Quadratic programs and Active set methods

Eddie Wadbro

Introduction to PDE Constrained Optimization, 2016

February 15-16, 2016
(i) Equality-constrained QP's

$$
\begin{array}{cc}
\min _{x \in \mathbb{R}^{n}} \frac{1}{2} x^{\top} Q x-c^{\top} x & \text { subject to } \\
a_{i}^{\top} x=b_{i} & i=1, \ldots, m
\end{array}
$$

or

$$
\min _{x \in \mathbb{R}^{n}} \frac{1}{2} x^{\top} Q x-c^{\top} x \text { subject to }
$$

$$
A x=b
$$

where Q is symmetric, $m<n$ and $A=\left(\begin{array}{c}a_{1}^{\top} \\ \vdots \\ a_{m}^{\top}\end{array}\right)$. The Lagrangian is

$$
\begin{aligned}
\mathcal{L}(x, \lambda) & =\frac{1}{2} x^{\top} Q x-c^{\top} x-\sum_{i=1}^{m} \lambda_{i}\left(a_{i}^{\top} x-b_{i}\right) \\
& =\frac{1}{2} x^{\top} Q x-c^{\top} x-\lambda^{\top}(A x-b)
\end{aligned}
$$

Eddie Wadbro, Introduction to PDE Constrained Optimization, February 15-16, 2016

KKT-points for equality-constrained QP's

KKT-point $\nabla_{x} \mathcal{L}\left(x^{*}, \lambda^{*}\right)=0$ yields the linear system

$$
\begin{aligned}
Q x^{*}-A^{\top} \lambda^{*} & =c \\
A x^{*} & =b
\end{aligned}
$$

or

$$
\left(\begin{array}{cc}
Q & -A^{\top} \\
A & 0
\end{array}\right)\binom{x^{*}}{\lambda^{*}}=\binom{c}{b}
$$

where

$$
\mathcal{K}=\left(\begin{array}{cc}
Q & -A^{\top} \\
A & 0
\end{array}\right)
$$

is called a KKT matrix. Write the constraint $-A x=-b$, substitute $B=-A$. Then, the KKT matrix becomes symmetric:

$$
\left(\begin{array}{cc}
Q & B^{\top} \\
B & 0
\end{array}\right)\binom{x^{*}}{\lambda^{*}}=\binom{c}{-b}
$$

Optimality for equality-constrained QP's

Assumptions:

- A has linearly independent rows.
- Q is positive definite in the null space of A. (That is, $x^{T} Q x>0$ for all $x \neq 0$ such that $A x=0$).

Theorem

Matrix \mathcal{K} is nonsingular.
Theorem
The solution x^{*} of the KKT system is the unique global solution of the equality-constrained QP.

- The equality-constrained QP is a convex problem under the above assumptions.
- Note: matrix \mathcal{K} is indefinite.
- Thus, solving a convex equality-constraint QP is "easy"
- Equivalent to solving a linear system (the KKT system)
(ii) Inequality-constrained QP's

$$
\min _{x \in \mathbb{R}^{n}} \frac{1}{2} x^{\top} Q x-c^{\top} x \text { subject to }
$$

$$
A x \geq b
$$

Lagrangian: $\mathcal{L}(x, \lambda)=\frac{1}{2} x^{\top} Q x-c^{\top} x-\lambda^{\top}(A x-b)$
KKT conditions:

$$
\begin{aligned}
Q x^{*}-A^{\top} \lambda^{*} & =c \\
\lambda^{*} & \geq 0 \\
A x^{*} & \geq b \\
\lambda_{i}^{*}\left(a_{i}^{\top} x^{*}-b_{i}\right) & =0 \quad i=1, \ldots, m
\end{aligned}
$$

Define the active set

$$
\mathcal{A}=\left\{i \mid a_{i}^{\top} x^{*}=b_{i}\right\}
$$

Note that $\lambda_{i}^{*}=0$ for $i \notin \mathcal{A}$
Eddie Wadbro, Introduction to PDE Constrained Optimization, February 15-16, 2016

Optimality conditions for inequality-constrained QP's

- We may delete all inactive inequality constraints and corresponding zero Lagrange multipliers
- Let \bar{A} be A with all rows for $i \notin \mathcal{A}$ deleted
- Let \bar{b} be b with all rows for $i \notin \mathcal{A}$ deleted
- Let $\bar{\lambda}^{*}$ be λ^{*} with all components for $i \notin \mathcal{A}$ deleted.

Then the KKT conditions simplify to

$$
\begin{aligned}
Q x^{*}-\bar{A}^{\top} \bar{\lambda}^{*} & =c \\
\bar{A} x^{*} & =\bar{b}
\end{aligned}
$$

i. e. the KKT conditions for a QP with equality constraints

Note: The above form assume that \mathcal{A} is known (which it generally not is!)

