
An Interoperable, Standards-based Grid Resource Broker
and Job Submission Service

Erik Elmroth and Johan Tordsson
Dept. of Computing Science and HPC2N

Umeå University, SE-901 87 Umeå, Sweden
{elmroth, tordsson}@cs.umu.se

Abstract

We present the architecture and implementation of a
Grid resource broker and job submission service, designed
to be as independent as possible of the Grid middleware
used on the resources. The overall architecture comprises
seven general components and a few conversion and in-
tegration points where all middleware-specific issues are
handled. The implementation is based on state-of-the-art
Grid and Web services technology as well as existing and
emerging standards (WSRF, JSDL, GLUE, WS-Agreement).
Features provided by the service include advance reserva-
tions and a resource selection process based on a priori
estimations of the total time to delivery for the applica-
tion, including a benchmark-based prediction of the execu-
tion time. The general service implementation is based on
the Globus Toolkit 4. For test and evaluation, plugins and
format converters are provided for use with the NorduGrid
ARC middleware.

1. Introduction

The resource broker and job submission components are
vital for any Grid computing infrastructure, as their func-
tionality and performance to a large extent determine the
user’s experience of the Grid. In all, these components have
to identify, characterize, evaluate, select, and allocate the
resources best suited for a particular application. The bro-
kering problem is complicated by the heterogeneous and
distributed nature of the Grid as well as the differing char-
acteristics of different applications. To further complicate
matters, the broker typically lacks total control and even
complete knowledge of the state of the resources.

Typically, resource brokers are closely integrated with,
or at least heavily dependent on, some particular Grid mid-
dleware, with popular solutions ranging from brokering
components being part of the job submission client to cen-

tralized Grid-schedulers not that different from traditional
batch system schedulers [16, 7, 20, 15, 5, 13]. Hence, it is
normally non-trivial to migrate a broker from one middle-
ware to another, or to adjust it to simultaneously work with
resources running different middlewares.

This contribution presents an architecture and an imple-
mentation of a general service for Grid resource brokering
and job submission. The service is general in the sense
that it can be used with different Grid middlewares, with
middleware-specific issues concentrated to minor compo-
nents. These components are used for format conversions
in interactions with clients and information systems as well
as for middleware-specific interaction with resources.

The proposed broker and job submission service rely
heavily on Grid and Web services standards, including
JSDL, WSRF, WS-Agreement, and GLUE (see Section 2),
and are implemented using Globus Toolkit 4 (GT4) [10].
Middleware-specific interfaces are provided for the Nor-
duGrid ARC software [8, 14], which is based on the Globus
Toolkit 2 (GT2). Tests and evaluation have been performed
on SweGrid [18] and NorduGrid [14] resources.

The brokering scenario addressed by our solution is a
decentralized broker that acts on behalf of the user in order
to allocate the resources that best fulfill the user’s request.
Hence, the broker does not take any globally controlling
role and works independently of any other broker or job
submission software interfacing the same resources. All de-
cisions made by the broker are based on the user’s requests
and the information (including negotiation) it extracts from
the resources and information services. Notably, the bro-
ker may be used simultaneously by multiple users, but the
brokering scenario remains as described above.

The broker aims at identifying the set of resources that
minimizes the Total Time to Delivery (TTD), or part thereof,
for each individual job submission [9]. In order to do this,
the broker makes an a priori estimation of the whole or
parts of the TTD for all resources of interest before making
the selection. The TTD estimation includes performing a
benchmark-based execution time estimation, estimating file

Proceedings of the First International Conference on e-Science and Grid Computing (e-Science’05)
0-7695-2448-6/05 $20.00 © 2005 IEEE

transfer times, and performing advance reservations of re-
sources in order to obtain a guaranteed batch-queue waiting
time. For resources not providing all information required
or a reservation capability, less accurate estimations are per-
formed.

The rest of this paper is organized as follows. Section 2
introduces some standards and technologies used, Section 3
gives an in-depth description of the system and Section 4
describes the resource selection algorithms used. Section 5
illustrates the integration of the system with an existing
Grid middleware, whereas sections 6 and 7 contain a per-
formance evaluation and conclusions, respectively.

2. Background and standards used

The presented brokering and job submission architecture
makes extensive use of existing and proposed Grid and Web
service standards not only for interaction with other compo-
nents but also internally. The most important standards used
are briefly presented below.

2.1. JSDL

The Job Submission Description Language (JSDL) pro-
posed by the Global Grid Forum (GGF) describes the con-
figuration of computational jobs and their requirements on
the resources that executes them. It is the result of the JSDL
working group’s attempts to create a standardized job de-
scription language, simplifying interoperability between ex-
isting resource management systems [3].

In our contribution, the JSDL is used to express job re-
quests sent to the job submission module by clients.

2.2. WSRF

The Web Services Resource Framework (WSRF) [11],
defines a relationship between stateful resources and Web
services. This relationship is modelled using a construct
called a WS-Resource. An endpoint reference addresses
a Web service, and may also identify one of the WS-
Resources associated with that service.

