Int. J Computational Science and Engineering (Accepted)

A User-Centric Cluster and
Grid Computing Portal

Erik EImroth*

Department of Computing Science and HPC2N,
Umea University, Sweden

E-mail: elmroth@cs.umu.se

*Corresponding author

Mats Nylén

Department of Physics and HPC2N,
Umed University, Sweden
E-mail: nylen@tp.umu.se

Roger Oscarsson

HPC2N,

Umea University, Sweden
E-mail: roger@hpc2n.umu.se

Abstract: The HPC2N Grid portal is a user-centric environment that provides a
homogeneous interface to a set of heterogeneous high-performance computing
resources from standard web-browsers. The interface includes support for most
everyday activities for a regular user, such as to submit, manipulate and delete
jobs, monitor queues and job status, obtain user-, project-, and resource statistics
and information, view job output, etc. This contribution reviews the portal
functionalities and presents the design and implementation of the underlying
system architecture. Some major design considerations, features and limitations
are discussed and future extensions are outlined. The portal currently gives
access to all major resources at HPC2N, in total comprising over 700 CPUs.

1. INTRODUCTION

Various types of web-based portals are expected to
become frequently used alternatives or complements to
traditional interfaces to individual high-performance
computing (HPC) systems or general Grid resources.
Today, there are several projects developing different
types of portals, or tools for constructing portals,
ranging from general interfaces for sets of resources to
more application-oriented or application-specific
portals, often referred to as science portals. For
examples, see [1, 3, 6, 9, 11-15, 17, 18, 20-22, 26, 28-
31].

This contribution presents a general user-centric portal
for accessing a set of HPC systems, possible to extend

to resources accessed via Grid interfaces. The
objective is to develop a portal that gives a homogen-
eous interface to a set of heterogeneous resources for
most everyday system interaction of a regular HPC
user. This includes support for submitting and
manipulating jobs, monitoring queues and job status,
obtain user-, project-, and resource statistics and
information, to view job output, etc.

In the following we present the functionality, design,
system architecture, and implementation (in Perl) of
this portal, currently in use at the High Performance
Computing Center North (HPC2N), a national HPC
center in Sweden. The HPC2N resources accessible via
the portal include different types of Linux clusters with
100 to 384 processors and an IBM SP system [4].

2. FUNCTIONALITY

After a standard login procedure with username and
password, the user faces the portal front page, e.g., as
shown in Figure 1.

| ____ HPCIN Grid! et i | E
Eile Ldit Miew Go Dookmarks Tools Window Hedp
SRR T | T e e ———rp—— ﬂ]
Queue: sarek saek x| |
HPC2N
GridPortal Sarek queus info last day
[r— §
Par Olsson = :
Lagout | J i I
—— 1200 1800 a0 060
Sulmil Hodes Eactive O failable
Accounts Jubs B Deferved Misitig O active
dsers T procs available for 1:32:54
[ngeid . sanm
— CEmghed | [Running: 29) (Waiting 27) (Dalemed 77] [T
FErEK : 3T45TE
| D User #P Account Remaining Starttime
gt - 215230 18043 vuliva 16 (4753 Wed Dec 1 85:47:39
——|1op27 potsson 48 SHIC003-04-18 1:32:54 Tue Mov 38 17:31:46 geead
19854 glsson 8 SMICODE-04-2 33324 Tue Hov 38 17:32:18
lookoanadm 16 NGRS s e
19764 oberg 32 SMNICO03-04-20 7:32:54 Tue Mov 38 17:31:48
19766 oberg 32 SNICO03-04-20 7:32:54 Tug Hov 38 17:31:48
19069 fplzspn 32 SMICO0E-04-82 7.33.24 Wed Dec 1 89:33:18
19994 paav 24 SMICOD3-04-B2 1173343 Wed Dec 1 82:32:29
19933 fhymp 16 SMICO03-04-B2 11-34:08 Wed Dec 1 §9:32:55 H|
12000 polsson 40 SMIC003-04-10 16:56:36 Wed Dec 1 88:55:22 waead || |
12831 akfoermen 1 18,1254 Tue Nov 38 22:12:48 |
13632 akkerman 1 181254 Tue Mowv 38 22:12:48 |
19733 are 32 SMCO0S-04-72 233254 Tue Hov 39 17:31:48 '

18000 rkadvm 16 SMICO03-04-63 233342 Wed Dec 1 83:32:29
18685 grichi 4 SMICO03-04-63 23,3342 Wed Dec 1 #9:32:29 |
19787 phsss 1 SMICOD3-04-18 23,3354 Tue Nov 38 17:31: 48
19788 phsss 1 SMNICO0S-04-18 233354 Tue Mov 38 17:31:49

19709 ohass 1_SHICO03-04-10 233354 Tue Mov 36 17:31:4% il
L -2 (8 @ | htps:ifporial hpc2n.. accoun=SHICDIB4Z [Faf== & |

(]

Figure 1. Running jobs queue.

