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Abstract

In many fields of automated information processing it
becomes crucial to consider together imprecise, uncertain
or inconsistent information. Argumentation theory is a
suitable framework for practical and uncertain reasoning,
where arguments could support conclusions. We present a
possibilistic-based argumentation approach which is based
on a possibilistic disjunctive language. This specification
language is able to capture incomplete information and in-
complete states of a knowledge base at the same time.

1 Introduction

Many decisions that we make in our common life are
based on beliefs concerning the likelihood of uncertain
events. In fact, we commonly use arguments such as “I
think that . . . ”, “chances are . . . ”, “it is probable that . . . ”,
“it is plausible that . . . ”, etc., for supporting our decisions.
In this kind of statements usually we have appealed to our
experience or our commonsense. It is not surprising to
think that a reasoning based on these kinds of statements
could reach biased conclusions. However, these conclu-
sions could reflect the experience or commonsense of an ex-
pert. Pelletier and Elio pointed out in [41] that people sim-
ply have tendencies to ignore certain information because
of the (evolutionary) necessity to make decisions quickly.
This gives rise to “biases” in judgments concerning what
they “really” want to do. A deep study of the importance of
the biasses and heuristics in judgment under uncertainty is
presented in the book [25].

In view of the fact that we know that a reasoning based
on arguments which are quantified by relative likelihoods
could capture our experience or our commonsense, the
question is: how could these statements be captured by real
application systems like Multi Agent Systems? For those
steeped in probability, Halpern has remarked in [24] that
probability has its problems. For one thing, the numbers

are not always available. For another, the commitment to
numbers means that any two events must be comparable in
terms of their probabilities: either one event is more proba-
ble than the other, or they have equal probability. In fact, in
[31], McCarthy and Hayes pointed out that attaching prob-
abilities to a statement has some objections. For instance,

The information necessary to assign numerical
probabilities is not ordinarily available. There-
fore, a formalism that required numerical prob-
abilities would be epistemologically inadequate
[31].

Now, the question is why not to use explicit labels like pos-
sible, probable, plausible, etc., for capturing the incomplete
state of a belief in a knowledge base when the numerical
representations are not available or difficult to get. In fact,
by considering partially ordered sets, it is possible to cap-
ture the confidence of a claim by using qualifiers like the
Toulmin’s famous “qualifiers”[47]. For instance, in [20]
Fox and Modgil discuss the expressiveness of these qual-
ifiers for capturing the uncertainty of medical claims.

As far as we know, there are few attempts to formalize
argument-based decision making under uncertainty. Some
of the most representative approaches are

• Bonet and Geffner approach [11],

• works based on Logic of Argumentation [21, 28] and

• more recently works based on the Possibilistic Logic
[6, 1, 2].

We have been working in the decision making process
for deciding if a human organ is viable or not for being
transplanted [46, 37, 45]. Our experience suggests that in
our medical domain, we require a qualitative theory of de-
fault reasoning for modeling incomplete information and a
quantitative theory like possibilistic logic for modeling un-
certain events.



The use of logic specification languages is a successful
approach for encoding knowledge. In the last two decades,
one of the most successful logic programming approach has
been Answer Set Programming (ASP) [9]. ASP is the real-
ization of much theoretical work on Non-monotonic Rea-
soning and Artificial Intelligence applications. It represents
a new paradigm for logic programming that allows, using
the concept of negation as failure, to handle problems with
default knowledge and produce non-monotonic reasoning.
The efficiency of the answer set solvers have allowed to in-
crease the list of ASP’s practical applications e.g., planning,
logical agents and Artificial Intelligence [14, 43].

In [34], a possibilistic framework for reasoning under
uncertainty was proposed. This framework is a combi-
nation between ASP and possibilistic logic [16]. Possi-
bilistic Logic is based on possibilistic theory where at the
mathematical level, degrees of possibility and necessity are
closely related to fuzzy sets [16]. Thanks to the natural
properties of possibilistic logic and ASP, Nicolas et al.’s ap-
proach allows to deal with reasoning that is at the same time
non-monotonic and uncertain. Nicolas et al.’s approach is
based on the concept of possibilistic stable model which de-
fines a semantics for possibilistic normal logic programs.

Following Nicolas et al.’s approach, in [39, 38, 40], an
possibilistic disjunctive logic programming approach was
introduced. This approach is able to deal with reasoning
under uncertainty and incomplete information. It permits to
use explicit labels like certain, probable, plausible, etc., for
capturing the incomplete state of a belief in a disjunctive
logic program.

In this paper, we will define a possibilistic-based argu-
mentation approach which is based on the possibilistic dis-
junctive language introduced in [39, 38, 40] and the possi-
bilistic disjunctive semantics introduced in [38]. We define
the concept of possibilistic argument which is based on pos-
sibilistic answer sets and is quantified by the levels of cer-
tainty. Based on the levels of certainty, we also show how
to lead with conflicts between possibilistic arguments.

The rest of the paper is divided as follows: In §2, some
basic concepts of possibilistic logic and possibilistic answer
set programming are presented. In §3, our argumentation-
based inference procedure is described. This means that
we describe how to build possibilistic arguments and how
to manage conflict between possibilistic arguments. In §4,
we formalize a couple of properties w.r.t. our possibilistic
based-argumentation approach. In §5, we discuss a little
the existence of possibilistic arguments in an inconsistent
possibilistic knowledge base. In §6, a small discussion of
related work is presented. In the last section, we present
our conclusions.

