
Possibilistic Well-Founded Semantics

Mauricio Osorio1 and Juan Carlos Nieves2

1 Universidad de las Américas - Puebla
CENTIA, Sta. Catarina Mártir, Cholula, Puebla, 72820 México

osoriomauri@googlemail.com
2 Universitat Politècnica de Catalunya

Software Department (LSI)
c/Jordi Girona 1-3, E08034, Barcelona, Spain

jcnieves@lsi.upc.edu

Abstract. Recently, a good set of logic programming semantics has been defined
for capturing possibilistic logic program. Practically all of them follow a credu-
lous reasoning approach. This means that given a possibilistic logic program one
can infer a set of possibilistic models. However, sometimes it is desirable to as-
sociate just one possibilistic model to a given possibilistic logic program. One of
the main implications of having just one model associated to a possibilistic logic
program is that one can perform queries directly to a possibilistic program and
answering these queries in accordance with this model.
In this paper, we introduce an extension of the Well-Founded Semantics, which
represents a sceptical reasoning approach, in order to capture possibilistic logic
programs. We will show that our new semantics can be considered as an approx-
imation of the possibilistic semantics based on the answer set semantics and the
pstable semantic. A relevant feature of the introduced semantics is that it is poly-
nomial time computable.

1 Introduction

In [10], a possibilistic logic programming framework for reasoning under uncertainty
was introduced. It is a combination between Answer Set Programming (ASP) [3] and
Possibilistic Logic [7]. This framework is able to deal with reasoning that is at the
same time non-monotonic and uncertain. Since this framework was defined for normal
programs, it was generalized in [11] for capturing possibilistic disjunctive programs
and allowing the encoding of uncertain information by using either numerical values or
relative likelihoods.

The expressiveness of this approach is rich enough for capturing sophisticated do-
mains such as river basin systems [1, 2]. In fact, one can suggest that the language’s
expressiveness of the possibilistic logic programs is rich enough for capturing a wide
family of problems where one have to confront with incomplete information and uncer-
tain information.

From the logic programming literature [10–13], we can see that all the possibilistic
logic program semantics that have defined until now for capturing the semantics of pos-
sibilistic logic programs (to the best of our knowledge) follow a credulous reasoning

approach. This means that given a possibilistic logic program one can infer a set of pos-
sibilistic models. However, sometimes it is desirable to associate just one possibilistic
model to a given possibilistic. This means to perform a skeptical reasoning approach
from a possibilistic knowledge base. It is well-known, in the logic programming com-
munity, that a skeptical reasoning approach has several and practical implications in
order to apply a logic programming approach into real domain applications. Some of
these implications are:

– the process of performing a skeptical reasoning approach usually is polynomial
time computable.

– to associate a single model to a logic programs helps to define algorithms for per-
forming top-down queries from a knowledge base.

In the literature of logic programming, we can find several logic programming se-
mantics which perform a skeptical reasoning approach [5, 6, 8]. However, the well-
accepted logic programming semantics for performing a skeptical reasoning approach
is the well-founded semantics introduced by Van Gelder in [8]. There are several results
which suggest that the well-founded semantics is a strong logic programming semantic
for performing a skeptical reasoning approach. For instance, Dix in [5] showed that the
well-founded semantics is a well-behaved semantics3. It worth mentioning that there
are few logic programming semantics which are well-behaved. In fact most of them are
variations of the well-founded semantics.

Given that a skeptical reasoning approach has important implications for perform-
ing non-monotonic reasoning from a possibilistic knowledge base, in this paper, we
introduce a possibilistic version of the well-founded semantics. Our so called possi-
bilistic well-founded semantics will be a combination of some features of possibilistic
logic and the standard well-founded semantics. We define the possibilistic well-founded
semantics for two classes of possibilistic logic programs: Extended Possibilistic Defi-
nite logic programs and Extended Possibilistic Normal Logic programs. We show that
our extension of the well-founded semantics preserves the important property of be-
ing polynomial time computable. Another important property of our possibilistic well
founded semantics is that it can be considered as an approximation of the possibilistic
answer set semantics [10, 12] and the possibilistic pstable semantics [13].

