
Improving Cloud Service Resilience using
Brownout-Aware Load-Balancing

Cristian Klein∗, Alessandro Vittorio Papadopoulos†, Manfred Dellkrantz†, Jonas Dürango†,
Martina Maggio†, Karl-Erik Årzén†, Francisco Hernández-Rodriguez∗, Erik Elmroth∗

∗Department of Computing Science, Umeå University, Sweden
{cklein, francisco, elmroth}@cs.umu.se

†Department of Automatic Control, Lund University, Sweden
{alessandro, manfred, jonas, martina, karlerik}@control.lth.se

Abstract—We focus on improving resilience of cloud services
(e.g., e-commerce website), when correlated or cascading failures
lead to computing capacity shortage. We study how to extend
the classical cloud service architecture composed of a load-
balancer and replicas with a recently proposed self-adaptive
paradigm called brownout. Such services are able to reduce
their capacity requirements by degrading user experience (e.g.,
disabling recommendations).

Combining resilience with the brownout paradigm is to date
an open practical problem. The issue is to ensure that replica
self-adaptivity would not confuse the load-balancing algorithm,
overloading replicas that are already struggling with capacity
shortage. For example, load-balancing strategies based on re-
sponse times are not able to decide which replicas should be
selected, since the response times are already controlled by the
brownout paradigm.

In this paper we propose two novel brownout-aware load-
balancing algorithms. To test their practical applicability, we
extended the popular lighttpd web server and load-balancer,
thus obtaining a production-ready implementation. Experimental
evaluation shows that the approach enables cloud services to
remain responsive despite cascading failures. Moreover, when
compared to Shortest Queue First (SQF), believed to be near-
optimal in the non-adaptive case, our algorithms improve user
experience by 5%, with high statistical significance, while pre-
serving response time predictability.

I. INTRODUCTION

Due to their ever-increasing scale and complexity, hardware
failures in cloud computing infrastructures are the norm rather
than the exception [1], [2]. This is why Internet-scale interac-
tive applications – also called services – such as e-commerce
websites, include replication early in their design [3]. This
makes the service not only more scalable, i.e., more users can
be served by adding more replicas, but also more resilient
to failures: In case a replica fails, other replicas can take
over. In a replicated setup, a single or replicated load-balancer
is responsible for monitoring replicas’ health and directing
requests as appropriate. Indeed, this practice is well established
and can successfully deal with failures as long as computing
capacity is sufficient [3].

However, failures in cloud infrastructures are often corre-
lated in time and space [4], [5]. Therefore, it may be econom-
ically inefficient for the service provider to provision enough
spare capacity for dealing with all failures in a satisfactory
manner. This means that, in case correlated failures occur, the

service may saturate, i.e., it can no longer serve users in a
timely manner. This in turn leads to dissatisfied users, that may
abandon the service, thus incurring long-term revenue loss to
the service provider. Note that the saturated service causes
infrastructure overload, which by itself may trigger additional
failures [6], thus aggravating the initial situation. Hence, a
mechanism is required to deal with rare, cascading failures,
that feature temporary capacity shortage.

A promising self-adaptation technique that would allow
dealing with this issue is brownout [7]. In essence, a service
is extended to serve requests in two modes: with mandatory
content only, such as product description in an e-commerce
website, and with both mandatory and optional content, such
as recommendations of similar products. Serving more re-
quests with optional content, increases the revenue of the
provider [8], but also the capacity requirements of the service.
A carefully designed controller decides the ratio of requests
to serve with optional content, so as to keep the response
time below the user’s tolerable waiting time [9]. From the
data-center’s point-of-view, the service modulates its capacity
requirements to match available capacity.

Brownout has been successfully applied to services featur-
ing a single replica. Extending it to multiple replicas needs to
be done carefully: The self-adaptation of each replica may con-
fuse commonly used load-balancing algorithms (Section II).

In this paper we enhance the resilience of replicated services
through brownout. In other words, the service performs better
at hiding failures from the user, as measured in the number of
timeouts a user would observe. As a first step, a commonly-
used load-balancing algorithm, Shortest Queue First (SQF),
proved adequate for most scenarios. However, we found a few
corner cases where the performance of the load-balancer could
be improved using two novel, queue-length-based, brownout-
aware algorithms that are fully event-driven.

Our contribution is three-fold:
1) We present two novel load-balancing algorithms, specif-

ically designed for brownout services (Section III-A).
2) We provide a production-ready brownout-aware load-

balancer (Section III-B).
3) We compare fault-tolerance without and with brownout,

and existing load-balancing algorithms to our novel ones
(Section IV).



Results show that the resulting service can tolerate more
replica failures and that the novel load-balancing algorithms
improve the number of requests served with optional content,
and thus the revenue of the provider by up to 5%, with high
statistical significance. Note that SQF is thought to be near-
optimal, in the sense that it minimizes average response time
for non-adaptive services [10].

To make our results reproducible and foster further research
on improved resilience through brownout, we make all source
code available online1.

II. BACKGROUND AND MOTIVATION

In this section we provide the relevant background and
define the challenge to address with respect to previous
contributions.

A. Single Replica Brownout Services

To provide predictable performance in cloud services, the
brownout paradigm [7] relies on a few, minimally intrusive
code changes (e.g., 8 lines of code) and an online adaptation
strategy that controls the response time of a single-replica
based service. The service programmer builds a brownout-
compliant cloud service breaking the service code into two
distinct subsets: Some functions are marked as mandatory,
while others as optional. For example, in an e-commerce
website, retrieving the characteristics of a product from the
database can be seen as mandatory – a user would not consider
the response useful without this information – while obtaining
comments and recommendations of similar products can be
seen as optional – this information enhances the quality of
experience of the user, but the response is useful without them.

For a brownout-compliant service, whenever a request is
received, the mandatory part of the response is always com-
puted, whereas the optional part of the response is produced
only with a certain probability given by a control variable,
called the dimmer value. Not executing the optional code
reduces the computing capacity requirements of the service,
but also degrades user experience. Clearly, the user would have
a better experience seeing optional content, such as related
products and comments from other users. However, in case of
overload and transient failure conditions, it is better to obtain
partial information than to have increased response times or
no response, due to insufficient capacity.