2 Background

In this section, we define some basic concepts of Pos-
sibilistic Logic and Possibilistic Answer Set Programming.
We assume familiarity with basic concepts in classic logic
and in the semantics of logic programs e.g., interpretations,
models, etc. A good introductory treatment of these con-
cepts can be found in [9, 32].

2.1 Possibilistic Logic

A necessity-valued formula is a pair (ϕ α) where ϕ is a
classical logic formula and α ∈ (0, 1] is a positive number.
The pair (ϕ α) expresses that the formula ϕ is certain at
least to the level α, i.e. N(ϕ) ≥ α, where N is a necessity
measure modeling our possibly incomplete state knowledge
[16]. α is not a probability (like it is in probability theory)
but it induces a certainty (or confidence) scale. This value is
determined by the expert providing the knowledge base. A
necessity-valued knowledge base is then defined as a finite
set (i.e. a conjunction) of necessity-valued formulae.

Dubois et al., [16] introduced a formal system for
necessity-valued logic which is based in the following ax-
ioms schemata (propositional case):

(A1) (ϕ→ (ψ → ϕ) 1)

(A2) ((ϕ→ (ψ → ξ))→ ((ϕ→ ψ)→ (ϕ→ ξ)) 1)

(A3) ((¬ϕ→ ¬ψ)→ ((¬ϕ→ ψ)→ ϕ) 1)

Inference rules:

(GMP) (ϕ α), (ϕ→ ψ β) ` (ψ min{α, β})

(S) (ϕ α) ` (ϕ β) if β ≤ α

According to Dubois et al., basically we need a com-
plete lattice in order to express the levels of uncertainty
in Possibilistic Logic. Dubois et al., extended the axioms
schemata and the inference rules for considering partially
ordered sets. We shall denote by `PL the inference under
Possibilistic Logic without paying attention if the necessity-
valued formulae are using either a totally ordered set or a
partially ordered set for expressing the levels of uncertainty.

The problem of inferring automatically the necessity-
value of a classical formula from a possibilistic base was
solved by an extended version of resolution for possibilistic
logic (see [16] for details).

2.2 Possibilistic Answer Set Programming

In this subsection, we first introduce the standard syntax
and semantics of answer set programs and after that we in-
troduce the syntax and semantics of possibilistic answer set
programs.



2.2.1 Non-Possibilistic Syntaxis

The language of a propositional logic has an alphabet con-
sisting of

(i) proposition symbols: p0, p1, ...

(ii) connectives : ∨,∧,←,¬, not,⊥

(iii) auxiliary symbols : ( , ).

where ∨,∧,← are 2-place connectives, ¬, not are 1-place
connective and ⊥ is 0-place connective. The proposi-
tion symbols, ⊥, and propositional symbols of the form
¬pi (i ≥ 0) stand for the indecomposable propositions,
which we call atoms, or atomic propositions. Notice that
there are complementary atoms such that the complement of
an atom a is defined as ã = ¬a and ¬̃a = a. The negation
sign ¬ is regarded as the so called strong negation by the
ASP’s literature and the negation not as the negation as fail-
ure. A literal is an atom, a, or the negation of an atom not a.
Given a set of atoms {a1, ..., an}, we write not {a1, ..., an}
to denote the set of literals {not a1, ..., not an}.

An extended disjunctive clause, C, is denoted:

a1 ∨ . . . ∨ am ← a1, . . . , aj , not aj+1, . . . , not an

where m ≥ 0, n ≥ 0, each ai is an atom. When n = 0 and
m > 0 the clause is an abbreviation of a1∨ . . .∨am. When
m = 0 the clause is an abbreviation of ⊥ ← a1, . . . , an
such that ⊥ is the proposition symbol that always evaluates
to false. Clauses of this form are called constraints (the rest,
non-constraint clauses). An extended disjunctive program
P is a finite set of extended disjunctive clauses. By LP , we
denote the set of atoms in the language of P .

We denote an extended disjunctive clause C by A ←
B+, not B−, where A contains all the head atoms, B+

contains all the positive body atoms and B− contains all the
negative body atoms. When B− = ∅, the clause is called
positive disjunctive clause. A set of positive disjunctive
clauses is called a positive disjunctive logic program. When
A is a singleton set, the clause can be regarded as a normal
clause. A normal logic program is a finite set of normal
clauses. Finally, when A is a singleton set and B− = ∅, the
clause can be also regarded as a definite clause. A finite set
of definite clauses is called a definite logic program.

We will manage the strong negation (¬), in our logic pro-
grams, as it is done in ASP [9]. Basically, each negative
atom ¬a is replaced by a new atom symbol a′ which does
not appear in the language of the program. For instance, let
P be the normal program:

a ← q.
¬q ← r.
q.
r.

Then replacing each negative atom by a new atom symbol,
we will have:

a ← q.
q′ ← r.
q.
r.

In order not to allow inconsistent models of the non-
possibilistic logic programs, usually it is added a constraint
of the form ← q, q′. We will omit this constraint in order
to allow complementary atoms in a possibilistic answer set.
However the user could add this constraint without losing
generality.

