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(i) Equality-constrained QP’s

min
x∈Rn

1
2
xTQx − cTx subject to

aT
i x = bi i = 1, . . . , m

or
min
x∈Rn

1
2
xTQx − cTx subject to

Ax = b

where Q is symmetric, m < n and A =

aT
1
...
aT
m

. The Lagrangian is

L(x , λ) = 1
2
xTQx − cTx −

m∑
i=1

λi (a
T
i x − bi )

=
1
2
xTQx − cTx − λT(Ax − b)
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KKT-points for equality-constrained QP’s

KKT-point ∇xL(x∗, λ∗) = 0 yields the linear system

Qx∗ − ATλ∗ = c

Ax∗ = b

or (
Q −AT

A 0

)(
x∗

λ∗

)
=

(
c
b

)
where

K =

(
Q −AT

A 0

)
is called a KKT matrix. Write the constraint −Ax = −b, substitute
B = −A. Then, the KKT matrix becomes symmetric:(

Q BT

B 0

)(
x∗

λ∗

)
=

(
c
−b

)
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Optimality for equality-constrained QP’s
Assumptions:

I A has linearly independent rows.
I Q is positive definite in the null space of A. (That is, xTQx > 0 for

all x 6= 0 such that Ax = 0).

Theorem
Matrix K is nonsingular.

Theorem
The solution x∗ of the KKT system is the unique global solution of the
equality-constrained QP.

I The equality-constrained QP is a convex problem under the above
assumptions.

I Note: matrix K is indefinite.
I Thus, solving a convex equality-constraint QP is “easy”
I Equivalent to solving a linear system (the KKT system)
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(ii) Inequality-constrained QP’s

min
x∈Rn

1
2
xTQx − cTx subject to

Ax ≥ b

Lagrangian: L(x , λ) = 1
2x

TQx − cTx − λT(Ax − b)

KKT conditions:

Qx∗ − ATλ∗ = c

λ∗ ≥ 0
Ax∗ ≥ b

λ∗
i (a

T
i x

∗ − bi ) = 0 i = 1, . . . , m

Define the active set

A =
{
i | aT

i x
∗ = bi

}
Note that λ∗

i = 0 for i 6∈ A
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Optimality conditions for inequality-constrained QP’s

I We may delete all inactive inequality constraints and corresponding
zero Lagrange multipliers

I Let Ā be A with all rows for i 6∈ A deleted
I Let b̄ be b with all rows for i 6∈ A deleted
I Let λ̄∗ be λ∗ with all components for i 6∈ A deleted.

Then the KKT conditions simplify to

Qx∗ − ĀTλ̄∗ = c

Āx∗ = b̄

i. e. the KKT conditions for a QP with equality constraints

Note: The above form assume that A is known (which it generally not
is!)
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Background to active set method for inequality constrained
QP

I An active-set method generates feasible points
I Assume that we know a feasible point xk (can be obtained via a

linear problem)
I Define a working set with constraints active at the current iterate

Wk =
{
x | aT

i xk = bi

}
I Guess that the constraints active at x are active at x∗ too. That is

keep (temporarily) the constraints in W active and solve

min
1
2
(xk + p)TQ(xk + p) + cT(xk + p)

subject to AWp = 0,
(EQP)

where AW equals A with all rows for i 6∈ Wk deleted
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Active set for QP

Problem (EQP) has, from above, optimal solution p∗ and associated
Lagrange multiplier vector λ∗ given by(

Q −AT
W

−AW 0

)(
p∗

λ∗

)
= −

(
Qxk − c

0

)
.

Optimal x associated with (EQP) is given by x∗ = xk + p.

When solving (EQP) we have ignored two things

1. All inactive constraints, that is, we must require aT
i x ≥ bi for i 6∈ W .

2. The constraints are inequalities, we have required AWp = 0 instead
of AWp ≥ 0.

How are these requirements included?
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Inclusion of new constraints

We have started in xk and computed a search direction p∗.

If A(xk + p∗) ≥ b, then xk + p∗ satisfies all constraints.