Keeping the service responsive is done by adjusting the
probability of executing the optional components [7]. Specif-
ically, a controller monitors response times and adjusts the
dimmer value to keep the 95th percentile response time
observed by the users around a certain setpoint. Focusing on
95th percentile instead of average, allows more users to receive
a timely response, hence improve their satisfaction [11]. A
setpoint of 1 second can be used, to leave a safety margin to
the user’s tolerable waiting time, estimated to be around 4 sec-
onds [9]. While the initial purpose of the brownout control
was to enhance the service’s tolerance to a sudden increase

1https://github.com/cloud-control/brownout-lb-lighttpd

in popularity, it also significantly improves responsiveness
during infrastructure overload phases, when the service is not
allocated enough capacity to manage the amount of incoming
requests without degrading the user experience. However, the
brownout approach was used only in services composed of
a single replica, thus the service could not tolerate hardware
failures.

Let us briefly describe the design of the controller. Denoting
the dimmer value with Θ and using a simple and useful
model, we assume that the 95th percentile response time of
the service, measured at regular time intervals, follows the
equation

t(k+1) = α(k) ·Θ(k)+δ t(k), (1)

i.e., the 95th percentile response time t(k + 1) of all the
requests that are served between time index k and time index
k+1 depends on a time varying unknown parameter α(k) and
can have some disturbance δ t(k) that is a priori unmeasurable.
α(k) takes into account how the dimmer Θ affects the response
time, while δ t(k) is an additive correction term that models
variations that do not depend on the dimmer choice — for
example, variation in retrieval time of data due to cache hit or
miss. Notice that the used model ignores the time needed to
compute the mandatory part of the response, but it captures
the service behavior enough for the control action to be useful.
The controller design aims for canceling the disturbance δ t(k)
and selecting the value of Θ(k) so that the 95th percentile
response time would be equal to the setpoint value.

With a control-theoretical analysis [7], it is possible to select
the dimmer value to provide some guarantees on the service
behavior. The selection is based on the adaptive proportional
and integral controller

Θ(k+1) = Θ(k)+
1− p1

α̃(k)
· e(k), (2)

where the value α̃(k) is an estimate of the unknown parameter
α(k) computed with a Recursive Least Square (RLS) filter.
The error e(k) is the difference measured at time index k
between the setpoint for the response time and its measured
value, p1 is a parameter of the controller, that allows to trade
reactivity for robustness. A formal analysis of the guarantees
provided by the controller and the effect of the value of p1
can be found in [7].

Besides computing a new dimmer value, the model param-
eter α is re-estimated as α̃(k), which is computed using the
last estimation α̃(k−1), the measured response time t(k) and
the current dimmer θ(k), as illustrated in the following RLS
filter equations

ε(k) =t(k)−Θ(k)α̃(k−1)

g(k) =P(k−1)Θ(k)
[

f +Θ(k)2P(k−1)
]−1

P(k) = f−1 [P(k−1)−g(k)Θ(k)P(k−1)]
α̃(k) =α(k−1)+ ε(k)g(k),

(3)

where ε is the so called “prediction error”, g is a gain factor,
f is a “forgetting factor” and P is the covariance matrix of the
prediction error.



clients load-balancer ...

replica1

replican

...

controller1

controllern

λ
λ1

λn

t1

θ1

tn

θn
Fig. 1. Architecture of a brownout cloud service featuring multiple replicas.

Through empirical testing on two popular cloud applica-
tions, RUBiS [12] and RUBBoS, we found the following
values to give a good trade-off between reactivity and stability:
p1 = 0.9 and f = 0.95. In the end, making a single-replica
cloud service brownout-compliant improves its robustness to
sudden increases in popularity and infrastructure overload.

B. Multiple Replica Brownout-Compliant Services

For fault tolerance, cloud services should feature multiple
replicas. Fig. 1 illustrates the software architecture that is
deployed to execute a brownout-compliant service composed
of multiple replicas. Besides the addition of replica controllers
to make it brownout-compliant, the architecture is widely
accepted as the reference one for replicated cloud services [1].

In the given cloud service architecture, access can only
happen through the load-balancer. The client requests are
assumed to arrive at an unknown but measurable rate λ . Each
client request is received by the load-balancer, that forwards
it to one of the n replicas. Each replica independently decides
if the request should be served with or without the optional
part. The chosen replica produces the response and sends it
back to the load-balancer, which forwards it to the original
client. Since all responses of the replicas go through the load-
balancer, it is possible to piggy-back the current value of the
dimmer Θi of each replica i through the response, so that this
value can be observed by the load-balancer.

For better decoupling and redundancy, the load-balancer
does not have any knowledge on how each replica controller
adjusts Θi. Hence, the load-balancer only stores soft state,
reducing impact in case of failover to a backup load-balancer.
Also, operators can deploy our solution incrementally, first
adding brownout to replicas, then upgrading the load-balancer.

In the end, each replica i receives a fraction λi of the
incoming traffic and serves requests with a 95th percentile
response time around the same setpoint of 1 second. Each
replica i chooses a dimmer Θi that depends on the amount of
traffic it receives and the computing capacity available to it.
Noteworthy is the fact that by directing too many requests to
a certain replica the load-balancer may indirectly decrease the
amount of optional requests served by that replica.

Preliminary simulation results [13] compared different load-
balancing algorithms for this architecture, such as round-robin,
fastest replica first, random and two random choices. The main
result of this comparison is that load-balancing algorithms that
are based on measurements of the response times of the single
replicas are not suited to be used with brownout-compliant
services, since the replica controllers already keep the response
times close to the setpoint. The only existing algorithm that
proved to work adequately with brownout-compliant services

is Shortest Queue First (SQF) [10], [13]. It works by tracking
the number of queued requests qi on each replica and directing
the next request to the replica with the lowest qi.