The rest of the paper is divided as follows: In §2, some basic concepts w.r.t. pos-
sibilistic logic are presented. Also the syntaxis of extended logic programs is defined
and a characterization of the well-founded semantics in terms of rewriting systems is
presented. In §3, the syntaxis of the extended possibilistic logic programs is presented.
In §4, the definition of the possibilistic well-founded semantics is defined. Finally in
the last section our conclusions are presented.

3 A logic programming semantics is called well-behaved if it satisfies the following properties:
Cut, Closure, Weak Model-Property, Isomorphy, MP -extension, Transformation, Relevance,
Reduction, PPE and modularity [5].

2 Background

In this section, we define some basic concepts of possibilistic logic, logic program syn-
taxis and a characterization of the well-founded semantics in terms of rewriting systems.

We assume familiarity with basic concepts in classic logic and in semantics of logic
programs e.g., interpretation, model, etc. A good introductory treatment of these con-
cepts can be found in [3, 9].

2.1 Possibilistic Logic

A necessity-valued formula is a pair (ϕ α) where ϕ is a classical logic formula and
α ∈ (0, 1] is a positive number. The pair (ϕ α) expresses that the formula ϕ is certain
at least to the level α, i.e., N(ϕ) ≥ α, where N is a necessity measure modeling our
possibly incomplete state knowledge [7]. α is not a probability (like it is in probability
theory) but it induces a certainty (or confidence) scale. This value is determined by
the expert providing the knowledge base. A necessity-valued knowledge base is then
defined as a finite set (i.e., a conjunction) of necessity-valued formulae.

Dubois et al.[7] introduced a formal system for necessity-valued logic which is
based on the following axioms schemata (propositional case):

(A1) (ϕ → (ψ → ϕ) 1)
(A2) ((ϕ → (ψ → ξ)) → ((ϕ → ψ) → (ϕ → ξ)) 1)
(A3) ((∼ ϕ →∼ ψ) → ((∼ ϕ → ψ) → ϕ) 1)

As in classic logic, the symbols ¬ and → are considered primitive connectives, then
connectives as ∨ and ∧ are defined as abbreviations of ¬ and →. Now the inference
rules for the axioms are:

(GMP) (ϕ α), (ϕ → ψ β) ` (ψ GLB{α, β})
(S) (ϕ α) ` (ϕ β) if β ≤ α

According to Dubois et al., basically we need a complete lattice in order to ex-
press the levels of uncertainty in Possibilistic Logic. Dubois et al., extended the axioms
schemata and the inference rules for considering partially ordered sets. We shall de-
note by `PL the inference under Possibilistic Logic without paying attention if the
necessity-valued formulae are using either a totally ordered set or a partially ordered
set for expressing the levels of uncertainty.

The problem of inferring automatically the necessity-value of a classical formula
from a possibilistic base was solved by an extended version of resolution for possibilis-
tic logic (see [7] for details).

2.2 Syntaxis: Logic programs

The language of a propositional logic has an alphabet consisting of

(i) proposition symbols: ⊥,>, p0, p1, ...
(ii) connectives : ∨,∧,←,¬, not

(iii) auxiliary symbols : (,).

where ∨,∧,← are 2-place connectives, ¬, not are 1-place connective and ⊥, > are
0-place connective. The proposition symbols, ⊥, and the propositional symbols of the
form ¬pi (i ≥ 0) stand for the indecomposable propositions, which we call atoms,
or atomic propositions. Atoms negated by ¬ will be called extended atoms. We will
use the concept of atom without paying attention if it is an extended atom or not. The
negation sign ¬ is regarded as the so called strong negation by the ASP’s literature
and the negation not as the negation as failure. A literal is an atom, a (called positive
literal), or the negation of an atom not a (called negative literal). Given a set of atoms
{a1, ..., an}, we write not {a1, ..., an} to denote the set of literals {not a1, ..., not an}.

An extended normal clause, C, is denoted:

a ← a1, . . . , aj , not aj+1, . . . , not an

where j + n ≥ 0, a is an atom and each ai is an atom. When j + n = 0 the clause is
an abbreviation of a ← > such that > is the proposition symbol that always evaluate to
true. An extended normal program P is a finite set of extended normal clauses. When
n = 0, the clause is called extended definite clause. An extended definite logic program
is a finite set of extended definite clauses. By LP , we denote the set of atoms in the
language of P . Let ProgL be the set of all normal programs with atoms from L.

