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Abstract. The stable-model semantics has been generalised from logic programs
to arbitrary theories. We explore a further generalisation and consider sequences
of atoms as models instead of sets. The language is extended by suitable order
operators to access this additional information. We recently introduced an exten-
sion of classical logic by a single order operator with a temporal interpretation for
activity reasoning. The logic envisaged here is a nonmonotonic version thereof.
Our definition of what we call stable-ordered models is based on the stable-model
semantics for theories due to Ferraris and Lifschitz with the necessary changes.
Compared to related nonmonotonic versions of temporal logics, our approach is
less costly as checking model existence remains at the second level of the poly-
nomial hierarchy. We demonstrate versatile applications from activity reasoning,
combinatorial testing, debugging concurrent programs, and digital forensics.
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1 Introduction

Answer-set programming (ASP) is a problem solving paradigm with many AI applica-
tions [7]. It means that problems are encoded as logic programs so that the solutions
correspond to the models of the programs [13, 15]. The stable-model semantics for logic
programs, introduced by Gelfond and Lifschitz [10], is the basis of ASP. It has been
generalised to arbitrary theories by Pearce [17] using equilibrium logic. Ferraris and
Lifschitz [8, 9] came up with an alternative characterisation that is based on reducts
which is more in the spirit of the original definition. We explore a further generalisation
and consider sequences of atoms as models instead of sets. The language is extended by
suitable order operators to access this additional information. The order of atoms can be
interpreted in different ways: either temporal, e.g., the order in which goals or events are
achieved, or in a more general sense as how objects of interest are arranged or permuted.

Besides curiosity, our motivation to study a new generalisation comes from activity
reasoning, a topic that we studied in recent work [16]. There, we introduced a monotonic
version of the logic we are envisioning here. Models in this monotonic logic, dubbed
ordered models, are sequences of atoms without repetition and the language is standard
classical logic plus a single modal operator. Intuitively, a model represents in which



2 Johannes Oetsch, Juan-Carlos Nieves

order goals—viewed as atomic entities—are achieved. However, the monotonic seman-
tics comes with the usual limitations for representing incomplete knowledge which is
common in activity reasoning. Based on the temporal logic from previous work, we
introduce a nonmonotonic semantics for theories with order operators. We use the
reduct-based definition of stable models for theories from Ferraris and Lifschitz [8, 9]
with the necessary changes to define what we call stable-ordered models.

Related to this work is a nonmonotonic variant of linear-temporal logic (LTL) [18]
based on infinite traces and equilibrium logic [1]. A version of this logic for finite
traces has been introduced recently by Cabalar et al. [5]. Their approach is readily
implementable via ASP but requires multi-shot solving, i.e., several calls to an ASP
solver are necessary to compute a satisfying trace. This is in accordance with the
complexity of satisfiability checking which is PSPACE hard. Also other approaches
extend LTL for nonmonotonic reasoning and elaboration tolerant goal representations [2,
3]. Our approach is different from all previous work as the idea to use a sequence of
atoms as model is quite unique. The complexity of checking model existence remains at
ΣP

2 which means a computational advantage over related work. Although our notion of
stable-ordered model is less expressive than arbitrary traces of states, there are interesting
applications where it suffices. We demonstrate this with examples from activity reasoning,
combinatorial testing, fault detection for concurrent programs, and digital forensics.

2 Preliminaries

The logic we introduce in this paper is a nonmonotonic version of a monotonic temporal
logic that we proposed in recent work in the context of activity reasoning [16]. Language
L is determined by an infinite countable set U of atoms, Boolean connectives⊃, ∧, ∨,⊥,
and the modal operators ◦, ♦, and �, where ◦ means previously, � stands for now and
always in the past, and ♦ means now or at some time in the past.1 A formula ϕ is defined
by the grammar ϕ ::= a | ⊥ | (ϕ1 ⊃ ϕ2) | (ϕ1 ∧ ϕ2) | (ϕ1 ∨ ϕ2) | (◦ϕ) | (♦ϕ) | (�ϕ)
where a ∈ L is an atom. Parentheses are omitted if no ambiguities arise.