The WSRF consists of five specifications, including the
following. WS-ResourceProperties defines the type and
value of the WS-Resource’s state as viewable through a
Web service interface. The WS-ResourceLifetime specifi-
cation defines lifecycle management of WS-Resources, in-
cluding creation and destruction (immediate or scheduled
for later). WS-BaseFault defines a base type for fault han-
dling in Web services, which increases consistency.

In our work, WSRF, and more specifically, WS-
Resources are used to represent jobs and reservations
(agreements). Information about submitted jobs and created
reservations is modelled using WS-ResourceProperties.

The lifetime management mechanisms defined in WS-
ResourceLifetime are used to implement soft-state, two-
phase reservations. WS-BaseFault is used for error mes-
sages.

2.3. WS-Agreement

WS-Agreement is a GGF standard proposal, which
makes it possible for an agreement initiator and an agree-
ment provider to enter an agreement. This agreement spec-
ifies service level objectives associated with the use of one
or more Web services. The WS-Agreement standard does
not specify any domain-specific terms describing the ser-
vice level objectives, but is rather intended for use with any
type of Web service. Service domain-specific terms are ex-
pected to be added in extensions for each service domain of
interest [2].

The basic operation of WS-Agreement is straightfor-
ward. Initially, the agreement initiator retrieves an agree-
ment template (prefilled contract) from the agreement
provider. The initiator fills out the relevant parameters in
the template and sends the resulting agreement offer in a re-
quest to the agreement provider. Upon granting the offer,
the agreement provider creates a WS-Resource represent-
ing the agreement, and returns an endpoint reference to this
WS-Resource to the agreement initiator.

The AgreementFactory porttype stores the agreement
templates and exposes an operation for requesting an agree-
ment. The Agreement porttype exposes no operation, it
only holds the WS-Resources modelling created agree-
ments. A third porttype, the AgreementState, is used to
monitor the fulfillment of the agreement. Notably, WS-
Agreement neither defines a protocol for agreement nego-
tiation, nor states how agreements should be signed.

In our work, WS-Agreement is used to negotiate and rep-
resent advance reservations for batch systems.

2.4. GLUE

The Grid Laboratory Uniform Environment (GLUE)
project [1] defines an information model for describing Grid
resources, targeting core services such as resource discov-
ery and monitoring. Resource discovery services benefit
from an extensive list of resource characteristics. For mon-
itoring, state information describing load and availability is
defined. The GLUE model (version 1.2) describes com-
puting elements, storage elements, and mappings relating
these. The GLUE project targets a model usable by differ-
ent technologies. Current implementations include LDAP
schemas for GT2 and XML schemas for GT4.

In our job submission service, the GLUE format is used
to represent resource information gathered during resource
discovery.

Proceedings of the First International Conference on e-Science and Grid Computing (e-Science’05)
0-7695-2448-6/05 $20.00 © 2005 IEEE

3. Architecture

The proposed brokering and job submission framework
is based on a general architecture with seven components
and an implementation of the WS-Agreement specification.
The framework is complemented with a job submission
client and some middleware-specific components, currently
available for the NorduGrid ARC middleware.

The job submission service itself is implemented using
GT4 [19, 10], and does, just like GT4, make extensive use
of Axis [4]. Presently, plugins for reservations are imple-
mented for the Maui scheduler [12].

Below we give an architecture overview, followed by
more detailed descriptions of each of the modules, includ-
ing some discussions on design considerations.

3.1. Overview

The job submission module consists of seven compo-
nents: the InformationFinder performs resource discovery
and retrieves resource information; the Broker performs
resource selection; the Reserver negotiates advance reser-
vations; the DataManager handles file transfers; the Dis-
patcher sends job requests to the resource; the Submitter
coordinates the work of the five first modules and finally the
JobSubmissionService which stores information about sub-
mitted jobs and provides a Web service interface to the job
submission module. In addition to these components, there
is a user client for sending job requests to the JobSubmis-
sionService. The system also includes an implementation
of the WS-Agreement specification, hosted on the Grid re-
source.

Figure 1 gives an overview of the modules. Their inter-
actions and main operations are the following. Upon receiv-
ing a job request from the client, the JobSubmissionService
passes the job description along with any optional parame-
ters to the Submitter. The Submitter first invokes the Broker
to validate the job description. Then, the InformationFinder
is used to retrieve a list of available Grid resources. After
receiving this list, the Submitter calls the Broker to filter
out unsuitable resources and to rank the suitable ones. The
ranking procedure may include creating advance reserva-
tions, which is handled by the Reserver. If required, the
DataManager is then invoked to stage input files. Then, the
Submitter uses the Dispatcher to submit the job to the se-
lected resource and returns the obtained job identifier to the
JobSubmissionService.

The JobSubmissionService creates a stateful resource
(WS-Resource) storing information associated with the job.
In the final step, the job identifier is returned to the client.

