Semantics for Possibilistic Disjunctive Programs

Juan Carlos Nieves', Mauricio Osorio?, and Ulises Cortés'

! Universitat Politécnica de Catalunya
Software Department (LSI)
c/Jordi Girona 1-3, E08034, Barcelona, Spain
{jcnieves,ia}@lsi.upc.edu
2 Universidad de las Américas - Puebla
Centia
Sta. Catarina Martir, Cholula, Puebla, 72820 México
osoriomauri@googlemail.com

Abstract. In this paper by considering answer set programming approach and
some basic ideas from possibilistic logic, we introduce a possibilistic disjunc-
tive logic programming approach able to deal with reasoning under uncertain and
incomplete information. Our approach permits to use explicitly labels like pos-
sible, probable, plausible, etc., for capturing the incomplete state of a belief in a
disjunctive logic program.

1 Introduction

As Tversky and Kahneman observed in [12], many decisions that we make in our com-
mon life are based on beliefs concerning the likelihood of uncertain events. In fact, we
commonly use statements such as “I think that . ..”, “chances are . ..”, “it is probable
that...”, “itis plausible that . . .”, etc., for supporting our decisions. In this kind of state-
ments usually we appeal to our experience or our commonsense. It is not surprising to
think that a reasoning based on these kind of statements could reach bias conclusions.
However these conclusions could reflect the experience or commonsense of an expert.
Pelletier and Elio pointed out in [8]] that people simply have tendencies to ignore cer-
tain information because of the (evolutionary) necessity to make decisions quickly. This
gives rise to “biases” in judgments concerning what they “really” want to do.

In view of the fact that we know that a reasoning based on statements which are
quantified by relative likelihoods could capture our experience or our commonsense,
the question is: how could these statements be captured by real application systems like
Multi Agent Systems? For those steeped in probability, Halpern has remarked in [6] that
probability has its problems. For one thing, the numbers are not always available. For
another, the commitment to numbers means that any two events must be comparable in
terms of their probabilities: either one event is more probable than the other, or they have
equal probability. Now, the question is why not to use explicitly labels like possible,
probable, plausible, etc., for capturing the incomplete state of a belief in a logic program
when the numerical representations are not available or difficult to get.

In [[7], it was proposed a possibilistic framework for reasoning under uncertainty. It is
a combination between Answer Set Programming (ASP) [[1] and Possibilistic Logic [3]].

C. Baral, G. Brewka, and J. Schlipf (Eds.): LPNMR 2007, LNAI 4483, pp. 315-320] 2007.
(© Springer-Verlag Berlin Heidelberg 2007

316 J.C. Nieves, M. Osorio, and U. Cortés

This framework is able to deal with reasoning that is at the same time non-monotonic and
uncertain. Nicolas et al.’s approach is based on the concept of possibilistic stable model
which defines a semantics for possibilistic normal logic programs. One weak point of this
approach is that it relies on the expressiveness of normal logic programs and it always
depends of a numerical representation for capturing the incomplete state of a belief.

In this paper, we introduce the use of possibilistic disjunctive clauses which are able
to capture incomplete information and incomplete states of a knowledge base at the same
time. It is important to point out that our approach is not exactly a generalization of Nico-
las et al.’s approach since our semantics is based on an operator 7 which is inspired in
partial evaluation [2] and an inference rule of possibilistic logic [3]. Also whereas Nicolas
et al.’s approach only permits to express the states of a belief by totally ordered sets, our
approach permits to consider partially ordered sets for expressing the states of a belief.
Moreover we does not adopt to use strict a-cuts for handling an inconsistent possibilistic
logic program. However our approach in the class of possibilistic normal logic programs
coincides with Nicolas e al.’s approach when it considers totally ordered sets for cap-
turing the incomplete state of a belief and the possibilistic program is consistent.

