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Abstract. There is an immediate need to develop Grid interfaces for a
large set of numerical software libraries, in order to make popular soft-
ware of today available in the computing infrastructure of tomorrow. As
this development work tend to be both tedious and error-prone, this con-
tribution presents a semi-automatic process for generating the interfaces.
The underlying principle is to use a front-end tuned for each numerical
library and a back-end for each Grid environment considered. Then all
library—Grid environment combinations can be generated with a small
amount of manual work. The presentation of the main ideas is followed
by a proof-of-concept implementation that generates NetSolve interfaces
for the complete SLICOT software library, a numerical library compris-
ing nearly 400 Fortran subroutines for numerical computations in the
design and analysis of control systems.

Keywords: Grid computing, numerical software libraries, remote com-
puting, interface, SLICOT, NetSolve.

1 Introduction

The rapid development of the Grid computing infrastructure puts strong de-
mands on development of Grid-enabled application software and software li-
braries. Some of the typical Grid resource usage scenarios are based on the
underlying idea that all small computations are performed on a single local
computer, while large-scale computations are automatically distributed to ap-
propriate and more powerful computing resources on the Grid. Examples in-
clude Grid-empowered problem solving environments and application-oriented
web-based Grid portals, so-called science portals.

For both these scenarios, there is an immediate need for interfacing standard
software libraries on remote resources. The development of such interfaces tend
to be both tedious and error-prone. This contribution presents a semi-automatic
process for generating the interfaces, and a proof-of-concept implementation that
generates NetSolve interfaces for the complete SLICOT software library.

Financial support has been provided by the Swedish Foundation for Strategic Re-
search under the frame program grant A3 02:128 and The Swedish Research Council
(VR) under contract 343-2003-953.



2 Erik Elmroth and Rikard Skelander

The front-end of the prototype performs a parsing of calling sequences, vari-
able declarations, and source code documentation in order to automatically de-
termine the subroutine interfaces. Notably, the front-end needs to be tuned to
the conventions of each specific library and the programming language used.
Depending on the level of consistency of the documentation, some parts of the
calling sequence may not be uniquely determined by the automatic procedure.
Such cases are reported and taken care of by hand.

The back-end, which in our proof-of-concept implementation generates so
called NetSolve Problem Description Files, is general with respect to which li-
brary that has been processed by the front-end, and the interfaces generated
are completely portable. As the original SLICOT software includes routines for
testing and timing, they can directly be used to verify the correctness of the
NetSolve interfaces, by simply calling routines in the NetSolve-enabled library
instead of the standard library.

The prototype is demonstrated by generating NetSolve interfaces for the
complete SLICOT library. SLICOT is a subroutine library comprising nearly
400 Fortran routines for numerical computations in the design and analysis of
control systems.

The outline of the rest of the paper is as follows. The remote computing
scenario and the motivation for this work is presented in Section 2. Here, we
also exemplify the types of Grid middleware and software libraries considered.
The general process for generating interfaces is described in Section 3. The usage
of this process in practice, and some lessons learned follows in the description
of our proof-of-concept implementation in Section 4. Section 5 briefly describes
how to use the NetSolve version of the SLICOT library on more powerful remote
resources without having to install more than a small set of NetSolve client
software on the local computer. We finally make some concluding remarks in
Section 6.

2 Background and Motivation

Several common Grid middleware solutions are based on the underlying principle
that data should be sent to some remote resource where the software resides.
This principle is often referred to as remote computing. In alternative approaches,
both data and software are sent from the client machine to a resource (code
shipping), or both software and data are sent from different locations to a third,
computational resource (proxy computing).

Our focus is on the generation of interfaces for software libraries in the re-
mote computing scenario. The middleware solution used for our proof-of-concept
implementation is NetSolve [3]. NetSolve basically makes it possible to call sub-
routines on remote systems with interfaces for Fortran, C, Matlab, Mathematica,
and Octave (see also Section 4). Similar functionality using alternative interfaces
is provided by the Ninf (Network-based information library) software [15], and
a recent enhanced version, named Ninf-G [20], that is built on top of standard
Globus-based Grid services. Other related efforts include the Purdue Network
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Computing Hub (PUNCH) [11], Network Enabled Optimization Server (NEOS)
[14], the Remote Computing System (RCS) [2], etc. Moreover, the Open Grid
Services Architecture [8] defines a more general framework for specifying Grid
services based on Web services, that also can be used in the specific scenario
outlined here [16].