In this window information is presented for the user’s
default resource, with the queue information for
running jobs taking up most of the space, but there is
also a graph showing a summary of job queue statistics
and some links and menus for selecting other type of
information or information about other resources.

The information presented for each running job is the
job-1D, the user name, the number of processors used,
the project account to be charged for the job, the start
time, and the time remaining. The job-ID, the user
name, and the account number can be expanded for
more information. For example, it is possible to get a
processor utilization graph for each running job. For
jobs owned by the user being logged in, there is also
an “abort” button for each job, that can be used to kill
the running job.

Above the queue information, there are four additional
tabs of which three are for obtaining the corresponding
lists for finished job and for jobs in the active and in-

active part of the queue. The last tab is for obtaining a
description of the resource of current interest. The two
listings of queued jobs are rather similar to the list of
running jobs, with the start time and remaining time
replaced by the time requirement as specified at job
submission and the time since the job was submitted.
By expanding a queued job, job specific information is
presented together with an explanation of why the job
has not yet been started.

The list of finished jobs only includes the jobs owned
by the user currently logged in on the portal. The list
shows all jobs completed during the last few days, with
each job’s job-ID, finishing status, number of
processors used, project account charged for the
execution, the total time required for the job, and the
date and time when it was completed. Detailed
information about each single job can be obtained by
expanding the job-ID, as shown in Figure 2. This gives
information about which CPU’s that have been used,
the total CPU utilization, the complete script used for
job submission, and the standard output and standard
error (if non-empty). The graph showing the total CPU
utilization can be expanded in a new window showing
the CPU utilization for each individual CPU used.

From the submit link on the front page, the user is
presented a job submission interface, as in Figure 3.
This interface provides menus for specifying a
resource (i.e., queue) which to submit a job to, which
project account to charge, and if the resource capacity
required is specified in terms of CPUs or nodes. The
job submission script can be entered in a text field or
uploaded from a file. Text fields are also available for
assigning a job name, and for entering the number of
CPUs or nodes, and the maximum time requirement
for the job.

The account information can be accessed either per
project only or organized per user. For example,
Figure 4 shows the two projects in which a specific
user participates. By expanding each tab, the more
specific information, such as the project abstract and a
list of project members is presented for each project.
Similar information is also available on a per project
basis.

System information for all resources is integrated in
the portal. The overview of one resource is presented
in Figure 5. More detailed information can also be
presented.

Eile Edit iew

Go Bookmarks

Tools Window Help

@ v A 5 [& vitpsAponal hpe2n umu sefshowjobueve=sarek8job=19560 /]

Finished Job on sarek: 19560 |

mir\d 53101

SArek : 376/E7E

seth | 2211230

Workdir: /kis/home/p/polsson/FECR/ROT/SIA-120/111-FeFe_5sCr

HPCZN
m I Job name: Fel120rot111Cris
et ora User: polsson
Account: SNICO03-04-15

Logoed in es: State: finished / finished
Par Qlsson

L it
M Nodes: 24:ppn=2
Subrmit
Queues
Accounts
Users

Starttime: Thu Nov 25 21:28:31
Runtime: 9:48:50 (158:00:00)
Script:

m013, m014, m015, m025, 028, m027, m028, m029, m030, m031,
mO35, 0SS, mO61, ma71, mosd, m133, m150, m151, m152, m153,
m162, m63, m164, m165

Hibin/sh

SNAC project number, enter 1T applicable.