Job submission module

User

Client

JSDL & GLUE

JSDL

JSDL

GLUE

Grid resource

WSAG

e.g, LDAP

e.g. RSL

e.g. GridFTP

Submitter

InformationFinder

DataManager

Broker

Reserver

JobSubmissionService

Dispatcher

WS-Agreement

Job submission client

JSDL converter

JSDL

JSDL

JSDL

e.g. RSL

Figure 1. Architecture overview showing
components, hosts, and information flow.
The boxes show the modules and the dashed
lines denote the different hosts.

3.2. Modules

This section presents the finer details of the modules in
the system.

JobSubmissionService. The JobSubmissionService is the
only component in the job submission module accessible
by clients. It exposes one operation, SubmitJob, through
its Web service interface. The parameters for this operation
are the JSDL job description, and optionally, a document
describing the user’s job preferences and/or a list of URLs
of index servers, e.g., GT2 GIISes or GT4 Index Services,
to contact during resource discovery.

Notably, the JobSubmissionService does not expose any
other operation than job submission. Further job manage-
ment, such as job monitoring and control are beyond the
scope of this service. The JobSubmissionService stores
stateful information about each submitted job, including the
job identifier, the job description and, if applicable, infor-
mation about an advance reservation created for the job.

A WS-Resource is created for each successfully submit-
ted job, with job information stored as resource properties.
By querying the resource properties, other job management
tools can retrieve the job identifier in order to monitor and
control the execution of the job.

As the JobSubmissionService typically is invoked by a

Proceedings of the First International Conference on e-Science and Grid Computing (e-Science’05)
0-7695-2448-6/05 $20.00 © 2005 IEEE

user, a job submission client is provided. The arguments
to the client include those passed in a job request to the
JobSubmissionService, i.e., the mandatory job description
and the optional job preferences document and index server
URLs. In addition to these parameters, a user can spec-
ify which JobSubmissionService to contact. The client sup-
ports a plugin structure enabling translations to JSDL from
any native job description language preferred by the user.

InformationFinder. The purpose of the InformationFinder
is to discover what Grid resources are available and to re-
trieve more detailed information about each resource. The
input to this module is a list of index server URLs.

The InformationFinder first performs resource discov-
ery by querying each index server, which due to their hi-
erarchical organization may require some recursive invoca-
tions. Then, each identified resource is queried in more de-
tail. Both static and dynamic information about the resource
is retrieved, including hardware and software configuration
and current load. The InformationFinder also retrieves us-
age policies, allowing it to discard resources where the user
is not authorized to submit jobs.

Unless the information retrieved in the detailed queries
follows the GLUE format, it is converted by the Informa-
tionFinder before being returned to the Submitter. To im-
prove performance, the resource discovery, the information
retrieval, and the conversion to GLUE format are each per-
formed in parallel. A fixed size thread pool is used to con-
trol the degree of parallelism, thus avoiding overloading
the hosting environment. In order to reduce the resource
discovery overhead in situations where the same resources
are repeatedly queried during a short period of time, the
retrieved resource information is stored in a time-limited
cache.

Broker. The Broker strives to select the best resource for
each incoming job request. What makes a resource the “best
resource” depends on the characteristics of the job and the
resources, as well as on the user’s preferences.

The Broker provides three operations. Validation of job
description ensures that the description contains all required
attributes, e.g., the application to run. Resource filtering
guarantees that only resources fulfilling the job’s require-
ments on architecture, disk, memory etc. are considered for
submission. The most complex operation, resource ranking,
ranks the resources according to their suitability for execut-
ing the job and reorders the resource list accordingly. Two
interfaces are defined to facilitate this operation.

The predictor interface is used for the estimation of how
long time a certain task associated with the job would re-
quire if performed by a certain resource. The four tasks
considered for time estimation are: staging input files to the
resource; waiting for resource access, e.g., in a batch queue;
executing the job on the resource; and staging output files.

These four tasks make up the Total Time to Delivery (TTD)
for the Grid job. The algorithms used for TTD estimations
are presented in [9] and reviewed in Section 4.

The selector interface is used for the actual ranking of
the resources. The ranking is done using some, possibly all,
of the predictors. Currently, the Broker contains two selec-
tors. The earliest start selector ranks resources based on the
stage in and wait predictors, in order to achieve an as early
job start as possible. In contrast, the earliest completion
selector tries to minimize the TTD, and hence achieve the
earliest possible job completion.

Resource ranking may include the time-consuming task
of negotiating advance reservations. To improve perfor-
mance, resources are ranked in parallel, using a thread pool
similar to the one in the InformationFinder.

DataManager. The DataManager is responsible for all data
management tasks that relate to job submission. The mod-
ule defines an interface for staging of files to and from Grid
resources. This interface also defines the resolution of phys-
ical location(s) of replicated files, which is useful if the
Grid middleware supports file replication. Another opera-
tion defines the prediction of the duration of file transfers,
which can be implemented if the underlying infrastructure
supports either network reservations or bandwidth perfor-
mance predictions. The DataManager also implements an
operation for determining the sizes of physical files. This
operation is used as a last resort for predicting the duration
of file transfers when none of the more sophisticated mech-
anisms mentioned above are available.

Reserver. The Reserver includes a client API for reserving
CPUs at computational resources in advance. These CPUs
are reserved for a certain duration and with either a fixed
start time or an interval of allowed start times.