A theory is a set of formulas. For an expression (formula or theory) e, At(e) is the
set of atoms occurring in e. We use P = 〈a1, . . . , an〉 to denote a finite sequence of
elements. The length of P , denoted by |P |, is n. For two sequences P and Q, PQ is
the concatenation of P and Q. We say that P is a prefix of Q and write P � Q iff
Q = PR for some sequence R. The empty sequence is denoted by ε. Note that the
notion of prefix is reflexive. An ordered model M over U is a sequence of atoms from U
without repetition. We write M |= ϕ to denote that formula ϕ is true in M . Relation |=
is inductively defined as follows:

M 6|= ⊥
M |= a iff a occurs in M , for an atom a ∈ U ;
M |= ϕ1 ∧ ϕ2 iff M |= ϕ1 and M |= ϕ2;
M |= ϕ1 ∨ ϕ2 iff M |= ϕ1 or M |= ϕ2;
M |= ϕ1 ⊃ ϕ2 iff M 6|= ϕ1 or M |= ϕ2;

1 Note that ◦ was not part of the initial version of the logic to avoid unintended effects when used
under the open-world assumption [16]. Also, note that we do not consider strong negation.
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M |= ◦ϕ iff M ′ |= ϕ for some M ′ �M with |M | − |M ′| = 1;
M |= ♦ϕ iff M ′ |= ϕ for some M ′ �M ;
M |= �ϕ iff M ′ |= ϕ for each M ′ �M .

For a theory T , M |= T iff M |= ϕ for each ϕ ∈ T . Also, entailment, equivalence, etc.
are defined as in classical logic. We use the abbreviations ¬ϕ := ϕ ⊃ ⊥ and > := ¬⊥.
To denote the initial state, we define I := ¬◦> which is only true in ε.

An ordered model 〈a1, . . . , an〉 can be understood as a compact representation of a
sequence s0, . . . , sn of classical models that represent states of the world, where s0 = ∅
and the only difference between any si and si+1 is that atom ai+1 becomes true in si+1.
Note that two properties that are reasonable to assume in the context of goal achievements
are implicit in this representation: First, once an atom becomes true, i.e., a goal has been
achieved, it remains true (persistence). Second, the same goal cannot be reached twice
(Heraclitus principle). We refer the reader to previous work for details [16].

3 Stable-Ordered Models

The nonmonotonic semantics of language L that we define in this paper is an adaptation
of the stable-model semantics due to Ferraris and Lifschitz [8, 9] for propositional
theories with the necessary changes. For a formula ϕ and an ordered model X over
At(ϕ), we define the reduct of ϕ with respect to X , ϕX in symbols, inductively as
follows:

⊥X = ⊥

aX =

{
a if a is an atom and X |= a

⊥ otherwise

(ϕ1 ⊗ ϕ2)
X ,⊗ ∈ {∧,∨,⊃} =

{
ϕX
1 ⊗ ϕX

2 if X |= ϕ1 ⊗ ϕ2

⊥ otherwise

(◦ϕ)X =

{
◦ϕY if Y � X, |X| − |Y | = 1, and Y |= ϕ

⊥ otherwise

(♦ϕ)X =
∨

Y ∈{X′|X′�X} ♦ϕ
Y

(�ϕ)X =
∧

Y ∈{X′|X′�X}�ϕ
Y

For a theory T , TX = {ϕX | ϕ ∈ T}. An ordered model M over At(T ) is a stable-
ordered model of T iff M |= TM , and for each subsequence M ′ of M , M ′ |= TM

implies M ′ = M . With other words, M is a subsequence-minimal ordered model of
TM . The stable-ordered models of a formula ϕ are the ones of the theory {ϕ}.