NOTE! Mo spaces or slashes allowed

PBS -A SNIC&G3-04-13

Job name - defaults to name of submit script
FBS -N Fel2@rotlllCrss

Output files - defaults to jobname. [en] jobnumbs
PBS -0 test.out

PBS -2 test.err

Mail on - a=abort,
PBS -m abe

Humber of nodes - defaults to 101 /
T

b=beginning, e=end - defaul

Output:[running on 43 nodes Y
distr: one band on 1 nodes, 48 groups
vasp.4.6.6 17Mar@3 complex
POSCAR found @ 2 types and 121 ions
LDA part: xc-table for Ceperly-aAlder, standard in
POSCAR, INCAR and KFOINTS ok, starting setup
WARNING: wrap around errors must be expected
WARNING: random wavefunctions but no delay for mi
entering main logp

=

. m029, m030, m031, mO35, mOS5, mO61, mOT1, m0&d, ml3d, ml50

100
e
E 50
=
5

22100 00:00 02:00 0d:00 06100

W user Msysten Oldle Miin Usage O Max Usage B Start 20:28:31
B End 07:17:21

&L ~Z (3 @A | Done 1

Fr-[= 3

Figure 2. Details of a finished job.

o e - A B [E v rportal bpcinem

Eile Edit ‘iew Go Hookmarks Tools Window Halp

uuberit

bk b o~

Submit |
HPC2N
GridPortal R zarek x| Submil b
JobMame Felderiiicad
Logged in s Script Change to Working Directory
Par tsson d $POS_0_WORKDIR
Logout i piexes fkTs/home/p/polsson/oinivase. mpd
Subrit
Queues

or local e
Account
Send mail

Modes: =| ﬁd

M Time:

203 processors of 230 and 106 nodes of 115)
& one

| Brawse...

SNICO03-04-12 x|
abt. [aport I« start [end

18 hours (v, houes imped not grven)

=5

[H_ HPCINGridPortal - User —velimir~Mozllla________ || .|

File Edt Yiew Go Dookmarks Tools ‘indow Help
9 " 3 B [& tpssponal hpcan umu seluser?uservelimikshow=description j
User: velimir andkied2 ﬂJ
Name: velimir Meded andkis22
GridPortal et j
chryod2
Tommiher Nama:Electronic theory of materials properies: mwnuamer'\‘ﬂll
Par Olsson towards materials design —
Lagaut tobmaltd
¥ computer . ab Intio electronic theory, vl
Sutng effects, phase stabity velja
s Prineipal gar Abilpsov waol
Investigator Professor I At
Users 5.0 of Physics and aatta
: sTAm Technology (IFM). I.Inhoplngs UanHIIv Campu ;";'n‘i""“"
Fa08, SE-581 83 Linkoping, Swe: P
© ITELTH Members andkis2? bjoal chrgod? fral mﬁ}ﬁ ROlES0n mnm-ala:-l:
Abstract The main goal of the research is to deepen a fur *dha
i torials p o the b #ndre

qUANEUM MEChankcs, and 1o dellver this exp Ll 4

sclence, adjacent scientific ulsr.lplhea and tn lelam Industry. This

will lead to new and

discovering walm\oeb,rm materials reqm nys rapid progress in

MOderm tEchnoiogies, We will extend our study of

thermadynamics to systems at high prassure, and 3150 1o alloys on

complex |attices, as well a3 to Interstitial alloys. The main directions of

the research hcluuef 1) irst-nrinciples sIMUtatons of aoying effect at

mms of allaying effect in
OMmplex Sy sems, III meoryonc-:al Ervironment efmects in

nompenoult solds, V) of the lacal Bfects

In magnetic systems, and v) simulations of electronic, structural, and

magnetic properties of low-dimensional systems.

G b 2 00 @ | Do [

=

Figure 4. A user’s project information.

Eile Edit iew

Go Bookmarks Tools Window Help

$é -

;&N o \a :‘g Iq& https:#fpartal hpe2n.umu EE/EhDunEUE';QUEUE:SEFEK&ENﬂ

Queue: sarek sarek jl
HPC2N
GridPortal Sarek gueue info last day
200
Loged in &5 Z 4
Par Qlsson B 102 =
12000 15200 00200 06:00

Nodes O Active O Available
Jobs B Deferred B Waiting O Active

no procs available

Finished Running: 307 (Waiting: 38 Deferred: 104 Description

The HPC2N Opteran cluster is named
sarek hpe2n.umu se after Sarek National Park.

|| Sarek has a total of 384 processors and 1.54 Thyte of
memary:

« 190 HP DL145 nodes, with dual AMD Opteran
248 (2.2GHz)

« 2 HP DLEGS, with dual AMD Opteron 248
(2.2GHz)

8 GB memary per node

 Myrinet 2000 high speed interconnect

Detailed descrigtion of systen

e & s EA @ [hitpsdpertalh.. rekshow=running [T

Fo-[= &

Figure 3. Job submission.