The three operations defined in the Reserver API are cre-
ation of a temporary reservation, confirmation of a tem-
porary reservation, and cancellation of a reservation (tem-
porary or confirmed). Temporary reservations are re-
leased shortly after their creation unless they are confirmed.
These operations are implemented using calls to the WS-
Agreement module.

The Reserver also contains a repository of created reser-
vations. After a job is successfully submitted to a resource,
the Submitter examines the repository and confirms the
reservation on the selected resource and cancels any other
reservation created for the job.

WS-Agreement. This module includes implementations of
the AgreementFactory and Agreement porttypes defined by
the WS-Agreement specification. Unlike the other mod-
ules, which are hosted on the machine running the JobSub-
missionService, WS-Agreement is deployed on the Grid re-
source.

Proceedings of the First International Conference on e-Science and Grid Computing (e-Science’05)
0-7695-2448-6/05 $20.00 © 2005 IEEE

Note that our current implementation does not include
the AgreementState porttype. For our target domain, ad-
vance reservations of CPUs, monitoring the state makes lit-
tle sense. A created reservation will, short of resource fail-
ure, fulfill the guarantees specified in the agreement.

Two interfaces are defined in order to guarantee that the
WS-Agreement implementation is agnostic of the service
domain for which the agreements are created. Both inter-
faces must be implemented when using WS-Agreement for
a specific service, and any service-specific operation has to
be placed within the implementations of these interfaces.

The AgreementDecisionMaker interface determines
whether to grant or deny an agreement offer, returning an
AgreementDecision, which, in addition to the actual deci-
sion, contains any domain specific context associated with
the created agreement. The AgreementDecisionMaker con-
cept first appeared in Cremona [6].

The AgreementResourceHelper constructs domain spe-
cific agreement terms for inclusion in the resource property
document of the WS-Resource representing the agreement.

To the best of our knowledge, there exists no earlier
work using WS-Agreement to model batch queue reserva-
tions. For this reason, a language for describing reservations
against computational resources is defined. Each agreement
offer (reservation request) contains the duration of the reser-
vation and the requested number of CPUs. Furthermore, a
start time window specifying earliest and latest allowed job
start is included. A flag named flexible specifies whether the
start time of the reservation may be moved within the start
time window by the local batch system. If allowing this,
backfilling can be performed more efficiently, resulting in
increased utilization [17].

The AgreementFactoryService passes an incoming
agreement offer to the ReservationDecisionMaker, which
executes a plugin creating the earliest possible reserva-
tion within the start time window specified in the offer.
If no reservation can be created within this window, the
offer is denied. After the ReservationDecisionMaker has
granted the offer, the AgreementFactoryService creates a
WS-Resource and invokes the ReservationResourceHelper
to create resource properties for this WS-Resource. The re-
source properties include an identifier for the reservation,
the exact reservation start time and the parameters in the
agreement offer. Finally, the endpoint reference to the WS-
Resource is returned to the agreement initiator (the Re-
server). Figure 2 shows the interactions between the Re-
server and the WS-Agreement services.

Dispatcher. The Dispatcher is responsible for sending the
job request to the selected resource. While this task may
seem trivial, the job description may first have to be trans-
lated (back) from JSDL to the job description language un-
derstood by the resource. Furthermore, the mechanism used
for sending the job request to the resource depends on the

AgremeentInitiator

Reserver
Reservation-

DecisionMaker
Reservation-

ResourceHelper

AgreementService

Reservation-
specific
components

Domain-
independent
components

Client WS-Agreement module on Grid resource

AgreementDecision

Agreement-
Resource

Agreement-
Resource

Agreement-
Resource

AgreementFactoryService

Figure 2. Interactions between general WS-
Agreement components and the reservation
specific modules.

Grid middleware used on the resource. Possible approaches
include invocation of a Web service, as used by Globus WS-
GRAM, and interaction with a GridFTP server, which is the
mechanism used by NorduGrid ARC. Due to these signifi-
cant differences, the Dispatcher contains no code common
for all middlewares, but rather defines a general interface for
dispatching jobs. This interface includes the job dispatch
operation, which takes three arguments, the GLUE infor-
mation about the selected resource, the job description (in
JSDL format), and optionally, information about an advance
reservation created for the job. The interface also defines the
translation of job descriptions from JSDL to the native job
description language of the used Grid middleware.

Submitter. The Submitter coordinates the job submission
process. When a job request is passed from the JobSubmis-
sionService, the Submitter invokes the Broker to validate
the job description. If the description is valid, the Submit-
ter calls the InformationFinder to retrieve an updated list of
resource information. Once the resource list is updated, the
Broker is invoked twice by the Submitter. First for filtering
out inadequate resources, then for reordering the remain-
ing ones after their suitability for executing the job. This
second step may include requesting advance reservations, a
task handled by the Reserver. Unless the Grid middleware
performs file staging, the Submitter next invokes the Data-
Manager to stage input files. It then calls the Dispatcher to
send the job request to the most suitable resource. If one of
these two operations fails, the Submitter retries with the sec-
ond most suitable resource etc., until the job either is suc-
cessfully submitted or all submission attempts fail, the latter
causing an error message to be returned to the client. After
completing these tasks, the Submitter returns a middleware-
specific job identifier to the JobSubmissionService.