Application-oriented Grid portals represent another type of Grid environ-
ments that in one aspect may have similar requirements. Also a portal may be
seen as a remote interface to the software. Given a semi-automated process for
generating other Grid interfaces for remote computing, also the set of application-
oriented portals may be considered as target. We have already seen both auto-
mated efforts and different types of toolkits for constructing application-specific
portals, including an automatic tool for Ninf-coupled portals [19] and the SLI-
COT web portal [7, 10].

Our aim is to Grid-enable scientific software libraries typified by LAPACK,
SLICOT, Linpack, IBM ESSL [1, 4, 9, 18], and several others. This type of large
numerical libraries have been developed for many years, and have proved to be
robust, popular and long-lived. Over the years, we have seen that many such
libraries, e.g., written in Fortran 77, have continued to stay popular even by
users preferring more modern programming languages. Hence, we expect that
there will be a demand for using todays numerical libraries also in the future
and from the next generation of computing environments, including Grids and
web-based Grid portals.

Over time, the relative overhead for transferring the data to a remote resource
before performing the computations is decreasing as network performance is
increasing more rapidly than the performance of the computers. Today, we see
a doubling of network bandwidth every 9–12 months which should be related to
the doubling of computer performance every 18 months. As this trend continues,
the overhead of data transfer may well be compensated by the reduced manual
work for software library installations and tuning.

Clearly, we can foresee the need for at least a number of different interfaces for
each of quite a few different libraries, leading to a significant number of library-
interface combination. If manually generated one-by-one, without making any
attempt to reuse results between the different interfaces generated, we can easily
foresee an enormous amount of both tedious and error-prone work.

Hence, we propose to use a semi-automated process where we only need one
front-end process for each library and one back-end process for each Grid envi-
ronment considered, in order to generate all software library—Grid environment
combinations requested.

3 Semi-Automatic Interface Generation

The interface generation process can basically be viewed as two nearly indepen-
dent processes performed in sequence. First, a semi-automatic process parses
the numerical software library in order to extract all library-specific informa-
tion required to define the correct calling sequences for all subroutines. This



4 Erik Elmroth and Rikard Skelander

information is then stored in a basic internal format. The second process is the
generation of Grid middleware specific interfaces for all subroutines.

The parsing process of the front-end described below is aiming at numerical
libraries written in Fortran, as these still are dominating among existing numeri-
cal libraries. The general idea, however, is applicable to libraries written in other
programming languages as well.

3.1 Front-End: Extracting Software Library Information

The front-end parses the source code of the numerical software library and ex-
tracts the required information from the

– Calling sequences.
– Parameter declarations.
– Inline documentation.

The information that can be extracted from the calling sequence is obviously
the name and the order of all parameters. The parameter declarations give ad-
ditional information about the data types, the number of dimensions of array
elements, and the leading dimension of at least all but the last dimension of the
array arguments. As parameters are passed by reference, the declarations do not
have to (and do not in general) contain information about the last dimension of
array arguments, which is required to determine the total size of such objects.
This information is, however, typically included in the inline documentation of
the code. The inline documentation together with the declarations may also tell
if the parameters are of type input, output, or both.

The parsing of the inline documentation is by nature more difficult than that
of the calling sequence and the parameter declarations, as it does not follow any
well-defined syntactical and semantical rules and definitions. Despite this fact, it
is typically possible to automatically extract a vast majority of the information
required from this documentation by taking advantage of the more or less strict
conventions that often are used in state-of-the-art libraries.

If the size of a dimension is expressed in the inline documentation as a con-
stant or as a single input parameter, the automated process has no problems.
However, it becomes more complicated if the dimension size is expressed as some
function of input parameters. For example, the automatic process may determine
from the inline documentation, that a parameter declared as A(LDA, *) is to be
used as A(LDA, MAX(M, N)), where M and N are included in the list of parame-
ters. In order to perform the communication correctly, both the client and the
server resource need to know the exact size the array A. Since how to handle this
type of issues depends on the functionality of the Grid software, and we strive
to make the internal format general with no dependencies on the back-end, we
add one extra variable to the internal storage format for each function value
requested (e.g., one extra parameter for the function value MAX(M, N) in the
example above).

