
F. Drewes
A. Habel
B. Hoffmann
D. Plump (eds.)

Manipulation of Graphs,
Algebras and Pictures

Essays Dedicated to Hans-Jörg Kreowski
on the Occasion of His 60th Birthday

Editors

Frank Drewes
Ume̊a universitet, Institutionen för datavetenskap
S-90187 Ume̊a, Sweden
drewes@cs.umu.se

Annegret Habel
Carl-von-Ossietzky-Universität Oldenburg, Fachbereich Informatik
D-26111 Oldenburg, Germany
Annegret.Habel@informatik.uni-oldenburg.de

Berthold Hoffmann
Universität Bremen, Fachbereich Mathematik und Informatik
D-28334 Bremen, Germany
hof@informatik.uni-bremen.de

Detlef Plump
The University of York, Department of Computer Science
York YO10 5DD, United Kingdom
det@cs.york.ac.uk

Cover Design

Caroline von Totth
Universität Bremen, Fachbereich Mathematik und Informatik
D-28334 Bremen, Germany
caro@informatik.uni-bremen.de

Illustrations by Caroline von Totth and Frank Drewes

Formatting: LATEX style llncs by Springer, with modifications made by Frank Drewes

Printed and bound in August 2009 by
Hohnholt Reprografischer Betrieb GmbH
Buchtstrasse 9-10
D-28195 Bremen, Germany
book@hohnholt.com
http://www.hohnholt.com

Copyright with the authors.

Hans-Jörg Kreowski

Preface

This Festschrift is dedicated to Hans-Jörg Kreowski on the occasion of his 60th birthday
on August 10, 2009. We invited Hans-Jörg’s coauthors, the past and present members
of his group at Universität Bremen, and the speakers of the colloquium on September
5, 2009 to contribute to this book. In response, we received 18 essays and seven per-
sonal greetings. Most essays were refereed three times. We thank all authors for their
contribution to the Festschrift and we are grateful to the referees for their constructive
comments.

Many of the essays reflect Hans-Jörg’s main research interests: graph transforma-
tion, algebraic specification, and syntactic picture generation. Hans-Jörg’s academic
career started in 1974 when, after graduating in mathematics, he became a research
associate at Technische Universität Berlin. His first papers addressed the application of
category theory to automata, but soon his interests moved towards the emerging fields
of graph grammars and algebraic specification. Graph grammars, in particular, have
fascinated Hans-Jörg ever since, and he has made numerous important contributions
to the field which nowadays is called graph transformation. In Berlin, he and Hartmut
Ehrig developed the basic theory of the double-pushout approach, the most success-
ful theoretical foundation for graph transformation. Lines of research associated with
Hans-Jörg’s name include canonical derivation sequences, the relation between Petri
nets and graph grammars, and context-free graph languages generated by edge- and
hyperedge replacement grammars.

Most of the work in the latter area was done at Universität Bremen, where Hans-
Jörg has been a professor since 1982. More recently, Hans-Jörg and Sabine Kuske
developed graph transformation units as a structuring concept for graph transformation
systems and general rule-based systems. Another research area started by Hans-Jörg in
Bremen are collage grammars for generating pretty pictures—unsurprisingly, given his
inclination for the arts. (The reader is invited to browse this book to find that several
of the pictures separating contributions have been generated by collage grammars!)

Beyond research and teaching in theoretical computer science, Hans-Jörg has been
committing himself to critically analyse how computer applications affect society and
to warn of their potential harm—especially in a military context. He has been an
active member of the German Forum of Computer Professionals for Peace and Social
Responsibility (FIfF) since its foundation in 1984, and is its chairman today. More
information on this branch of Hans-Jörg’s activities can be found in Ralf E. Streibl’s
essay in this book.

Finally, we want to mention an aspect of Hans-Jörg’s artistic talent which the
participants of social dinners at graph-transformation events will surely remember: his
performances of sound poetry in the tradition of Dada artists such as Kurt Schwitters.
Small appetizers of this art (necessarily only in written form) can be found in this
book on two separating pages, in the greeting of Andy Schürr, and in the title of the
contribution by Paolo Baldan, Andrea Corradini, Fabio Gadducci and Ugo Montanari.

This Festschrift was presented to Hans-Jörg on September 5, 2009 during a one-
day colloquium celebrating his 60th birthday at Haus der Wissenschaft in Bremen.
We asked Wolfgang Coy (Humboldt-Universität zu Berlin), Hartmut Ehrig (Technis-
che Universität Berlin), Klaus-Peter Löhr (Freie Universität Berlin), Till Mossakowski
(Universität Bremen), Grzegorz Rozenberg (Universiteit Leiden and University of Col-

III

IV Preface

orado at Boulder) and Marie-Theres Tinnefeld (Hochschule München) to give a talk
at the colloquium. We are very pleased that all of them accepted.

We gratefully acknowledge the financial support for the colloquium by the Univer-
sity of Bremen, in particular by the Department of Mathematics and Computer Science
and the Collaborative Research Centre Autonomous Cooperating Logistic Processes
(SFB 637), and by the German Research Center for Artificial Intelligence Bremen
(DFKI). Many people have helped with the organisation of the colloquium and the
production of this book. In particular, we wish to thank Karsten Hölscher, Renate
Klempien-Hinrichs, Dorle Kreowski, Kai Kreowski, Sabine Kuske, Melanie Luderer,
Frieder Nake, Jan Peleska, Sylvie Rauer, Ralf E. Streibl, Hauke Tönnies and Caro von
Totth, who shared our enthusiasm and fun in preparing the event and this book.

Collectively we conclude by: Congratulations, Hans-Jörg!

September 2009 Frank Drewes
Annegret Habel

Berthold Hoffmann
Detlef Plump

Table of Contents

Hans-Jörg’s scientific family tree . 1

Publications of Hans-Jörg Kreowski . 3

I Greetings

Betriebssysteme und Algebraische Spezifikation? . 21
Klaus-Peter Löhr

Graphs are Everywhere . 25
Giorgio Busatto, Peter Knirsch

Alter schützt vor Theoretisieren nicht . 27
Sofie Czernik

Ein FIfFiger Informatiker . 29
Stefan Hügel

Stomach Cramps, Dadaism, and Marinated Truts . 31
Andy Schürr

Erinnerungen . 33
Nils Schwabe

Verbindungen schaffen . 35
Karin Vosseberg, Andreas Spillner

II Essays

Frm Ptr Nts t Grph Trnsfrmtn Sstms . 39
Paolo Baldan, Andrea Corradini, Fabio Gadducci, Ugo Montanari

Lifting Parallel Graph Transformation Concepts to Model Transformation
based on the Eclipse Modeling Framework . 59

Enrico Biermann, Claudia Ermel, Gabriele Taentzer

Rechnen, Denken, lebenslange Bildung . 77
Wolfgang Coy

Towards the Tree Automata Workbench MARBLES . 83
Frank Drewes

Processes Based on Biochemical Interactions: Natural Computing Point of View 99
Andrzej Ehrenfeucht, Grzegorz Rozenberg

Parallelism and Concurrency Theorems for Rules with Nested Application
Conditions . 109

Hartmut Ehrig, Annegret Habel, Leen Lambers

V

VI Table of Contents

Random Context Picture Grammars: The State of the Art 135
Sigrid Ewert

From Algebraic Specifications to Graph Transformation Rules to UML and
OCL Models . 149

Martin Gogolla, Karsten Hölscher

Conditional Adaptive Star Grammars . 171
Berthold Hoffmann

Assemblies as Graph Processes . 191
Dirk Janssens

Generation of Celtic Key Patterns with Tree-based Collage Grammars 205
Renate Klempien-Hinrichs, Caroline von Totth

Autonomous Units for Solving the Capacitated Vehicle Routing Problem
Based on Ant Colony Optimization . 223

Sabine Kuske, Melanie Luderer, Hauke Tönnies

On Judgements and Propositions . 247
Bernd Mahr

On Teaching Logic and Algebraic Specification . 269
Till Mossakowski

Algebraic Model Checking . 287
Peter Padawitz

Checking Graph-Transformation Systems for Confluence . 305
Detlef Plump

Refactoring Object-Oriented Systems . 321
Christoph Schulz, Michael Löwe, Harald König

Das Forum InformatikerInnen für Frieden und gesellschaftliche Verantwortung
(FIfF) e.V. 341

Ralf E. Streibl

Author Index . 353

Sources of Illustrations . 355

Hans-Jörg’s scientific family tree

1

Publications of Hans-Jörg Kreowski

collected by Sabine Kuske

Books

[1] Hans-Jörg Kreowski. Logische Grundlagen der Informatik – Handbuch
der Informatik 1.1. Oldenbourg-Verlag, München, 1991.

[2] Hans-Jörg Kreowski and Heinz-Wilhelm Schmidt. Some Algebraic Con-
cepts of the Specification Language SEGRAS and Their Initial Seman-
tics, volume 93 of GMD-Studien. Gesellschaft für Mathematik und
Datenverabeitung MBH, 1984.

[3] Hartmut Ehrig, Klaus-Dieter Kiermeier, Hans-Jörg Kreowski, and Wolf-
gang Kühnel. Universal Theory of Automata: A Categorical Approach.
Teubner, Stuttgart, 1974.

Edited Books

[4] Hans-Jörg Kreowski, editor. Informatik und Gesellschaft – Verflechtun-
gen und Perspektiven. LIT Verlag, Berlin, 2008.

[5] Hans-Dietrich Haasis, Hans-Jörg Kreowski, and Bernd Scholz-Reiter,
editors. Proc. 1st International Conference on Dynamics in Logistics
(LDIC). Springer, 2008.

[6] Hans-Jörg Kreowski, Ugo Montanari, Fernado Orejas, Grzegorz Rozen-
berg, and Gabriele Taentzer, editors. Formal Methods in Software and
System Modeling, volume 3393 of Lecture Notes in Computer Science.
Springer, 2005.

[7] Andrea Corradini, Hartmut Ehrig, Hans-Jörg Kreowski, and Grzegorz
Rozenberg, editors. Proc. 1st International Conference on Graph Trans-
formation (ICGT 2002), volume 2505 of Lecture Notes in Computer Sci-
ence. Springer, 2002.

[8] Hartmut Ehrig, Gregor Engels, Hans-Jörg Kreowski, and Grzegorz
Rozenberg, editors. Proc. 6th International Workshop on Theory and
Application of Graph Transformations (TAGT’98), volume 1764 of Lec-
ture Notes in Computer Science. Springer, 2000.

[9] Egidio Astesiano, Hans-Jörg Kreowski, and Bernd Krieg-Brückner, edi-
tors. Algebraic Foundations of Systems Specification. Springer, 1999.

[10] Hartmut Ehrig, Gregor Engels, Hans-Jörg Kreowski, and Grzegorz
Rozenberg, editors. Handbook of Graph Grammars and Computing by
Graph Transformation, Vol. 2: Applications, Languages and Tools. World
Scientific, 1999.

3

4 Publications of Hans-Jörg Kreowski

[11] Hartmut Ehrig, Hans-Jörg Kreowski, Ugo Montanari, and Grzegorz
Rozenberg, editors. Handbook of Graph Grammars and Computing by
Graph Transformation, Vol. 3: Concurrency, Parallelism, and Distribu-
tion. World Scientific, 1999.

[12] Hans-Jörg Kreowski, Thomas Risse, Andreas Spillner, Ralf Streibl, and
Karin Vosseberg, editors. Realität und Utopien der Informatik. Agenda
Verlag, 1995.

[13] Hans-Jörg Kreowski, editor. Informatik zwischen Wissenschaft und
Gesellschaft, Zur Erinnerung an Reinhold Franck, volume 309 of
Informatik-Fachberichte. Springer, 1992.

[14] Michel Bidoit, Hans-Jörg Kreowski, Pierre Lescanne, Fernando Orejas,
and Donald Sannella, editors. Algebraic System Specification and Devel-
opment — A Survey and Annotated Bibliography, volume 501 of Lecture
Notes in Computer Science. Springer, 1991.

[15] Hartmut Ehrig, Hans-Jörg Kreowski, and Grzegorz Rozenberg, editors.
Proc. 4th International Workshop on Graph Grammars and Their Ap-
plication to Computer Science, volume 532 of Lecture Notes in Computer
Science. Springer, 1991.