We will manage the strong negation (¬), in our logic programs, as it is done in ASP
[3]. Basically, it is replaced each atom of the form ¬a by a new atom symbol a′ which
does not appear in the language of the program. For instance, let P be the extended
normal program:

a ← q. ¬q ← r. q ← >. r ← >.

Then replacing the atom ¬q by a new atom symbol q′, we will have:

a ← q. q′ ← r. q ← >. r ← >.

In order not to allow inconsistent models from logic programs, usually it is added a
normal clause of the form f ← q, q′, f such that f /∈ LP . We will omit this clause in
order to allow an inconsistent level in our possibilistic-WFS. However the user could
add this clause without losing generality.

Sometimes we denote an extended normal clause C by a ← B+, not B−, where
B+ contains all the positive body literals and B− contains all the negative body literals.

2.3 Well-Founded Semantics

In this section, we present a standard definition of the well-founded semantics in terms
of rewriting systems. We start presenting a definition w.r.t. 3-valued logic semantics.

Definition 1 (SEM). [6] For normal logic program P , we define HEAD(P) = {a| a ←
B+, not B− ∈ P} — the set of all head-atoms of P . We also define SEM(P) =
〈P true, P false〉, where P true := {p| p ← > ∈ P} and P false := {p| p ∈ LP \HEAD(P)}.
SEM(P) is also called model of P.

In order to present a characterization of the well-funded semantics in terms of
rewriting systems, we define some basic transformation rules for normal logic pro-
grams.

Definition 2 (Basic Transformation Rules). [6] A transformation rule is a binary re-
lation on ProgL. The following transformation rules are called basic. Let a program
P ∈ ProgL be given.

RED+: This transformation can be applied to P , if there is an atom a which does not
occur in HEAD(P). RED+ transforms P to the program where all occurrences of
not a are removed.

RED−: This transformation can be applied to P , if there is a rule a ← > ∈ P . RED−
transforms P to the program where all clauses that contain not a in their bodies
are deleted.

Success: Suppose that P includes a fact a ← > and a clause q ← body such that
a ∈ body. Then we replace the clause q ← body by q ← body \ {a}.

Failure: Suppose that P contains a clause q ← body such that a ∈ body and a /∈
HEAD(P). Then we erase the given clause.

Loop: We say that P2 results from P1 by LoopA if, by definition, there is a set A of
atoms such that 1. for each rule a ← body ∈ P1, if a ∈ A, then body ∩ A 6= ∅, 2.
P2 := {a ← body ∈ P1|body ∩A = ∅}, 3. P1 6= P2.

Let CS0 be the rewriting system such that contains the transformation rules: RED+,
RED−, Success, Failure, and Loop. We denote the uniquely determined normal
form of a program P with respect to the system CS by normCS(P). Every system CS
induces a semantics SEMCS as follows: SEMCS(P) := SEM(normCS(P)).

In order to illustrate the basic transformation rules, let us consider the following
example.

Example 1. Let P be the following normal program:

d(b) ← not d(a). d(c) ← not d(b). d(c) ← d(a).

Now, let us apply CS0 to P . Since d(a) /∈ HEAD(P), then, we can apply RED+ to
P . Thus we get:

d(b) ← >. d(c) ← not d(b). d(c) ← d(a).

Notice that now we can apply RED− to the new program, thus we get: d(b) ← >.
d(c) ← d(a).
Finally, we can apply Failure to the new program, thus we get: d(b) ← >. This last
program is called the normal form of P w.r.t. CS0, because none of the transformation
rules from CS0 can be applied.

WFS was introduced in [8] and was characterized in terms of rewriting systems in
[4]. This characterization is defined as follows:

Lemma 1. [4] CS0 is a confluent rewriting system. It induces a 3-valued semantics
that it is the Well-founded Semantics.

3 Possibilistic Logic Programs

In this section, we introduce a standard syntax of extended possibilistic logic programs.
In whole paper, we will consider finite lattices. This convention was taken based on
the assumption that in real applications rarely we will have an infinite set of labels for
expressing the incomplete state of a knowledge base.