Given a set of proposition symbols S and a theory (a set
of well-formed formulae) Γ in a logic X . Γ `X S if and
only if ∀s ∈ S Γ `X s.

2.2.2 Non-Possibilistic Semantics

The answer set semantics was first defined in terms of the
so called Gelfond-Lifschitz reduction [22] and it is usually
studied in the context of syntax dependent transformations
on programs. The following definition of an answer set
for general programs generalizes the definition presented in
[22] and it was presented in [23]: Let P be any extended
disjunctive program. For any set S ⊆ LP , let PS be the
positive program obtained from P by deleting

(i) each rule that has a formula not a in its body with a ∈
S, and then

(ii) all formulae of the form not a in the bodies of the re-
maining rules.

Clearly PS does not contain not (this means that PS is ei-
ther a positive disjunctive logic program or a definite logic
program), hence S is an answer set of P if and only if S is a
minimal model of PS .

In the answer set definition, we are omitting the re-
striction that if S has a pair of complementary atoms then
S := LP . This means that we are allowing that an answer
set could have a pair of complementary atoms. For instance,
let us consider the program P :

a. ¬a. b.

then, the only answer set of this program is : {a,¬a, b}.
It is worth mentioning that in the literature there are sev-

eral forms for handling an inconsistency program. For in-
stance, by applying the original definition [23] to P , the
only stable model is: {a,¬a, b,¬b}. The DLV system [14]
returns no models if the program is inconsistent. The Smod-
els system [43] has an option which permits to compute in-
consistent answer sets.



2.2.3 Possibilistic Syntaxis

First of all, we start defining some relevant concepts. In all
the paper, we will consider finite lattices. This convention
was taken based on the assumption that in real applications
we will rarely have infinite lattices for expressing the in-
complete state of a knowledge base.

A possibilistic atom is a pair p = (a, q) ∈ A×Q, where
A is a finite set of atoms and (Q,≤) is a lattice (since the
lattice is finite then it is complete). We apply the projection
∗ as follows: p∗ = a. Given a set of possibilistic atoms S,
we define the generalization of ∗ over S as follows: S∗ =
{p∗|p ∈ S}. Given a lattice (Q,≤) and S ⊆ Q, LUB(S)
denotes the least upper bound of S and GLB(S) denotes
the greatest lower bound of S.

Definition 1 Let A be a finite set of atoms and (Q,≤) be
a lattice. Consider PS = 2A×Q the finite set of all the
possibilistic atoms sets induced by A and Q. ∀A,B ∈ PS ,
we define.
A uB = {(x,GLB{q1, q2})|(x, q1) ∈ A ∧

(x, q2) ∈ B}
A tB = {(x, q)|(x, q) ∈ A and x /∈ B∗} ∪

{(x, q)|x /∈ A∗ and (x, q) ∈ B} ∪
{(x, LUB{q1, q2})|(x, q1) ∈ A and

(x, q2) ∈ B}.
A v B ⇐⇒ A∗ ⊆ B∗, and ∀x, q1, q2,

(x, q1) ∈ A ∧ (x, q2) ∈ B then q1 ≤ q2.

Now, we define the syntax of a valid possibilistic logic
program. Let (Q,≤) be a lattice. A possibilistic disjunctive
clause is of the form:

r = (α : A ← B+, not B−)

where α ∈ Q. The projection ∗ for a possibilistic clause is
r∗ = A ← B+, not B−. n(r) = α is a necessity degree
representing the certainty level of the information described
by r. A possibilistic constraint is of the form:

c = (TOPQ : ← B+, not B−)

where TOPQ is the top of the lattice (Q,≤). As in possi-
bilistic clauses, the projection ∗ for a possibilistic constraint
is : c∗ = ← B+, not B−. A possibilistic disjunctive logic
program P is a tuple of the form 〈(Q,≤), N〉, where N
is a finite set of possibilistic disjunctive clauses and pos-
sibilistic constraints. The generalization of ∗ over P is as
follows: P ∗ = {r∗|r ∈ N}. Notice that P ∗ is an extended
disjunctive program. When P ∗ is a normal program, P is
called a possibilistic normal program. Also when P ∗ is a
positive disjunctive program, P is called a possibilistic pos-
itive logic program. A given set of possibilistic disjunc-
tive clauses {γ, . . . , γ} is also represented as {γ; . . . ; γ} to
avoid ambiguities with the use of comma in the body of the
clauses.

Given a possibilistic disjunctive logic program
P = 〈(Q,≤), N〉, we define the α-cut and the strict
α-cut of P , denoted respectively by Pα and Pα, by

Pα = 〈(Q,≤), Nα〉 such that Nα = {c|c ∈ N and n(c) ≥
α}
Pα = 〈(Q,≤), Nα〉 such that Nα = {c|c ∈ N and n(c) >
α}

In order to illustrate a possibilistic program, let us con-
sider the following example.

Example 1 Let S be an ordered set such that S =
{certain, likely,maybe, unlikely, false} and the follow-
ing relations hold: false � unlikely, unlikely � maybe,
maybe � likely, likely � certain. Also, let us con-
sider the following predicates with their respective intended
meanings:

• elec(X,O) : The recipient X is eligible for transplant-
ing organ O;

• compatible(X,O,L): The recipient X is histocompati-
ble with organ O in a level L;

• urgency(X,E) : The recipient X has an urgency E in
order to be transplanted1;

• temperature(X,T) : The recipient X has a temperature
T.