It may seem superfluous to separate the Submitter and
the JobSubmissionService into two layers. We do however
believe that the separation of the job submission process

Proceedings of the First International Conference on e-Science and Grid Computing (e-Science’05)
0-7695-2448-6/05 $20.00 © 2005 IEEE

handled by the Submitter and the management of stateful
resources performed by the JobSubmissionService is ben-
eficial. This allows the construction of alternative Submit-
ters, e.g., for coallocation or workflow scheduling.

4. Resource Brokering Algorithms

The resource broker selects the resources that gives the
minimum predicted TTD (or part thereof) for the applica-
tion. The algorithms for predicting the TTD depend on the
support provided by the resources and the optional informa-
tion supplied by the user. Below, we review the algorithms
used for predicting the TTD, originally presented in [9], and
describe what optional information a user can provide in or-
der to improve the brokering process.

4.1. A priori estimation of TTD

The TTD for a Grid job includes the times for (1) staging
in the executable and the input files to the resource, (2) wait-
ing in the batch queue, (3) executing the application, and (4)
staging output files to their requested location(s). The Bro-
ker presented in Section 3 makes use of one predictor for
each of these tasks. The two provided selectors make use of
the first two and all four predictors, respectively.

If the DataManager provides support for predicting file
transfer times or for resolving physical file locations and de-
termining file sizes (see Section 3), these features are used
by the predictors of (1) and (4) for estimating file staging
times. If no such support is available, e.g., depending on the
information provided by the Grid middleware used, these
predictors make use of the file transfer times optionally pro-
vided by the user. Notably, the time estimate for stage in is
important not only for predicting the TTD but also for co-
ordinating the start of the execution with the arrival of the
executable and the input files if an advance reservation is
performed.

The most accurate prediction of the batch queue waiting
time (2) is obtained by using advance reservations, which
gives a guaranteed job start time. If the resource does not
support advance reservations or the user chooses to deac-
tivate this feature, less accurate estimates are made from
the information provided by the resource about current load.
This estimation, however, does not take into account the ac-
tual scheduling algorithm used by the batch system.

The prediction of (3) is performed through a benchmark-
based estimation of execution time that takes into account
both the performance of the resources and the characteris-
tics of the application. This estimation requires that the user
provides the following information for one or more bench-
marks with performance characteristics similar to that of
the application: the name of the benchmark, the benchmark

performance for some system, and the application’s (pre-
dicted) execution time on that system. Using this informa-
tion, the application’s execution time is estimated on other
resources assuming that the performance of the application
is proportional to that of the benchmarks. For more infor-
mation, e.g., how information about multiple benchmarks is
used, see [9].

4.2. Optional input for brokering

In addition to the JSDL document describing the job,
a user may include a job preferences document in the job
request sent to the JobSubmissionService. This document
contains both job requirements and additional information
that may improve the resource selection process.

The job requirements are the preferred job objective,
which can be either earliest job completion or earliest job
start. The job start offset enables users to request that the
job starts after a certain time, which can be expressed ei-
ther as an absolute time or a relative offset from now. This
feature can be used e.g., for debugging, demonstrations and
coallocation purposes. Users can also specify a latest al-
lowed job start, ensuring that the job either starts in time or
is not submitted at all. Users with no strong requirements
on the start or completion times of their jobs can specify
that no reservation should be created for the job. Such jobs
receive best-effort job start times, which facilitate improved
resource utilization [17].

The job preferences document is also where a user may
provide the additional information mentioned above, that
allows the broker to improve the resource selection. This
includes the predicted times for file staging and information
used for benchmark-based execution time estimation.

Just as the job preferences document itself is an op-
tional parameter in the job request message, all parts of the
job preferences document are optional. However, by mak-
ing use of this feature, expert users can benefit from their
knowledge of the job characteristics.

An example of a user preference document is shown in
Figure 3. In this document, a user specifies two bench-
marks, nas-lu-c and specFP2000, as characteristic for the
performance of the job. The user specifies the (possibly
predicted) application execution times 60 and 45 minutes
on machines where the results of these benchmarks are 450
and 750, respectively. The file stage out time is estimated to
10 minutes. Notably, file staging predictions are normally
very inexact as the resource which to stage files to and from
actually is unknown. Still, a rough approximation may of-
ten provide additional value in situations where the broker
has no other information about network performance.

In the job requirement part, the user specifies the earliest
allowed job start, and also states that the job may start no
more than 30 minutes later than the earliest allowed start

Proceedings of the First International Conference on e-Science and Grid Computing (e-Science’05)
0-7695-2448-6/05 $20.00 © 2005 IEEE

time. The job objective is an as early job completion as
possible.