[16] Hartmut Ehrig, Horst Herrlich, Hans-Jörg Kreowski, and Gerhard Preuß,
editors. Categorical Methods in Computer Science, volume 393 of Lecture
Notes in Computer Science. Springer, 1989.

[17] Hans-Jörg Kreowski, editor. Recent Trends in Data Type Specification
– Selected Papers of the 3rd Workshop on Theory and Applications on
Abstract Data Types, volume 116 of Informatik-Fachberichte. Springer,
1985.

Journal Articles

[18] Karsten Hölscher, Hans-Jörg Kreowski, and Sabine Kuske. Autonomous
units to model interacting sequential and parallel processes. Fundamenta
Informaticae, 92(3):233–257, 2009.

[19] Mehrdad Babazadeh, Hans-Jörg Kreowski, and Walter Lang. Selective
predictors of environmental parameters in wireless sensor networks. In-
ternational Journal of Mathematical Models and Methods in Applied Sci-
ences, 2:355–363, 2008.

[20] Sabine Kuske, Martin Gogolla, Hans-Jörg Kreowski, and Paul Ziemann.
Towards an integrated graph-based semantics for uml. Software and
Systems Modeling, 2008.

[21] Giorgio Busatto, Hans-Jörg Kreowski, and Sabine Kuske. Abstract hi-
erarchical graph transformation. Mathematical Structures in Computer
Science, 15:773–819, 2005.

[22] Frank Drewes, Sigrid Ewert, Renate Klempien-Hinrichs, and Hans-Jörg
Kreowski. Computing raster images from grid picture grammars. Journal
of Automata, Languages and Combinatorics, 8(3):499–519, 2003.

Publications of Hans-Jörg Kreowski 5

[23] Frank Drewes, Renate Klempien-Hinrichs, and Hans-Jörg Kreowski.
Table-driven and context-sensitive collage languages. Journal of Au-
tomata, Languages and Combinatorics, 8(1):5–24, 2003.

[24] Frank Drewes, Hans-Jörg Kreowski, and Denis Lapoire. Criteria to dis-
prove context-freeness of collage languages. Theoretical Computer Sci-
ence, 290(3):1445–1458, 2003.

[25] Marc Andries, Gregor Engels, Annegret Habel, Berthold Hoffmann,
Hans-Jörg Kreowski, Sabine Kuske, Detlef Plump, Andy Schürr, and
Gabriele Taentzer. Graph transformation for specification and program-
ming. Science of Computer Programming, 34(1):1–54, 1999.

[26] Hans-Jörg Kreowski and Sabine Kuske. Graph transformation units with
interleaving semantics. Formal Aspects of Computing, 11(6):690–723,
1999.

[27] Hartmut Ehrig, Hans-Jörg Kreowski, and Fernando Orejas. Correctness
of horizontal and vertical composition for implementation concepts based
on constructors and abstractors. Revista Matematica, 10:365–387, 1997.

[28] Hans-Jörg Kreowski, Sabine Kuske, and Andy Schürr. Nested graph
transformation units. International Journal on Software Engineering
and Knowledge Engineering, 7(4):479–502, 1997.

[29] Frank Drewes and Hans-Jörg Kreowski. (Un-)decidability of geomet-
ric properties of pictures generated by collage grammars. Fundamenta
Informaticae, 25(3):295–325, 1996.

[30] Frank Drewes, Hans-Jörg Kreowski, and Nils Schwabe. COLLAGE-ONE:
A system for evaluation and visualisation of collage grammars. Machine
Graphics & Vision, 5(1/2):393–402, 1996.

[31] Frank Drewes, Annegret Habel, Hans-Jörg Kreowski, and Stefan Tauben-
berger. Generating self-affine fractals by collage grammars. Theoretical
Computer Science, 145(1&2):159–187, 1995.

[32] Hans-Jörg Kreowski and Till Mossakowski. Equivalence and difference
of institutions: Simulating Horn clause logic with based algebras. Math-
ematical Structures in Computer Science, 5(2):189–215, 1995.

[33] Annegret Habel, Hans-Jörg Kreowski, and Clemens Lautemann. A com-
parison of compatible, finite and inductive graph properties. Theoretical
Computer Science, 110(1):145–168, 1993.

[34] Annegret Habel, Hans-Jörg Kreowski, and Stefan Taubenberger. Col-
lages and patterns generated by hyperedge replacement. Languages of
Design, 1:125–145, 1993.

[35] Hartmut Ehrig, Annegret Habel, and Hans-Jörg Kreowski. Introduction
to graph grammars with application to semantic networks. Computers
and Mathematics with Applications, 23(6-9):557–572, 1992.

[36] Hartmut Ehrig, Annegret Habel, Hans-Jörg Kreowski, and Francesco
Parisi-Presicce. Parallelism and concurrency in high-level replacement
systems. Journal of Mathematical Structures in Computer Science,
1(3):361–404, 1991.

[37] Annegret Habel, Hans-Jörg Kreowski, and Detlef Plump. Jungle evalu-
tation. Fundamenta Informaticae, 15(1):37–60, 1991.

6 Publications of Hans-Jörg Kreowski

[38] Annegret Habel, Hans-Jörg Kreowski, and Walter Vogler. Decid-
able boundedness problems for sets of graphs generated by hyperedge-
replacement. Theoretical Computer Science, 89(1):33–62, 1991.

[39] Hans-Jörg Kreowski and Grzegorz Rozenberg. On structured graph
grammars – Part I. Information Sciences, 52(2):185–210, 1990.

[40] Hans-Jörg Kreowski and Grzegorz Rozenberg. On structured graph
grammars – Part II. Information Sciences, 52(3):221–246, 1990.

[41] Annegret Habel, Hans-Jörg Kreowski, and Walter Vogler. Metatheorems
for decision problems on hyperedge replacement graph languages. Acta
Informatica, 26(7):657–677, 1989.

[42] Annegret Habel and Hans-Jörg Kreowski. Characteristics of graph lan-
guages generated by edge replacement. Theoretical Computer Science,
51(1/2):81–115, 1987.

[43] Hans-Jörg Kreowski and Anne Wilharm. Net processes correspond to
derivation processes in graph grammars. Theoretical Computer Science,
44:275–305, 1986.

[44] Hartmut Ehrig, Hans-Jörg Kreowski, James W. Thatcher, Eric G. Wag-
ner, and Jesse B. Wright. Parameter passing in algebraic specification
languages. Theoretical Compututer Science, 28:45–81, 1984.

[45] Hans-Jörg Kreowski and Grzegorz Rozenberg. Note on node-rewriting
graph grammars. Information Processing Letters, 18(1):21–24, 1984.

[46] Hartmut Ehrig and Hans-Jörg Kreowski. Compatibility of parameter
passing and implementation of parameterized data types. Theoretical
Computer Science, 27:255–286, 1983.

[47] Hartmut Ehrig, Hans-Jörg Kreowski, Bernd Mahr, and Peter Padawitz.
Algebraic implementation of abstract data types. Theoretical Computer
Science, 20(3):209–263, 1982.

[48] Hartmut Ehrig, Hans-Jörg Kreowski, Andrea Maggiolo-Schettini,
Barry K. Rosen, and Jozef Winkowski. Transformations of structures:
An algebraic approach. Mathematical Systems Theory, 14:305–334, 1981.

[49] Hartmut Ehrig and Hans-Jörg Kreowski. Applications of graph gram-
mar theory to consistency, synchronization and scheduling in data base
systems. Information Systems, 5(3):225–238, 1980.

[50] Hartmut Ehrig and Hans-Jörg Kreowski. The skeleton of minimal real-
ization. Studien zur Algebra und ihre Anwendungen, 7:137–154, 1979.

[51] Hartmut Ehrig and Hans-Jörg Kreowski. Pushout-properties: An anal-
ysis of gluing constructions for graphs. Mathematische Nachrichten,
91:135–149, 1979.

[52] Hartmut Ehrig and Hans-Jörg Kreowski. Systematic approach of re-
duction and minimization in automata and systems theory. Computer
Systems Science, 12(3):269–304, 1976.

[53] Hartmut Ehrig, Hans-Jörg Kreowski, and Michael Pfender. Kategorielle
Theorie der Reduktion, Minimierung und Äquivalenz von Automaten.
Mathematische Nachrichten, 59:105–124, 1974.

Publications of Hans-Jörg Kreowski 7

Contributions to Proceedings and Books

[54] Hans-Jörg Kreowski and Sabine Kuske. Graph multiset transforma-
tion as a framework for massively parallel computation. In H. Ehrig,
R. Heckel, G. Rozenberg, and G. Taentzer, editors, Proc. 4th Interna-
tional Conference on Graph Transformations (ICGT 2008), volume 5214
of Lecture Notes in Computer Science, pages 351–365, 2008.

[55] Hans-Jörg Kreowski and Sabine Kuske. Communities of autonomous
units for pickup and delivery vehicle routing. In A. Schürr, M. Nagl, and
A. Zündorf, editors, Proc. 3rd International Workshop on Applications of
Graph Transformation with Industrial Relevance (AGTIVE’07), volume
5088 of Lecture Notes in Computer Science, pages 281–296, 2008.

[56] Hans-Jörg Kreowski, Sabine Kuske, and Grzegorz Rozenberg. Graph
transformation units – an overview. In P. Degano, R. De Nicola, and
J. Meseguer, editors, Concurrency, Graphs and Models. Essays Dedicated
to Ugo Montanari on the Occasion of His 65th Birthday, volume 5065 of
Lecture Notes in Computer Science, pages 57–75. 2008.

[57] Karsten Hölscher, Renate Klempien-Hinrichs, Peter Knirsch, Hans-Jörg
Kreowski, and Sabine Kuske. Autonomous units: Basic concepts and
semantic foundation. In M. Hülsmann and K. Windt, editors, Under-
standing Autonomous Cooperation and Control in Logistics. The Impact
on Management, Information and Communication and Material Flow,
pages 103–120, 2007.

[58] Hans-Jörg Kreowski and Sabine Kuske. Autonomous units and their se-
mantics – the parallel case. In J.L. Fiadeiro and P.Y. Schobbens, editors,
Proc. 18th International Workshop on Recent Trends in Algebraic De-
velopment Techniques (WADT 2006), volume 4409 of Lecture Notes in
Computer Science, pages 56–73, 2007.

[59] Ingo Timm, Hans-Jörg Kreowski, Peter Knirsch, and Andreas Timm-
Giel. Autonomy in software systems. In M. Hülsmann and K. Windt,
editors, Understanding Autonomous Cooperation and Control in Logis-
tics. The Impact on Management, Information and Communication and
Material Flow, pages 255–274, 2007.

[60] Adrian Horia Dediu, Renate Klempien-Hinrichs, Hans-Jörg Kreowski,
and Benedek Nagy. Contextual hypergraph grammars – a new approach
to the generation of hypergraph languages. In O. H. Ibarra and Z. Dang,
editors, Proc. 10th International Conference on Developments in Lan-
guage Theory, volume 4036 of Lecture Notes in Computer Science, pages
327–338, 2006.

[61] Karsten Hölscher, Renate Klempien-Hinrichs, Peter Knirsch, Hans-Jörg
Kreowski, and Sabine Kuske. Autonome Transformationseinheiten
zur regelbasierten Modellierung vernetzter logistischer Prozesse. In
E. Müller, editor, Vernetzt planen und produzieren (VPP 2006), pages
113–118, 2006. Wissenschaftliche Schriftenreihe des Institutes für Be-
triebswissenschaften und Fabriksysteme, Technische Universität Chem-
nitz.

8 Publications of Hans-Jörg Kreowski

[62] Karsten Hölscher, Peter Knirsch, and Hans-Jörg Kreowski. Modelling
transport networks by means of autonomous units. In H.-D. Haasis,
H. Kopfer, and J. Schönberger, editors, Proc. Operations Research 2005,
pages 399–404, 2006.

[63] Karsten Hölscher, Hans-Jörg Kreowski, and Sabine Kuske. Autonomous
units and their semantics — the sequential case. In A. Corradini,
H. Ehrig, U. Montanari, L. Ribeiro, and G. Rozenberg, editors, Proc.
3rd International Conference on Graph Transformations (ICGT 2006),
volume 4178 of Lecture Notes in Computer Science, pages 245–259, 2006.