Now, let us suppose that there are two possible recipi-
ents (r1 and r2) and we want to assign a heart. Then, let
us consider the following grounded possibilistic program P:

The heart will be assigned to one of the recipients.

certain: elec(r1, heart) ∨ elec(r2, heart).

It is possible that if the receptor r1 has a high histo-
compatibility with the heart, then r1 will be eligible for
transplanting.

maybe: elec(r1, heart) ←
compatible(r1, heart, high).

It is true that r1 has a high histocompatibility with the heart.

certain: compatible(r1, heart, high).

It is very likely that if the receptor r1 is in 0-urgency, then
r1 will be eligible for transplanting.

1In Spain, there are tree levels of urgency to consider the recipient’s
risk. We will suppose that 0-urgency is the highest urgency-level. This
means that recipient’s life is at risk.



likely: elec(r1, heart)← urgency(r1, 0-urgency).

It is very unlikely that r1 could be in 0-urgency.

unlikely:urgency(r1, 0-urgency).
It is likely that if r1 has high temperature, then r1 will not
be eligible for transplanting.

likely: ¬elec(r1, heart)← temperature(r1, high).

It is true that the recipient r1 has high temperature.

certain: temperature(r1, high).

Let us suppose that the recipient r2 could be eligible for
transplanting if the recipient r1 is not explicitly eligible.

maybe: elec(r2)← not ¬elec(r1, heart).

It is unlikely that the recipient could be eligible if he has
low histocompatibility.

unlikely: elec(r2, heart) ←
compatible(r2, heart, low).

It is certain that the recipient has low histocompatibility.

certain: compatible(r2, heart, low).

By considering the program P , we want to know: who is
eligible for transplanting ( recipient r1 or recipient r2)? At
the end of Section 3, we will answer this question.

2.2.4 Possibilistic Semantics

The semantics of the possibilistic disjunctive logic pro-
grams is defined in terms of a syntactic reduction which is
defined as follows:

Definition 2 (Reduction PM ) Let P = 〈(Q,≤), N〉 be
a possibilistic disjunctive logic program, M be a set
of atoms. P reduced by M is the positive possibilistic
disjunctive program:

PM := {(n(r) : A ∩M ← B+)|r ∈ N,A ∩M 6= ∅,
B− ∩M = ∅,B+ ⊆M}

where r∗ is of the form A ← B+, not B−.

Notice that (P ∗)M is not exactly the Gelfond-Lifschitz
reduction. In fact, our reduction is stronger than Gelfond-
Lifschitz reduction when P ∗ is a disjunctive program. The
reduced program (PM

∗
)∗ always is either a positive dis-

junctive logic program or a definite logic program.

Example 2 Let P be the possibilistic program of Example
1 and let

S := {(compatible(r2, heart, low), certain),
(compatible(r1, heart, high), certain),
(temperature(r1, high), certain),
(urgency(r1, 0-urgency), unlikely),
(elec(r1, heart),maybe),
(¬elec(r1, heart), likely),
(elec(r2, heart), unlikely)}.

We can see that PS
∗

is:

certain: elec(r1, heart) ∨ elec(r2, heart).
maybe: elec(r1, heart)← compatible(r1, heart, high).
certain: compatible(r1, heart, high).
likely: elec(r1, heart)← urgency(r1, 0-urgency)
unlikely: urgency(r1, 0-urgency).
likely: ¬elec(r1, heart)← temperature(r1, high).
certain: temperature(r1, high).
unlikely: elec(r2, heart)← compatible(r2, heart, low).
certain: compatible(r2, heart, low).

Once a possibilistic logic program P has been reduced
by a set of possibilistic atoms M , it is possible to test
whether M is a possibilistic answer set of the program P
by considering the following definition.

Definition 3 (Possibilistic answer set) Let P = 〈(Q,≤
), N〉 be a possibilistic disjunctive logic program and M
be a set of possibilistic atoms such that M∗ is an answer
set of P ∗. M is a possibilistic answer set of P if and only
if PM

∗ `PL M and @M ′ ∈ PS such that M ′ 6= M ,
P (M ′)∗ `PL M ′ and M vM ′.

Let us consider the following example in order to illus-
trate the definition.

Example 3 Let P be again the possibilistic program of Ex-
ample 1 and S be the possibilistic set of atoms introduced
in Example 2. First of all, we can see that S∗ is an answer
set of the extended disjunctive program P ∗. Hence, in or-
der to prove that S is a possibilistic answer set of P , we
have to verify that PS

∗ `PL S. This means that for each
possibilistic atom p ∈ S, PS

∗ `PL p.
We can see that it is straightforward that

PS
∗ `PL {(compatible(r2, heart, low), certain),

(compatible(r1, heart, high), certain),
(temperature(r1, high), certain),
(urgency(r1, 0-urgency), unlikely)}.

Now let us prove (elec(r1, heart),maybe) from PS
∗
.

Premise from PS
∗

1. compatible(r1, heart, high)→ elec(r1, heart) maybe
Premise from PS

∗

2. compatible(r1, heart, high)certain



From 1 and 2 by GMP
3. elec(r1, heart) maybe

The proofs of the possibilistic
atoms (¬elec(r1, heart), likely) and
(elec(r2, heart), unlikely)} are similar to the proof
of the possibilistic atom (elec(r1, heart),maybe). There-
fore, we can say that PS

∗ `PL S is true.
It is not difficult to see that there does not exist a possi-

bilistic set S′ such that P (S′)∗ `PL S′ and S′ v S. Hence,
we can infer that S is a possibilistic answer set of P .