However, SQF proved to be inadequate for maximizing the
optional content served, such as recommendations, hence pro-
ducing lower revenues for the service provider [8]. Brownout-
aware load-balancers do better in maximizing the optional
component served. However, to date, only weight-based algo-
rithms were considered, where each replica gets a fraction of
the incoming traffic proportional to a dynamic weight. A con-
troller periodically adjusts the weights based on the dimmer
values of each replica [13]. Results suggested that deciding
periodically gives good results in steady-state, however, the
resulting service is not reactive enough to sudden capacity
changes, as would be the case when a replica fails.

C. Problem Statement
The main objective is to improve resilience of cloud ser-

vices. On one hand, the service should serve requests with
a 95th percentile response time as close as possible to the
setpoint. On the other hand, the service should maximize the
optional content served.

In this paper we propose novel brownout-aware load-
balancers that are event-based, for better reactivity. We limit
the comparison to SQF, since it was shown to be the only
reasonable choice to maximize optional content in brownout-
compliant services.

III. DESIGN AND IMPLEMENTATION

This section describes the core of our contribution, two load-
balancing algorithms and a production-ready implementation.

A. Brownout-Compliant Load-Balancing Algorithms
Here we discuss two brownout-compliant control-based

load-balancing algorithms. Those are based on some ideas
presented in [13], but with two major modifications. First, all
the techniques proposed in [13] are trying to maximize the
optional content served by acting on the fraction of incoming
traffic sent to a specific replica, while here the algorithms are
acting in an SQF-like way but with queue-offsets that are
dynamically changed in time. The queue-offsets ui take into
account the measured performance of each replica i in terms
of dimmers, and are subtracted from the actual value of the
queue length qi so as to send the request to the replica with
the lowest qi−ui.

The second and most important modification is that in [13]
all the algorithms run periodically, independently of the incom-
ing traffic, while in this paper we are considering algorithms
that are fully event-driven, updating the queue-offsets and
taking a decision for each request. Therefore all gains in the
two following algorithms need to be scaled by the time elapsed
since the last queue-offsets update.

These two modifications highly improve the achieved per-
formance, both in terms of optional content served and re-
sponse time, rendering the service more reactive to sudden
capacity changes, as is the case with failures. Let us now
present two algorithms for computing the queue-offsets ui.



1) PI-Based Heuristic (PIBH): Our first algorithm is based
on a variant of the PI (Proportional and Integral) controller
on incremental form, which is typical in digital control the-
ory [14]. In principle, the PI control action in incremental form
is based both on the variation of the dimmers value (which is
related to the proportional part), and their actual values (which
is related to the integral part).

As presented above, the values of the queue offsets ui are
updated every time a new request is received by the service,
according to the last values of the dimmers Θi, piggy-backed
by each replica i through a previous response, and on the queue
lengths qi, using the formula

ui(k+1) = (1− γ) [ui(k)+ γP ∆Θi(k)+ γI Θi(k)]+γqi(k), (4)

where γ ∈ (0,1) is a filtering constant, γP and γI are constant
gains related to the proportional and integral action of the
classical PI controller.

We selected γ = 0.01 and γP = 0.5 based on empirical
testing. Once γ and γP are fixed to a selected value, increasing
the integral gain γI calls for a stronger action on the load-
balancing side, which means that the load-balancer would take
decisions very much influenced by the current values of Θi,
therefore greatly improving performance at the cost of a more
aggressive control action. On the contrary, decreasing γI would
smooths the control action, possibly resulting in performance
loss due to a slower reaction time. The choice of the integral
gain allows to exploit the trade-off between performance and
robustness. For the experiments we chose γI = 5.0.

2) Equality Principle-Based Heuristic (EPBH): The second
algorithm is based on the heuristic that the system will perform
well in a situation when all replicas have the same dimmer
value. By comparing Θi for each replica i with the mean
dimmer of all replicas, a carefully designed update rule can
deduce which replica should receive more load, in order to
drive all dimmer to equality. The queue offsets can thus be
updated as

ui(k+1) = ui(k)+ γe

(
Θi(k)−

1
n

n

∑
j=1

Θ j(k)

)
, (5)

where γe is a constant gain. The gain decides how fast the
controller should act. Based on empirical tuning we chose γe =
0.1.

Since the implementation only updates the dimmer mea-
surements in the load balancer when responses are sent, EPBH
risks ending up in a situation where a replica gets completely
starved. To remedy this, the algorithm first chooses a random
empty replica (qi = 0) if there are any, otherwise chooses the
replica with the lowest qi−ui, as described above.

B. Implementation

In order to show the practical applicability of the two
algorithms and evaluate their performance, we decided to
implement them in an existing load-balancing software. We
chose lighttpd2, a popular open-source web server and

2http://www.lighttpd.net/

load-balancing software, that features good scalability, thanks
to an event-driven design. lighttpd already included all
necessary prerequisites, such as HTTP request forwarding,
HTTP response header parsing, replica failure detection and
the state-of-the-art queue-length-based SQF algorithm. HTTP
response header parsing allowed us to easily implement dim-
mer piggy-backing through the custom X-Dimmer HTTP
response header, with a small overhead of only 20 bytes. In
the end, we obtained a production-ready brownout-aware load-
balancer implementation featuring the two algorithms, with
less than 180 source lines of C code3.

IV. EMPIRICAL EVALUATION

In this section we show through real experiments the
benefits in terms of resilience that can be obtained through
our contribution. First, we describe our experimental setup.
Next, we show the benefits that brownout can add to a
replicated cloud service which uses the state-of-the-art load-
balancing algorithm, SQF. Finally, we show the improvements
that can be made using our brownout-specific load-balancing
algorithms.

A. Experimental Setup

Experiments were conducted on a single physical machine
equipped with two AMD OpteronTM 6272 processors4 and
56GB of memory. To simulate a typical cloud environment
and allow us to easily fail and restart replicas, we use the
Xen hypervisor [15]. Each replica is deployed with all its tiers
– web server and database server – inside its own Virtual
Machine (VM), as is commonly done in practice [16], e.g.,
using a LAMP stack [17]. Each VM was configured with a
static amount of memory, 6GB, enough to hold all processes
and the database in-memory, and a number of virtual cores
depending on the experiment.