Figure 5. Sample resource description.

3. INTERFACE DESIGN

A guiding principle in the interface design is that the
portal should be as close to browser independent as
possible. In order to ensure this, test and evaluation
have been made using all of Internet Explorer, Mozilla,
Safari, and w3m. The use of Internet Explorer version
5 or more recent ensures compatibility with
approximately two thirds of all users [2]. The other
three choices reflect the majorities of other users,
Macintosh users, and users preferring text-based
browsers.

3.1. General design considerations

The strive for generality and portability lead to some
general design decisions including to completely avoid
pixel-based positioning, mainly as this often leads to a
need for pixel-based positioning and sizing to large
extent. Cascading Style Sheets (CSS) [32] are useful,
but since CSS often requires pixel based positioning
and sizing, and not all browsers implements CSS fully
and correctly, we have chosen to use CSS to some
extent, but not everywhere it possibly could have been
used.

For the actual web page layout, we have decided to use
traditional HTML tables, as an alternative to frames.
The decision not to use frames is based on the facts
that they are difficult to bookmark, only can be sized
in pixels or percentages, and they do either lead to the
use of JavaScript to navigate or a proliferation of
pages. JavaScript is only used for enhancement and not
for necessary functionality in order to avoid some
portability problems and to enable the use of text-
based browsers. Graphics are also used restrictively for
the same reason.

3.2. Page layout

The page layout must be designed with at least one
fixed area, e.g., for navigation, and one dynamic area
for various types of display and interaction. Based on
studies of other portal initiatives in the HPC area and
elsewhere, our decision is to have one narrow fixed
area on the left hand side and a large dynamic area on
the right, as this typically leads to a need for vertical
scrolling instead of horizontal.

The fixed area is partitioned into four boxes for a logo,
for login/logout, for navigational links, and for
resource status information. The dynamic area is used

for all other types of information, as illustrated in
Figures 1 and 3 - 5.

We have imposed strong requirements on the size of
the portal in order to optimize its functionality also for
low-resolution displays. Hence, we have strived to use
the available screen area efficiently, so that the user
should not need to use both horizontal and vertical
scrollbars.

4. BACK-END DESIGN

The back-end part of the portal server collects and
organizes the information that is to be presented to the
user. Figure 6 illustrates the overall function of the
server. Each request from a client browser starts up the
server CGIl script. The front-end of the server
interprets the requests and the back-end retrieves the
requested information from various external sources.
Finally, the information is formatted and sent back to
the client browser.

Browser Server | Resources

i
- OpenPBS

. Maui
ﬁ—> Static
‘*73 Information

Figure 6. Overall function of the portal.

Data about batch queues, job status, etc, is retrieved
using various batch system commands. These
commands are issued to OpenPBS [23] or to the Maui
[27] scheduler. The output from these commands
contains the information about batch queues and jobs
that the server needs in order satisfy the client requests.

Since the batch systems in use at HPC2N has no built-
in support for retrieving information about finished
jobs, i.e., jobs that have completed, the available
information needs to be amended. This is
accomplished by running a special script at the end of

each batch job that stores the information about that
job. The data saved includes some statistics about the
job, the batch script, standard input, output and error.

Apart from the files maintained for the security
solution described in Section 5 the portal server can be
considered stateless, i.e., it maintains no session
specific state over time or from one access to the next.

4.1. Caching

The portal server makes extensive use of both internal
and external caching for improved performance and
reduced interference with surrounding systems.

The methods that retrieve information from the batch
system are typically invoked several times during each
request to the portal server. For example, when
creating the view shown in Figure 1, the back-end
needs to retrieve some information about waiting and
deferred jobs in addition to the running queue. In order
to avoid unnecessary parsing and interaction with the
batch system, the output from each command is cached
internally after parsing.

Some of the commands to the Maui scheduler take
substantial time to complete, e.g., the showq
command for showing the complete batch queue. In
order to improve responsiveness of the portal, output
from such commands is cached in an external file
cache whenever this is possible and meaningful. The
files in the external file cache are updated regularly
external to the server, using the UNIX cron facility.
This allows for the portal server to access the file
cache already available instead of querying the batch
system for such commands.