3 Argumentation based inference

The argumentation-based inference procedure consists
of two steps: constructing possibilistic arguments and man-
aging conflict between possibilistic arguments. Thus, we
shall start by defining how to build arguments from a possi-
bilistic program.

3.1 Building arguments

A possibilistic argument is based on possibilistic answer
sets and is defined as follows:

Definition 4 (Possibilistic argument) Let P = 〈(Q,≤
), N〉 be a possibilistic logic program. A possibilistic ar-
gument Arg w.r.t. P is a tuple of the form Arg =
〈Claim, Support, q〉, such that there is a possibilistic an-
swer set M of P such that (Claim, q) ∈M and the follow-
ing conditions hold:

1. Support ⊆ P ;

2. SupportM `PL (Claim, q); and

3. Support is minimal w.r.t. set inclusion.

ARGP gathers all the possibilistic arguments which can be
constructed from P .

Notice that (Claim, q) is a possibilistic atom; hence, Claim
is an atom and q ∈ Q. We want to point out that q is re-
garded as a possibilistic qualifier which has the objective of
quantifying the level of certainty of the argument. Support
is the minimal subset of P such that SupportM `PL
(Claim, q).

In order to illustrate the definition, let us consider the
following example:

Example 4 Let us consider again our possibilistic pro-
gram P of Example 1. In Example 3, we have already seen
that P has a possibilistic answer set which is:

S := {(compatible(r2, heart, low), certain),
(compatible(r1, heart, high), certain),
(temperature(r1, high), certain),
(urgency(r1, 0-urgency), unlikely),
(elec(r1, heart),maybe),
(¬elec(r1, heart), likely),
(elec(r2, heart), unlikely)}.

In Example 3, we saw that there is a proof for the possi-
bilistic atom (elec(r1, heart),maybe), hence we can build
a possibilistic arguments which suggests that the recipient
r1 is eligible for transplanting.

Arg1 =

〈elec(r1, heart),
{Maybe : elec(r1, heart)← compatible(r1, heart, high);
Certain : compatible(r1, heart, high)},
maybe〉

The intuitive reading of the argumentArg1 is that it is prob-
able that the recipient could be eligible for transplanting be-
cause it has a high level of histocompatible with the heart.

3.2 Managing conflict between possibilis-
tic arguments

In the case that a rational agent’s knowledge base
is inconsistent, there is a possibilistic answer set M
such that {(a, q1), (¬a, q2)} ⊆ M . For instance,
let S be the answer set of Example 3. Notice that
S is an inconsistent possibilistic answer set because
(elec(r1, heart),maybe), (¬elec(r1, heart), likely) ∈ S.
When there is an inconsistent possibilistic answer set,
one can construct two possibilistic arguments of the
form: Arg1 = 〈a, Support1, q1〉 and Arg2 =
〈¬a, Support2, q2〉. This means that these arguments at-
tack each other, then there is a conflict between them. The
conflicts between possibilistic arguments are formalized by
the following definitions.

Definition 5 Let Arg1, Arg2 ∈ ARGP such that Arg1 =
〈Claim1, Support1, q1〉 andArg2 = 〈Claim2, Support2,

q2〉. Arg1 attacks Arg2, if Claim1 = l and Claim2 = l̃.

Definition 6 Let Arg1, Arg2 ∈ ARGP . Arg1 =
〈Claim1, Support1, q1〉 undercuts Arg2 = 〈Claim2,
Support2, q2〉 if and only if ∃(q : l ← B+, not B−) ∈
Support2 such that Claim1 ∈ B−.

Notice that, the concept of undercut is just over literals
negated by negation as failure, this means that if Arg1 un-
dercuts Arg2, then Arg1 is attacking Arg2’s assumptions.
Two arguments are compared by considering their certainty
levels as follows:



Definition 7 Let Arg1, Arg2 ∈ ARGP such that Arg1 =
〈Claim1, Support1, q1〉 andArg2 = 〈Claim2, Support2,
q2〉. Arg1 is preferred to Arg2 if and only if q1 ≥ q2.

Once is identified a conflict between arguments, it is im-
portant to identify which arguments win a discussion. Then,
the concept of defeat is defined as follows:

Definition 8 Let Arg1, Arg2 ∈ ARGP such that Arg1 =
〈Claim1, Support1, q1〉 and Arg2 = 〈Claim2,
Support2, q2〉. Arg1 defeats Arg2, if Arg1 at-
tacks/undercuts Arg2 and it is not the case that Arg2 is
preferred to Arg1.

Notice that, ifArg1 defeatsArg2, thenArg1’s claim has
a support with more evidence/certainty that Arg2. In order
to illustrate those definitions, let us consider the following
example.

Example 5 Again let us consider Example 1. In that exam-
ple, we want to decide which recipient is the best option for
being transplanted his heart. We have already seen that the
representation of this scenario is an inconsistent knowledge
base. In fact, it has an inconsistent possibilistic answer set
S. Hence, there are arguments which attack each other.
Notice that for each possibilistic atom which belongs to S,
there is a possibilistic argument which support that possi-
bilistic atom.

