compo-
nents of an argumentation framework AF is the same to the number of compo-
nents of the normal logic program PAF .

Lemma 2. Let AF be an argumentation framework. If PAF = P 1
AF ∪P 2

AF such
that P 1

AF is of order n, then |SCCAF | = n + 1.

Proof. (sketch) Since the number of components of P 1
AF depends on the number

of equivalent classes of atoms in LPAF and the number of strongly connected
components depends on the number of equivalent classes of nodes in PEAF , the
proof follows from that fact that:

– The number of equivalent classes of atoms induced by the relation depends
on in LPAF

is the same to the number of classes of nodes induces by the
relation path-equivalence in PEAF .

Lemma 3. Let AF = 〈AR, Attacks〉 be an argumentation framework. If PAF =
P 1

AF ∪ P 2
AF such that P 1

AF is of order 0, then E ∈ max conflict freeSets(AF )
if and only if {a(a)|a ∈ E} ∪ {d(a)|a ∈ AR \ E} is a minimal model of PAF .

Proof. Observations:

1. M is a minimal model of PAF if and only if there exists M1 and M2 such
that M = M1 ∪M2, M1 is a minimal model of P 1

AF and M2 = {a(a)|a(a) ←
¬d(a) ∈ P 2

AF , d(a) /∈ M1}.

14



2. If E is a conflict free set of AF , then M = {d(a)|a ∈ AR \ E} is a model of
P 1

AF .
3. If M is a model of P 1

AF , then E = {a|a(a) ∈ M} is a conflict free set of AF .

=> If E is a maximal conflict free set of AF , then, by Proposition 1 of [14] and
Observation 2, M1 = {d(a)|a ∈ AR \E} is a minimal model of P 1

AF . Hence,
by Observation 1, M1 ∪ {a(a)|a ∈ E} is a minimal model of PAF .

<= If M = M1 ∪ M2 such that E ⊆ AR, M1 = {d(a)|a ∈ AR \ E}, M2 =
{a(a)|a ∈ E} and M is a minimal model of PAF , hence by Observation 1,
M1 is a minimal model of P 1

AF . Therefore, by Observation 3 and Proposition
1 of [14], E is a maximal conflict free of AF .

Given the set of strongly connected components SCC(AF ), we denote by
≤SCC the partial order between strongly connected components defined in [2].
This partial order is induced by the so called directionality principle and the
relation of attack between set of arguments.

Main proof

Proof. Theorem 2 (sketch) Since the construction of both semantics is recur-
sive, the proof is by induction w.r.t. the number of components n of the normal
logic program PAF .

Base Step If n = 0, then AF has just one strongly connected component
(Lemma 2); hence, MMr

Arg(AF ) = CF2(AF ) by Lemma 3.
Inductive Step If n > 0, then the proof follows from the following observa-

tions:
1. The partial order ≤SCC and the partial order <P define equivalent

classes of sets of arguments of AF and atoms in LPAF respectively.
2. The base function for the construction of MMr

Arg and CF2(AF ) are
equivalent (Lemma 3).

Appendix C: Proof of Lemma 1

Proof. Lemma 1 (sketch)
The proof follows from the following observations:

1. By the definition of the stratified argumentation semantics, the decision of
knowing if the set of arguments E is a stratified extension of AF is reduced
to the decision problem of knowing if a given set of atoms M is a minimal
model of a logic program P (it is a consequence of the base case of the
recursive function MMr

c (P ), see Definition 2).
2. Since there is a relationship between minimal models and logic consequence

(see Lemma 1 of [14]), the decision problem of knowing if M ⊆ LPAF is a
minimal model of PAF can be reduced to the decision problem of 2-UNSAT.

3. It is known that the decision problem of 2-UNSAT is polynomial time com-
putable [1].
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