Inside each replica we deployed an identical copy of
RUBiS [12], an eBay-like e-commerce prototype, that is
widely-used for cloud benchmarking [18]–[24]. RUBiS was
already brownout-compliant, thanks to a previous contribu-
tion [7] and adding piggy-backing of the dimmer value was
trivial5. The replica controllers are configured the same, with
a target 95th percentile response time of 1 second. To avoid
having to deal with synchronization or consistency issues, we
only used a read-only workload. However, adding consistency
to replicated services is well-understood [25]–[27] and, in case
of RUBiS, would only require an engineering effort. The load-
balancer, i.e., lighttpd extended with our brownout-aware
algorithms, was deployed inside the privileged VM in Xen,
i.e., Dom0, pinned to a dedicated core.

To generate the workload, we had to choose between three
system models: open, closed or partly-open [28]. In an open
system model, typically modeled as Poisson process, requests
are issued with an exponentially-random inter-arrival time,
characterized by a rate parameter, without waiting for requests

3https://github.com/cloud-control/brownout-lb-lighttpd
42100MHz, 16 cores per processor, no hyper-threading.
5https://github.com/cloud-control/brownout-lb-rubis



to actually complete. In contrast, in a closed system model,
a number of users access the service, each executing the
following loop: issue a request, wait for the request to com-
plete, “think” for a random time interval, repeat. The resulting
average request inter-arrival time is the sum of the average
think-time and the average response time of the service, hence
dependent on the performance of the evaluated service. A
partly-open system model is a mixture between the two: Users
arrive according to a Poisson process and leave after some
time, but behave closed while in the system. As with the closed
model, the inter-arrival time depends on the performance of
the evaluated system.

We chose to use an open system model workload generator.
Since its behavior does not depend on the performance of
the service, this allows us to eliminate a factor potentially
contributing to noise when comparing our contribution to
competing approaches. We extended this model to include
timeouts, as required to emulated users’ tolerable waiting time
of 4 seconds [9].

Given our chosen model and the need to measure brownout-
specific behavior, the workload generator provided with
RUBiS was insufficient for three reasons. First, RUBiS’s work-
load generator uses a closed system model, without timeouts.
Second, it only reports statistics for the whole experiment
and does not export the time series data, preventing us from
observing the service’s behavior during transient phases. Fi-
nally, the tool cannot measure the number of requests served
with optional content, which represents the quality of the user-
experience and the revenue of the service provider. Therefore,
we extended our own workload generator, httpmon6, as
required.

We made sure that the results are reliable and unbiased as
follows:
• replicas were warmed up before each experiment, i.e., all

virtual disk content was cached in the VM’s kernel;
• replicas were isolated performance-wise by pinning each

virtual core to its own physical core;
• experiments were terminated after the workload generator

issued the same number of requests;
• httpmon and the lighttpd were each executed on a

dedicated core;
• no non-essential processes nor cron scripts were running

at the time of the experiments.
To qualify the resilience of the service, we chose two

metrics that measure how well the service is performing in
hiding failures, or, otherwise put, how strongly the user is
affected by failures. The timeout rate represents the number
of requests per second that were not served by the service
within 4 seconds, due to overload. In production, a request
that timed out will make a user unhappy. She may leave the
service to join other competitors, thus incurring long-term
losses to the service provider. The optional content ratio
represents the percentage of requests served with optional
content. Serving a request with optional content, such as

6https://github.com/cloud-control/httpmon

recommendations of similar products, may increase the service
provider’s revenue by 50% [8]. Therefore, a request served
without optional content also represents a revenue loss to the
provider, albeit, a smaller one than the long-term loss incurred
by a timeout. Ideally, the service should strive to maximize
the optional content ratio, without causing timeouts. Finally,
to give insight into the system’s behavior, we also report the
response time, i.e., the time it took to serve a request from
the user’s perspective, including the time required to traverse
the load-balancer.

B. Resilience without and with Brownout

In this section, we show through experiments how brownout
can increase resilience, even if used with a brownout-unaware
load-balancing algorithm, such as SQF. To this end, we expose
both a non-brownout and a brownout service to cascading
failures and their recovery. The experiment starts with 5 repli-
cas, each being allocated 4 cores, i.e., the service is allocated
a total computing capacity of 20 cores. Every 100 seconds
a replica crashes until only a single one is active. Then,
every 100 seconds a replica is restored. Crashing and restoring
replicas are done by respectively killing and restarting both the
web server and the database server of the replica.

We plot the timeout ratio and the optional content ratio.
Note that, for the service without brownout, the ratio of
optional content is fixed at 100%, whereas the service featuring
brownout this quantity is adapted based on the available
capacity, i.e., the number of available replicas. To focus on
the behavior of the service due to failure, we kept the request-
rate constant at 200 requests per second. Note that, the replicas
were configured with enough soft resources (file descriptors,
sockets, etc.) to deal with 2500 simultaneous requests. We
ran several experiments in different conditions and always
obtained similar results. Therefore, to better highlight the
behavior of the service as a function of time, we present the
results of a single experiment instance as time series.

Fig. 2 show the results. One can observe that the non-
brownout service performs well even with 2 failed replicas,
from time 0 to 300. Indeed, there are no timeouts and all
requests are served with optional content. lighttpd already
includes code to retry a failing requests on a different replica,
hence hiding the failure from the user. During this time
interval, the brownout service performs almost identically,
except negligible reductions in optional content ratio at start-
up and when a replica fails, until the replica controller adapts
to the new conditions.

However, starting with time 300, when the third replica fails,
the non-brownout service behaves poorly. Computing capacity
is insufficient to serve the incoming requests fast enough and
response time starts increasing. A few seconds later the service
is saturated and almost all incoming requests time out. The
small oscillations and spikes on the timeout per second plot
are due to the randomness of the request inter-arrival time in
the open client model.