In order to be clear, we will only consider the arguments
which are related to the predicate elec. Hence, we can build
three arguments. The first one was introduced in Example
4.

Arg1 =

〈elec(r1, heart),
{Maybe : elec(r1, heart)← compatible(r1, heart, high);
Certain : compatible(r1, heart, high)},
maybe〉

This argument suggests that it is probable that the recipient
r1 could be eligible for transplanting because he has a high
level of histocompatible with the heart. However, we can
build another argument which attacks argument Arg1.

Arg2 =

〈¬elec(r1, heart),
{Likely : ¬elec(r1, heart)← temperature(r1, high);
Certain : temperature(r1, high)},
Likely〉

Arg2 suggests that it is really likely that the recipient r1
could not be eligible for transplanting because he has fever.

Notice that Arg2 has a possibilistic quantifier which is
stronger than the possibilistic quantifier of argument Arg1.
Hence, we can say that Arg2 is preferred to Arg1. There-
fore Arg2 defeats Arg1. This means that r1 is not a good
candidate for being transplanted his heart.

There is a third argument which suggests that the recipi-
ent r2 could be eligible for transplanting.

Arg3 =

〈elec(r2, heart),
{unlikely : elec(r2, heart)← compatible(r2, heart, low);
certain : compatible(r2, heart, low)}, unlikely〉

Arg3 suggests that the recipient r2 is unlikely to be eligible
for transplanting; however we have already known that the
recipient r1 is not a good candidate for transplanting be-
cause he has fever. Hence, we can say that r2 is the best
candidate for transplanting.

In order to formalize the managing of conflicts between
possibilistic arguments, we will use Dung’s approach [18]
for solving the conflicts of a set of possibilistic arguments.
Hence, we will define some basic concept that was intro-
duced in [18] in terms of our possibilistic arguments.

Definition 9 (Possibilistic Argumentation Framework)
Given a possibilistic logic program, a possi-
bilistic argumentation framework AF w.r.t. P
is the tuple AF = 〈ARGP , Attacks〉, where
Attacks = attacks ∪ undercuts such that attacks
contains the relations of attack between the arguments of
ARGP and undercuts contains the relations of undercut
between the arguments of ARGP .

Observe that essentially, we are instantiating the Dung’s
argumentation approach into possibilistic arguments. Re-
member that each possibilistic argument has as a possibilis-
tic quantifier which was regarded as a preference level (Def-
inition 7) for solving the conflict between two possibilistic
arguments ( Definition 8).

In order to illustrate the definition, let us consider the
arguments of Example 5. Then AFExample5 is the tuple
〈{Arg1, Arg2, Arg3}, {(Arg1, Arg2), (Arg2, Arg1)} 〉.

Once a structure for capturing the conflicts that exist
within a set of possibilistic arguments is defined, the next
objective is to choose a reasonable subset of arguments
from ARGP . For this purpose, Dung defined a set of pat-
terns, called argumentation semantics, that allow to evaluate
a set of arguments in conflict. Some well-known Dung’s ar-
gumentation semantics are defined as follows:

Definition 10 Let AF = 〈ARGP , Attacks 〉 be a possi-
bilistic argumentation framework and S ⊆ ARGP .



1. S is a conflict-free set of arguments if there are no ar-
guments a, b in S such that a attacks/undercuts b.

2. An argument a ∈ ARGP is acceptable w.r.t. S if
and only if for each argument b ∈ ARGP : If b at-
tacks/undercuts a then b is defeated by an argument in
S.

3. A conflict-free set of arguments S is admissible if and
only if each argument in S is acceptable w.r.t. S.

4. A preferred extension of an argumentation framework
AF is a maximal (w.r.t. inclusion) admissible set of
AF .

5. A conflict-free set of arguments S is called a stable
extension if and only if S attacks each argument which
does not belong to S.

In order to illustrate the definition, let us consider
AFExample5:

• If S = {Arg2}, then Arg2 is acceptable w.r.t. S be-
cause the only argument which attacks Arg2 is Arg1,
but Arg2 defeats Arg1.

• If S = {Arg1, Arg2}, then S is not a conflict-free set
because Arg1 and Arg2 attack each other. It is worth
to comment that conflict-freeness is a simple but im-
portant requirement in the selection of sets of argu-
ments. In fact, Baroni and Giocomin in [10] pointed
out that conflict-freeness is the minimal requirement
in the selection of coherent point of view in a conflict
of arguments.

• If we consider S = {Arg2, Arg3}, then S is an ad-
missible set. Observe that an admissible set intuitively
represents a coherent point of view in a conflict of ar-
guments.

• We can see that AFExample5 has four admissible set:
S1 = {}, S2 = {Arg2}, S3 = {Arg3}, and S4 =
{Arg2, Arg3}. The maximal admissible set w.r.t. set
inclusion is S4, therefore S4 is the only possibilistic
preferred extension of AFExample5 and also it is a sta-
ble extension.

4 Some properties of the possibilistic argu-
ments

In this section, we will present some relevant properties
w.r.t. possibilistic argumentation frameworks.