Background to active set method for inequality constrained QP

- An active-set method generates feasible points
- Assume that we know a feasible point x_{k} (can be obtained via a linear problem)
- Define a working set with constraints active at the current iterate

$$
\mathcal{W}_{k}=\left\{x \mid a_{i}^{\top} x_{k}=b_{i}\right\}
$$

- Guess that the constraints active at x are active at x^{*} too. That is keep (temporarily) the constraints in \mathcal{W} active and solve

$$
\begin{array}{rr}
\min & \frac{1}{2}\left(x_{k}+p\right)^{\top} Q\left(x_{k}+p\right)+c^{\top}\left(x_{k}+p\right) \\
\text { subject to } & A_{\mathcal{W}} p=0,
\end{array}
$$

where $A_{\mathcal{W}}$ equals A with all rows for $i \notin \mathcal{W}_{k}$ deleted

Eddie Wadbro, Introduction to PDE Constrained Optimization, February 15-16, 2016

Active set for QP

Problem (EQP) has, from above, optimal solution p^{*} and associated Lagrange multiplier vector λ^{*} given by

$$
\left(\begin{array}{cc}
Q & -A_{\mathcal{W}}^{\top} \\
-A_{\mathcal{W}} & 0
\end{array}\right)\binom{p^{*}}{\lambda^{*}}=-\binom{Q x_{k}-c}{0}
$$

Optimal x associated with (EQP) is given by $x^{*}=x_{k}+p$.

When solving (EQP) we have ignored two things

1. All inactive constraints, that is, we must require $a_{i}^{\top} x \geq b_{i}$ for $i \notin \mathcal{W}$.
2. The constraints are inequalities, we have required $A_{\mathcal{W}} p=0$ instead of $A_{\mathcal{W}} p \geq 0$.

How are these requirements included?

Eddie Wadbro, Introduction to PDE Constrained Optimization, February 15-16, 2016

Inclusion of new constraints

We have started in x_{k} and computed a search direction p^{*}.
If $A\left(x_{k}+p^{*}\right) \geq b$, then $x_{k}+p^{*}$ satisfies all constraints.

Otherwise, we can compute the maximum step-length α so that $A\left(x_{k}+\alpha p^{*}\right) \geq b$ holds. Thus, we compute

$$
\alpha=\min _{i \mid a_{i}^{\top} p^{*}<0} \frac{a_{i}^{\top} x_{k}-b_{i}}{-a_{i}^{\top} p^{*}},
$$

define $x_{k+1}=x_{k}+\alpha p^{*}$, and set $\mathcal{W}=\mathcal{W} \cup\{I\}$; where $a_{l}^{\top} x_{k+1}=b_{l}$.

Removal of constraints

The point $x_{k}+p^{*}$ is of interest when $A\left(x_{k}+p^{*}\right) \geq b$.
When solving (EQP) we obtain p^{*} and λ^{*}.

Two cases:

1. $\lambda^{*} \geq 0$. Then $x^{*}=x_{k}+p^{*}$ is the optimal solution to

$$
\begin{aligned}
\min & \frac{1}{2} x^{\top} Q x-c^{\top} x \\
\text { subject to } & A_{\mathcal{W}} x \geq b_{\mathcal{W}}
\end{aligned}
$$

and hence an optimal solution to the original inequality constrained QP!
2. $\lambda_{i}^{*}<0$ for some i. Let $x_{k+1}=x_{k}+p^{*}$ and set $\mathcal{W}=\mathcal{W} \backslash\{i\}$.

Sequential Quadratic Programming (SQP)

- One of the most efficient methods for nonlinear programming.
- Recommended as a general purpose method for small to medium scale problems.
- (e.g. fmincon medium scale is a SQP)

Consider the problem

$$
\begin{array}{rl}
\min _{x \in \mathbb{R}^{n}} & f(x) \tag{NLP}\\
\text { s.t. } & g(x)=0,
\end{array}
$$

where $f: \mathbb{R}^{n} \mapsto \mathbb{R}$, and $g: \mathbb{R}^{n} \mapsto \mathbb{R}^{m}$, that is, $g=\left(\begin{array}{c}g_{1} \\ g_{2} \\ \vdots \\ g_{m}\end{array}\right)$.
Eddie Wadbro, Introduction to PDE Constrained Optimization, February 15-16, 2016

Lagrangian and KKT-conditions

The Lagrangian of NLP is

$$
\mathcal{L}(x, \lambda)=f(x)-\lambda^{\top} g(x)=f(x)-\sum_{i=1}^{m} \lambda_{i} g_{i}(x)
$$

KKT-conditions

$$
\left\{\begin{array} { r l }
{ \nabla _ { x } f (x ^ { * }) - \sum \lambda _ { i } \nabla _ { x } g _ { i } (x ^ { * }) } & { = 0 } \\
{ - g _ { i } (x ^ { * }) } & { = 0 }
\end{array} \Longleftrightarrow \left\{\begin{array}{r}
\nabla_{x} \mathcal{L}(x, \lambda)=0 \\
\nabla_{\lambda} \mathcal{L}(x, \lambda)=0
\end{array}\right.\right.
$$

Thus solving the KKT-system is equivalent to solving

$$
\begin{equation*}
\nabla \mathcal{L}(x, \lambda)=0 \tag{OC}
\end{equation*}
$$

where $\nabla=\left(\nabla_{x}, \nabla_{\lambda}\right)^{\top}$.