4.2. Batch systems and queues

The methods for accessing batch queues and jobs are
implemented in an object oriented fashion where the
top-level objects are Queue and Job. These objects
are then specialized to the batch system in use at
HPC2N (OpenPBS with Maui as scheduler), with the
additional support for the handling of data for finished
jobs. Figure 7 shows the inheritance diagrams for these
classes with specialization to the combination
OpenPBS with the Maui scheduler. The extended
functionality required for aggregating data for finished
jobs is handled with additional PBS classes (the classes
with names ending in “_f”).

Queue Job

‘ Job::maui ‘ ‘ Job::PBS ‘

‘ Queue::maui ‘ ‘ Queue::PBS ‘

‘ Queue::PBS_f‘ ‘ Job::PBS_f‘
Queue::mauiPBS Job::mauiPBS

Figure 7. Queue and Job object classes.

Whenever the portal needs to interact with the batch
system a Queue object is instantiated. The main
methods in Queue are: jobs, submit and delete.
The methods submit and delete are described in
Section 4.3. The jobs method returns a list of batch
jobs fulfilling some specified criteria, e.g., all finished
jobs for a specific user. The initial call to the
Queue::job method retrieves the information
required from the batch system, from command output
and from the file cache. This textual information is
then parsed and stored in the internal cache.
Subsequent calls during the processing of the request
that requires pieces of this data can then utilize this
internally cached information.

Each batch job in the list returned by the
Queue: : jobs method is an object of the Job type.
The main method in the Job class is get that returns
information about the job. The Job::get method
takes as an argument the required information, examp-
les include user, starttime, account, etc.

As an example, to generate the data needed for the
display of the batch queue shown in Figure 1, showing
all running jobs, as well as the number of waiting,
deferred and finished jobs, the following actions are
performed:

Instantiate an object Queue: :mauiPBS. This creates
a Queue object specialized to the situation at HPC2N,
including the interface for the finished jobs.

Call the method Queue: : jobs, requesting a list of
all jobs in the state running. This call will obtain most
of the required information by reading and parsing the
showq output that is stored in the external file cache.
After the parsing, this data is stored in the internal
cache, and the list of running jobs is returned.

Loop over all jobs in the list, retrieving the data using
the Job: :get method, each call returning one field
of data, e.g., the account number, or the start time for

the job. During these calls all the data is already in the
internal cache.

Retrieve the number of jobs in the waiting, deferred
and finished state, by calling the Queue::jobs
method once for each of the states and counting the
length of the list. At this stage there is no cached
information about the finished jobs. In order to retrieve
this information the back-end needs to look at the files
generated as described above.

If the user has requested information about an
individual job, the Queue: : jobs can be called with
a single job-ID as argument, and then the Job: :get
method is called for detailed information about that
job. For jobs in the batch system, i.e., jobs with status
running, waiting or deferred, this includes obtaining
output from various OpenPBS commands, whereas for
finished jobs the data comes from the files stored at the
end of each job.

The type of information available for a job depends on
the state of the job. For waiting and deferred jobs there
is not much detailed information available. For running
jobs the start time and node allocation is known, which
can be combined with the statistics described below to
generate graphs. For finished jobs, the files stored at
the end of the batch job include standard input, output
and error, as well as the batch script. Information such
as start time, end time and node allocation is also
stored. All of this information is available to the portal
back-end and can be presented to the user.

4.3 Job submission and deletion

When a user requests the deletion of a batch job, the
back-end calls the delete method in the Queue
class. This method then calls the appropriate batch
queue command, i.e., qdel in the case of OpenPBS,
and the job gets deleted.

When a user submits a batch job through the portal, the
portal server collects the information that the user has
specified in the fields on the web interface shown in
Figure 3. The server then invokes the
Queue: :submit method which assembles the
various pieces of information, job name, account
number, maximum execution time, etc, into a batch
script suitable for submission. Finally, the back-end
submits this script, using gsub in the case of
OpenPBS.

4.4, Statistics and graphs

Statistics are made available to the portal server from a
few sources. First of all, detailed statistics about
individual nodes are accumulated during operation of
the HPC2N clusters using Ganglia [16]. Secondly,
statistics about finished batch jobs are kept track of
using the mechanism described above. Thirdly,
Ganglia has been customized to log certain cluster-
wide data, e.g., the number of available nodes.