The definition of the reduct for the classical connectives is the one for propositional
theories [8, 9]. For the classical connectives and a formula ϕ, the contextX is propagated
to all direct subformulas of ϕ if a formula is true in X . Otherwise, ϕ is replaced by
⊥. For the order operators, ϕ is evaluated not in X but in respective prefixes of X . An
evaluation of ♦ϕ, resp., �ϕ, in X corresponds to the disjunction, resp., conjunction,
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of ϕ with respect to all prefixes of X . Note that such a disjunction or conjunction is
equivalent to ⊥ if the formula is false in X .

Consider X = 〈a, b〉 and ϕ = ♦((a ∧ ¬b) ∨ b) ∧ (a ⊃ b). The reduct of ϕ for X is

(♦((a ∧ ¬b) ∨ b))X ∧ (a ⊃ b)X

=
(
♦((a ∧ ¬b) ∨ b)ε ∨ ♦((a ∧ ¬b) ∨ b)〈a〉 ∨ ♦((a ∧ ¬b) ∨ b)〈a,b〉

)
∧
(
aX ⊃ bX

)
= (♦⊥ ∨ ♦a ∨ ♦b) ∧ (a ⊃ b)
= (♦a ∨ ♦b) ∧ (a ⊃ b)

The single minimal ordered model of ϕX is 〈b〉, thus X is not stable. But this is
reasonable: In the formation of the minimal ordered model of the reduct, subformula
ψ = ♦((a ∧ ¬b) ∨ b) is not strong enough to force a (and subsequently b by a ⊃ b)
when evaluated in context X as ψ can also be satisfied by 〈b〉. This is reflected by the
disjunction in ϕX . It can be checked that the only stable-ordered model of ϕ is 〈b〉.

It holds that every stable-ordered model is also an ordered model:

Theorem 1. For a formula ϕ ∈ L and ordered model X over At(ϕ), X |= ϕ iff
X |= ϕX .

Proof. For the if direction, assume that X 6|= ϕ. Then, ϕX ≡ ⊥ and X 6|= ϕX follows.
We show the only-if direction by induction on the structure of ϕ. If ϕ = ⊥ or ϕ is

atomic, X |= ϕ implies ϕX = ϕ and X |= ϕX follows.
Otherwise, ϕ is of form ϕ1 ⊗ ϕ2, ⊗ ∈ {∧,∨,⊃}, ◦ϕ1, ♦ϕ1, or �ϕ1. The cases for

the classical connectives are straight forward: For any ⊗ ∈ {∧,∨,⊃}, ϕX = ϕX
1 ⊗ ϕX

2 .
By induction, X |= ϕ1 iff X |= ϕX

1 and X |= ϕ2 iff X |= ϕX
2 . Hence, X |= ϕ1 ⊗ ϕ2

implies X |= ϕX
1 ⊗ ϕX

2 , and X |= ϕX follows.
Assume ϕ = ◦ϕ1. X |= ϕ implies that that there is a prefix X ′ of X with |X| −

|X ′| = 1 and X ′ |= ϕ1. By the inductive hypothesis, X ′ |= ϕX′

1 , and thus X |= ◦ϕX′

1 .
As ϕX = ◦ϕX′

1 , X |= ϕX follows.
Assume ϕ = ♦ϕ1. X |= ϕ implies that there is some prefix X ′ of X with X ′ |= ϕ1.

By induction, X ′ |= ϕX′

1 . This implies that X |= ♦ϕX′

1 . As ♦ϕX′

1 is a disjunct of ϕX

by definition, we conclude with X |= ϕX .
Finally, assume ϕ = �ϕ1. X |= ϕ implies that each prefix X ′ of X satisfies ϕ1 and,

by induction, ϕX′

1 . Hence, X satisfies �ϕX′

1 for each prefix X ′ of X , and consequently
X |= ϕX . ut

Our logic indeed generalises the stable-model semantics as the stable models for
theories without order operators correspond to its stable-ordered models and vice versa.

As stable model existence for disjunctive programs is a ΣP
2 -complete problem [6],

ΣP
2 -hardness for deciding existence of a stable-ordered model for a formula follows.