[64] Hans-Jörg Kreowski, Karsten Hölscher, and Peter Knirsch. Semantics
of visual models in a rule-based setting. In R. Heckel, editor, Proc.
School of SegraVis Research Training Network on Foundations of Visual
Modelling Techniques (FoVMT 2004), volume 148 of Electronic Notes in
Theoretical Computer Science, pages 75–88, 2006.

[65] Hans-Jörg Kreowski, Renate Klempien-Hinrichs, and Sabine Kuske.
Some essentials of graph transformation. In Z. Ésik, C. Martin-Vide, and
V. Mitrana, editors, Recent Advances in Formal Languages and Applica-
tions, volume 25 of Studies in Computational Intelligence, pages 229–254.
2006.

[66] Dirk Janssens, Hans-Jörg Kreowski, and Grzegorz Rozenberg. Main con-
cepts of networks of transformation units with interlinking semantics. In
H.-J. Kreowski, U. Montanari, F. Orejas, G. Rozenberg, and G. Taentzer,
editors, Formal Methods in Software and System Modeling, volume 3393
of Lecture Notes in Computer Science, pages 325–342. 2005.

[67] Renate Klempien-Hinrichs, Hans-Jörg Kreowski, and Sabine Kuske.
Rule-based transformation of graphs and the product type. In P. van
Bommel, editor, Transformation of Knowledge, Information, and Data:
Theory and Applications, pages 29–51. 2005.

[68] Hans-Jörg Kreowski. Autonomous units to model cooperating logistic
processes: Basic features. In K.S. Palwar, editor, Proc. 10th International
Symposium on Logistics (ISL 2005), pages 377–380, 2005.

[69] Julia Padberg and Hans-Jörg Kreowski. Loose semantics of Petri nets. In
H.-J. Kreowski, U. Montanari, F. Orejas, G. Rozenberg, and G. Taentzer,
editors, Formal Methods in Software and System Modeling, volume 3393
of Lecture Notes in Computer Science, pages 370–384. 2005.

[70] Björn Cordes, Karsten Hölscher, and Hans-Jörg Kreowski. UML inter-
action diagrams: Correct translation of sequence diagrams into collab-
oration diagrams. In M. Nagl, J. Pfaltz, and B. Böhlen, editors, Proc.
2nd International Workshop on Applications of Graph Transformations
with Industrial Relevance (AGTIVE’03), volume 3062 of Lecture Notes
in Computer Science, pages 275–291, 2004.

[71] Renate Klempien-Hinrichs, Hans-Jörg Kreowski, and Sabine Kuske. Typ-
ing of graph transformation units. In H. Ehrig, G. Engels, F. Parisi-
Presicce, and G. Rozenberg, editors, Proc. 2nd International Conference
on Graph Transformations (ICGT 2004), volume 3256 of Lecture Notes
in Computer Science, pages 112–127, 2004.

Publications of Hans-Jörg Kreowski 9

[72] Hans-Jörg Kreowski. Syntax, Semantik und ... In Karl-Heinz Rödiger,
editor, Algorithmik – Kunst – Semiotik – Hommage für Frieder Nake,
pages 75–88. 2003.

[73] Hans-Jörg Kreowski and Sabine Kuske. Approach-independent struc-
turing concepts for rule-based systems. In M. Wirsing, D. Pattison,
and R. Hennicker, editors, Proc. 16th International Workshop on Re-
cent Trends in Algebraic Development Techniques (WADT 2002), volume
2755 of Lecture Notes in Computer Science, pages 299–311, 2003.

[74] Hans-Jörg Kreowski. A sight-seeing tour of the computational landscape
of graph transformation. In W. Brauer, H. Ehrig, J. Karhumäki, and
A. Salomaa, editors, Formal and Natural Computing. Essays Dedicated to
Grzegorz Rozenberg, volume 2300 of Lecture Notes in Computer Science,
pages 119–137. 2002.

[75] Hans-Jörg Kreowski, Giorgio Busatto, Renate Klempien-Hinrichs, Pe-
ter Knirsch, and Sabine Kuske. Structured modeling with GRACE.
In M. Bauderon and A. Corradini, editors, Proc. GETGRATS Closing
Workshop, volume 51 of Electronic Notes in Theoretical Computer Sci-
ence, pages 233–245, 2002.

[76] Sabine Kuske, Martin Gogolla, Hans-Jörg Kreowski, and Ralf Kollmann.
An integrated semantics for UML class, object and state diagrams based
on graph transformation. In M. Butler, L. Petre, and K. Sere, editors,
Proc. 3rd International Conference on Integrated Formal Methods (IFM
2002), volume 2335 of Lecture Notes in Computer Science, pages 11–28,
2002.

[77] Andrea Corradini and Hans-Jörg Kreowski. GETGRATS and APPLI-
GRAPH: Theory and applications of graph transformation. In G. Păun,
G. Rozenberg, and A. Salomaa, editors, Current Trends in Theoretical
Computer Science, pages 164–170. 2001.

[78] Frank Drewes, Sigrid Ewert, Renate Klempien-Hinrichs, and Hans-Jörg
Kreowski. Computing raster images from grid picture grammars. In
S. Yu and A. Păun, editors, Proc. 5th International Conference on Im-
plementation and Application of Automata (CIAA 2000), volume 2088
of Lecture Notes in Computer Science, pages 113–121, 2001.

[79] Frank Drewes and Hans-Jörg Kreowski. Reading words in graphs gen-
erated by hyperedge replacement. In C. Martin-Vide and V. Mitrana,
editors, Where Mathematics, Computer Science, Linguistics and Biology
Meet, chapter 22, pages 243–252. 2001.

[80] Hans-Jörg Kreowski, Giorgio Busatto, and Sabine Kuske. GRACE as
a unifying approach to graph-transformation-based specification. In
H. Ehrig, C. Ermel, and J. Padberg, editors, Proc. Uniform Approaches
to Graphical Process Specification Techniques, volume 44/4 of Electronic
Notes in Theoretical Computer Science, 2001. 15 pages.

[81] Frank Drewes, Renate Klempien-Hinrichs, and Hans-Jörg Kreowski.
Table-driven and context-sensitive collage languages. In G. Rozen-
berg and W. Thomas, editors, Proc. Developments in Language Theory
(DLT’99), pages 326–337, 2000.

10 Publications of Hans-Jörg Kreowski

[82] Frank Drewes, Peter Knirsch, Hans-Jörg Kreowski, and Sabine Kuske.
Graph transformation modules and their composition. In M. Nagl,
A. Schürr, and M. Münch, editors, Proc. International Workshop on
Applications of Graph Transformations with Industrial Relevance (AG-
TIVE’99), volume 1779 of Lecture Notes in Computer Science, pages
15–30, 2000.

[83] Peter Knirsch and Hans-Jörg Kreowski. A note on modeling agent sys-
tems by graph transformation. In M. Nagl, A. Schürr, and M. Münch,
editors, Proc. International Workshop on Applications of Graph Trans-
formations with Industrial Relevance (AGTIVE’99), volume 1779 of Lec-
ture Notes in Computer Science, pages 79–86, 2000.

[84] Hans-Jörg Kreowski and Sabine Kuske. Note on approach-independent
structuring concepts for rule-based systems. In H. Ehrig and G. Taentzer,
editors, Proc. Joint Appligraph and GETGRATS Workshop on Graph
Transformation Systems, Technical Report Nr. 2000-2, pages 41–49,
Technische Universität Berlin, 2000.

[85] Hans-Jörg Kreowski and Sabine Kuske. Suggestions on the modular-
ization of rule-based systems. In M. Wirsing, M. Gogolla, H.-J. Kre-
owski, T. Nipkow, and W. Reif, editors, Proc. Rigorose Entwicklung
software-intensiver Systeme, Technical Report 0005, pages 73–82, Uni-
versität München, 2000.

[86] Hans-Jörg Kreowski and Gabriel Valiente. Redundancy and subsump-
tion in high-level replacement systems. In H. Ehrig, G. Engels, H.-J.
Kreowski, and G. Rozenberg, editors, Proc. 6th International Workshop
on Theory and Application of Graph Transformations, volume 1764 of
Lecture Notes in Computer Science, pages 215–227, 2000.

[87] Frank Drewes and Hans-Jörg Kreowski. Picture generation by collage
grammars. In H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg,
editors, Handbook of Graph Grammars and Computing by Graph Trans-
formation, volume 2, chapter 11, pages 397–457. 1999.

[88] Hartmut Ehrig and Hans-Jörg Kreowski. Refinement and implementa-
tion. In E. Astesiano, H.-J. Kreowski, and B. Krieg-Brückner, editors,
Algebraic Foundations of Systems Specification, pages 201–242. 1999.

[89] Renate Klempien-Hinrichs, Hans-Jörg Kreowski, and Stefan Tauben-
berger. Correct translation of mutually recursive function systems into
TOL collage grammars. In G. Ciobanu and Gh. Păun, editors, Proc.
12th International Symposium on Fundamentals of Computation The-
ory (FCT’99), volume 1684 of Lecture Notes in Computer Science, pages
350–361, 1999.

[90] Hans-Jörg Kreowski and Sabine Kuske. Graph transformation units and
modules. In H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg,
editors, Handbook of Graph Grammars and Computing by Graph Trans-
formation, Vol. 2: Applications, Languages and Tools, pages 607–638.
1999.

[91] Hans-Jörg Kreowski. Künstliche Intelligenz und Gehirn. In H.J.
Sandkühler, editor, Repräsentation, Denken und Selbstbewusstsein, vol-

Publications of Hans-Jörg Kreowski 11

ume 20 of Schriftenreihe des Zentrums Philosophische Grundlagen der
Wissenschaften, pages 193–204, Universität Bremen, 1998.

[92] Frank Drewes, Annegret Habel, and Hans-Jörg Kreowski. Hyperedge re-
placement graph grammars. In G. Rozenberg, editor, Handbook of Graph
Grammars and Computing by Graph Transformation. Vol. 1: Founda-
tions, chapter 2, pages 95–162. 1997.

[93] Frank Drewes, Hans-Jörg Kreowski, and Denis Lapoire. Criteria to dis-
prove context-freeness of collage languages. In B.S. Chlebus and L. Czaja,
editors, Proc. 11th International Symposium on Fundamentals of Com-
putation Theory, volume 1279 of Lecture Notes in Computer Science,
pages 169–178, 1997.

[94] Hans-Jörg Kreowski, Veronika Oechtering, and Ingrid Rügge. Frauen
auf dem Weg, das Image der Informatik zu verändern. In J. Jarke,
K. Pasedach, and K. Pohl, editors, Informatik ’97 - Informatik als Inno-
vationsmotor, pages 345–354, 1997.

[95] Hans-Jörg Kreowski and Sabine Kuske. On the interleaving semantics
of transformation units — a step into GRACE. In J. E. Cuny, H. Ehrig,
G. Engels, and Grzegorz Rozenberg, editors, Proc. 5th International
Workhop on Graph Grammars and Their Application to Computer Sci-
ence, volume 1073 of Lecture Notes in Computer Science, pages 89–108,
1996.

[96] Hans-Jörg Kreowski. Specification and programming (by graph
transformation). In A. Corradini and U. Montanari, editors, Proc.
Joint Workshop on Graph Rewriting and Computation COMPU-
GRAPH/SEMAGRAPH, volume 2 of Electronic Notes in Computer Sci-
ence, pages 187–190, 1995.

[97] Hans-Jörg Kreowski. Graph grammars for software specification and
programming: An eulogy in praise of GRACE. In F. Rosselló Llompart
and G. Valiente, editors, Colloquium on Graph Transformation and its
Application in Computer Science, Technical Report, pages 55–61, Palma
de Mallorca, 1995.

[98] Frank Drewes, Annegret Habel, Hans-Jörg Kreowski, and Stefan Tauben-
berger. Generating self-affine fractals by collage grammars. In G. Rozen-
berg and A. Salomaa, editors, Proc. Developments in Language Theory
93. At the Crossroads of Mathematics, Computer Science and Biology,
pages 278–289, 1994.

[99] Hartmut Ehrig, Hans-Jörg Kreowski, and Gabriele Taentzer. Canonical
derivations for high-level replacement systems. In H. J. Schneider and
H. Ehrig, editors, Dagstuhl Seminar on Graph Transformations in Com-
puter Science, volume 776 of Lecture Notes in Computer Science, pages
153–169, 1994.