<JobPreferences>
<SchedulingHints>

<Benchmark name="nas-lu-c"
result="450" time="60"/>

<Benchmark name="specFP2000"
result="1750" time="45"/>

<FileTransfers>
<StageOutTime>10</StageOutTime>

</FileTransfers>
</SchedulingHints>
<JobRequirement>

<EarliestAbsoluteStart>
2005-08-11T10:00:00Z

</EarliestAbsoluteStart>
<LatestRelativeStart>

30
</LatestRelativeStart>
<JobObjective>

EarliestJobCompletion
</JobObjective>

</JobRequirement>
</JobPreferences>

Figure 3. Example of a user job preferences
document.

5 Configuration and Middleware Integration

The integration of the general job submission module
with a particular Grid middleware requires some configu-
ration and some customized components. Below we sum-
marize what needs to be done, including the set up of the
Submitter to interact with a specific middleware and how
to configure the WS-Agreement module to support reserva-
tions of computational resources. Finally, we illustrate this
by the steps taken in our integration with the NorduGrid
ARC [14, 8].

The basic operation of the JobSubmissionService is con-
trolled by the configuration of the Submitter. This config-
uration decides which plugin modules are used by the In-
formationFinder for discovering resources, for querying re-
sources, and if needed, for converting the information re-
trieved to the GLUE format. The configuration file also
controls which Dispatcher to use. These settings do, i.e.,
determine which Grid middleware to use when communi-
cating with the Grid resources. As resource discovery can
be rather time-consuming, it is possible to specify a timeout
to use when discovering and querying resources. Further
tuning of the performance of the InformationFinder can be
done by adjusting the maximum number of threads to use in
the thread pool. The configuration file also includes URLs
to one or more default index servers, which are used in the
resource discovery phase unless the user includes URL(s)
to index server(s) in the job request. A configuration file
containing the above described parameters is passed to the

JobSubmissionService upon service startup.
The configuration of the WS-Agreement services deter-

mines which agreement template(s) to store in the Agree-
mentFactoryService. Also included in the configuration
is the DecisionMaker to use when determining whether to
grant an agreement or not. The configuration file may also
include a list of DecisionMaker initialization parameters. In
the reservation scenario, these parameters are used to spec-
ify plugin scripts that invoke the local scheduler when cre-
ating and cancelling reservations. Support for other sched-
ulers than the currently supported Maui scheduler can easily
be implemented by creating new reservation plugin scripts
and reconfiguring the AgreementFactoryService. The con-
figuration file also specifies which ResourceHelper to use.

5.1. Integration with NorduGrid ARC

Here, we illustrate the integration of the brokering and
job submission service with NorduGrid ARC, a middle-
ware based on GT2 with some GT2-components replaced
or modified.

A major difference between ARC and GT2 is the job
management. In ARC, the server-side GT2 GRAM compo-
nents (gatekeeper and job manager) are replaced by custom
components, a GridFTP server and a Grid Manager, respec-
tively [8]. Another difference is that even though ARC uses
the GT2 MDS, this is done with customized schemas. In-
formation advertised by a ARC GRIS describes users, jobs
and resources (clusters and their job queues).

For integrating the job submission module with ARC,
plugins are required for the Dispatcher and the Information-
Finder. Furthermore, a few server-side scripts are required
for managing the advance reservations created by the WS-
Agreement components.

The hierarchal MDS structure used in ARC makes the
resource discovery plugin in the InformationFinder straight-
forward. Starting from the list of GIISes provided on input,
all GIISes are recursively queried for resources, each by a
separate thread, without calling any GIIS more than once.
Then, the resource query plugin requests information about
the cluster and its queues, using LDAP. The result of these
queries is objects providing an ARC-specific description of
the resources, which are converted to the GLUE format by
the converter plugin.

An ARC job submission client procedure includes up-
loading any locally stored input files to the resource (the
Grid Manager handles stage in of non-local input files) be-
fore sending the job description to the GridFTP server of the
resource. The ARC dispatcher plugin converts the JSDL job
description to the GT2-style RSL used by ARC, and then
modifies the job description to ensure that also local input
files are staged by the Grid Manager. If an advance reserva-
tion is created for the job, the identifier of the reservation is

Proceedings of the First International Conference on e-Science and Grid Computing (e-Science’05)
0-7695-2448-6/05 $20.00 © 2005 IEEE

added to the job description before it is uploaded.
The implementation of WS-Agreement and the local

scripts used by the ReservationDecisionMaker operates in-
dependently of ARC. However, a mechanism is required
to associate the user creating the reservation with the one
submitting the job. This is done by ensuring that the job
submission and the creation of the reservation both are per-
formed using proxies that originate from the same certifi-
cate.

A general infrastructure such as the job submission mod-
ule can normally not capture all the features available in
every single middleware, e.g., ARC. However, for use with
ARC, the only noticeable shortcoming is that in ARC, files
accessible through the Globus Replica Location Service
(RLS) can serve as job input and output, whereas the job
submission module currently only handles locally stored
files and files stored at (Grid)FTP servers. Support for RLS
may however be added in future versions of the job submis-
sion module.