Deciding if an ordered model satisfies a formula in L can be done in polynomial
time [16].2 This implies that checking whether an ordered model is a subsequence-
minimal model of a formula is in coNP. As we can compute the reduct ϕX in polynomial
time, the following result follows:

2 Although this result was formulated for L without ◦, it is applicable for L mutatis mutandis.
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Theorem 2. Given a formula ϕ ∈ L, the problem of deciding whether a stable-ordered
model for ϕ exists is ΣP

2 -complete.

4 Applications

We illustrate ASP with theories under the stable-ordered model semantics with problems
involving knowledge representation, temporal reasoning, and combinatorial search.

Activtiy Reasoning. We studied activity reasoning based on achieving hierarchically
structured goals in previous work [16]. A goal can depend on subgoals that need to be
reached beforehand. An activity model is a formal description of goal hierarchies together
with constraints, where the activities correspond to top-level goals. For illustration,
consider the activity model for activities a and d involving the subgoals b, c, and e,
where a requires b and c, d requires e, e requires c or f , and c cannot precede b. It can
be formalised by the following L formulas:

a ⊃ ♦(¬a ∧ (b ∧ c)) (1)
d ⊃ ♦(¬d ∧ e) (2)
e ⊃ ♦(¬e ∧ (c ∨ f)) (3)
¬ (b ∧ ♦(¬b ∧ c)) (4)

Formulas (1)–(3) represent the subgoal relation, and (4) is the constraint regarding the
order of c and b. Assume we observe that c is already archived. We want to explain
this observation in terms of the activity model. That is, does some activity entail the
observation? We use the following formulas:

a ∨ d (5)
¬¬♦(c ∧ ◦I) (6)

The single stable-ordered model of formulas (1)–(6) is 〈c, e, d〉. Only activity d can
explain the observation as a can never be realised because of constraint (4). This is an
example of abductive reasoning from the activities as hypotheses: Formula (5) nondeter-
ministically selects either activity a or activity d and (6) enforces that the activity model
derives the observation that c has already been archived.

Combinatorial Event-Sequence Testing. In many applications, faults are triggered by
the order of events. Based on the fault model that the number of events relevant to a bug is
typically low, Kuhn et al. introduced sequence-covering arrays (SCAs) as combinatorial
designs to avoid the high costs of exercising all possible event sequences [11]. ASP for
event-sequence testing has been studied in previous work [4]. Given a set E of events,
an E-sequence is a permutation of the events in E. An SCA of strength t and size n is
a set {e1, . . . , en} of E-sequences such that each sequence of pairwise distinct atoms
from E with length t is subsequence of some ei, 1 ≤ i ≤ n. We assume a fixed t = 3.



6 Johannes Oetsch, Juan-Carlos Nieves

Often, some sequences are not feasible, e.g., “paste” cannot happen before “copy”. Let
C be a set of binary constraints over E with (a, b) ∈ C iff a must not precede b in any
ei. Define

P = {(a, b, c) ∈ E3 | a 6= b, b 6= c, a 6= c, (a, b) 6∈ C, (b, c) 6∈ C, and (a, c) 6∈ C}

The following L formulas with parameter n encode all SCAs of size n compatible with
the constraints in C:∧

a∈E,0<i≤n
ai (7)∧

(a,b)∈C,0<i≤n
¬(bi ∧ ♦(¬bi ∧ ai)) (8)∧

(a,b,c)∈P

∨
0<i≤n

(ci ∧ ♦(¬ci ∧ bi ∧ ♦(¬bi ∧ ai))) (9)

Formula (7) defines the test-input space in terms of sets of E-sequences. Index i
means that event ai belongs to ei. Formula (8) is a constraint that enforces that there is
no ei where a precedes b if (a, b) ∈ C. Set P contains all triples of events that need to
be covered, i.e., occur as a subsequence of some E-sequence. Finally, coverage of all
elements of P is guaranteed by Formula (9).