Even worse, when enough replicas are restored to make
capacity sufficient, the non-brownout service still does not



0
50

100
150
200
250

Replica 4
fails

Replica 3
fails

Replica 2
fails

Replica 1
fails

Replica 1
restored

Replica 2
restored

Replica 3
restored

Replica 4
restored

Only replica 0 during this interval

no
n-

br
ow

no
ut

Ti
m

eo
ut

s
[r

eq
/s

]

25

50

75

100

O
pt

io
na

l
C

on
te

nt
R

at
io

[%
]

100 200 300 400 500 600 700 800 900
0

50
100
150
200
250

Time [s]

br
ow

no
ut

Ti
m

eo
ut

s
[r

eq
/s

]

timeouts [req/s] 25

50

75

100

O
pt

io
na

l
C

on
te

nt
R

at
io

[%
]

optional content ratio [%]

Fig. 2. Experimental results comparing resilience without and with brownout. Configuration: 5 replicas, each having 4 cores.

recover. This finding may seem counter-intuitive, but repeat-
ing the experiments also in different conditions (number of
allocated cores, different workloads, etc.) gave similar results.
In our experiments, as common practice in production envi-
ronments, user timeouts are not propagating to the service,
i.e., they do not cancel pending web requests or database
transactions. Thus, the database server is essentially filled with
transactions that will time out, or that may have already timed
out on the user-side. Hence, all computing capacity is wasted
on “rotten” requests, instead of striving to serve new requests.
The database server continues to waste computing capacity on
“rotten” requests, even after enough replicas are restored. The
non-brownout service does recover eventually, but this takes
significant time, at least 10 minutes in our experiments. Of
course, in production environments the service operator or a
self-healing mechanism would likely disable the service, kill
all pending transactions on the database servers and re-enable
the service. Nevertheless, this behavior is still undesirable.

In contrast, the brownout service performs well even with
few active replicas. At time 300, when the third replica fails
leading the service into capacity insufficiency, the replica
controllers detect the increase in response time and quickly
reacts by reducing the optional content ratio to around 55%.
As a results, the service does not saturate and users can
continue enjoying a responsive service. At time 400 when
the fourth replica fails, capacity available to the service is
barely sufficient to serve any requests, even with zero optional
content ratio. However, even in this case, the brownout service
significantly reduces the number of timeouts by keeping the
optional content ratio low, around 10%. Finally, when replicas
are restored, the service recovers fairly quickly. Thanks to the
action of the replica controllers, the database servers do not
fill up with “rotten” requests.

On the downside, the brownout service features some

TABLE I
SUMMARY OF NON-BROWNOUT VS. BROWNOUT RESULTS.

Scenario Metric Non-brownout Brownout

4 cores Requests served 31.2% 99.3%
200 requests/s With optional content 31.2% 81.0%

2 cores Requests served 31.6% 99.3%
100 requests/s With optional content 31.6% 82.0%

heterogeneous Requests served 68.8% 99.5%
166 requests/s With optional content 68.8% 90.2%

oscillations of optional content while dealing with capacity
shortage. This is due to the fact that the replica controllers
attempt to maximize the number of optional content served,
risking short increases in response time. These increases in
response time are detected by the controllers, which adapt
by reducing the number of optional content served. This
process repeats, thus causing the oscillations. Except when
capacity is close to being insufficient even with optional
content completely disabled, these oscillations are harmless.
Nevertheless, we are currently investigating several research
directions to mitigate them, so as to allow brownout services
to function well even in extreme capacity shortage situations.

In addition to the 4-core scenario above, we devised two
other experimental scenarios to confirm our findings, as sum-
marized in Table I. In the 2-core scenario, we configured each
replica with 2 cores, while in the heterogeneous scenario the
number of cores for each replica is 8, 8, 1, 1, 1, respectively.
In both scenarios, we scaled down the request-rate to maintain
the same request-rate per core as in the 4-core scenario.
Noteworthy is that in the heterogeneous scenario, the non-
brownout service recovered faster than in the 4-core and
2-core scenarios. This can be observed by comparing the



difference between the percentage of requests served by the
brownout service and the non-brownout service among the
three scenarios. Nevertheless, the key findings still hold.

In summary, adding brownout to a replicated service im-
proves its resilience, even when using a brownout-unaware
load-balancing algorithm. The increase in resilience that can
be obtained is specific to each service and depends on the
ratio between the maximum throughput with optional content
disabled and the one with optional content enabled. Hence,
by measuring these two values a cloud service provider
can either estimate the increase in resilience during capacity
shortages given the current version of the service, or may
decide to develop a new version of the service, with more
content marked as optional, so as to reach the desired level of
resilience.

C. SQF vs. Brownout-Aware Load-Balancers

In this section, we compare the two brownout-aware load-
balancing algorithms proposed herein, i.e., PIBH and EPBH,
to the best brownout-unaware one, SQF [13]. We shall use
the word better in the sense that we have statistical evidence
that the average performance is significantly higher with a p-
value smaller than 0.01, by performing a Welch two sample t-
test [29] on the optional component served and on the response
time. In other words, the probability that the difference is
due to chance is less than 1%. Analogously, we use the
word similarly to denote that the difference is not statistically
significant.

For thorough comparison, we tested the three algorithms
using a series of scenarios, each having a certain pattern of
request rate over time and amount of cores allocated to each
replica. Each scenario was executed several times, to collect
enough results to draw statistically significant conclusions.
We were unable to find any scenario in which SQF
would perform better, which supports the hypothesis that
our algorithms are at least as good as SQF. In fact, in most
scenarios, such as those featuring high request rate variability
or many replicas failing at once, SQF performed similarly to
our brownout-aware load-balancers (not shown for briefness).
However, we observed that in scenarios featuring capacity
heterogeneity, our algorithms performed better than SQF with
respect to the optional content ratio.

As a matter of fact, in cloud computing environments,
replicas may end up being allocated heterogeneous capacity,
e.g., one replica is allocated 2 cores, while another replica is
allocated 8 cores. This may happen due to several factors. For
example, the cloud infrastructure provider may practice over-
booking and the machine on which a replica is hosted becomes
overloaded [30]. As another example, previous elasticity (auto-
scaling) decisions may have resulted in heterogeneously sized
replicas [31]. Hence, it is of uttermost importance that a load-
balancing algorithm is able to deal efficiently with such cases.
As illustrated below on two scenarios, both PIBH and EPBH
perform better than SQF.