There will normally also be cases where the automated process fails to de-
termine, e.g., the size of an array, possibly because its size is expressed in terms
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of natural language. Such cases are simply identified by a “flag”, telling where
the user needs to put in some manual work.

The fact that the conventions are different for different libraries makes it
necessary to adapt the front-end for each case. Then, the extent to which all
routines in a library follows these conventions determines how much manual
work is needed after the automatic process.

As the result of the parsing, all information required for each subroutine
call is extracted and stored in an internal format. The information includes the
subroutine name, the lists of input and output parameters, data types for the
parameters, array dimensionality, etc.

3.2 Back-End: Generating Grid Interfaces

The input data for the back-end process is the data generated by the front-end,
stored in the internal format. From this data, the back-end can be configured
and tuned to automatically generate all the interfaces in the exact format re-
quested for a specific Grid middleware. Of course, this is a process that can be
rather different for different Grid middleware, but in most cases the code to be
generated has rather limited syntax and semantics which makes the back-end
easily developed. Hence, most of this generation is trivial, but we will in the fol-
lowing proof-of-concept implementation also illustrate some technical problems
that need to be handled.

Notably, given a back-end for one middleware, it can be used for a auto-
matic translation for any software library for which the requested information is
available in the internal format.

4 Proof-of-Concept Demonstration

The feasibility of the process described above have been investigated in a proof-
of-concept implementation, that makes the complete SLICOT library available
from remote resources via NetSolve.

4.1 Aggregation of Interface Data for the SLICOT Library

SLICOT is a numerical software library for computations in systems and control
theory [18], freely available for non-commercial use. The library provides For-
tran 77 implementations of algorithms and methods for the design and analysis
of control systems. Among the more pronounced design principles for SLICOT
is the strive to provide robust, stable and accurate algorithms, to take both
memory requirements and floating point performance issues into account, and
to follow strict programming and documentation conventions throughout the
library.

In total, SLICOT comprises nearly 400 user-callable and computational rou-
tines. Around 200 of the routines have associated example programs, example
data files and results for illustrations and comparisons. The Basic Linear Algebra
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Subprograms (BLAS) [5, 6, 13] and LAPACK [1] are used for underlying linear
algebra computations.

SLICOT is organized in eleven groups of routines, depending of their ap-
plicability or type:

A: Analysis Routines
B: Benchmark and Test Problems
C: Adaptive Control
D: Data Analysis
F: Filtering
I: Identification
M: Mathematical Routines
N: Nonlinear Systems
S: Synthesis Routines
T: Transformation Routines
U: Utility Routines

The parsing of the library has been performed as described in Section 3.1.
It should be remarked that the documentation style in SLICOT is not com-
pletely homogeneous and does not follow one unified convention as strictly as
the SLICOT design goal suggests. This implies some extra efforts in designing
and tuning the front-end parser, but it should be noted that almost all informa-
tion required has been gathered through the automatic process.

The only type of information for which we do not think it is worth the
effort to build an automatic tool, is for identifying array dimensions that are not
only parameter values. A typical example is to determine the size of an array
declared as WORK(*), where the documentation tells that the array is of size
LWORK and LWORK is not a parameter itself but a more complex function of the
input parameters. In these cases the automated process simply indicates that
manual work is required to add this information.

After completing the automatic parsing and some work by hand, all the
requested information is stored in the internal format. Notably, this information
is now gathered once and for all and can be use to generate any number of
different Grid interfaces using differently configured back-ends. In this proof-of-
concept implementation we generate interfaces for NetSolve.

4.2 Generating the NetSolve-SLICOT Interfaces

NetSolve is a Network-enabled solver that gives clients transparent access to
software on remote servers [3]. NetSolve agents match service requests with
the resources available. In order to make software available via NetSolve, each
subroutine interface must be specified in a NetSolve Problem Description File
(PDF). Based on such files, NetSolve provides interfaces to be called from For-
tran, C, Matlab, Mathematica, and Octave. The actual software made available
via NetSolve can be written in C or Fortran.