Fault Detection in Concurrent Programs. Finding bugs in multi-threaded programs
is notoriously hard due the vast number of possible thread interleavings. A program
consists of threads t1, . . . , tm and a set E of shared variables. Each thread ti is modelled
by a sequence 〈ai1, . . . , aini

〉 of read or write accesses to variables from E. A thread
interleaving is a total order on all aij such that the relative order within the threads is
preserved. Based on the fault model that many bugs are caused by reading a variable that
has been defined by the wrong writer, define-use pairs have been studied as coverage
criterion to select interesting interleavings [12]. A define-use pair (w, r)v is a write and
a read access to the same variable v. An interleaving covers (w, r)v iff w precedes r,
and there is no write to v inbetween.

Let P be the set of define-use pairs. To obtain total coverage of P by a set of
interleavings, we iterate the following steps until P = ∅:

(i) search for an interleaving I that covers some p ∈ P , and
(ii) remove all pairs covered by I from P .

The following L formulas can be used to search for an interleaving that covers a given
define-use pair q = (w, r)v and to identify all additionally covered ones. Let Wv be the
set of all write accesses to a variable v.

∧m

i=1

(
ai1 ∧

∧ni−1

j=1

(
aij+1 ∧ ♦

(
¬aij+1 ∧ aij

)))
(10)∧

(w,r)v∈P

((
r ∧ ♦(¬r ∧ w)∧

∧
a∈Wv\{w}

¬♦(w ∧ a ∧ ¬r)
)
⊃ c(w,r)v

)
(11)

¬¬c(w,r)v (12)
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Formula (10) spans the search space of possible thread interleavings. Formula (11)
derives c(w,r)v if the define-use pair (w, r)v is covered. Finally, (12) is a constraint that
prunes away all models where the specified define-use pair q is not covered.

Digital Forensics. A frequent problem in digital forensics is file carving, i.e., to recover
fragmented files when file-table information is not available. Files are typically stored in
terms of clusters but these clusters are not necessarily in order on a storage device. The
problem of recovering multiple files from a set of clusters has been studied by Pal and
Memon [14] as a k-vertex disjoint graph problem. The clusters are the vertices V of a
graph G = (V,E), some clusters are identified as headers H ⊆ V or footers F ⊆ V ,
and (a, b) ∈ E iff a 6∈ F , b 6∈ H , and the likelihood that b follows a—calculated by a
suitable metric—is above a fixed threshold. We want to find k paths in G that start with
a header and end in a footer such that each cluster appears in exactly one path. We can
formalise this problem concisely as follows:

∧
a∈V

a (13)∧
(a,b)∈V 2\(E∪(F×H))

¬♦(b ∧ ◦(a ∧ ¬b) ∧ ¬◦◦a) (14)

Formula (13) spans the search space in terms of permutations of all clusters. Paths
where b follows a but (a, b) 6∈ E, unless a is a footer and b is a header, i.e., a new path
starts, are excluded via (14) . Each stable-ordered model of formulas (13)–(14) describes
a solution to the specified k-vertex disjoint graph problem.

5 Discussion

Our idea of sequences of atoms as models naturally lends itself to reasoning about goal
achievements when goals are seen as atomic entities and the order operators have a
temporal interpretation. This is by design as our initial motivation comes from activity
reasoning [16]. In fact, ordered models are a compact representation of LTL traces where
in each step a single new atom becomes true. Also others dealt with nonmonotonic
temporal logics based on LTL [2, 3, 1, 5], but the idea of ordered models is quite unique
and allows for a semantics closer to standard stable models. Notably, the complexity
of deciding model existence remains in ΣP

2 . Although this is a distinctive advantage
compared to aforementioned related work, the flip-side is reduced expressiveness. Yet,
we demonstrate versatile applications from activity reasoning combinatorial testing,
concurrent programming, and digital forensics. Although these problems can also be
encoded in standard ASP, we think that dedicated order operators allow for more natural
and concise problem encodings.

We expect that common results for theories under the stable-model semantics (strong
equivalence, splitting sets, etc.) hold for theories under the stable-ordered model seman-
tics as well but leave this for future work. Also, we plan to identify normal forms of
theories that are closer to the familiar rule based syntax of logic programming and study
translations into standard ASP so that existing solvers can be used for model generation.
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