[100] Hans-Jörg Kreowski. An axiomatic approach to canonical deriva-
tions. In Proc. IFIP World Computer Congress, volume A-51 of IFIP-
Transactions, pages 348–353, 1994.

[101] Gnanamalar David, Frank Drewes, and Hans-Jörg Kreowski. Hyperedge
replacement with rendezvous. In J.P. Jouannaud, editor, Proc. Collo-

12 Publications of Hans-Jörg Kreowski

quium on Trees in Algebra and Programming (CAAP’93), volume 668 of
Lecture Notes in Computer Science, pages 167–181, 1993.

[102] Hans-Jörg Kreowski. Five facets of hyperedge replacement beyond
context-freeness. In Z. Ésik, editor, Proc. 9th International Conference
on Fundamentals of Computation Theory, volume 710 of Lecture Notes
in Computer Science, pages 69–86, 1993.

[103] Hans-Jörg Kreowski. Translations into the graph grammar machine. In
R. M. Sleep, R. Plasmeijer, and M. van Eekelen, editors, Term Graph
Rewriting: Theory and Practice, chapter 13, pages 171–183. 1993.

[104] Hans-Jörg Kreowski. Some initial sections of the algebraic specification
tale. In G. Rozenberg and A. Salomaa, editors, Current Trends in The-
oretical Computer Science – Essays and Tutorials, pages 54–75. 1993.

[105] Hans-Jörg Kreowski. Eine konkrete Utopie von korrekter Software. In
Informatik zwischen Wissenschaft und Gesellschaft, Zur Erinnerung an
Reinhold Franck, volume 309 of Informatik-Fachberichte, pages 108–124,
1992.

[106] Hans-Jörg Kreowski. Ein Vorschlag zum Testen strukturierter algebra-
ischer Spezifikationen. In P. Liggesmeyer, H. M. Sneed, and A. Spillner,
editors, Testen, Analysieren und Verifizieren von Software, Informatik
Aktuell, pages 130–142, 1992.

[107] Frank Drewes and H.-J. Kreowski. A note on hyperedge replacement.
In H. Ehrig, H.-J. Kreowski, and G. Rozenberg, editors, Proc. 4th Inter-
national Workshop on Graph Grammars and Their Application to Com-
puter Science, volume 532 of Lecture Notes in Computer Science, pages
1–11, 1991.

[108] Hartmut Ehrig, Annegret Habel, Hans-Jörg Kreowski, and Francesco
Parisi-Presicce. From graph grammars to high-level replacement sys-
tems. In H. Ehrig, H.-J. Kreowski, and G. Rozenberg, editors, Proc. 4th
International Workshop on Graph Grammars and Their Application to
Computer Science, volume 532, pages 269–291, 1991.

[109] Annegret Habel and Hans-Jörg Kreowski. Collage grammars. In
H. Ehrig, H.-J. Kreowski, and G. Rozenberg, editors, Proc. 4th Inter-
national Workshop on Graph Grammars and Their Application to Com-
puter Science, volume 532 of Lecture Notes in Computer Science, pages
411–429, 1991.

[110] Eric Jeltsch and Hans-Jörg Kreowski. Grammatical inference based on
hyperedge replacement. In H. Ehrig, H.-J. Kreowski, and G. Rozen-
berg, editors, Proc. 4th International Workshop on Graph Grammars and
Their Application to Computer Science, volume 532 of Lecture Notes in
Computer Science, pages 461–474, 1991.

[111] Annegret Habel and Hans-Jörg Kreowski. Filtering hyperedge-
replacement languages through compatible properties. In M. Nagl, edi-
tor, Proc. 15th International Workshop on Graph-Theoretic Concepts in
Computer Science (WG’89), volume 411 of Lecture Notes in Computer
Science, pages 107–120, 1990.

Publications of Hans-Jörg Kreowski 13

[112] Hans-Jörg Kreowski and Zhenyu Quian. Relation-sorted specifications
with built-in coercers: Basic notions and results. In C. Choffrut and
T. Lengauer, editors, Proc. 7th Annual Symposium on Theoretical As-
pects of Computer Science (STACS’90), volume 415 of Lecture Notes in
Computer Science, pages 165–175, 1990.

[113] Annegret Habel, Hans-Jörg Kreowski, and Walter Vogler. Decidable
boundedness problems for hyperedge replacement graph grammars. In
J. Dı́az and F. Orejas, editors, Proc. Joint Conference on Theory and
Practice of Software Development (TAPSOFT’89), Vol. 1, volume 351
of Lecture Notes in Computer Science, pages 275–289, 1989.

[114] Hans-Jörg Kreowski. Colimits as parameterized data types. In H. Ehrig,
H. Herrlich, H.-J. Kreowski, and G. Preuß, editors, Proc. Workshop on
Categorial Methods in Computer Science – with Aspects from Topology,
volume 393 of Lecture Notes in Computer Science, pages 36–49, 1989.

[115] Hans-Jörg Kreowski. Informationstechnische Grundbildung für alle ist
Unfug. In Felix Rauner and Julie K. Ruth, editors, Informationstech-
nische Grundbildung zwischen Affirmation und Gestaltungskompetenz,
pages 27–38. 1989.

[116] Annegret Habel and Hans-Jörg Kreowski. Pretty patterns produced by
hyperedge replacement. In H. Göttler and H.J. Schneider, editors, Proc.
International Workshop on Graph-Theoretic Concepts in Computer Sci-
ence (WG’87), volume 314 of Lecture Notes in Computer Science, pages
32–45, 1988.

[117] Annegret Habel, Hans-Jörg Kreowski, and Detlef Plump. Jungle eval-
uation. In D. Sannella and A. Tarlecki, editors, Recent Trends in Data
Type Specification, Proc. 5th Workshop on Specification of Abstract Data
Types, volume 332 of Lecture Notes in Computer Science, pages 92–112,
1988.

[118] Hans-Jörg Kreowski. Complexity in algebraic specifications: An upper
bound result. In H. Ehrig, editor, Proc. 6th Workshop on Abstract Data
Types, Technical Report, Technische Universität Berlin, 1988.

[119] Annegret Habel and Hans-Jörg Kreowski. May we introduce to you: Hy-
peredge replacement. In H. Ehrig, M. Nagl, G. Rozenberg, and A. Rosen-
feld, editors, Proc. 3rd International Workshop on Graph Grammars and
Their Application to Computer Science (GRAGRA’86), volume 291 of
Lecture Notes in Computer Science, pages 15–26, 1987.

[120] Annegret Habel and Hans-Jörg Kreowski. Some structural aspects of hy-
pergraph languages generated by hyperedge replacement. In F.J. Bran-
denburg, G. Vidal-Naquet, and M. Wirsing, editors, Proc. 4th Annual
Symposium on Theoretical Aspects of Computer Science (STACS’87),
volume 247 of Lecture Notes in Computer Science, pages 207–219, 1987.

[121] Hans-Jörg Kreowski. Partial algebras flow from algebraic specification.
In T. Ottmann, editor, Proc. 4th International Colloquium on Automata,
Languages and Programming (ICALP’87), volume 267 of Lecture Notes
in Computer Science, pages 521–530, 1987.

14 Publications of Hans-Jörg Kreowski

[122] Hans-Jörg Kreowski. Is parallelism already concurrency? Part 1: Deriva-
tions in graph grammars. In H. Ehrig, M. Nagl, G. Rozenberg, and
A. Rosenfeld, editors, Proc. 3rd International Workshop on Graph Gram-
mars and Their Application to Computer Science (GRAGRA’86), vol-
ume 291 of Lecture Notes in Computer Science, pages 343–360, 1987.

[123] Hans-Jörg Kreowski. Informatik und Militär: Zusammen in den Ab-
grund. In M. Löwe, M. Schmidt, and R. Wilhelm, editors, Umdenken in
der Informatik, pages 37–42. 1987.

[124] Hans-Jörg Kreowski and Anne Wilharm. Is parallelism already concur-
rency? Part 2: Non-sequential processes in graph grammars. In H. Ehrig,
M. Nagl, G. Rozenberg, and A. Rosenfeld, editors, Proc. 3rd Interna-
tional Workshop on Graph Grammars and Their Application to Com-
puter Science GRAGRA’86, volume 291 of Lecture Notes in Computer
Science, pages 361–377, 1987.

[125] Hans-Jörg Kreowski. Rule trees represent derivations in edge replacement
systems. In G. Rozenberg and A. Salomaa, editors, The book of L, pages
217–232. 1986.

[126] Hans-Jörg Kreowski. Based algebras. In K. Drosten, H.-D. Ehrich,
M. Gogolla, and U. W. Lipeck, editors, Proc. 4th Workshop on Abstract
Data Types, Informatik-Bericht Nr. 86-09, Universität Braunschweig,
1986.

[127] Hans-Jörg Kreowski and Anne Wilharm. Solving conflicts in graph gram-
mars derivation processes. In H. Noltemeier, editor, Proc. Workshop on
Graphtheoretic Concepts in Computer Science (WG’85), pages 161–179,
1985.

[128] Hans-Jörg Kreowski and Anne Wilharm. Processes on Petri nets and
graph grammars: A summary. In U. Pape, editor, Proc. Workshop on
Graphtheoretic Concepts in Computer Science (WG’84), pages 189–200,
1984.

[129] Annegret Habel and Hans-Jörg Kreowski. On context-free graph lan-
guages generated by edge replacement. In H. Ehrig, M. Nagl, and
G. Rozenberg, editors, Proc. 2nd International Workshop on Graph
Grammars and Their Application to Computer Science, volume 153 of
Lecture Notes in Computer Science, pages 143–158, 1983.

[130] Hans-Jörg Kreowski. Graph grammar derivation processes. In M. Nagl
and J. Perl, editors, Proc. Workshop on Graphtheoretic Concepts in Com-
puter Science (WG’83), pages 136–150, 1983.

[131] Hans-Jörg Kreowski. Specification of partial functions – only a tentative
suggestion. In M. Broy and M. Wirsing, editors, Proc. 2nd Workshop on
Abstract Data Types, Technical Report, Universität Passau, 1983.

[132] Klaus-Peter Hasler, Hans-Jörg Kreowski, Michael Löwe, and Michaela
Reisin. Suggestions on the interpretation of algebraic specifications. In
M. Broy and M. Wirsing, editors, Proc. 2nd Workshop on Abstract Data
Types, Technical Report, Universität Passau, 1983.

[133] Hartmut Ehrig and Hans-Jörg Kreowski. Keywords in context: An alge-
braic specification. In J. Staunstrup, editor, Proc. Workshop on Program

Publications of Hans-Jörg Kreowski 15

Specification, volume 134 of Lecture Notes in Computer Science, pages
73–83, 1982.

[134] Hartmut Ehrig and Hans-Jörg Kreowski. Parameter passing commutes
with implementation of parameterized data types. In M. Nielsen and
E.M. Schmidt, editors, Proc. International Colloquium on Automata,
Languages and Programming (ICALP’82), volume 140 of Lecture Notes
in Computer Science, pages 197–211, 1982.

[135] Hartmut Ehrig and Hans-Jörg Kreowski. Example 2: Kwic-index gener-
ation. In Jørgen Staunstrup, editor, Program Specification, volume 134
of Lecture Notes in Computer Science, pages 78–83, 1982.

[136] Hartmut Ehrig, Hans-Jörg Kreowski, James Thatcher, Eric Wagner, and
Jesse Wright. Parameter passing in algebraic specification languages. In
J. Staunstrup, editor, Proc. Workshop on Program Specification, volume
134 of Lecture Notes in Computer Science, pages 322–369, 1982.

[137] Hans-Jörg Kreowski. An algebraic implementation concept for abstract
data types. In H.-D. Ehrich and U. W. Lipeck, editors, Proc. 1st Work-
shop on Abstract Data Types, Technical Report, Universität Dortmund,
1982.

[138] Hartmut Ehrig, Werner Fey, and Hans-Jörg Kreowski. Algebraische Spez-
ifikation eines Stücklistensystems – eine Fallstudie. In C. Floyd and
H. Kopetz, editors, Proc. GACM-Konferenz Software Engineering – En-
twurf und Spezifikation, volume 5 of Berichte des German Chapter of the
ACM, pages 75–90, 1981.

[139] Hans-Jörg Kreowski. A comparison between Petri-nets and graph gram-
mars. In H. Noltemeier, editor, Proc. International Workshop on Graph-
theoretic Concepts in Computer Science (WG’80), volume 100 of Lecture
Notes in Computer Science, pages 306–317, 1981.