6. Performance evaluation

The job submission module has been evaluated with re-
spect to the service response time, i.e., the time required
to submit a job, and the service throughput, i.e., number of
jobs submitted to resources per minute.

The evaluation has been performed with the client and
job submission module each running on a system equipped
with one 2.8 GHz Intel P4 processor with 1 GB memory,
Debian Linux Sarge and Globus Toolkit version 4.0.0. The
WS-Agreement services were deployed on a system with
a 667 MHz Intel P3 processor, 384 MB memory, Debian
Linux Sarge, Globus Toolkit 4.0.0, Maui 3.2.6 and Torque
1.1.0. The Grid infrastructure used is a subset of NorduGrid
and SweGrid, with in total 12 resources ranging from four
to 388 CPUs (including the six 100 CPU clusters in Swe-
Grid). These resources used the NorduGrid ARC middle-
ware and were indexed by four GIISes, with one serving
as higher level GIIS for the others. The LDAP information
gathered from the resources was valid for 30 seconds, which
hence became the cache expiration time. A timeout of 15
seconds was used for all InformationFinder connections and
a maximum of eight threads were used in all threadpools.

In order to evaluate the service response time, a client
submitted a series of jobs, waiting with the submission of
the next one until the submission of the previous job was
completed. Hence, the time measured includes the broker’s
processing of one single job and all waiting times associated
with the resource selection and job submission of that job.

As negotiation of advance reservations is rather time-
consuming, tests were performed both with and without
reservations. The job response times were grouped into five
classes depending on the time required, as shown in tables

1 and 2. The tables summarize five sets of 200 jobs each,
showing the average, the minimum and the maximum per-
centage of job submissions in each interval for each set.

Table 1. Job run time distribution without
reservations.

<2 s 2-5 s 5-8 s 8-11 s >=11 s
average 9.4% 66.1% 15.4% 3.9% 5.2%
min 7.5% 64% 12% 2% 2.5%
max 12.5% 68.5% 19.5% 7% 8.5%

Table 2. Job run time distribution with reser-
vations.

<7 s 7-10 s 10-13 s 13-16 s >=16 s
average 11.4% 37.4% 33.3% 12.4% 5.5%
min 8.5% 32.5% 30% 6.5% 2.5%
max 16.5% 51% 38% 15.5% 10.5%

For jobs submitted without reservations (Table 1), the
majority of the submissions take 2–5 seconds, and around
75% of them take less than 5 seconds. This corresponds
to jobs where the broker can take advantage of cached re-
source information and no resource has any exceptionally
long response time for job submission. Around 15% of
the jobs take 5–8 seconds, corresponding to jobs where
the cached information has expired and additional resource
queries therefor are performed. The last two categories, i.e.,
jobs that take more than 8 seconds, include jobs for which
additional delays were encountered. These delays were due
to an overloaded Grid infrastructure and resulted in two is-
sues: increased time for resource discovery and, more time-
consuming, slower dispatch of the job to the selected re-
source. The latter operation was particularly slow if many
jobs recently had been submitted to the same resource.

In the results for submissions performed with advance
reservations in Table 2, we basically see the same pattern
but with around 5 seconds longer times. One side effect of
these longer times is that fewer jobs can benefit from the
cached resource information, explaining the smaller num-
ber of submissions falling into categories 1–2.

For the throughput tests, jobs were submitted concur-
rently from many clients, in order to put a high load on the
job submission module. To reduce the overhead associated
with the first invocation of a Web service, each client sub-
mitted a number of jobs. The results show up to 40 success-
fully handled job submissions per minute, even though the
performance varied due to load variations on the Grid in-
frastructure, resulting in the same anomalies as for the first
test. We conclude, however, that for submissions up to at
least 40 jobs per minute by the job submission module, it
is rather the resources than the broker and job submission
service that are the bottleneck.

Proceedings of the First International Conference on e-Science and Grid Computing (e-Science’05)
0-7695-2448-6/05 $20.00 © 2005 IEEE

7 Conclusions

We have presented the design and implementation of a
general framework for Grid job submission and resource
brokering. The framework is intended to be as middleware
independent as possible, and it is therefore to a large extent
based on (proposed) Grid and Web services standards. We
have demonstrated how the general framework can be inte-
grated in the NorduGrid ARC middleware. In an evaluation
of the framework integrated in an environment with ARC
resources, we conclude that most jobs can be submitted in
less than 5 seconds (less than 13 seconds if using advance
reservations), and that the job submission module is capable
of achieving a throughput of at least 40 submitted jobs per
minute.

The integration requires some effort, in particular when
translating the job description language used in ARC back
and forth to JSDL, and when converting information re-
trieved from ARC resources to GLUE. The time spent de-
veloping the ARC plugins was however only a fraction of
the time required to implement the complete framework, il-
lustrating that implementing plugins for an additional mid-
dleware is a feasible method of constructing a feature-rich
job submission client for that middleware.

The strive for interoperability often boils down to find-
ing the lowest common denominator between the various
systems. In this case, we have been able to adopt the ARC
formats to the various standard formats used in our system
without losing much of the original ARC features.