Almost all of the translation from the internal format to the rather basic
language of the PDF files can be done automatically. Again, it is only some
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of the more complicated array dimensions that cause problems. Sizes that are
parameter values, e.g., LDA in Section 3.1, or unconditional functions of the input
parameters, e.g., LDA*M, do not cause any problems in the back-end process. For
conditional expressions, it is possible to use so called “@COMP” expressions in
the PDF file. The “@COMP” expressions can be used to handle cases, where the
array size depends on, e.g., if another parameter is TRANS = ’Y’ or TRANS =
’N’ (i.e., if the matrix transpose should be used or not). However, the “@COMP”
functionality can currently only handle conditional expressions including tests of
equality. Apparently, this limitation of the “@COMP” expressions will be removed
in future NetSolve versions, but for the current version we overcome the problem
by adding an extra parameter where the user specifies the array size in these
rare cases.

The output from this back-end is one NetSolve PDF-file for each SLICOT
subroutine. These files are then to be stored on a server resource that has the
NetSolve server software running, and access to the complete SLICOT library
including the underlying BLAS and LAPACK routines. In addition to this, the
server must register with a NetSolve agent, which then can direct the user’s
requests to the server.

In order to test the generated interfaces, we have modified the nearly 200
test routines available with SLICOT to call the NetSolve versions or the routines
instead of routines in a local SLICOT library. We remark that for libraries where
test routines are available, this is in general a very convenient way of testing also
the new interfaces.

5 Using SLICOT via NetSolve

In order to use the NetSolve version of SLICOT the user must install the Net-
Solve client routines on the local computer, set the appropriate environment
variable and link with the appropriate NetSolve library. Notably, there is no
need to install SLICOT, BLAS, and LAPACK on the local computer as these
libraries will only be accessed on remote resources. NetSolve also provides com-
mands for querying an agent about available servers.

With the basic installations in place, there are only marginal changes that
have to be made to an application software in order to call the NetSolve version
of SLICOT on a remote computer system instead of calling a locally installed
SLICOT library. This is illustrated by following small example, showing how a
standard SLICOT routine is called via NetSolve from a Fortran or C to appli-
cation program.

The subroutine head of the original Fortran code for the SLICOT routine
SB02MD is outlined below. SB02MD is a routine implementing a Schur vectors
method for solving algebraic Riccati equations [12, 17, 21].

SUBROUTINE SB02MD( DICO, HINV, UPLO, SCAL, SORT, N, A, LDA, G,
LDG, Q, LDQ, RCOND, WR, WI, S, LDS, U, LDU,
IWORK, DWORK, LDWORK, BWORK, INFO )
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A remote NetSolve call to this routine from a Fortran program is made
through a subroutine call to FNETSL with the routine name (SB02MD) and a
NetSolve status variable as two additional arguments preceding the list of the
parameters for the standard SB02MD routine:

CALL FNETSL( ’SB02MD()’, STATUS, DICO, HINV, UPLO, SCAL, SORT, N,
A, LDA, G, LDG, Q, LDQ, RCOND, WR, WI, S, LDS, U, LDU,
IWORK, DWORK, LDWORK, BWORK, INFO )

A corresponding call from a C program is made as a function call to “netsl”.
Here the NetSolve status variable is the function return value:

status = netsl( "SB02MD()", &DICO, &HINV, &UPLO, &SCAL, &SORT, &N,
A, &LDA, G, &LDG, Q, &LDQ, &RCOND, WR, WI, S, &LDS,
U, &LDU, IWORK, DWORK, &LDWORK, BWORK, &INFO);

6 Concluding Remarks

The semi-automatic process described aims at minimizing and improving the
tedious and error-prone work required to develop a set of different Grid interfaces
for each of a large number of numerical software libraries. The underlying idea
is to develop one front-end for each numerical library and one back-end for
each Grid environment considered, and then with a small amount of work be
able to obtain all library—Grid environment combinations. The extent to which
this process can be made automatic or needs additional manual work depends
both on how well structured and consistent the inline documentation is and the
features provided by the Grid software. However, our experience from this proof-
of-concept implementation is that a vast majority the tedious and error-prone
work can better be done automatically.

The proof-of-concept implementation illustrates this process for one libary
(SLICOT) and one Grid environment (NetSolve). In order to make SLICOT
available in some other Grid environment or via a web portal as done in [7], the
same front-end could be used with a new back-end generating, e.g., PHP-scripts
for a web portal.

We remark that new numerical libraries could benefit from having the inter-
faces specified in, for example, XML. Based on such specification, the front-end
process could be made trivial and completely automatic.
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