[140] Hans-Jörg Kreowski. Algebraische Spezifikation von Softwaresystemen.
In C. Floyd and H. Kopetz, editors, Proc. GACM-Konferenz Software
Engineering – Entwurf und Spezifikation, volume 5 of Berichte des Ger-
man Chapter of the ACM, pages 46–74, 1981.

[141] Hans-Jörg Kreowski. Wo liegen die Grenzen der praktischen Anwen-
dung formaler Methoden für die Entwurfsspezifikation? In C. Floyd and
H. Kopetz, editors, Software Engineering, volume 5 of Berichte des Ger-
man Chapter of the ACM, pages 281–283, 1981.

[142] Hans-Jörg Kreowski and Grzegorz Rozenberg. On the constructive de-
scription of graph languages accepted by finite automata. In J. Gruska
and M. Chytil, editors, Proc. 10th Symposium on Mathematical Founda-
tions of Computer Science (MFCS’81), volume 118 of Lecture Notes in
Computer Science, pages 398–409, 1981.

[143] Hartmut Ehrig and Hans-Jörg Kreowski. A graph grammar approach to
optimal and consistent schedules in data base systems. In U. Pape, edi-
tor, Discrete Structures and Algorithms, Proc. Workshop Graphtheoretic
Concepts in Computer Science (WG’79), pages 223–240, 1980.

[144] Hartmut Ehrig, Hans-Jörg Kreowski, Bernd Mahr, and Peter Padawitz.
Compound algebraic implementations: An approach to stepwise refine-

16 Publications of Hans-Jörg Kreowski

ment of software systems. In P. Dembinski, editor, Proc. 9th Symposium
on Mathematical Foundations of Computer Science, volume 88 of Lecture
Notes in Computer Science, pages 231–245, 1980.

[145] Hartmut Ehrig, Hans-Jörg Kreowski, and Peter Padawitz. Algebraic
implementation of abstract data types: Concept, syntax, semantics and
correctness. In J.W. de Bakker and J. van Leeuwen, editors, Proc. 7th
Colloquium on Automata, Languages and Programming, volume 85 of
Lecture Notes in Computer Science, pages 142–156, 1980.

[146] Hartmut Ehrig, Hans-Jörg Kreowski, and Peter Padawitz. A case study
of abstract implementations and their correctness. In B. Robinet, editor,
Proc. International Symposium on Programming, volume 83 of Lecture
Notes in Computer Science, pages 108–122, 1980.

[147] Hartmut Ehrig, Hans-Jörg Kreowski, James W. Thatcher, Eric Wagner,
and Jesse Wright. Parameterized data types in algebraic specification
languages. In J.W. de Bakker and J. van Leeuwen, editors, Proc. 7th
Colloquium on Automata, Languages and Programming, volume 85 of
Lecture Notes in Computer Science, pages 157–168, 1980.

[148] Hartmut Ehrig and Hans-Jörg Kreowski. Algebraic theory of graph gram-
mars applied to consistency and synchronization in data base systems.
In M. Nagl and H.-J. Schneider, editors, Graphs, Data Structures, Algo-
rithms, Proc. Workshop on Graphtheoretic Concepts in Computer Sci-
ence (WG’78), volume 13 of Applied Computer Science, pages 227–244,
1979.

[149] Hartmut Ehrig, Hans-Jörg Kreowski, and Herbert Weber. Neue Aspekte
algebraischer Spezifikationsschemata für Datenbanksysteme. In H.C.
Mayr and B.E. Meyer, editors, Proc. GI-Fachtagung Formale Modelle
für Informationssysteme, volume 21 of Informatik-Fachberichte, pages
181–198, 1979.

[150] Hans-Jörg Kreowski. A pumping lemma for context-free graph languages.
In V. Claus, H. Ehrig, and G. Rozenberg, editors, Proc. International
Workshop on Graph Grammars and Their Application to Computer Sci-
ence and Biology, volume 73 of Lecture Notes in Computer Science, pages
270–283, 1979.

[151] Hartmut Ehrig, Hans-Jörg Kreowski, Andrea Maggiolo-Schettini,
Barry K. Rosen, and Jozef Winkowski. Deriving structures from struc-
tures. In J. Winkowski, editor, Proc. 7th Symposium on Mathematical
Foundations of Computer Science, volume 64 of Lecture Notes in Com-
puter Science, pages 177–190, 1978.

[152] Hartmut Ehrig, Hans-Jörg Kreowski, and Peter Padawitz. Stepwise spec-
ification and implementation of abstract data types. In G. Ausiello and
C. Böhm, editors, Proc. 5th Colloquium on Automata, Languages and
Programming, volume 62 of Lecture Notes in Computer Science, pages
205–226, 1978.

[153] Hartmut Ehrig, Hans-Jörg Kreowski, and Herbert Weber. Algebraic
specification schemes for data base systems. In B. S. Yao, editor, Proc.

Publications of Hans-Jörg Kreowski 17

4th International Conference on Very Large Data Bases, pages 427–440,
1978.

[154] Hans-Jörg Kreowski. Transformations of derivation sequences in graph
grammars. In M. Karpiński, editor, Proc. International Conference on
Fundamentals of Computation Theory, volume 56 of Lecture Notes in
Computer Science, pages 275–286, 1977.

[155] Hartmut Ehrig and Hans-Jörg Kreowski. Parallel graph grammars. In
A. Lindenmayer and G. Rozenberg, editors, Proc. Automata, Languages,
Development, pages 425–442, 1976.

[156] Hartmut Ehrig and Hans-Jörg Kreowski. Categorial approach to graphic
systems and graph grammars. In Proc. Algebraic System Theory, volume
131 of Lecture Notes in Economics and Mathematical Systems, pages
323–351, 1976.

[157] Hartmut Ehrig and Hans-Jörg Kreowski. Minimization concepts of au-
tomata in pseudoclosed categories. In Proc. Algebraic System Theory,
volume 131 of Lecture Notes in Economics and Mathematical Systems,
pages 359–374, 1976.

[158] Hartmut Ehrig and Hans-Jörg Kreowski. Parallelism of manipulations
in multidimensional information structures. In A. Mazurkiewicz, editor,
Proc. 5th Symposium on Mathematical Foundations of Computer Sci-
ence, volume 45 of Lecture Notes in Computer Science, pages 284–293,
1976.

[159] Hartmut Ehrig and Hans-Jörg Kreowski. Power and initial automata in
pseudoclosed categories. In E. G. Manes, editor, Proc. 1st International
Symposium on Category Theory Applied to Computation and Control,
volume 25 of Lecture Notes in Computer Science, pages 144–150, 1974.

Further Publications

[160] Karsten Hölscher, Renate Klempien-Hinrichs, Peter Knirsch, Hans-Jörg
Kreowski, and Sabine Kuske. Regelbasierte Modellierung mit autonomen
Transformationseinheiten. Technical Report 1/06, Universität Bremen,
Fachbereich Mathematik & Informatik, 2006.

[161] Hans-Jörg Kreowski and Peter Knirsch, editors. Proc. Applied Graph
Transformation (AGT’02), 2002. Satellite Event of ETAPS 2002.

[162] Renate Klempien-Hinrichs and Hans-Jörg Kreowski. Algebraic specifi-
cation goes multimedia – a few tentative steps. Bulletin of the EATCS,
75:224–227, 2001.

[163] Martin Wirsing, Martin Gogolla, Hans-Jörg Kreowski, Tobias Nipkow,
and Wolfgang Reif, editors. Proc. Rigorose Entwicklung software-
intensiver Systeme, Technical Report 0005, Universität München, 2000.

[164] Hartmut Ehrig, Hans-Jörg Kreowski, and Fernando Orejas. Correct-
ness of actualization for parameterized implementation concepts based
on constructors and abstractors. Bulletin of the EATCS, 56, 1995.

18 Publications of Hans-Jörg Kreowski

[165] Frank Drewes, Annegret Habel, Hans-Jörg Kreowski, and Stefan Tauben-
berger. A sketch of collage grammars. Bulletin of the EATCS, 50:209–
219, 1993.

[166] Frank Drewes, Hans-Jörg Kreowski, and Sabine Kuske. Hyperedge re-
placement: A basis for efficient graph algorithms. In M. Beyer, H. Ehrig,
and M. Löwe, editors, Computing by Graph Transformation (COMPU-
GRAPH) — Survey, Results, and Applications, 1992. Project brochure.

[167] Hans-Jörg Kreowski. Aspects of systems of logic programming. Bulletin
of the EATCS, 44:144–146, 1991.

[168] Reinhold Franck, Brian J. Gerloff, Roland Hardt, Rainer Isle, Hans-
Jörg Kreowski, Inger Kuhlmann, Klaus-Peter Löhr, Richard Voet, and
Anne Wilharm. Informatik 2000, Kampf um Märkte und Vorherrschaft.
Informatik-Bericht 5, Universität Bremen, 1987.

[169] Annegret Habel, Hans-Jörg Kreowski, and Walter Vogler. Compatible
graph properties are decidable for hypergraph replacement graph lan-
guages. Bulletin of the EATCS, 33:55–61, 1987.

[170] Hartmut Ehrig, Hans-Jörg Kreowski, and Peter Padawitz. Algebraic
implementation of abstract data types: An announcement. SIGACT
News, 11(2):25–29, 1979.

[171] Hans-Jörg Kreowski. Manipulationen von Graphmanipulationen. Doc-
toral Dissertation. Technische Universität Berlin, 1978.

Part I

Greetings

Betriebssysteme und Algebraische Spezifikation?

Klaus-Peter Löhr

Wenn ich über Hans-Jörg Kreowski als Kollegen spreche, so kann ich bis in
die 70er Jahre zurückblicken: Wir waren damals Kollegen an der Technischen
Universität Berlin – damals noch als Assistenten (heute Wissenschaftliche Mit-
arbeiter) und dann als Assistenzprofessoren (heute Juniorprofessoren). In den
80er Jahren waren wir dann beide als Professoren am Aufbau der Informatik
an der Universität Bremen beteiligt, bis ich 1985 an die Freie Universität Berlin
wechselte.

In den Jahren nach 1968 herrschte an den (West-)Berliner Universitäten ei-
ne fieberhafte Umbruchstimmung, wie man sie sich heute kaum noch vorstel-
len kann. 1969 wurde durch ein neues Hochschulgesetz die Ordinarienuniversität
durch die Gruppenuniversität abgelöst, und die großen Fakultäten wurden durch
kleinere, überschaubare Fachbereiche ersetzt. An der Technischen Universität
fielen diese Änderungen mit der Einrichtung des aus Bundesmitteln (2. DV-
Programm) geförderten neuen Studiengangs Informatik zusammen. Ein neuge-
gründeter Fachbereich Kybernetik – später in Informatik umbenannt – wurde
zum Schauplatz lebhafter, bisweilen erbitterter Auseinandersetzungen: Studen-
ten, Assistenten und Professoren stritten über fachliche, hochschulpolitische und
allgemeinpolitische Fragen. Und häufig verbarg sich hinter einer fachlichen eine
politische Kontroverse (und umgekehrt). Die Beteiligten waren natürlich keine
Informatiker (denn solche gab es ja noch nicht), sondern kamen meist aus der
Elektrotechnik oder aus der Mathematik.

Aus heutiger Sicht mutet bizarr an, dass bei einigen Forschungsgruppen vor
Besetzung der Professorenstelle die zugehörigen Assistentenstellen besetzt wur-
den (von einer Einstellungskommission des Fachbereichsrats), was in der bundes-
deutschen Informatik bald als “Berliner bottom-up-Methode” kritisiert wurde.
Ohne fachliche Führung, und aus anderen Fächern kommend, mussten die Assi-
stenten sich in Eigenverantwortung zu Informatikern fortbilden und häufig auch
gleich eigenverantwortlich Lehrveranstaltungen durchführen. Man kann sich vor-
stellen, wie die Begeisterung für das neue Fach sowie die größere Rolle, die das
neue Hochschulgesetz den Assistenten in den Gremien zubilligte, einen starken
Zusammenhalt in der Assistentenschaft zur Folge hatte. Kontroversen zwischen
den verschiedenen politischen Hochschulgruppen gab es trotzdem, und daran
war auch die Gruppe beteiligt, in der Hans-Jörg und ich aktiv waren, die ADSen
– Aktionsgemeinschaft von Demokraten und Sozialisten.