1) “2×1+3×8 cores” Scenario: The first scenario consists
of a constant request rate of 400 requests per second. The

service consists of 5 replicas, two of which are allocated
1 core, while the other three are allocated 8 cores. This
scenario leaves the service with insufficient capacity to serve
all requests with optional content. Furthermore, the constant
workload and capacity allows us to eliminate sources of noise
and obtain statistically significant results with 30 experiments
for each algorithm, a total of 90 experiments.

Fig. 3 presents the results of the first scenario as scatter
plots: The x-axis represents response time (average and 95th
percentile respectively in the top and the bottom graph), while
the y-axis represents optional content ratio, each experiment
being associated with a point. The results of the paired t-test
comparing the optional content ratio of the three algorithms
are presented in Table II. As can be observed, when compared
to SQF, the novel brownout-aware algorithms PIBH and
EPBH improve optional content ratio by 5.34% and 4.52%,
respectively, with a high significance (low p-value). This is
due to the fact that the brownout-aware algorithms are able
to exploit the replicas with a higher optional content ratio,
at the expense of somewhat higher response times. Slightly
increasing the average response time (Fig. 3 top) yet improving
the optional content served to the end user is an acceptable
tradeoff, also considering that we have control on the target
95th percentile of the response time (Fig. 3 bottom).

Recall that the replica controllers are configured with a tar-
get response time of 1 second. Furthermore, improved optional
content ratio does not interfere with the self-adaptation of the
replicas. As can be seen in Fig. 3, all three algorithms obtain a
similar distribution of response times. In Table III the paired
t-test is applied also to the 95th percentile of the response
time. The results confirm that PIBH behaves in a similar way
with respect to the SQF, but producing better performance in
terms of optional content served. When comparing EPBH to
SQF, the average 95th percentile is 42ms higher in the former
with quite a low p-value. However, it is to be noticed that the
setpoint for the 95th percentile is set to 1 second, which is
way higher than all of the presented results. Thus, the higher
95th percentile response time is not a concern.

2) “3×1+2×8 cores” Scenario: For the second scenario,
we maintain the same request rate, but configure three replicas
with 1 core and two replicas with 8 cores. This means that
the service has even less capacity available than in the first
scenario, thus being forced to further reduce the optional
content ratio. Scatter plots of response time and optional
content ratio are presented in Fig. 4, analogously to the
previous scenario, while pair-wise comparison of algorithms
is presented in Table IV. PIBH and EPBH outperform SQF
with respect to optional content ratio by 5.17% and 3.13%,
respectively.

Again, this is achieved without interfering with the self-
adaptation of the replicas: 95th percentile response times are
distributed similarly for all three algorithms close to the target.
This is also proven by the paired t-test presented in Table V,
where both PIBH and EPBH appear to be comparable with
SQF in terms of 95th percentile of the response time. In
this case, since the capacity of the system is reduced, this



140 160 180 200 220 240 260 280 300
80

82

84

86

88

90

Average response time [ms]

O
pt

io
na

l
co

nt
en

t
ra

tio
[%

]

SQF
PIBH
EPBH

600 700 800 900 1000 1100 1200
80

82

84

86

88

90

95th percentile of the response time [ms]

O
pt

io
na

l
co

nt
en

t
ra

tio
[%

]

SQF
PIBH
EPBH
Target

Fig. 3. Comparison of SQF and brownout-aware load-balancing algorithms
when two replicas have 1 core and three replicas have 8 cores.

TABLE II
IMPROVEMENT IN AMOUNT OF OPTIONAL CONTENT SERVED, AFTER

120000 REQUESTS (SUMMARY OF FIG. 3, “2×1+3×8 CORES” SCENARIO).

Algorithms (# Optional Content) Impr. Statistical Conclusion

PIBH (105646) SQF (100273) 5.34% PIBH significantly
better (p < 10−15)

EPBH (104816) SQF (100273) 4.52% EPBH significantly
better (p < 10−15)

TABLE III
IMPROVEMENT IN AMOUNT OF 95TH PERCENTILE OF THE RESPONSE TIME

(SUMMARY OF FIG. 3, “2×1+3×8 CORES” SCENARIO).

Algorithms (95th perc. [ms]) Impr. Statistical Conclusion

PIBH (637ms) SQF (648ms) -1.7% PIBH and SQF similar
(p = 0.992)

EPBH (690ms) SQF (648ms) 6.4% SQF significantly better
(p < 10−9)

quantity is increased, but on average still lower than the
setpoint (set to 1 second). The same holds for the average
response time, which is slightly increased with respect to the
previous scenario.

D. Discussion

To sum up, our novel brownout-aware load-balancing al-
gorithms perform at least as well as or outperform SQF by
up to 5% in terms of optional content served, with a high
statistical significance. This improvement translates into better

140 160 180 200 220 240 260 280 300
60

65

70

75

Average response time [ms]

O
pt

io
na

l
co

nt
en

t
ra

tio
[%

]

SQF
PIBH
EPBH

600 700 800 900 1000 1100 1200
60

65

70

75

95th percentile of the response time [ms]

O
pt

io
na

l
co

nt
en

t
ra

tio
[%

]

SQF
PIBH
EPBH
Target

Fig. 4. Comparison of SQF and brownout-aware load-balancing algorithms
when three replicas have 1 core and two replicas have 8 cores.

TABLE IV
IMPROVEMENT IN AMOUNT OF OPTIONAL CONTENT SERVED, AFTER

120000 REQUESTS (SUMMARY OF FIG. 4, “3×1+2×8 CORES” SCENARIO).

Algorithms (# Optional Content) Impr. Statistical Conclusion

PIBH (83360) SQF (79244) 5.17% PIBH significantly
better (p < 10−15)

EPBH (81735) SQF (79244) 3.13% EPBH significantly
better (p < 10−15)

TABLE V
IMPROVEMENT IN AMOUNT OF 95TH PERCENTILE OF THE RESPONSE TIME

(SUMMARY OF FIG. 4, “3×1+2×8 CORES” SCENARIO).