By considering partially ordered sets, it is possible to capture the confidence of a
claim by using quantifies like the Toulmin’s famous “quantifies”[[11]]. For instances,
in [4] Fox and Modgil discuss the expressiveness of these quantifiers for capturing
the uncertainty of medical claims. We use relative likelihoods for modeling different
quantifiers e.g., certain, confirmed, probable, plausible, supported and operﬂ, where
each quantifier is a possible world/class of beliefs. The user can provide a likelihood
ordering for the worlds/classes of beliefs as it is shown in Fig. Il

Probable Plausible

Supported

Fig.1. A lattice where the following relations hold: Open =< Supported, Supported =
Plausible, Supported <X Probable, Probable < Confirmed, Plausible <X Confirmed,
and Con firmed =< Certain

The rest of the paper is divided as follows: In the next section, it is presented the
syntax and semantics of our possibilistic framework. In the last section, we present our
conclusions.

! This set of labels was taken from [4].

Semantics for Possibilistic Disjunctive Programs 317

2 Possibilistic Disjunctive Logic Programs

In this section, we introduce our possibilistic logic programming framework. We shall
start by defining the syntax of a valid program and some relevant concepts, after that
we shall define the semantics for the possibilistic disjunctive logic program.

In whole paper, we will consider finite lattices. This convention was taken based
on the assumption that in real applications rarely we will have an infinite set of labels
for expressing the incomplete state of a knowledge base. Also we will assume some
background on ASP. Mainly we will assume knowledge on the syntax and semantics of
extended disjunctive logic programs (see [3]] for definitions).

2.1 Syntax

First of all, we start defining some relevant concepts@. A possibilistic literal is a pair
Il = (a,q) € L x Q, where L is a finite set of literals and (Q, <) is a lattice. We apply
the projection * over [as follows: [* = a. Given a set of possibilistic literals S, we
define the generalization of * over S as follows: S* = {l*|l € S}. Given a lattice
(Q,<)and S C Q, LUB(S) denotes the least upper bound of S and GLB(S) denotes
the greatest lower bound of S. A possibilistic disjunctive logic program is a finite set of
possibilistic disjunctive clauses of the form:

r=(a: LV...Vip<—Ul,...,lj,not liz1,...,not 1)

where a € Q. The projection * over r is the extended disjunctive clause r* =11 V...V
lw < l1,...,1j,not ljy1,...,not l,. n(r) = « is a necessity degree representing
the certainty level of the information described by r (see [3] for a formal definition
of n). If P is a possibilistic disjunctive logic program, then P* = {r*|r € P} is an
extended disjunctive program. Given an extended disjunctive clause C, we denote C by
A «— BT, not B™, where A contains all the head literals, B+ contains all the positive
body literals and 5~ contains all the negative body literals.

2.2 Semantics

The semantics of the possibilistic disjunctive logic programs is defined in terms of a
syntactic reduction which is defined as follows:

Definition 1 (Reduction PM). Let P be a possibilistic disjunctive logic program, M
be a set of literals. P reduced by M is the positive possibilistic disjunctive program:
PM ={(n(r): ANM «—B")|lre PANM#0,B-NM =0,B" C M}

where r* is of the form A — B, not B~.

Notice that (P*)M is not exactly the Gelfond-Lifschitz reduction. In fact, our reduction
is stronger that Gelfond-Lifschitz reduction when P* is a disjunctive program [5]. One
of the main differences is the condition AN M # () which suggests that any clause that
does not have a true head literal is false.

2 Some concepts presented in this subsection extend some terms presented in [7].

318 J.C. Nieves, M. Osorio, and U. Cortés

Once a possibilistic logic program P has been reduced by a set of literals M*, it
is possible to test whether M is a possibilistic answer set of the program P. In order
to define a possibilistic answer set, we introduce an operator which is inspired in par-
tial evaluation for disjunctive logic programs [2] and an inference rule of Possibilistic
Logic [3].