3.1 Syntax

First of all, we start defining some relevant concepts4. A possibilistic atom is a pair
p = (a, q) ∈ A ×Q, where A is a finite set of atoms and (Q,≤) is a lattice. We apply
the projection ∗ over p as follows: p∗ = a. Given a set of possibilistic atoms S, we
define the generalization of ∗ over S as follows: S∗ = {p∗|p ∈ S}. Given a lattice
(Q,≤) and S ⊆ Q, LUB(S) denotes the least upper bound of S and GLB(S) denotes
the greatest lower bound of S.

We define the syntax of a valid extended possibilistic normal logic program as fol-
lows: Let (Q,≤) be a lattice. A extended possibilistic normal clause r is of the form:

r := (α : a ← B+, not B−)

where α ∈ Q. The projection ∗ over the possibilistic clause r is: r∗ = a ← B+, not B−.
n(r) = α is a necessity degree representing the certainty level of the information de-
scribed by r.

An extended possibilistic normal logic program P is a tuple of the form 〈(Q,≤
), N〉, where (Q,≤) is a lattice and N is a finite set of extended possibilistic normal
clauses. The generalization of the projection ∗ over P is as follows: P ∗ = {r∗|r ∈ N}.
Notice that P ∗ is an extended logic normal program. When P ∗ is an extended definite
program, P is called an extended possibilistic definite logic program.

4 Possibilistic Well-Founded Model Semantics

In this section, we introduce the possibilistic version of the well-founded semantics.
This semantics will be presented for two classes of possibilistic logic programs: ex-
tended possibilistic definite logic programs and extended possibilistic normal logic pro-
grams.

4.1 Extended Possibilistic Definite Logic Programs

In this subsection, we are going to deal with the class of extended possibilistic logic
programs. For capturing extended possibilistic definite logic program, we are going to
consider the basic idea of possibilistic least model which was introduced in [10]. For
this purpose, we are going to introduce some basic definitions.

The first basic definition that we present is the definition of three basic operators
between sets of possibilistic atoms.

4 Some concepts presented in this subsection extend some terms presented in [10].

Definition 3. [10] Let A be a finite set of atoms and (Q,≤) be a lattice. Consider
PS = 2A×Q the finite set of all the possibilistic atom sets induced byA and Q. ∀A,B ∈
PS , we define.
A uB = {(x,GLB{q1, q2})|(x, q1) ∈ A ∧ (x, q2) ∈ B}
A tB = {(x, q)|(x, q) ∈ A and x /∈ B∗} ∪

{(x, q)|x /∈ A∗ and (x, q) ∈ B} ∪
{(x, LUB{q1, q2})|(x, q1) ∈ A and (x, q2) ∈ B}.

A v B ⇐⇒ A∗ ⊆ B∗, and ∀x, q1, q2,
(x, q1) ∈ A ∧ (x, q2) ∈ B then q1 ≤ q2.

Observe that essentially this definition suggests an extension of the standard oper-
ators between sets in order to deal with uncertain values which belong to a partially
ordered set. We want to point out that the original version of Definition 3 consider
totally ordered sets instead of partially ordered sets.

Like in [10], we are going to introduce a fix-point operator ΠCn. In order to define
ΠCn, let us introduce some basic definitions. Given a possibilistic logic program P
and x ∈ LP∗ , H(P, x) = {r ∈ P |head(r∗) = x}.

Definition 4. Let P = 〈(Q,≤), N〉 be a possibilistic definite logic program, r ∈ N
such that r is of the form α : a ← l1, . . . , ln and A be a set of possibilistic atoms,

- r is β-applicable in A with β = min{α, α1, . . . , αn} if {(l1, α1), . . . , (ln, αn)} ⊆ A.
- r is ⊥Q-applicable otherwise.

And then, for all atom x ∈ LP∗ we define:

App(P, A, x) = {r ∈ H(P, x)|r is β-applicable in A and β > ⊥Q}
⊥Q denotes the bottom element of Q.

Observe that this definition is based on the inferences rules of possibilistic logic. In
order to illustrate this definition, let us consider the following example.