Otherwise, we can compute the maximum step-length α so that
A(xk + αp∗) ≥ b holds. Thus, we compute

α = min
i |aT

i p
∗<0

aT
i xk − bi

−aT
i p

∗ ,

define xk+1 = xk + αp∗, and set W = W ∪ {l}; where aT
l xk+1 = bl .
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Removal of constraints

The point xk + p∗ is of interest when A(xk + p∗) ≥ b.

When solving (EQP) we obtain p∗ and λ∗.

Two cases:

1. λ∗ ≥ 0. Then x∗ = xk + p∗ is the optimal solution to

min
1
2
xTQx − cTx

subject to AWx ≥ bW ,

and hence an optimal solution to the original inequality constrained
QP!

2. λ∗
i < 0 for some i . Let xk+1 = xk + p∗ and set W = W\{i}.
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Sequential Quadratic Programming (SQP)

I One of the most efficient methods for nonlinear programming.
I Recommended as a general purpose method for small to medium

scale problems.
I (e.g. fmincon medium scale is a SQP)

Consider the problem
min
x∈Rn

f (x)

s.t. g(x) = 0,
(NLP)

where f : Rn 7→ R, and g : Rn 7→ Rm, that is, g =


g1
g2
...
gm

.
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Lagrangian and KKT-conditions

The Lagrangian of NLP is

L(x , λ) = f (x)− λTg(x) = f (x)−
m∑
i=1

λigi (x).

KKT-conditions{
∇x f (x∗)−

∑
λi∇xgi (x∗) = 0

−gi (x
∗) = 0

⇐⇒

{
∇xL(x , λ) = 0
∇λL(x , λ) = 0

Thus solving the KKT-system is equivalent to solving

∇L(x , λ) = 0, (OC)

where ∇ = (∇x , ∇λ)T.
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Recall: Newtons method

For unconstrained optimization a necessary condition for minimum is
∇f (x∗) = 0,

∇x f (xk + pk) = [Taylor ] . . . ≈ ∇x f (xk) +∇2
x f (xk)pk = 0

⇐⇒ ∇2
x f (xk)pk = −∇x f (xk) (BN)

i.e. Newton’s metod
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SQP

Do the same with (OC)

∇L(xk + pk , λk + µk) = [Taylor ] . . .

≈ ∇L(xk , λk) +∇2L(xk , λk)

(
pk
µk

)
= 0

Thus to find our steps pk and µk , we solve the system

∇2L(xk , λk)

(
pk
µk

)
= −∇L(xk , λk), (SQP)

where

∇2L(xk , λk) =

(
∇2
x L(xk , λk) −∇xg(xk)
−∇xg(xk)T 0

)
with

∇xg =
(
∇xg1 ∇xg2 . . . ∇xgm

)
.

(SQP) is the basic SQP method (just as (BN) is the basic Newton).
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Properties of SQP

Similar properties as Newton’s method: Quadratic convergence rate if

(i) ∇2L(x∗, λ∗) is nonsingular
(ii) started close enough.

(SQP) ⇐⇒
(
∇2
x L(xk , λk) −∇xg(xk)
−∇xg(xk)T 0

)(
pk
µk

)
= −∇L(xk , λk),

optimality system to the QP

min
p

1
2
pT∇2

x L(xk , λk)p + pT∇xL(xk , λk)

s.t. ∇xg(xk)Tp + g(xk)︸ ︷︷ ︸
≈g(xk+p)

= 0,

The minimization of a quadratic approximation of the Lagrangian subject
to a linearization of the constraints (therefore the name SQP).
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Modifications

Basic SQP benefits fro msimilar modifications as basic Newton

(i) Newton direction is a descent direction for unconstrained
optimization if Hessian (or the approximation) is PD.
The QP has a unique min if ∇2

x L is PD in the nullspace of (∇xg)T.
Need to ensure this...

(ii) Unconstrained optimization: line search to ensure

f (xk + αkpk) ≤ f (xk) + µαk p
T
k ∇x f (xk)︸ ︷︷ ︸

≤0

.

For SQP, monitor prograss through a merit function ϕ, for example

ϕ(x) = f (x) +
1
2µ

m∑
i=1

gi (x)
2

(quadratic penalty).
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Inequality constraints

Inequality constraints can be handled by linearizing them and then use an
active set strategy in the QP subproblem.
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