Wir waren in diesen Jahren Weggefährten bei der Ausgestaltung eines quali-
tativ anspruchsvollen Informatik-Studiengangs, sowohl hinsichtlich der “kernin-
formatischen” Qualität als auch unter Berücksichtigung der Anwendungen und
Auswirkungen. Unser beider fachliche Ausrichtung war (und ist) allerdings denk-
bar unterschiedlich. Hans-Jörg kam von der kategorientheoretischen Behandlung
von Automaten zur Theoretischen Informatik, ich von der Numerischen Ma-
thematik zur Systemsoftware und Softwaretechnik. Wir haben nie fachlich zu-

21

22 Klaus-Peter Löhr

sammengearbeitet. Berührungspunkte gab es zwar in Gesprächen über formale
Spezifikation. Ich konnte mich aber für Hans-Jörgs Arbeitsrichtung, die damals
mehr auf die mathematische Fundierung der algebraischen Spezifikation als auf
softwaretechnische Anwendung abzielte, nicht erwärmen. Gut erinnere ich mich
an meine Ratlosigkeit bei einem Kolloquiumsvortrag von Joseph Goguen über
algebraische Spezifikation, bei dem ich nichts Weitergehendes erkennen konnte
als die alternative Formulierung einer bereits bekannten Technik. Auch dass die
Begriffe Algebraische Spezifikation und Abstrakte Datentypen quasi als Synony-
me verwendet wurden, fand ich nicht richtig. Kurz und gut, die theoretischen
Grundlagen der algebraischen Spezifikation schienen mir für die praktische Soft-
waretechnik wenig relevant.

Politisch allerdings lagen wir auf gleicher Wellenlänge, und das mit vielen an-
deren Assistenten im Fachbereich. Dieses grundsätzliche Einvernehmen war die
Basis für viele gemeinsame Aktivitäten in der Hochschule und darüber hinaus.
Ein prominentes Beispiel war die Kampagne gegen Berufverbote in den Jahren
1973-76. Im Gefolge des Radikalenerlasses der Ministerpräsidenten von 1972
wurde 1975 einigen Assistenten der Universität (damals als Beamte auf Wider-
ruf eingestellt) die Verlängerung ihrer Verträge verweigert mit der Begründung,
dass sie nicht die Gewähr dafür böten, “jederzeit für die freiheitliche demokra-
tische Grundordnung einzutreten”. Die Empörung darüber war im Fachbereich
so groß, dass viele Assistenten im Januar 1976 einem Appell zur Rücknahme
der Entlassungen mit einem einwöchigen Lehrboykott Nachdruck verliehen: Wir
ließen – unter Verletzung unserer Dienstpflichten – unsere Lehrveranstaltungen
ausfallen. Den Entlassenen half das leider nichts, und unsere Aktion blieb nicht
ungeahndet und führte zu einem Eintrag in die Personalakten. Unsere Klage
dagegen blieb natürlich erfolglos. – So etwas schweißt zusammen.

1979 wechselte ich auf eine Professorenstelle in den neu eingerichteten Stu-
diengang Informatik im Fachbereich Mathematik der Universität Bremen, in
den auch Wolfgang Coy und Hermann Gehring berufen wurden. Wir waren sehr
froh, dass wir bald danach auch Hans-Jörg für Bremen gewinnen konnten und
dass es gelang, Frieder Nake von der Elektrotechnik zur Informatik zu holen.
Bremen war damals als rote Kaderschmiede verrufen; allerdings wurde im Fach-
bereich Mathematik alles nicht so heiß gegessen. Wir fanden eine reformfreudige
Umgebung vor und konnten einen Studiengang entwickeln, der sich durch ein
projektorientiertes Hauptstudium sowie durch eine starke Berücksichtigung ge-
sellschaftsbezogener Inhalte auszeichnete. Hans-Jörgs Engagement beschränkte
sich dann auch nicht auf die Theoretische Informatik. Um eines von vielen Bei-
spielen zu nennen: Ich weiß nicht, wann er seine Weihnachtsvorlesung zum ersten
Mal durchführte; aber sie findet immer noch statt, ist heute so beliebt wie damals
und ist ein typisches Element der Bremer Informatik.

Auf dem Höhepunkt der durch den NATO-Doppelbeschluss von 1979 aus-
gelösten Friedensbewegung wurde 1984 das FIfF gegründet – Forum Informa-
tikerInnen für Frieden und gesellschaftliche Verantwortung. An der Gründung
waren Mitglieder und ehemalige Mitglieder der TU Berlin maßgeblich beteiligt.
Hans-Jörg war von Anfang an mit dabei und hat sich im Laufe der Jahre immer

Betriebssysteme und Algebraische Spezifikation? 23

wieder stark im FIfF engagiert, im Vorstand, bei den Jahrestagungen, in der
Bremer Regionalgruppe und – gerade auch jetzt wieder im 25. Jahr des FIfF
– als FIfF-Vorsitzender. Dieses Engagement ist charakteristisch für Hans-Jörg:
Als akademischer Lehrer lebt er den Studierenden vor, wie man die Tätigkeit als
Informatiker mit gesellschaftlichem Engagement verbinden kann. Es gibt in der
deutschen Informatik nur wenige Hochschullehrer, die in dieser Weise über ihr
Fach hinaus wirken.

Nicht nur Hans-Jörg und das FIfF, auch die Bremer Informatik feiert ein
Jubiläum – sie wird 30 Jahre alt. Ich bin froh, dass sie heute zu den in jeder
Hinsicht vorzeigbaren Informatiken in Deutschland gehört, und weiß, dass Hans-
Jörg einen wesentlichen Anteil daran hat. Ich beglückwünsche beide und hoffe,
dass die Bremer Informatik-Studierenden zu schätzen wissen, was sie an ihrem
Studiengang haben.

Und für die von Hans-Jörg geleiteten Gremiensitzungen hoffe ich, dass er
die Teilnehmer immer noch so schön mit einem Obstteller erquickt, wie er das
während meiner Zeit in Bremen getan hat.

. .

Prof. Dr. Klaus-Peter Löhr (emeritus)

Institut für Informatik
Fachbereich Mathematik und Informatik
Freie Universität Berlin
D-14195 Berlin (Germany)
lohr@inf.fu-berlin.de
http://page.mi.fu-berlin.de/lohr

Klaus-Peter Löhr and Hans-Jörg Kreowski were colleagues during two periods
in their careers. First, until 1978, as research associates at the Department of
Computer Science at TU Berlin and then, from 1982 to 1985, as professors at
the Department of Computer Science at the University of Bremen.

. .

Graphs are Everywhere

Giorgio Busatto and Peter Knirsch

Bremen, 2009

We would like to take the occasion of Hans-Jörg’s 60th anniversary to thank him
for the scientific and professional experience that we could gather during our
stay in his group in Bremen. As a founder of many concepts our research was
based on he was for us a guide and a steady source of inspiration.

After being colleagues in Hans-Jörg’s group, we both took a different direction
and worked in the industry in Germany and Italy, respectively. For some strange
coincidence, since September 2008 we are again colleagues in a software company
in Bremen.

We often remember one of Hans-Jörg’s favourite quotes: “Graphs are every-
where!” Indeed, graphs often offer us the right level of abstraction to reason
about problems we encounter in our daily work: “Think of it as a graph together
with its possible transformation.” So even if we have not found a straightforward
bridge between theory and practice yet—if there is a bridge it surely is a graph.

Giorgio Busatto and Peter Knirsch

Graph grammar riddle

H K T G X L B J T G

S P O F D P O A R C

G E T G R A T S E C

E R V P R O G R E S

A E O G R A G R A S

A G T I V E T R U T

E D G E L E L V I S

U M L O M O D N A C

S U O C S X U O Y H

R T W M Q M Z H N T

“Solution:YoucantrytofindasmanyGragrarelatedtermsaspossiblebuttrytomarkthevowelsfirst.”

25

26 Giorgio Busatto, Peter Knirsch

. .

Dr. Giorgio Busatto

MeVis Medical Solutions
Universitätsallee 29
D-28359 Bremen (Germany)
giorgioxyzb@hotmail.com

Giorgio Busatto was a guest researcher in Hans-Jörg Kreowski’s team with a
GetGraTS grant in 2000 and 2001. They co-authored several papers in the
field of graph transformation, and Hans-Jörg Kreowski was external examiner
of his doctoral thesis.

. .

Dr. Peter Knirsch

MeVis BreastCare Solutions
Universitätsallee 29
D-28359 Bremen (Germany)
peter@knirsch.info

Peter Knirsch was a doctoral student supervised by Hans-Jörg Kreowski. He
was a research associate in Hans-Jörg’s team from 1997 to 2007 and received
his doctoral degree in 2007.

. .

Alter schützt vor Theoretisieren nicht

Sofie Czernik

Lieber Hans Jörg,

ich hoffe, dass dieser modifizierte Spruch stimmt – nicht nur für Dich. Denn was
wäre das Leben ohne zeitweilige Flucht in die abstrakte Welt des Theoretisierens?
Langeweile, nichts als Langeweile! Der Reiz des Theoretisierens besteht doch
gerade darin, die ausgetretenen Gedankenpfade zu verlassen, dem Alltagstrott
zu entfliehen und ganz neue Wege zu bestreiten. Dazu sind wir hoffentlich nie
zu alt.

Ich wünsche Dir zu Deinem 60. Geburtstag weiter hin den Mut zu vielen, vielen
neuen Wegen in der (Graph-)Theorie!

Gleichzeitig erinnere ich mich gerne an manche interessante Stunden des Theo-
retisierens (und nicht nur), die ich bereits vor mehr als zehn Jahren dank Dir
in der Arbeitsgruppe Theoretische Informatik an der Universität Bremen mit
vielen Gleichgesinnten verbringen durfte. Auch die Irrwege waren herrlich!

Nun freue ich mich auf das Wiedersehen im September, um an diesem Ehrentag
Dich hochleben und mit Dir die schöne Zeit noch mal aufleben lassen zu können,

Sofie

P.S. Ebenso schöne Geburtstagsgrüße und -wünsche von Dennis Chong.

. .

Prof. Dr. Sofie Czernik

Fachbereich 2
Hochschule Bremerhaven
27568 Bremerhaven (Germany)
s.czernik@hs-bremerhaven.de
http://www.hs-bremerhaven.de/Sofie Czernik.html

When Sofie Czernik was a doctoral student at the University of Bremen during
the years 1993–1997, Hans-Jörg Kreowski was her second examiner. From 1997
to 1999 she was a member of his team, and is now a professor at Bremerha-
ven University of Applied Sciences. Together with Hans-Jörg Kreowski, she is
currently supervising Dennis Chong’s doctoral studies.

. .

27

Ein FIfFiger Informatiker

Stefan Hügel

Bei den vielen Würdigungen von Hans-Jörg Kreowski in diesem Band darf
natürlich eine nicht fehlen: die des FIfF, das er durch seine Arbeit über Jahre
hinweg wesentlich geprägt hat. Typischerweise fällt diese Aufgabe dem Vorsit-
zenden zu – da er sich nicht gut selbst würdigen kann, darf nun also ich diese
erfreuliche Aufgabe übernehmen.

Selbst bin ich erst 1993 ins FIfF eingetreten (und habe danach jahrelang
ein Leben als ”FIfF-Kommunikation-lesende Karteileiche“ geführt); Hans-Jörgs
Aktivitäten begannen also lange vor meiner Zeit, auch schon vor der Gründung
des FIfF. Hervorheben will ich vor allem seine Stellungnahme zur Star-Wars-
Initiative (SDI) des damaligen US-Präsidenten Reagan, gegen die er sich zusam-
men mit vielen anderen prominenten FIfF-Mitgliedern öffentlich ausgesprochen
hat.

Die Inhalte des Themengebiets ”Informatik und Gesellschaft“ – und damit die
Inhalte des FIfF – haben sich seitdem gewandelt. Manche haben an Bedeutung
verloren, einige sind hinzugekommen, viele sind geblieben. Das Thema Frieden
– Gründungsimpuls und Kernthema das FIfF – hat heute eine andere, aber
kaum geringere Bedeutung als damals im kalten Krieg. Datensammelwut und
Überwachungswahn – damals bereits wichtige Themen – sind trotz des Rechts
auf informationelle Selbstbestimmung heute noch bedeutsamer geworden, auch
deswegen, weil viele ihr Recht auf informationelle Selbstbestimmung nicht in
dem Maße wahrnehmen, wie sie es könnten – und vielleicht sollten.