Example 2. Let P = 〈(Q,≤), N〉 be a possibilistic definite logic program such that
Q = {0, 1, . . . , 0.9, 1}, ≤ be the standard relation between rational number, and N be
the following set of possibilistic definite clauses:

r1 = 0.4 : a ← >.
r2 = 0.3 : b ← a.
r3 = 0.6 : b ← a.
r4 = 0.7 : m ← n.

we can see that if we consider A = ∅, then r1 is 0.4-applicable in A. In fact, we can
see that App(P, A, a) = {r1}. Also, we can see that if A = {(a, 0.4)}, then r2 is 0.4-
applicable in A and r3 is 0.6-applicable in A. Observe that App(P,A, b) = {r2, r3}.

Now, we introduce an operator which is based on Definition 4.

Definition 5. Let P be a possibilistic definite logic program and A be a set of possi-
bilistic atoms. The immediate possibilistic consequence operator ΠTP maps a set of
possibilistic atoms to another one by this way:

ΠTP (A) = {(x, δ)|x ∈ HEAD(P ∗), App(P,A, x) 6= ∅,
δ = LUBr∈App(P,A,x){β|r is β-applicable in A}}

Then the iterated operator ΠT k
P is defined by

ΠT k
P = ∅ and ΠTn+1

P = ΠTP (ΠTn
P), ∀n ≥ 0

Observe that ΠTP is a monotonic operator; therefore, we can insure that ΠTP

always reaches a fix-point.

Proposition 1. Let P be a possibilistic definite logic program, then ΠTP has a least
fix-point

⊔
n≥0 ΠTn

P that we call the set of possibilistic consequences of P and we
denote it by ΠCn(P).

Example 3. Let P be the extended possibilistic definite logic program introduced in
Example 2. It is not difficult to see that ΠCn(P) = {(a, 0.3), (b, 0.6)}.

By considering the operator ΠCn, we define the possibilistic well-founded seman-
tics for extended possibilistic definite logic program as follows: Let (Q,≤) be a lat-
tice such that >Q is the top-element of Q and S be a set of atoms, then Q>Q

(S) =
{(a,>Q)|a ∈ S}.

Definition 6. Let P be an extended possibilistic definite logic program. S1 be a set of
possibilistic atoms, S2 be a set of atoms such that 〈S∗1 , S2〉 is the well-founded model
of P ∗. 〈S1, Q>Q

(S2)〉 is the possibilistic well-founded model of P if and only if S1 =
ΠCn(P).

Example 4. Let P be the extended possibilistic definite logic program introduced in
Example 2, S1 = {(a, 0.3), (b, 0.6)} and S2 = {m,n} . As we can see the well-
founded model of P ∗ is 〈{a, b}, {m,n}〉, and ΠCn(P) = {(a, 0.3), (b, 0.6)}. This
means that the well-founded model of P is:

〈{(a, 0.3), (b, 0.6)}, {(m, 1), (n, 1)}〉

4.2 Extended Possibilistic Normal Programs

In this subsection, we are going to deal with the class of extended possibilistic nor-
mal programs. In order to define a possibilistic version of the possibilistic well-founded
semantics for capturing extended possibilistic normal program, we define a single re-
duction of an extended possibilistic normal logic program w.r.t. a set of atoms. This
reduction is defined as follows:

Definition 7. Let P be an extended possibilistic logic program and S be a set of atoms.
We define R(P, S) as the extended possibilistic logic program obtained from P by delet-
ing

i all the formulae of the form not a in the bodies of the possibilistic clauses such that
a ∈ S, and

ii each possibilistic clause that has a formula of the form not a in its body.

Observe that R(P, S) does not have negative literals. This means that R(P, S) is an
extended possibilistic definite logic program. In order to illustrate this definition, let us
consider the following example.

Example 5. Let P = 〈(Q,≤), N〉 be a possibilistic logic program such that Q =
{0, 0.1, . . . , 0.9, 1}, ≤ be the standard relation between rational number, S = {b, d, e}
and N be the following set of possibilistic clauses:

0.4 : a ← not b.
0.6 : b ← not c.
0.3 : c ← not d.
0.2 : c ← not e.
0.5 : f ← not f .

As we can see in Definition 7, for inferring R(P, S), we have to apply two steps. The
first step is to remove all the negative literals not a from P such that a belongs to
S. This means that by the first step of Definition 7 we have the following possibilistic
program

0.4 : a ← >.
0.6 : b ← not c.
0.3 : c ← >.
0.2 : c ← >.
0.5 : f ← not f .