To assemble the statistics needed to put together graph
like the one shown in Figure 2, for a finished batch
job, the different statistics has to be combined. From
the information stored at the end of the batch job, the
start time and number and identity of the allocated
nodes can be found. We can then search the data
logged by Ganglia to determine the CPU usage as
function of time for these nodes.

The transformation of the assembled statistics into the
graphs that are presented to the user is accomplished
with RRDtool [24]. Examples of graphs generated are
given in Figures 1, 2, and 5.

4.5, Static information

In addition to the information that is gathered from
dynamical data-sources like the batch system or the
statistics, the portal also makes use of data that is more
static in nature. Examples of this are user and project
information, static information about the available
resources, etc. Much of this data is updated very
infrequently.

The user and project information is maintained
externally to the server in flat-file databases and XML-
files containing detailed information about projects.
These sources are accessed by the server and parsed
whenever it is requested.

Static information about the resources is kept in
separate files that contain HTML-text that can be
included directly into the web-pages presented to the
user.

5. SECURITY ISSUES

All communication between the portal server and
browser is performed using the https protocol. Figure 8
illustrates the basic procedure for validating a user.
First the username and the password are sent from the

browser to the server, and then the server verifies these
using Kerberos authentication, i.e., the portal server
issues a kinit command to the HPC2N Kerberos
server. If the user/password combination is valid the
server sets a session-ID cookie in the browser
consisting of a random string of 12 hexadecimal digits
followed by the username and the full name of the
user. The fields in the cookie are separated by a colon
('z"). The Kerberos ticket returned by the Kerberos
server is not used and is discarded.

In order to keep track of the active sessions, the server
also maintains a directory with one file for each active
session. Each file name consists of the username and
the same random string as the cookie of the
corresponding active session. The file is created during
the login procedure as indicated in Figure 8. Every
time a user initiates an action, the server checks that
the browser’s cookie corresponds to an active session.
If the cookie is invalid or non-existent the server
returns the login page to the browser.

Browser Server Resources

username ,.

password ———» Kerberos

verifies
: Server

creales\A

cookie Cookie file

Figure 8. Steps to initiate a session.

In order to deactivate sessions that remain inactive for
too long, the server touches the file on each action. A
cron job then deletes any files that have not been
touched for 40 minutes, thereby deactivating the
session.

In principle, all actions performed by the portal server
on behalf of the user should be executed on his/her
user account. This requires the use of a setuid program
to run commands. The setuid program is kept quite
simple and uses the same security mechanism as the
server, i.e., it checks that the user and cookie
corresponds to a cookie file for an active session. For

many actions, however, the result is independent of the
user that executes them. In these cases the portal server
executes the actions under its own user account,
avoiding the use of the setuid program and thereby
saving a significant amount of time.

6. DESIGN CONSIDERATIONS AND FUTURE WORK

We are currently performing a number of extensions
and modification to the HPC2N portal. One significant
task is to make it possible to access not only individual
resources but also sets of resources via Grid interfaces,
as provided, e.g., by the Globus Toolkit [10] or
NorduGrid ARC [19]. This includes modifications for
enabling interaction with the Grid middleware
interfaces and not only resource specific interfaces, but
it also have implications that will improve the current
functionality. New functionality can take advantage of
Grid-specific features not provided by the individual
resources, such as Grid resource brokers [7, 8] and
Grid-wide accounting information [5, 25].

A major current task is a redesign of the security
solution to be based on the Grid Security Infrastructure
(GSI). Even though this will impose the requirement
on the resources to allow GSl-based access using
X.509 certificates it has a number of advantages. For
example, the resource will not have to trust the portal,
it will be sufficient to trust the user’s (delegated)
credentials passed via the portal. It will also enable
access to the resources via GSI-SSH and thereby be
more general than the current solution when it comes
to batch queue access. The current solution requires
that the batch queue can be accessed via network
interfaces, which is not the case for, e.g., LoadLeveler.
Moreover, GSI-SSH based access can be the basis for
a general approach to all kind of batch queue access,
including job submission, deletion, modification, and
queue listing. Another advantage is that it provides a
convenient solution to the problem of accessing file
systems that are not mounted on the portal server,
typically local file systems on the remote clusters.

We plan to make the infrastructure more general with
respect to different batch systems by reorganizing the
object-oriented class hierarchy for Queue and Job.
This includes making a more generic framework for
accessing data for finished jobs. As most schedulers do
not keep information about these jobs, and our current
solution basically is designed for OpenPBS with Maui,
a more standardized solution will benefit the access to

other resources including resources accessed via Grid
interfaces.