Nicht vorauszusehen war zu dieser Zeit die Entwicklung des Internet. Kom-
muniziert wurde über Mailboxen und Bildschirmtext – das Netz in der Form,
die heute für uns selbstverständlich ist, steckte bestenfalls in den Kinderschuhen.
Neben großen Chancen, die wir alle gerne wahrnehmen, birgt es auch Risiken –
das FIfF sorgt bis heute, zusammen mit vielen anderen, dafür, dass sie in der
Euphorie nicht übersehen werden.

Anders als manche Aktive der achtziger und frühen neunziger Jahre ist Hans-
Jörg Kreowski dem FIfF und seinen Inhalten treu geblieben. Er hat in einer
kritischen Phase des Vereins 2003 den Vorsitz übernommen, den er bis heute
inne hat. Das FIfF hat ihm nicht zuletzt deswegen viel zu verdanken.

Für die demnächst anstehenden Wahlen hat er angekündigt, nicht mehr für
den Vorsitz zu kandidieren. Das wird eine nur schwer zu füllende Lücke hinter-
lassen. Gerne nehmen wir zur Kenntnis, dass dies aber nicht das Ende seines
Engagements im FIfF sein wird.

Zu seinem 60. Geburtstag und für seinen weiteren beruflichen und privaten
Weg wünschen wir vom Forum InformatikerInnen für Frieden und gesellschaft-
liche Verantwortung (FIfF e.V.) Hans-Jörg Kreowski alles Gute!

Bemerkung. Ein Beitrag von Ralf E. Streibl zur Geschichte des FIfF findet
sich auf Seite 341 dieser Festschrift.

29

30 Stefan Hügel

. .

Stefan Hügel

c/o FIfF e.V.
Goetheplatz 4
D-28203 Bremen (Germany)
sh@fiff.de

Hans-Jörg Kreowski and Stefan Hügel are both members of the FIfF-Board –
Hans-Jörg Kreowski being the Chairman and Stefan Hügel the Vice Chairman.
Stefan studied Computer Science at the Universities of Karlsruhe and Freiburg.
He currently lives in Munich; in his professional life he works for a Software
and Consulting Company.

. .

Stomach Cramps, Dadaism, and
Marinated Truts

Andy Schürr

Dear Hans-Jörg,

Unfortunately, I can’t recall the moment when we met for the first time. Pro-
bably, it was around the time of the 4th Int. Workshop on Graph Grammars in
Bremen. At that time I was a greenhorn in the gragra research community with
my first dreams of a graph transformation programming environment and you a
renowned graph grammar veteran. Nevertheless, you were the first professor in
my life that I was allowed to address informally (“duzen”).

Afterwards we met each other again and again in Bremen and other glorious
places around the world as the “International Committee of German Tourists”;
especially when you started the successful initiative to create closer contacts
and bonds between the different graph grammar subschools in Aachen, Berlin,
Bremen, and other places. During that time I’ve learned to spell difficult words li-
ke“pushout” or “hypergraph”, and to appreciate dadaism and the related poems
of Hans Arp, Kurt Schwitters, Hans-Jörg Kreowski, and other famous artists.

We even wrote papers together including one, where we introduced a fixpoint
theory for nested Truts. But alas, soon afterwards we found out that “Trut” is
not only the abbreviation for Nested Graph Transformation Units, but also for
a very special kind of human beings in Dutch and the name for a sort of demon
that causes nightmares. Maybe this was the reason why I did always have nasty
stomach cramps, when I visited your research group in Bremen for writing these
papers (although it is more likely that your very old and rarely used coffee
machine has to be blamed, since I was the only one who was drinking coffee and
not tea during our meetings).

Today I even found out that “Trut” is a synonym for “eel” and I googled the
following instructions how to handle truts appropriatley: “Truts zu mariniren.
Man reisset, salzet und kerbet dieselben, und bratet sie auf dem Rost, wobei sie
stets mit Baumöl zu beschmieren sind. . . . ”

Please keep these instructions always in mind when you are writing new pa-
pers about further extensions of this powerful graph transformation composition
mechanism. By the way: Merging these instructions with a description of the es-
sential ideas of our joint fixpoint semantics paper and feeding the result as input
to a Dada poetry generator produces about the following result, my special gift
for your 60th birthday:

31

32 Andy Schürr

Vermittelst sodenn endlich Truts reisset,
daß sie werden category-based Fixpoints.

Unten fortzufahren wird Pushout auf dem
gänzlich Graphdefinition dieselben,
sodenn pullback semantics darauf!

My special greetings for this very special event!

Andy

. .

Prof. Dr. Andy Schürr

Real-Time Systems Lab (FG EchtzeitSysteme)
Darmstadt University of Technology
Andy.Schuerr@es.tu-darmstadt.de
http://www.es.tu-darmstadt.de

Similar to Hans-Jörg Kreowski’s research interests, one of the main research
fields of Andy Schürr is graph transformation. Since the early 1990s, they
have met numerous times on conferences, workshops, and informal research
meetings. They took part in the EC projects CompuGraph, AppliGraph,
and SeGraVis, and have several joint publications.

. .

Erinnerungen

Nils Schwabe

So kurz erst habt ihr euch vom wilden Stammbaum abgelöst, so eng seid
ihr noch mit den Lemuren und Halbaffen verwandt, daß ihr, nach Ab-
straktion strebend, der Anschaulichkeit nicht entbehren könnt, so daß ein
Vortrag, der nicht auf praller Sinnlichkeit beruht, der voll von Formeln
ist, die über einen Stein mehr sagen, als euch das Betrachten, Belecken
und Betasten dieses Steins verraten können, euch langweilt und abstößt
oder doch ein Gefühl der Unbefriedigung zurückläßt, das selbst den hohen
Theoretikern, den Abstraktoren eurer höchsten Klasse, nicht fremd ist,
wovon zahllose Beispiele aus den vertraulichen Geständnissen von Wis-
senschaftlern Zeugnis geben, denn sie bekennen sich in überwältigender
Mehrheit dazu, sich beim Entwickeln abstrakter Argumente ganz auf sinn-
lich faßbare Dinge stützen zu müssen.
– Stanislaw Lem, Also sprach GOLEM. Suhrkamp, Frankfurt a.M., 1981

Lieber Hans-Jörg,
zunächst einmal meinen herzlichsten Glückwunsch zu Deinem 60. Geburtstag!
Die Gelegenheit, zu diesem festlichen Anlaß ein Grußwort an Dich richten zu
können und in diesem einmal kurz die gemeinsam verbrachte Zeit zu reflektieren,
nehme ich sehr gerne wahr.
Es ist eine etwas irritierende Erkenntnis, dass mittlerweile schon fast 12 Jahre
vergangen sind, seit ich die Universität verlassen habe, um in der freien Software-
Wirtschaft mein Heil zu suchen. Also einmal in alten Unterlagen geblättert: das
BiZarR2-Projekt, (Map-) L-Systeme, IFS, Collagen-Grammatiken, Bilder und
Filme daraus machen. Das waren schon außergewöhnliche Themen, in jedem Fall
interessant und – bizarr. Für mich persönlich war es ein guter Weg, die theoreti-
sche Informatik kennen und schätzen zu lernen. So kam es zu einer Diplomarbeit
über kontextsensitive Collagen-Grammatiken und einer direkt anschließenden
Mitarbeit in der Arbeitsgruppe Theoretische Informatik mit praktischen und
theoretischen Anteilen. Mir ist dies als eine sehr schöne und lehrreiche Zeit in
Erinnerung, die ich mit sympathischen und kompetenten Kollegen verbringen
durfte.
Umso mehr freue ich mich, nun nach dieser langen Zeit zumindest für einen
Tag zurückkehren zu dürfen, um gemeinsam mit alten Bekannten noch einmal
einzutauchen in die theoretische Ursuppe, aus der die Bits und Bytes – und die
bizarren Bilder – hervorgegangen sind.
In diesem Sinne, alles Gute und auf ein Wiedersehen im September in Bremen,

Dein Nils

33

34 Nils Schwabe

. .

Nils Schwabe

GEBIT Solutions GmbH
Hammer Straße 19
D-40219 Düsseldorf (Germany)
nils.schwabe@gebit.de

Nils Schwabe studied Computer Science at the University of Bremen. Hans-
Jörg Kreowski was his teacher in several courses, and led the students’ project
BiZarR2. After receiving his diploma degree, Nils was a research associate in
Hans-Jörg Kreowski’s team from 1996 to 1997, before he decided to accept a
job offer from the software industry.

. .

Verbindungen schaffen

Karin Vosseberg und Andreas Spillner

Graph Grammatiken garantieren grandiose Grundlagen

Griph Grammatischen garanderen grandichose Greundlagen

Griff Gromatischen garandern grandiche Greundagen

Griffig Gromatischer farandern frandliche Greundafen

Friffig Fromtischer faradern fradliche Greundschafen

Friffige Formischer fardern fredliche Greundschaften

Fiffige Forscher fördern friedliche Freundschaften

Karin & Andreas möchten sich bei Dir für die langjährige Freundschaft und
fortwährende Unterstützung recht herzlich bedanken.

. .

Prof. Dr. Karin Vosseberg

Fachbereich 2
Hochschule Bremerhaven
D-27568 Bremerhaven (Germany)
Karin.Vosseberg@web.de

Karin Vosseberg studied Computer Science at the University of Bremen. Af-
terwards, she became a doctoral student supervised by Hans-Jörg Kreowski’s
colleague and friend Prof. Dr. Reinhold Franck. After Reinhold’s accidental
death, Hans-Jörg Kreowski became a major support, helping her to complete
her doctoral studies. From 1997 to 2000, Karin was a member of his team, in
the project Informatica Feminale. Another professional link is their engage-
ment in the Forum Computer Professionals for Peace and Social Responsibility
(FIfF). Over the years, Hans-Jörg Kreowski has turned from a teacher and
mentor into a dear friend.

. .

35

36 Karin Vosseberg, Andreas Spillner

. .

Prof. Dr. Andreas Spillner

Fakultät für Elektrotechnik und Informatik
Hochschule Bremen
D-28199 Bremen
andreas.spillner@hs-bremen.de
http://www.informatik.hs-bremen.de/spillner

Hans-Jörg Kreowski was the second supervisor of Andreas Spillner’s doctoral
thesis (first supervisor Prof. Dr. Reinhold Franck). After Reinhold Franck’s
accidental death in 1990, Hans-Jörg Kreowski acted as the provivional chair of
the group. During these years, a vocational relation has turned into a friendship
that is going to last.

. .

A

1

2 3

1

2 3

B

1

2 3

e1

C
1 2

3 4

e2

1

2 3

B

1

2 3

e1

1 2

3 4

C
1 2

3 4

e2

1

2 3

H(e1)

1 2

3 4

H(e2)

1

2 3

H(e1)

H(e2)

wwww�

k+1======⇒

k(e1)
==⇒

k(e2)
==⇒

Part II

Essays

Frm Ptr Nts t Grph Trnsfrmtn Sstms⋆

A Contribution in Honour of Hans-Jörg Kreowski

Paolo Baldan, Andrea Corradini, Fabio Gadducci, and Ugo Montanari

Abstract. Hans-Jörg Kreowski was among the first researchers to point
out that P/T Petri nets can be interpreted as instances of Graph Trans-
formation Systems, a fact now considered folklore. We elaborate on this
observation, discussing how several different models of Petri nets can be
encoded faithfully into Graph Transformation Systems. The key idea we
pursue is that the net encoding is uniquely determined, and distinct net
models are mapped to alternative approaches to graph transformation.

1 Introduction

The success of Petri nets as specification formalism for concurrent or distributed
systems is due (among other things) to the fact that they can describe in a nat-
ural way the evolution of systems whose states have a distributed nature. For
example, in a Place/Transition net like the one depicted in Fig. 1, a state of
the system is represented by a marking, i.e., a set of tokens distributed among
a set of places. Hence the state is intrinsically distributed, thus allowing for an
easy explicit representation of phenomena like mutual exclusion, concurrency,
causality, and non-determinism. Nets and their semantics are therefore a refer-
ence point for any formalism intended to describe concurrent and distributed
systems, and thus also for Graph Transformation Systems (GTSs).