The first property that we want to introduce is one w.r.t.
consistent information. It is worth to comment that in do-
mains of high-risk, as medical domain, it is important to in-
fer sound information. The possibilistic preferred semantics

implies consistent information. This property is formalized
with the following theorem:

Proposition 1 (Consistency Information) Let
AF = 〈ARGP , Attacks 〉 be a possibilistic argu-
mentation framework and S ⊆ ARG. If S is a possibilistic
preferred/stable extension, then the following condition
holds: If Cs = {Claim|〈Claim, Support, q〉 ∈ S}, then
Cs is a consistent set of literals.

Proof: (sketch) This theorem follows from the fact that any
preferred/stable extension is a conflict-free set. Then it is
straightforward that Cs is consistent.

As we have commented, our possibilistic argumentation
approach is based on possibilistic logic and answer set pro-
gramming. Possibilistic logic has a basic principle that:

The strength of a conclusion is the strength of the
weakest argument used in its proof.

In fact, according to Dubois and Prade [17], the contribution
of possibilistic logic setting is to relate this principle (mea-
suring the validity of an inference chain by its weakest link)
to fuzzy set-based necessity measures in the framework of
Zadeh’s possibilistic theory.

This basic principle of possibilistic logic will give
an interesting property to any possibilistic argument:
The strength of a possibilistic argument Arg =
〈Claim, Support, q〉 will be the strength of the weakest
possibilistic clause of Support.

In order to prove this property, let us introduce the fol-
lowing lemma:

Lemma 1 Let P be a possibilistic logic program and
Arg = 〈Claim, Support, q〉 be a possibilistic argument
w.r.t. P . Then

Support ⊆ Pq

Proof: (sketch) The result follows from the followings two
observations:

1. By Definition 4, we know that SupportM `PL
(Claim, q) and Support is minimal w.r.t. set inclu-
sion.

2. By Proposition 11 of [16], it is true that Γ `PL
(Claim, q) if and only if Γq `PL (Claim, q).

By considering this lemma, we formalize the following
result.

Proposition 2 (Weakest link) Let P be a possibilistic
logic program an Arg = 〈Claim, Support, q〉 be a pos-
sibilistic argument w.r.t. P . Then

q = GLB{n(r)|r ∈ Support}



Proof: The result is direct by Lemma 1.
The property of the weakest link has been discussed by

some authors [7, 5] as an important property because it
could help

• to allow an agent to compare different arguments in
order to select the best one and

• to determine the acceptable arguments among the con-
flicting ones.

5. The Existence of Possibilistic Arguments

In §3, we defined how to build arguments from a pos-
sibilistic knowledge base based on the possibilistic answer
sets of a possibilistic knowledge base. Now, a good ques-
tion is:

Can we build possibilistic arguments from any
possibilistic knowledge base?

The answer is: NO! The big problem is that there are pos-
sibilistic programs which have no any possibilistic answer
set. For instance, let us consider the following possibilistic
program P :

α : a← not a

This program has no any possibilistic answer set; hence, we
cannot build any possibilistic argument from this possibilis-
tic program. In fact, the existence of one clause of this form
will affect all the possibilistic knowledge base in such a way
that the possibilistic knowledge base will not have a possi-
bilistic answer set; and therefore, it cannot also infer any
possibilistic argument.

In [40], another approach for capturing the semantics
of possibilistic disjunctive programs was defined. This ap-
proach is based on the possibilistic logic programming se-
mantics pstable. Like in the possibilistic answer set seman-
tics, the possibilistic pstable semantics is based on possi-
bilistic logic; however it is less sensitive than the answer
set semantics (in the sense of inconsistency). For instance
the possibilistic logic program P has a possibilistic pstable
moded which is {(a, α)}. Hence by considering possibilis-
tic pstable models instead of possibilistic answer sets in
Definition 4, one can build the following possibilistic ar-
gument:

Arg = 〈a, {α : a← not a}, α〉

Even though the possibilistic pstable semantics is less
sensitive than the possibilistic answer set semantics, we can
not ensure that by building possibilistic arguments under

the possibilistic pstable semantics, any possibilistic knowl-
edge base will infer possibilistic arguments. This is be-
cause there are possibilistic programs that have no pos-
sibilistic pstable as well. For instance, let us consider
the following possibilistic program Pinc under the lattice
〈{0, 0.1, 0.2, . . . , 0.9, 1},≤〉:

0.3 : a← not b.
0.5 : b← not c.
0.6 : c← not a.

Observe that P ∗inc has no answer sets neither pstable mod-
els; hence, Pinc has no possibilistic answer sets neither
possibilistic pstable models. Hence, once again we cannot
build any possibilistic argument from Pinc.

In order to restore consistency of an inconsistent possi-
bilistic knowledge base, possibilistic logic deletes the set of
possibilistic formulæ which are lower than the inconsistent
degree of the inconsistent knowledge base. By considering
this idea, the authors of [34] defined the concept of α-cut
for possibilistic logic programs. This idea also was taken
in [36] in order to restore consistency in any inconsistent
possibilistic program, in the context of the possibilistic an-
swer set and pstable semantics. For instance by applying
α-cut to Pinc, we can reduce this program to the program
PConsCutDeg(Pinc) is (see [36] for details):

0.5 : b← not c.
0.6 : c← not a.