We are also addressing the intricate problem of
providing relevant time information to the user in cases
where the user, the portal, and the resources are in
different time zones (and the user possibly moving
around or being unaware of the physical location of the
portal server). ldeally, the portal should always
provide time information relative to the user’s current
time zone, but as the browsers do not provide this
information as part of their requests, this problem has
to be solved, or possibly circumvented by only
presenting relative time information.

Finally, the extension of the typical usage scenario to
include resources from more than one site has lead to
the start-up of a new initiative for a distributed
database solution for maintaining and appropriately
combining all user and project information.

incorporation of resources with new configurations. In
this presentation we propose such a front-end design
and a proof-of-concept back-end implementation.

The design of the overall architecture is made with
focus on the user-perspective, and by taking into
account a whole range of issues, including support for
a variety of browsers, heterogeneity of resources and
their interfaces, interface and web page layouts,
overcoming performance bottlenecks in batch systems,
etc. This contribution presents these solutions and
outlines future directions of this research.

8. ACKNOWLEDGMENTS

7. CONCLUDING REMARKS

We have presented a user-centric portal for general
access to a set of high-performance computing
resources. The portal provides a homogeneous
interface to a set of heterogeneous resources, which by
the outlined extensions can include Grid resources.
The current prototype is used for accessing the
resources of HPC2N, including over 700 CPUs in
total. Our aim has been to provide a general interface
for the every-day usage of a wide group of users, i.e.,
we have not tried to provide a more application-
oriented portal for a specific application area or a
portal with support for setting up specific types of
computations such trivially parallel parameter sweeps
or data analysis applications. Our view is that such
environments can be provided as future extensions of
this portal or as stand-alone components built on the
infrastructure developed here.

In addition to providing a portal for our needs in the
near future, our aim has been to gain the experience
required for developing a more portable portal for a
wider spectrum of infrastructures. This work has, as
many of the related projects, been highly dependent on
the actual configuration of the underlying infrastruc-
ture. By extending our work as proposed in Section 6,
to include also general Grid infrastructure, our long
term plan is both to support a large variety of infra-
structures and to provide front-end functionality that
can be combined with a flexible back-end for easy

We are grateful to many colleagues for their support
and contributions that have helped improving this
work. In particular we wish to thank Bo Kégstrom,
Markus Martensson, Peter Poromaa and Ake Sand-
gren.

This work has in part been funded by The Swedish
Research Council (VR) under contracts 343-2003-953
and 2004-5787.

9. REFERENCES

[1] G. Aloisio and M. Cafaro. Web-based access to the
Grid using the Grid Resource Broker portal.
Concurrency Computat.: Pract. Exper., 14, pp. 1145-
1160, 2002.

[2] Browser News.
http://www.upsdell.com/BrowserNews/.

[3] M. Dahan, M. Thomas, E. Roberts, A. Seth, T.
Urban, D. Walling, J.R. Boisseau: Grid Portal Toolkit
3.0 (GridPort). HPDC 2004: 272-273.

[4] N. Edmundsson, E. Elmroth, B. Kégstrém, M.
Mértensson, M. Nylén, A. Sandgren, and M.
Wadenstein. Design and Evaluation of a TOP100
Linux Super Cluster System. Concurrency Computat.:
Pract. Exper., 16, pp. 735-750, 2004.

[5] E. Elmroth, P. Gardfjall, O. Mulmo, and T.
Sandholm. An OGSA-based Bank Service for Grid
Accounting Systems. In State-of-the-art in Scientific
Computing. Springer-Verlag, LNCS, (accepted).

[6] E. Elmroth, P. Johansson, B. Kagstrom, and D.
KreBner. A Web Computing Environment for the

SLICOT Library. In Proc. The Third NICONET
Workshop, pp. 53-61, 2001.

[7]1 E. Elmroth and J. Tordsson. A Grid Resource
Broker Supporting Advance Reservations and
Benchmark-based Resource Selection. In State-of-the-
art in Scientific Computing. Springer-Verlag, LNSC,
(accepted).