Definition 2. Let P be a possibilistic logic program. The operator T (P) is defined as
follows:

T(P):PU{T/ if (: A« (BT U{B}), notB_)ePand}

(aq: Ay « T) € Psuchthat B € A4
where ' := GLB({a,a1}) : AU (A1 \ {B}) <« B*, not B~.

Intuitively, the operator 7 is an inference rule for possibilistic disjunctive logic pro-
grams. For instance, let us consider the lattice of Fig. [l and the possibilistic clauses:
probable : a Vb« T and con firmed : e < b. Then by applying the operator 7, one
can get the new possbilistic clause supported : e V a < T. Also if we consider the
possibilistic clauses: probable : a V b «— T and plausible : a < b, one can get the
new possibilistic clause supported : a < T. An important property of the operator 7°
is that it always reaches a fix-point.

Proposition 1. Let P be a possibilistic disjunctive logic program. If Iy := T (P) and
I; :=T(I;_1) suchthati € N, then 3n € N such that I, = I',_1. We denote I, by
I (P).

From any possibilistic program, it is possible to identify a set of possibilistic literals
which we call Sem .

Definition 3. Let P be a possibilistic logic program and Facts(P, A) := {(a : A —
T(a: A« T) € P}. Sempmin(P) := {(z,a)|Facts(P,z) #) and
« := LUBycpacts(pz)(n(r))} where x € Lp.

Notice that if a possibilistic literal is obtained by different possibilistic clauses, then
the possibilistic part of the literal will be obtained by LU B. Now by considering the
operator 7 and Sem,,;,, we define a posibilistic answer set of a possibilistic program
as follows:

Definition 4 (Possibilistic answer set). Let P be a possibilistic disjunctive logic pro-
gram and M be a set of possibilistic literals such that M* is an answer set of P*. M is
a possibilistic answer set of P if and only if M = Sem i, (II(PM")).

We have to notice that there is an important condition w.rt. the definition of the possi-
bilistic answer sets. This is that a possibilistic set .S is not a possibilistic answer set of a
possibilistic logic program P if S* is not an answer set of the extended logic program
P*. This condition guarantees that any clause of P* is satisfied by M *. In fact, when all
the possibilistic clauses of a possibilistic program P have as certainty level the top of
the lattice that was considered in P, the answer sets of P* can be directly generalized
to the possibilistic answer sets of P.

Semantics for Possibilistic Disjunctive Programs 319

In the class of possibilistic normal logic programsﬁ, our definition of possibilistic
answer set is closely related to the definition of possibilistic stable model presented in
[7]. In fact, both semantics coincide.

Proposition 2. Let P be a possibilistic normal logic program. M is a possibilistic an-
swer set of P if and only if M is a possibilistic stable model.

In terms of computability, we can observe that I7(P) is computable.

Proposition 3. Let P be a finite possibilistic disjunctive logic program. Suppose also
that (Q, <) is a finite lattice. Then I1(P) is computable.

The main implication of Proposition [3]is that the possibilistic answer sets of a possi-
bilistis logic program are computable.

Proposition 4. Given a possibilistic program P there exists an algorithm that compute
the set of possibilistic answer sets of P.

3 Conclusions

We have been working in the decision making process for deciding if a human organ is
viable or not for being transplanted [[109]. Our experience suggests that in our medical
domain, we require a qualitative theory of default reasoning like ASP for modeling
incomplete information and a quantitative theory like possibilistic logic for modeling
uncertain events which always exist in the medical domain.

This paper describes a possibilistic disjunctive logic programming approach which
considers some basic ideas from ASP and possibilistic logic. This approach introduces
the use of possibilistic disjunctive clauses which are able to capture incomplete infor-
mation and incomplete states of a knowledge base at the same time. In fact, one of
main motivations of our approach is to define a description languages and a reasoning
process where the user could consider relative likelihoods for modeling different lev-
els of uncertainty e.g., possible, probable, plausible, supported and open, where each
likelihood is a possible world/class of beliefs. We know that this kind of representation
of uncertainty could reach bias conclusions. However, we have to accept that this is a
common form that ordinary people perform a reasoning. In fact, these kind of bias are
many times well-accepted since they could reflect the experience or commonsense of
an expert in a field [12].