Recall: Newtons method

For unconstrained optimization a necessary condition for minimum is $\nabla f\left(x^{*}\right)=0$,

$$
\begin{align*}
\nabla_{x} f\left(x_{k}+p_{k}\right)=[\text { Taylor }] \ldots \approx & \nabla_{x} f\left(x_{k}\right)+\nabla_{x}^{2} f\left(x_{k}\right) p_{k}
\end{align*}=0, ~ \nabla_{x}^{2} f\left(x_{k}\right) p_{k}=-\nabla_{x} f\left(x_{k}\right)
$$

i.e. Newton's metod

SQP

Do the same with (OC)

$$
\begin{aligned}
\nabla \mathcal{L}\left(x_{k}+p_{k}, \lambda_{k}+\mu_{k}\right) & =[\text { Taylor }] \ldots \\
& \approx \nabla \mathcal{L}\left(x_{k}, \lambda_{k}\right)+\nabla^{2} \mathcal{L}\left(x_{k}, \lambda_{k}\right)\binom{p_{k}}{\mu_{k}}=0
\end{aligned}
$$

Thus to find our steps p_{k} and μ_{k}, we solve the system

$$
\begin{equation*}
\nabla^{2} \mathcal{L}\left(x_{k}, \lambda_{k}\right)\binom{p_{k}}{\mu_{k}}=-\nabla \mathcal{L}\left(x_{k}, \lambda_{k}\right) \tag{SQP}
\end{equation*}
$$

where

$$
\nabla^{2} \mathcal{L}\left(x_{k}, \lambda_{k}\right)=\left(\begin{array}{cc}
\nabla_{x}^{2} \mathcal{L}\left(x_{k}, \lambda_{k}\right) & -\nabla_{x} g\left(x_{k}\right) \\
-\nabla_{x} g\left(x_{k}\right)^{\top} & 0
\end{array}\right)
$$

with

$$
\nabla_{x} g=\left(\begin{array}{llll}
\nabla_{x} g_{1} & \nabla_{x} g_{2} & \ldots & \nabla_{x} g_{m}
\end{array}\right)
$$

(SQP) is the basic SQP method (just as (BN) is the basic Newton).
Eddie Wadbro, Introduction to PDE Constrained Optimization, February 15-16, 2016

Properties of SQP

Similar properties as Newton's method: Quadratic convergence rate if
(i) $\nabla^{2} \mathcal{L}\left(x^{*}, \lambda^{*}\right)$ is nonsingular
(ii) started close enough.

$$
(\mathrm{SQP}) \Longleftrightarrow\left(\begin{array}{cc}
\nabla_{x}^{2} \mathcal{L}\left(x_{k}, \lambda_{k}\right) & -\nabla_{x} g\left(x_{k}\right) \\
-\nabla_{x} g\left(x_{k}\right)^{\top} & 0
\end{array}\right)\binom{p_{k}}{\mu_{k}}=-\nabla \mathcal{L}\left(x_{k}, \lambda_{k}\right),
$$

optimality system to the QP

$$
\begin{array}{cc}
\min _{p} & \frac{1}{2} p^{\top} \nabla_{x}^{2} \mathcal{L}\left(x_{k}, \lambda_{k}\right) p+p^{\top} \nabla_{x} \mathcal{L}\left(x_{k}, \lambda_{k}\right) \\
\text { s.t. } & \underbrace{\nabla_{x} g\left(x_{k}\right)^{\top} p+g\left(x_{k}\right)}_{\approx g\left(x_{k}+p\right)}=0,
\end{array}
$$

The minimization of a quadratic approximation of the Lagrangian subject to a linearization of the constraints (therefore the name SQP).

Modifications

Basic SQP benefits fro msimilar modifications as basic Newton
(i) Newton direction is a descent direction for unconstrained optimization if Hessian (or the approximation) is PD.
The QP has a unique min if $\nabla_{x}^{2} \mathcal{L}$ is PD in the nullspace of $\left(\nabla_{x} g\right)^{\top}$. Need to ensure this...
(ii) Unconstrained optimization: line search to ensure

$$
f\left(x_{k}+\alpha_{k} p_{k}\right) \leq f\left(x_{k}\right)+\mu \alpha_{k} \underbrace{p_{k}^{\top} \nabla_{x} f\left(x_{k}\right)}_{\leq 0} .
$$

For SQP, monitor prograss through a merit function φ, for example

$$
\varphi(x)=f(x)+\frac{1}{2 \mu} \sum_{i=1}^{m} g_{i}(x)^{2}
$$

(quadratic penalty).

Inequality constraints

Inequality constraints can be handled by linearizing them and then use an active set strategy in the QP subproblem.