[8] E. Elmroth and J. Tordsson. An Interoperable
Standards-based Grid Resource Broker and Job
Submission Service, e-Science 2005. First IEEE
Conference on e-Science and Grid Computing, IEEE
Computer Society Press, USA, (accepted)

[9] D. Gannon, G. Fox, M. Pierce, B. Plale, G. von
Laszewski, C. Severance, J. Hardin, J. Alameda, M.
Thomas, J. Boisseau. Grid Portals: A Scientist’s
Access Point for Grid Services (DRAFT 1). Sept. 19
2003, GGF working draft.

[10] Globus. http://www.globus.org.
[11] GridPort. http://www.gridport.net.
[12] GridSphere. http://www.gridsphere.org.

[13] T. Haupt, P. Bangalore, and G. Henley.
Mississippi Computational Web Portal. Concurrency
Computat.: Pract. Exper,. 14, pp. 1275-1287, 2002.

[14] S. Krishnan, R. Bramley, D. Gannon, M.
Govindaraju, R. Indurkar, A. Slominski, and B.
Temko. The XCAT Science Portal. Supercomputing
2001, (2001).

[15] G.J. Lewis, G. Sipos, F. Urmetzer, V. N.
Alexandrov, P. Kacsuk: The Collaborative P-GRADE
Grid Portal. International Conference on
Computational Science (3) 2005: 367-374.

[16] M. Massie, B.N. Chun, and D.E. Culler. The
Ganglia Distributed Monitoring System: Design,
Implementation, and Experience. Parallel Computing,
Vol. 30, Issue 7, July 2004.

[17] A. Natrajan, A. Nguyen-Tuong, M.A. Humphrey,
M. Herrick, B.P. Clarke, and A.S. Grimshaw. The
Legion Grid Portal. Concurrency Computat.: Pract.
Exper., 14, pp. 1365-1394, 2002.

[18] C. Németh, G. Do6zsa, R. Lovas, P. Kacsuk: The
P-GRADE Grid Portal. ICCSA (2) 2004: 10-19.

[19] Nordugrid. Advanced Resource Connector
(ARC). http://www.nordugrid.org/middleware/.

[20] J. Novotny. The Grid Portal Development Kit.
Concurrency Computat.: Pract. Exper., 14, pp. 1129-
1144, 2002.

[21] J. Novotny, M. Russell, and O. Wehrens.
GridSphere: a portal framework for building
collaborations. Concurrency Computat.: Pract. Exper.,
16, pp. 503-513, 2004

[22] M.E. Pierce, C. Youn, and G.C. Fox. The
Gateway computational Web portal. Concurrency
Computat.: Pract. Exper., 14, pp. 1411-1426, 2002.

[23] Portable Batch System. http://www.openpbs.org.

[24] RRDtool.
http://people.ee.ethz.ch/~oetiker/webtools/rrdtool.

[25] T. Sandholm, P. Gardfjall, E. Elmroth, L.
Johnsson, and O. Mulmo. An OGSA-Based
Accounting System for Allocation Enforcement across
HPC Centers. The 2nd International Conference on
Service Oriented Computing (ICSOC04), ACM, 2004.

[26] K. Schuchardt, B. Didier, and G. Black. Ecce - a
problem-solving environment's evolution toward Grid
services and a Web architecture. Concurrency
Computat.: Pract. Exper., 14, pp. 1221-1239, 2002.

[27] Supercluster.org. Center for HPC Cluster
Resource Management. http://www.supercluster.org.

[28] T. Suzumura, H. Nakada, M. Saito, S. Matsuoka,
Y. Tanaka, and S. Sekiguchi. The Ninf Portal: An
Automatic Generation Tool for the Grid Portals.
Proceedings of Java Grande 2002, pp. 1-7, 2002.

[29] M. Thomas and J.R. Boisseau. Building Grid
Computing Portals: The NPACI Grid Portal Toolkit.
Texas Advanced Computing Center, Univ. of Texas at
Awustin.

[30] M. Thomas, M. Dahan, K. Mueller, S. Mock, C.
Mills, and R. Regno. Application portals: practice and
experience. Concurrency Computat.: Pract. Exper.,
14, pp. 1427-1443, 2002.

[31] M. Thomas, S. Mock, J. Boisseau, M. Dahan, K.
Mueller, and D. Sutton. The GridPort Toolkit
Architecture for Building Grid Portals. Proc.10" IEEE
Intl. Symp. On High Perf. Dist. Computing, August
2001.

[32] W3C. Cascading Style Sheets, level 2. CSS2
Specification. http://www.w3.0rg/TR/1998/REC-
CSS2-19980512/