Future directions in this work include implementing plu-
gins for additional Grid middlewares. Current efforts focus
on support for GT4 and gLite. The future plans also in-
clude extending the framework to support coallocation of
resources. This will mainly require the development of an
alternative submitter module as all the other modules basi-
cally have the functionality required.

Acknowledgement

The authors are grateful to Peter Gardfjäll, Aleksandr
Konstantinov, and Åke Sandgren. We also acknowledge the
three anonymous referees for constructive comments. This
work was funded by The Swedish Research Council (VR)
under contract 343-2004-953.

References

[1] S. Andreozzi, S. Burke, L. Field, S. Fisher, B. Kónya,
M. Mambelli, J. M. Schopf, M. Viljoen, and A. Wilson.
Glue schema specification version 1.2 draft 7. Internet,
2005. http://infnforge.cnaf.infn.it/docman/view.php/9/90/
GLUEInfoModel 1 2 draft 7.pdf.

[2] A. Andrieux, K. Czajkowski, A. Dan, K. Keahey,
J. Pruyne, J. Rofrano, S. Tuecke, and M. Xu. Web
Services Agreement Specification (WS-Agreement). In-
ternet, 2004. https://forge.gridforum.org/projects/graap-
wg/document/WS-AgreementSpecification/en/7.

[3] A. Anjomshoaa, F. Brisard, M. Drescher, D. Fellows, A. Ly,
A. S. McGough, D. Pulsipher, and A. Savva. Job Submission
Description Language (JSDL) specification, version 1.0.
Internet, 2005. https://forge.gridforum.org/projects/jsdl-
wg/document/draft-ggf-jsdl-spec/en/21.

[4] Apache Web Services - Axis. http://ws.apache.org/axis.
[5] M. Dalheimer, F.-J. Pfreundt, and P. Merz. Calana: A

General-purpose Agent-based Grid Scheduler. Proceedings
of Parallel Computing 2005. To be published.

[6] A. Dan, H. Ludwig, and R. Kearney. Cremona: An ar-
chitecture and library for creation and monitoring of ws-
agreements. In ICSOC’04, USA, 2004. ACM.

[7] C. Dumitrescu, I. Raicu, and I. Foster. DI-GRUBER: A Dis-
tributed Approach to Grid Resource Brokering. SC’05 2005.

[8] P. Eerola, B. Kónya, O. Smirnova, T. Ekelöf, M. Ellert,
J. Hansen, J. Nielsen, A. Wäänänen, A. Konstantinov,
J. Herrala, M. Tuisku, T. Myklebust, F. Ould-Saada, and
B. Vinter. The NorduGrid production Grid infrastructure,
status and plans. In Proc. 4th International Workshop on
Grid Computing, pages 158–165. IEEE CS Press, 2003.

[9] E. Elmroth and J. Tordsson. A Grid resource broker sup-
porting advance reservations and benchmark-based resource
selection. In State-of-the-art in Scientific Computing, Lec-
ture Notes in Computer Science. Springer-Verlag, 2005.

[10] I. Foster. A Globus toolkit primer. http://www.globus.org/
toolkit/docs/4.0/key/GT4 Primer 0.6.pdf.

[11] I. Foster, J. Frey, S. Graham, S. Tuecke, K. Cza-
jkowski, D. Ferguson, F. Leymann, M. Nally, I. Se-
dukhin, D. Snelling, T. Storey, W. Vambenepe,
and S. Weerawarana. Modeling stateful resources
with web services. Internet, 2005. http://www-
106.ibm.com/developerworks/library/specification/ws-
resource/ws-modelingresources.pdf.

[12] Maui Cluster Scheduler.
http://www.clusterresources.com/products/maui.

[13] J. Nabrzyski, J. M. Schopf, and J. Wȩglarz, editors. Grid
Resource Management. Kluwer, 2003.

[14] NorduGrid. http://www.nordugrid.org.
[15] D. Ouelhadj, J. Garibaldi, J. MacLaren, R. Sakellariou, and

K. Krishnakumar. A multi-agent infrastructure and a service
level agreement negotiation protocol for robust scheduling
in Grid Computing. In Peter M. A. Sloot et al., editor, Ad-
vances in Grid Computing - EGC 2005, 2005.

[16] I. Rodero, J. Corbalán, R. M. Badia, and J. Labarta.
eNANOS Grid Resource Broker. In Peter M. A. Sloot et al.,
editors, Advances in Grid Computing - EGC 2005, 2005.

[17] W. Smith, I. Foster, and V. Taylor. Scheduling with advanced
reservations. In J. Rolim et al., editors, IPDPS, 2000.

[18] SweGrid. http://www.swegrid.se.
[19] The Globus Alliance. http://www.globus.org.
[20] S. Venugopal, R. Buyya, and L. Winton. A Grid Service

Broker for Scheduling Distributed Data-Oriented Applica-
tions on Global Grids. Technical Report GRIDS-TR-2004-
1, University of Melbourne, Australia, Feb. 2004.

Proceedings of the First International Conference on e-Science and Grid Computing (e-Science’05)
0-7695-2448-6/05 $20.00 © 2005 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