In general terms, we are proposing a possibilistic disjunctive logic programming
framework able to deal with reasoning under uncertainty and incomplete information.
This framework permits to use explicitly labels like possible, probable, plausible, etc.,
for capturing the incomplete state of a belief in a disjunctive logic program when the
numerical representations are not available or difficult to get. In terms of computability,
we observe that our approach is computable.

In conclusion, the possibilistic disjunctive logic programs define a possibilistic ap-
proach able to capture incomplete information and incomplete states of a knowledge

3 A possibilistic logic program P is called possibilistic normal logic program if P* is a normal
program.

320 J.C. Nieves, M. Osorio, and U. Cortés

base. To the best of our knowledge this approach is the first one that deals with dis-
junctive programs and partially ordered sets in order to define a possibilistic disjunctive
semantics.

Acknowledgement. We are grateful to anonymous referees for their useful comments. J.C.
Nieves thanks to CONACyT for his PhD Grant. J.C. Nieves and U. Cortés were partially sup-
ported by the grant FP6-IST-002307 (ASPIC). The views expressed in this paper are not neces-
sarily those of ASPIC consortium.

References

1. C. Baral. Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-
bridge University Press, Cambridge, 2003.

2. S.Brass and J. Dix. Semantics of (Disjunctive) Logic Programs Based on Partial Evaluation.
Journal of Logic Programming, 38(3):167-213, 1999.

3. D. Dubois, J. Lang, and H. Prade. Possibilistic logic. In D. Gabbay, C. J. Hogger, and J. A.
Robinson, editors, Handbook of Logic in Artificial Intelligence and Logic Programming, Vol-
ume 3: Nonmonotonic Reasoning and Uncertain Reasoning, pages 439-513. Oxford Univer-
sity Press, Oxford, 1994.

4. J. Fox and S. Modgil. From arguments to decisions: extending the toulmin view. In Arguing
on the Toulmin model: New essays on argument analysis and evaluation. Argumentation
Library series published by Kluwer Academic, Currently in press.

5. M. Gelfond and V. Lifschitz. Classical Negation in Logic Programs and Disjunctive
Databases. New Generation Computing, 9:365-385, 1991.

6. 1. Y. Halpern. Reasoning about uncertainty. The MIT Press, 2005.

7. P. Nicolas, L. Garcia, I. Stéphan, and C. Lafévre. Possibilistic Undertainty Handling for
Answer Set Programming. Annal of Mathematics and Artificial Intelligence, 47(1-2):139—
181, June 2006.

8. F.J. Pelletier and R. Elio. Scope of Logic, Methodology and Philosophy of Science, volume 1
of Synthese Library, chapter Logic and Computation, pages 137-156. Dordrecht: Kluwer
Academic Press, 2002.

9. P. Tolchinsky, U. Cortés, S. Modgil, F. Caballero, and A. Lépez-Navidad. Increasing
Human-Organ Transplant Availability: Argumentation-Based Agent Deliberation. /EEE In-
telligent Systems: Special Issue on Intelligent Agents in Healthcare, 21(5):30-37, Novem-
ber/December 2006.

10. P. Tolchinsky, U. Cortés, J. C. Nieves, A. Lopez-Navidad, and F. Caballero. Using arguing
agents to increase the human organ pool for transplantation. In Proc. of the Third Workshop
on Agents Applied in Health Care (1JCAI 2005), 2005.

11. S. E. Toulmin. The Uses of Argument. Cambridge University Press, 1958.

12. A. Tversky and D. Kahneman. Judgment under uncertainty:Heuristics and biases, chapter
Judgment under uncertainty:Heuristics and biases, pages 3—20. Cambridge Univertisy Press,
1982.

	Introduction
	Possibilistic Disjunctive Logic Programs
	Syntax
	Semantics

	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