The next and last step is to remove any possibilistic clause that has a negative literal in
its body. This means that R(P, S) is:

0.4 : a ← >.
0.3 : c ← >.
0.2 : c ← >.

As we can see, R(P, S) is a possibilistic definite logic program.

By considering the fix-point operator ΠCn(P) and the reduction R(P,A), we de-
fine the possibilistic version of the well-founded semantics for extended possibilistic
normal logic programs as follows:

Definition 8 (Possibilistic Well-founded Semantics).
Let P = 〈(Q,≤), N〉 be an extended possibilistic logic program, S1 be a set of pos-
sibilistic atoms, S2 be a set of atoms such that 〈S∗1 , S2〉 is the well-founded model of
P ∗. 〈S1, Q>Q(S2)〉 is the possibilistic well-founded model of P if and only if S1 =
ΠCn(R(P, S2)).

In order to illustrate this definition let us consider the following example

Example 6. Let P = 〈(Q,≤), N〉 be the possibilistic logic program introduced in Ex-
ample 5, S1 = {(a 0.4), (c 0.3)} and S2 = {b, d, e}. On order to infer the possibilistic
well-founded model of P , we have to infer the well-founded model of the normal pro-
gram P ∗. It is easy to see that WPF (P ∗) = 〈S∗1 , S2〉. As we saw in Example 5,
R(P, S2) is

0.4 : a ← >.
0.3 : c ← >.
0.2 : c ← >.

hence, we can see that Cn(R(P, S2) = {(a, 0.4), (c, 0.3)}. This suggests that the pos-
sibilistic well-founded model of P is

〈{(a, 0.4), (c, 0.3)}, {(b, 1), (d, 1), (e, 1)}〉
A first and basic observation that we can see from the definition of the possibilistic

well-founded semantics is that the possibilistic well-founded semantics infers the well-
founded semantics.

Proposition 2. Let P = 〈(Q,≤), N〉 be an extended possibilistic logic program. If
〈S1, s2〉 is the possibilistic well-founded model of P then 〈S∗1 , S∗2)〉 is the well-founded
model of P ∗.

Usually, one property that always is desired from a logic program semantics is that
it could be polynomial time computable w.r.t. the size of a given logic program. It is
well-known that the well-founded semantics is polynomial time computable. For the
case of the possibilistic well-founded semantics we can also insure that it is polynomial
time computable. For formalizing this property, let us remember that the size of a logic
programs is defined as follows: The size of a possibilistic clause r is the number of
atom symbols that occurs in r. The size of a possibilistic logic program P is the sum of
sizes of the possibilistic clauses that belong to P .

Proposition 3. Given an extended possibilistic normal program P , there is an algo-
rithm that computes the possibilistic well founded model of P in polynomial time w.r.t.
the size of P .

In the following proposition, a relationship between the possibilistic answer set se-
mantics and the possibilistic well-founded model is formalized. Also a relationship be-
tween the possibilistic pstable semantics and the possibilistic well-founded model. In
order to formalize these relationships, we define the following functions: Poss_ASP (P)
denotes a function which returns the set of possibilistic answer semantics [10, 12] of a
possibilistic logic program P and Poss_Pstable(P) denotes a function which returns
the set of possibilistic pstable models [13] of a possibilistic logic program P .

Proposition 4. Let P be a possibilistic logic program and S1, S2 ⊆ LP such that
〈S1, S2〉 is the possibilistic well-founded model of P. Hence, the following conditions
holds:

– If Poss_ASP (P) 6= ∅; hence, if S =
⋂

S′∈Poss_ASP (P) S′, then S1 v S.

– If S =
⋂

S′∈Poss_Pstable(P) S′, then S1 v S.

Observe that this proposition essentially suggests that any possibilistic answer set
model is an extension of the possibilistic well-founded model. Also that any possibilis-
tic pstable model is an extension of the possibilistic well-founded model. It is worth
mentioning that this relationship between the standard answer set semantics and the
well-founded semantics was shown by Dix in [5].