Algorithms (95th perc. [ms]) Impr. Statistical Conclusion

PIBH (963ms) SQF (959ms) 0.4% PIBH and SQF similar
(p = 0.3778)

EPBH (969ms) SQF (959ms) 1.0% EPBH and SQF similar
(p = 0.2265)

quality of experience for users and increased revenue for the
service provider. Hence, our contribution helps cloud services
to better hide failures leading to capacity shortages, in other
words, services are more resilient.

Noteworthy is that the competitor, SQF has been found to
be near-optimal with respect to response time for non-adaptive
services [10]. Thus, besides improving resilience of cloud
services, our contribution may be of interest to other com-
munities, to discover the limits of SQF, and sketch a possible
way to design new dynamic load-balancing algorithms.



V. RELATED WORK

The challenge of building reliable distributed systems con-
sists in providing various safety and liveness guarantees while
the system is subject to certain classes of failures. Our con-
tribution closely relates to multi-graceful degradation [32],
in which the requirements that the service guarantees vary
depending on the magnitude of the failure. However, due to
the conflicting nature of requirements – maintaining maximum
response time and maximizing optional content served, in the
presence of noisy request servicing times – brownout does
not provide formal guarantees. Instead, thanks to control-
theoretical tools, the service is driven to a state to increase
likelihood of meeting its requirements.

Brownout can be seen as a model revision, i.e., an existing
service is extended to provide new guarantees. Specifically,
we deal with crashes but also with limplocks [33], the latter
implying that a machine is working, but slower than expected.

In the context of self-stabilization, a new metric has been
proposed to measure the recovery performance of an al-
gorithm, the expected number of recovery steps [34]. An
equivalent metric, the number of control decisions to recovery,
could be used by a service operator for tuning the service to
the expected capacity drop and the request servicing time of
the replicas.

Our contribution is designed to deal with failures reactively.
Failure prediction [2], if accurate enough, could be used as
a feed-forward signal to improve reactivity and reduce the
number of timeouts after a sudden drop in computing capacity.

Since the service’s data has to be replicated an important
issue is ensuring consistency. Various algorithms have been
proposed, each offering a different trade-off between perfor-
mance and guarantees [25]–[27]. Our contribution is orthogo-
nal to consistency issues, hence our methodology can readily
be applied no matter what consistency the service requires.
However, a future extension of brownout could consist in
avoiding service saturation by reducing consistency.

In replicated cloud services, load-balancers have a crucial
role for ensuring resilience but also maintain performance [1],
[3]. Load-balancing algorithm can either be global (inter-data-
center) or local (intra-data-center or cluster-level). Global load-
balancing decides what data-center to direct a user to, depend-
ing on geographic proximity [35] or price of energy [36]. Once
a data-center has been selected a local algorithm directs the
request to a machine in the data-center. Our contribution is of
the local type.

Various local load-balancing algorithms have been pro-
posed. For non-adapting replicas, Shortest Queue First (SQF)
has shown to be very close to optimal, despite it using little
information about the state of the replicas [10]. Our previous
simulation results [13] show that for self-adaptive, brownout
replicas, SQF performs quite well, but can be outperformed
by weight-based, brownout-aware solutions. In this article, we
combine the two approaches and produce queue-length-based,
brownout-aware load-balancing algorithms and show that they
are practically applicable for improving resilience in the case
of failures leading to service capacity shortage.

VI. CONCLUSION AND FUTURE WORK

We present a novel approach for improving resilience, the
ability to hide failures, in cloud services using a combination
of brownout and load-balancing algorithms. The adoption of
the brownout paradigm allows the service to autonomously
reduce computing capacity requirements by degrading user
experience in order to guarantee that response times are
bounded. Thus, it provides a natural candidate for resilience
improvement when failures lead to capacity shortages. How-
ever, state-of-the-art load-balancers are generally not designed
for self-adaptive cloud services. The self-adaptivity embedded
in the brownout service interferes with the actions of load-
balancers that route requests based on measurements of the
response times of the replicas.

In order to investigate how brownout can be used for
improving resilience, we extended the popular lighttpd
web server with two new brownout-aware load-balancers. A
first set of experiments showed that brownout provides sub-
stantial advantages in terms of resilience to cascading failures,
even when employing SQF, a state-of-the-art, yet brownout-
unaware, load-balancer. A second set of experiments compared
SQF to the novel brownout-aware load-balancers, specifically
designed to act on a per-request basis. The obtained results
indicate that, with high statistical significance, our proposed
solutions consistently outperform the current standards: They
reduce the user experience degradation, thus perform better
at hiding failures. While designed with brownout in mind,
PIBH and EPBH may be useful to load-balance other self-
adaptive cloud services, whose performance is not reflected in
the response time or queue length.

During this investigation, we highlighted the difference
between load-balancers that act whenever a new request is
received and algorithms that periodically update the routing
weights, finding out that the formers are far more effective than
the latter ones. However, the brownout paradigm periodically
updates the dimmer values to match specific requirements. A
future improvement is to react faster also to events happening
at the replica level, therefore redesigning the local replica
controller to be event based. In the future, we would also
like to design a holistic approach to replica control and load-
balancing, extending our replica controllers with auto-scaling
features [37], that would allow to autonomously manage the
number of replicas, together with the traffic routing, to obtain a
cloud service that is both resilient and cost-effective. Finally,
some control parameters were chosen empirically based on
the many tests we have conducted. Ongoing work will quality
the robustness of the system given the chosen parameters in a
more systematic way and for a larger scenario space.

ACKNOWLEDGMENT

This work was partially supported by the Swedish Research
Council (VR) for the projects “Cloud Control” and “Power and
temperature control for large-scale computing infrastructures”,
and through the LCCC Linnaeus and ELLIIT Excellence
Centers.



REFERENCES

[1] L. A. Barroso and U. Hölzle, The Datacenter as a
Computer: An Introduction to the Design of Warehouse-
Scale Machines. Morgan & Claypool, 2009.

[2] Q. Guan and S. Fu, “Adaptive anomaly identification
by exploring metric subspace in cloud computing infras-
tructures,” in SRDS, 2013. DOI: 10.1109/SRDS.2013.29.

[3] J. Hamilton, “On designing and deploying internet-scale
services,” in LISA, USENIX, 2007, 18:1–18:12.