Observe that this program has a possibilistic answer set
which is {(c, 0.6)}2. Hence thanks to the strict α-cut of
P , one is able to infer the following possibilistic argument:

Arg = 〈c, {0.6 : c← not a}, 0.6〉
Observe that by considering the argumentation approach

presented in this paper and the natural features of the pos-
sibilistic logic programming approach presented in [39, 38,
40, 36], we are not only able to manage conflict informa-
tion but also we are able to restore inconsistent knowledge
based.

It is worth to comment that in [3], a possibilistic logic
programming approach is defined over the many-valued
Gödel logic. The syntax of this approach is restricted to a
Horn-clause sublanguage of the many-valued Gödel logic;
hence it is unable to capture default negation and disjunctive
clauses.

6 Related work

Even though humans currently use arguments for ex-
plaining choices which are already made, or for eval-

2Remember that any possibilistic answer set is also a possibilistic
pstable model.



uating potential choices, there are few proposals based
on arguments for handling decision making where evi-
dence/uncertainty plays a central role. In fact, we can
point out three main approaches on this topic: Bonet and
Geffner [11], works based on Logic of Argumentation (LA)
[28] and more recently works based on the Possibilistic
Logic (PL) [6, 1, 2]. From our point of view, all these ap-
proaches have relevant properties. However, their expres-
sive power is quite limited for capturing incomplete infor-
mation and incomplete states of a knowledge base at the
same time. To find a representation of the information un-
der evidence/uncertainty has been subject of much debate.
For those steeped in probability, there is only one appropri-
ate model for numeric uncertainty, and that is probability.
But probability has its problems. For one thing, the num-
bers are not always available. For another, the commitment
to numbers means that any two events must be comparable
in terms of probability: either one event is more probable
than the other, or they have equal probability [24].

In [13], it was proposed an interesting argumentation ap-
proach where the degree of belief in the argument’s con-
clusion depends on the degree of belief in the argument’s
premises. This approach is so useful when the applica-
tion domain permits to define probability links between
premises and conclusions of an argument. In our definition
of possibilistic argument, we also make a direct relation be-
tween the degree of belief in the argument’s conclusion and
the degree of belief in the argument’s premises like [13]’s
approach. However, our approach does not depend of prob-
ability relations. Mainly, it takes relevance when in an ap-
plication domain it is difficult to define probability relations
as it is the case in the medical domain. It is important to
point out that sometimes when we are using a probability
approach; one of the hardest parts for solving a problem is
to identify the probability relations3. However, sometimes
it is enough to have just relative likelihoods for modeling
different levels of evidence/uncertainty e.g., possible, prob-
able, plausible, etc., where each relative likelihood is a pos-
sible world/class of beliefs. Also by considering a partial
order� for ordering the relative likelihoods, we can provide
a likelihood ordering for the worlds/classes of believes.

It is worth to comment that programming with uncer-
tainty is an extensively research area. In fact, it has pro-
ceeded along various research lines of logic logic program-
ming. An interesting historical recollection in this topic was
recently presented by V. S. Subrahmanian in [44]. In this
recollection he highlights some phases in the evolution of
the topic from the viewpoint of a committed researcher.

Research on logic programming with uncertainty has
dealt with various approaches of logic programming se-
mantics, as well as different applications. Most of the ap-

3The reader could see [24], where it is presented a discussion of some
of the problems to find a numerical representation for uncertainty.

proaches in the literature employ one of the following for-
malisms:

• annotated logic programming, e.g., [27].

• probabilistic logic, e.g., [33, 30, 26].

• fuzzy set theory, e.g., [48, 42, 35].

• multi-valued logic, e.g., [19, 29].

• evidence theoretic logic programming, e.g., [8].

• possibilistic logic, e.g., [15, 4, 3, 2, 34].

Basically, these approaches differ in the underlying no-
tion of uncertainty and how uncertainty values, associated
to clauses and facts, are managed.

To prioritize logic clauses, as it is done in our possibilis-
tic approach, can be also regarded as a preference relation
between rules. In fact, by considering the certainty degrees
as preferences, it was defined a preference relations between
arguments (Definition 7). The use of qualitative preferences
in logic programming has been suggested by authors as G.
Brewka in [12]. The Brewka’s approach is also motivated
from the fact that a variety of applications numerical infor-
mation is hard to obtain. To have a correct understanding
of the relationship between Brewka’s approach and our ap-
proach requires a deep analysis.

7 Conclusions

In this paper we present an argumentation approach
which has a rich specification language for encoding knowl-
edge under imprecise or uncertain information. For in-
stance, our approach permits to use two kinds of negation:
strong negation and negation as failure, instead of only one,
strong negation, as it is the case of all the well-known ap-
proaches. In fact, our approach is the result of the combina-
tion of a successful non-monotonic approach (Answer Set
Programming [9]) and some standard ideas of the most rep-
resentative argumentation approach e.g., Dung’s approach
[18], LA’s approach [28], and PL’s approach [6].

We propose a possibilistic-based argumentation ap-
proach which has a rich specification language based on
possibilistic answer set programming. The specification
language is able to capture incomplete information and in-
complete states of a knowledge base at the same time. By
using a possibilistic specification language and the concept
of possibilistic answer set, we define the concept of possi-
bilistic argument. A possibilistic argument emphasizes in
the evidence/uncertainty knowledge that supports its con-
clusion. Also by considering the evidence of each argu-
ment, it is presented a conflict managing approach between
possibilistic arguments. This approach also manages the in-
consistency of a possibilistic knowledge base.
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