5 Conclusions

In this paper have explored the definition of a possibilistic version of the well-founded
semantics in order to capture possibilistic logic programs. For this purpose, we first
define a possibilistic version of the well-founded semantics for extended possibilistic
define logic programs. This definition considers a possibilistic operator for inferring
the possibilistic least model of an extended possibilistic definite logic program and the
standard definition of the well-founded semantics. In order to define the possibilistic
version of the well-founded semantics for extended possibilistic normal logic programs,
we introduce a single reduction of a possibilistic logic program in terms of a given set
of atoms. We want to point that our construction of the possibilistic well-founded se-
mantics is flexible enough for considering other variants of the well-founded semantics
as the explored in [5, 6]. Hence, we can consider our construction of the possibilistic
well-founded semantics for exploring different approaches of skeptical reasoning from
a possibilistic knowledge base.

We have showed that the actual version of the possibilistic version of the well-
founded semantics is polynomial time computable (Proposition 3). This suggests that
one can explore efficient algorithms for performing top-down queries from a possibilis-
tic knowledge. In fact, this issue is part of our future work.

Also we have showed that our possibilistic well-founded semantics can be regarded
as an approximation of credulous possibilistic semantics as the possibilistic answer
set semantics and the possibilistic pstable semantics (Proposition 4). In fact, we can
conclude that any possibilistic answer set model is an extension of the possibilistic
well-founded model and that any possibilistic pstable model is an extension of the pos-
sibilistic well-founded model.

Acknowledgement

We are grateful to anonymous referees for their useful comments. This research has
been partially supported by the EC founded project ALIVE (FP7-IST-215890). The
views expressed in this paper are not necessarily those of the ALIVE consortium.

References

1. M. Aulinas. Management of industrial wastewater discharges through agents’ argumenta-
tion. PhD thesis, PhD on Environmental Sciences, University of Girona, to be presented.

2. M. Aulinas, J. C. Nieves, M. Poch, and U. Cortés. Supporting Decision Making in River
Basin Systems Using a Declarative Reasoning Approach. In M. Finkel and P. Grathwohl,
editors, Proceedings of the AquaTerra Conference (Scientific Fundamentals for River Basic
Management), ISSN 0935-4948, page 75, March 2009.

3. C. Baral. Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-
bridge University Press, Cambridge, 2003.

4. S. Brass, U. Zukowski, and B. Freitag. Transformation-based bottom-up computation of the
well-founded model. In NMELP, pages 171–201, 1996.

5. J. Dix. A classification theory of semantics of normal logic programs: II. weak properties.
Fundam. Inform., 22(3):257–288, 1995.

6. J. Dix, M. Osorio, and C. Zepeda. A general theory of confluent rewriting systems for logic
programming and its applications. Ann. Pure Appl. Logic, 108(1-3):153–188, 2001.

7. D. Dubois, J. Lang, and H. Prade. Possibilistic logic. In D. Gabbay, C. J. Hogger, and J. A.
Robinson, editors, Handbook of Logic in Artificial Intelligence and Logic Programming, Vol-
ume 3: Nonmonotonic Reasoning and Uncertain Reasoning, pages 439–513. Oxford Univer-
sity Press, Oxford, 1994.

8. A. V. Gelder, K. A. Ross, and J. S. Schlipf. The well-founded semantics for general logic
programs. Journal of the ACM, 38(3):620–650, 1991.

9. E. Mendelson. Introduction to Mathematical Logic. Chapman and Hall/CRC, Fourth edition
1997.

10. P. Nicolas, L. Garcia, I. Stéphan, and C. Lafèvre. Possibilistic Uncertainty Handling for
Answer Set Programming. Annals of Mathematics and Artificial Intelligence, 47(1-2):139–
181, June 2006.

11. J. C. Nieves, M. Osorio, and U. Cortés. Semantics for possibilistic disjunctive programs.
In C. Baral, G. Brewka, and J. Schlipf, editors, Ninth International Conference on Logic
Programming and Nonmonotonic Reasoning (LPNMR-07), number 4483 in LNAI, pages
315–320. Springer-Verlag, 2007.

12. J. C. Nieves, M. Osorio, and U. Cortés. Semantics for possibilistic disjunctive programs.
In S. Costantini and R. Watson, editors, Answer Set Programming: Advances in Theory and
Implementation, pages 271–284, 2007.

13. M. Osorio and J. C. Nieves. Pstable semantics for possibilistic logic programs. In MICAI
2007: Advances in Artificial Intelligence, 6th Mexican International Conference on Artificial
Intelligence, number 4827 in LNAI, pages 294–304. Springer-Verlag, 2007.