[4] M. Gallet et al., “A model for space-correlated failures
in large-scale distributed systems,” in Euro-Par, 2010.
DOI: 10.1007/978-3-642-15277-1 10.

[5] N. Yigitbasi et al., “Analysis and modeling of time-
correlated failures in large-scale distributed systems,”
in GRID, 2010. DOI: 10.1109/GRID.2010.5697961.

[6] E. Chuah et al., “Linking resource usage anomalies with
system failures from cluster log data,” in SRDS, 2013.
DOI: 10.1109/SRDS.2013.20.

[7] C. Klein et al., “Brownout: building more robust cloud
applications,” in ICSE, 2014. DOI: 10.1145/2568225.
2568227.

[8] D. Fleder et al., “Recommender systems and their
effects on consumers,” in Electronic Commerce, 2010.
DOI: 10.1145/1807342.1807378.

[9] F. F.-H. Nah, “A study on tolerable waiting time: how
long are web users willing to wait?” Behaviour and
Information Technology, vol. 23, no. 3, 2004.

[10] V. Gupta et al., “Analysis of join-the-shortest-queue
routing for web server farms,” Perform. Eval., vol. 64,
no. 9-12, 2007. DOI: 10.1016/j.peva.2007.06.012.

[11] G. DeCandia et al., “Dynamo: Amazon’s highly avail-
able key-value store,” SIGOPS Oper. Syst. Rev., vol. 41,
no. 6, 2007. DOI: 10.1145/1323293.1294281.

[12] (2014). Rice university bidding system, [Online]. Avail-
able: http://rubis.ow2.org.

[13] J. Dürango et al., “Control-theoretical load-balancing
for cloud applications with brownout,” in Conference
on Decision and Control (CDC), IEEE, 2014.

[14] I. D. Landau et al., Digital control systems: design,
identification and implementation. Springer, 2006.

[15] P. Barham et al., “Xen and the art of virtualization,” in
SOSP, ACM, 2003. DOI: 10.1145/945445.945462.

[16] K. Sripanidkulchai et al., “Are clouds ready for large
distributed applications?” SIGOPS Oper. Syst. Rev., vol.
44, no. 2, 2010. DOI: 10.1145/1773912.1773918.

[17] (2013). Tutorial: installing a LAMP web server, [On-
line]. Available: http://docs.aws.amazon.com/AWSEC2/
latest/UserGuide/install-LAMP.html.

[18] Z. Gong et al., “PRESS: predictive elastic resource
scaling for cloud systems,” in CNSM, IEEE, 2010. DOI:
10.1109/CNSM.2010.5691343.

[19] Z. Shen et al., “CloudScale: elastic resource scaling for
multi-tenant cloud systems,” in SoCC, ACM, 2011. DOI:
10.1145/2038916.2038921.

[20] W. Zheng et al., “JustRunIt: experiment-based manage-
ment of virtualized data centers,” in ATC, USENIX,
2009, pp. 18–28.

[21] C. Stewart and K. Shen, “Performance modeling and
system management for multi-component online ser-
vices,” in NSDI, USENIX, 2005, pp. 71–84.

[22] N. Vasić et al., “DejaVu: accelerating resource alloca-
tion in virtualized environments,” in ASPLOS, ACM,
2012. DOI: 10.1145/2189750.2151021.

[23] C. Stewart et al., “Exploiting nonstationarity for per-
formance prediction,” in EuroSys, ACM, 2007. DOI:
10.1145/1272998.1273002.

[24] Y. Chen et al., “SLA decomposition: translating service
level objectives to system level thresholds,” in ICAC,
IEEE, 2007. DOI: 10.1109/ICAC.2007.36.

[25] N. L. Diegues and P. Romano, “Bumper: sheltering
transactions from conflicts,” in SRDS, IEEE, 2013. DOI:
10.1109/SRDS.2013.27.

[26] B. F. Cooper et al., “Benchmarking cloud serving
systems with YCSB,” in SoCC, ACM, 2010. DOI: 10.
1145/1807128.1807152.

[27] M. S. Ardekani et al., “Non-monotonic snapshot isola-
tion: scalable and strong consistency for geo-replicated
transactional systems,” in SRDS, IEEE, 2013. DOI: 10.
1109/SRDS.2013.25.

[28] B. Schroeder et al., “Open versus closed: a cautionary
tale,” in NSDI, USENIX, 2006.

[29] B. Welch, “The generalization of ‘student’s’ problem
when several different population variances are in-
volved,” Biometrika, vol. 34, no. 1-2, 1947. DOI: 10.
1093/biomet/34.1-2.28.

[30] L. Tomás and J. Tordsson, “Improving cloud infrastruc-
ture utilization through overbooking,” in CAC, ACM,
2013. DOI: 10.1145/2494621.2494627.

[31] M. Sedaghat et al., “A virtual machine re-packing
approach to the horizontal vs. vertical elasticity trade-
off for cloud autoscaling,” in CAC, ACM, 2013. DOI:
10.1145/2494621.2494628.

[32] Y. Lin and S. S. Kulkarni, “Automated multi-graceful
degradation: a case study,” in SRDS, 2013. DOI: 10 .
1109/SRDS.2013.17.

[33] T. Do et al., “Limplock: understanding the impact of
limpware on scale-out cloud systems,” in SoCC, 2013.
DOI: 10.1145/2523616.2523627.

[34] N. Fallahi et al., “Rigorous performance evaluation of
self-stabilization using probabilistic model checking,” in
SRDS, 2013. DOI: 10.1109/SRDS.2013.24.

[35] M. Lin et al., “Online algorithms for geographical load
balancing,” in IGCC, IEEE, 2012. DOI: 10.1109/IGCC.
2012.6322266.

[36] J. Doyle et al., “Stratus: load balancing the cloud for
carbon emissions control,” TCC, vol. 1, no. 1, 2013.
DOI: 10.1109/TCC.2013.4.

[37] A. Ali-Eldin et al., “An adaptive hybrid elasticity con-
troller for cloud infrastructures,” in NOMS, IEEE, 2012.
DOI: 10.1109/NOMS.2012.6211900.