A B

C

t

1 2

2

1
[t >

A B

C

t

1 2

2

1

(a) (b)

Fig. 1. (a) A marked P/T net. (b) The marking after the firing of transition t.

Indeed, it belongs to the folklore that Graph Transformation Systems can
be seen as a generalisation of Petri nets. The first formalization of this intu-
ition, to our knowledge, was proposed by Hans-Jörg Kreowski in [1] using the
double-pushout (dpo) approach, and it is illustrated in Fig. 2. The marked net

⋆ Research partially supported by the EU FP6-IST IP 16004 SEnSOria.

F. Drewes, A. Habel, B. Hoffmann, D. Plump (Eds.): Manipulation of Graphs, Algebras and Pictures.
Essays Dedicated to Hans-Jörg Kreowski on the Occasion of His 60th Birthday, pp. 39–58, 2009.

40 Paolo Baldan, Andrea Corradini, Fabio Gadducci, Ugo Montanari

of Fig. 1(a) is represented in Fig. 2 by the graph Kr(M0) having three kinds
of nodes (for transitions, places, and tokens, respectively) and where edges con-
nect either places and transitions (modelling the causal dependency relation)
or tokens and places (determining the place where a token lies). Transition t is
represented by rule Kr(t) (the top row of the figure): The rule does not modify
the topological structure of the net (nodes and edges corresponding to places,
transitions and causal dependency relation are also in the interface), but only
deletes and creates the nodes representing tokens together with the edges con-
necting them to places. It is easy to check that the rule is applicable to graph
Kr(M0) (the gluing conditions are satisfied), and since the two squares in the

figure are pushouts, that Kr(M0)
Kr(t)
=⇒ Kr(M1); moreover, the derived graph

Kr(M1) represents the marking M1, such that M0 [t〉M1.

Kr(t) =

A B

C

t

A B

C

t

A B

C

t

A B

C

t

A B

C

t

A B

C

t

Kr(M0) Kr(M1)

Fig. 2. Encoding of nets as grammars according to Kreowski.

Several encodings of Petri nets as GTSs have been proposed since then, and
it is impossible even to summarize them here: for some of the earliest, see [2] and
the references therein. In this paper we elaborate on this idea, starting from the
observation that P/T nets are only one (a noticeable one) among the alternative
models of Petri net which have been proposed along the years. Sticking to “low
level” Petri nets, other models of nets may allow at most one token at a time
in a place, as for Condition/Event (C/E) nets [3] or Elementary Net Systems
(ens) [4], and correspondingly a transition can fire only if the post-conditions
are empty. In the so-called Consume-Produce-Read (cpr) nets [5], more per-
missively, the transition can fire anyhow, but the token produced on a place is
“coalesced” with a possibly pre-existing token [5]. Orthogonally, nets of all kinds
can be equipped with read or inhibitor arcs, specifying that the presence or the
absence of a token on a place is necessary for firing, but it does not affect the

Frm Ptr Nts t Grph Trnsfrmtn Sstms 41

result [6–10]. Another type of arcs, called reset arcs [11], allows to specify that
the firing of a transition deletes all the tokens, if any, from a given place.

What about representing these models of nets as GTSs? In principle, all
of them can be encoded using dpo rewriting, because the latter is Turing com-
plete [12]. We prefer to follow a different approach, which on the one hand allows
us to keep the encoding very simple for all the models of nets mentioned above,
and on the other hand exploits the fact that also for GTSs alternative formalisms
have been proposed. From the GTS side we shall stick to the family of algebraic
approaches, among which we consider the classical single- and double-pushout
approaches [13, 14], and the less known Subobject Transformation Systems [15].
The latter basically consists of rewriting in the lattice of subgraphs of a given
graph, and it turns out to be the natural framework for encoding net models
which allow at most one token on a place (where a state is a subset of places).

We encode nets using a very simple kind of graphs, containing nodes and
unary edges only. A marking of a net is represented by a set of edges, one for
each token, each attached to a node representing a place. It is thus reminiscent
of the encoding by Kreowski discussed above, even if the transitions are not
represented explicitly in the states: They are encoded only as rules of the GTS.
Interestingly, inhibitor and reset arcs can be encoded exactly in the same way:
The different behaviour is determined by the choice of the GTS approach.

The following table summarizes the results we shall present. For each of the
three basic net models, we indicate the GTS approach that can be used to encode
it in presence of read, inhibitor and/or reset arcs: note that we do not allow for
nets which include both inhibitor and reset arcs.

Read arcs Read + Inhibitor Read + Reset

P/T nets dpo or spo dpo spo

ENS sts or sts⊑ sts sts⊑

CPR nets stsm or sts⊑m stsm sts⊑m

Table 1. Summary of the proposed encodings.

The few variants of the sts approach referred to in the table will be intro-
duced later on. The encodings of P/T Petri nets with read, inhibitor and reset
arcs as GTSs were originally discussed in [16]. The present paper provides a sys-
tematic view of such encodings, viewing them in a much more general framework
which recomprises Elementary Net Systems and cpr nets.

The paper is structured as follows. Section 2 presents the three GTS ap-
proaches we deal with in our work, and it is complemented in Section 3 by
the kinds of nets for which we present an encoding. Section 4 discusses these
encodings, and the correspondence between alternative net models and GTS ap-
proaches. Section 5 draws some conclusions and offers pointers to future works.

42 Paolo Baldan, Andrea Corradini, Fabio Gadducci, Ugo Montanari

2 Algebraic approaches to graph transformation

This section introduces some basic notions concerning the algebraic formalisms
for graph rewriting considered in the paper. We concentrate on typed Graph
Transformations Systems (gtss), both in the single-pushout (spo) [13, 17] and
the double-pushout (dpo) [14, 18] approach, and on Subobject Transformation
Systems (stss) [15]. Typed rewriting is a well-established variant of the classical
proposals where rewriting takes place on so-called typed graphs, i.e., graphs
labelled over a structure which is itself a graph [19, 20].

2.1 Graphs and graph morphisms

We introduce here the basic concepts concerning graphs and their morphisms.
For the sake of simplicity, our introduction to GTSs will deal with unary hyper-
graphs only, since they are just what is needed for the encoding of Petri nets
that we are going to present. Indeed, all the remarks in this section could be
generalized to any kind of (hyper-)graphs or, albeit with some additional care, to
any adhesive category [21]. Similarly, the encodings presented later would work
in standard categories of (hyper-)graphs.

Given a partial function f : A B we denote by dom(f) its domain, i.e.,
the set {a ∈ A | f(a) is defined}. Let f, g : A B be two partial functions. We
write f ≤ g when dom(f) ⊆ dom(g) and f(x) = g(x) for all x ∈ dom(f).

Definition 1 (graph and graph morphism). A (unary) graph G is a triple
G = (VG, EG, cG), where VG is a set of nodes, EG is a set of edges and cG :
EG → VG is a function mapping each edge to the node it is connected to.

A partial graph morphism f : G H is a pair of partial functions f = 〈fN :
NG NH , fE : EG EH〉 such that cH ◦ fE ≤ fN ◦ cG (see Fig. 3.(a))

We denote by PGraph the category of (unlabelled) graphs and partial graph
morphisms. A morphism is called total if both components are total, and the
corresponding subcategory of PGraph is denoted by Graph.

Notice that if a partial graph morphism f is defined over an edge, then it must
be defined on the node the edge is connected to: This ensures that the domain
of f is a well-formed graph.

Definition 2 (subgraph lattice). A graph G is a subgraph of H, written
G ⊆ H, if NG ⊆ NH , EG ⊆ EH , and the inclusions form a graph morphism.
The set of subgraphs of H ordered by inclusion form a distributive lattice, de-
noted Sub(H), where the meet ∩ and the join ∪ are defined as component-wise
intersection and union, respectively.

Given graphs H and G ⊆ H , we will write, a bit informally, H \G to denote
the set of items (nodes and edges) of H which do not belong to G.

Given a graph T , a typed graph G over T is a graph |G|, together with a
total morphism tG : |G| → T . A partial morphism between T -typed graphs
f : G1 G2 is a partial graph morphisms f : |G1| |G2| consistent with the

Frm Ptr Nts t Grph Trnsfrmtn Sstms 43

typing, i.e., such that tG1 ≥ tG2 ◦ f (see Fig. 3.(b)). A typed graph G is called
injective if the typing morphism tG is injective. The category of T -typed graphs
and partial typed graph morphisms is denoted by T -PGraph.

EG

cG

��

fE //

≥

EH

cH

��

NG
fN

// NH

|G1|

tG1
��

33
33

33
f

//

≥

|G2|

tG2
����
��
��

T

(a) (b)

Fig. 3. Diagrams for partial graph and typed graph morphisms.

Given a partial typed graph morphism f : G1 G2, we denote by dom(f)
the domain of f typed in the obvious way. Given a subgraph G of T , i.e., an
element of Sub(T), we often consider it as a graph typed over T by the inclusion.
Since we work only with typed notions, we usually omit the qualification “typed”.

2.2 Double-pushout rewriting

Chosen a type graph T , a (T -typed) dpo rule q = (L
l←֓ K

r→֒ R) is a pair
of injective (total, T -typed) graph morphisms l : K →֒ L and r : K →֒ R,
where |L|, |K| and |R| are finite graphs. The graphs L, K, and R are called the
left-hand side, the interface, and the right-hand side of the rule, respectively.

Definition 3 (dpo direct derivation). Given a graph G, a dpo rule q, and
a match (i.e., a total graph morphism) g : L→ G, a dpo direct derivation from
G to H using q (based on g) exists, written G⇒dpo

q H, if the diagram

Lq :

g

��

K?
_loo � � r //

k

��

R

h

��

G D
b

oo
d

// H

can be constructed, where both squares are pushouts in T -Graph.

Given an injective morphism l : K →֒ L and a match g : L→ G as in the above
diagram, their pushout complement (i.e., a graph D with morphisms k and b
such that the left square is a pushout) exists if and only if the gluing condition
is satisfied. This consists of two parts:

– the identification condition, requiring that if two distinct nodes or edges of
L are mapped by g to the same image, then both are in the image of l;

44 Paolo Baldan, Andrea Corradini, Fabio Gadducci, Ugo Montanari

– the dangling condition, stating that no edge in G\ g(L) should be connected
to a node in g(L\ l(K)) (because otherwise the application of the rule would
leave such an edge “dangling”).

2.3 Single-pushout rewriting

Chosen a type graph T , a (T -typed) spo rule q = (L
r R) is an injective partial

typed graph morphism r : L R. The graphs L and R are called the left-hand
side and the right-hand side of the rule, respectively.

Definition 4 (spo direct derivation). Given a graph G, an spo rule q, and
a match (i.e., a total graph morphism) g : L→ G, we say that there is an spo
direct derivation from G to H using q (based on g), written G ⇒spo

q H, if the
following is a pushout square in T -PGraph.

L
g

��

// r // R��
h��

G //
d

// H

Roughly speaking, the rewriting step removes from the graph G the image of the
items of the left-hand side which are not in the domain of r, namely g(L\dom(r)),
adding the items of the right-hand side which are not in the image of r, namely
R\r(dom(r)). The items in the image of dom(r) are “preserved” by the rewriting
step (intuitively, they are accessed in a “read-only” manner).

A relevant difference with respect to the dpo approach is that here there is
no dangling condition preventing a rule to be applied whenever its application
would leave dangling edges. In fact, as a consequence of the way pushouts are
constructed in T -PGraph, when a node is deleted by the application of a rule
also all the edges connected to such node are deleted by the rewriting step, as a
kind of side-effect. For instance, rule q in the top row of Fig. 4, which consumes
node B, can be applied to the graph G in the same figure. As a result both node
B and edge L are removed.

B

q

G
L

B

Fig. 4. Side-effects in spo rewriting.

Even if the category PGraph has all pushouts, still we will consider a con-
dition which corresponds to the identification condition of the dpo approach.

Frm Ptr Nts t Grph Trnsfrmtn Sstms 45

Definition 5 (valid match). A match g : L→ G is called valid when for any
x, y ∈ |L|, if g(x) = g(y) then x, y ∈ dom(r).

Conceptually, a match is not valid if it requires a single resource to be con-
sumed twice, or to be consumed and preserved at the same time. In the paper
we consider only valid derivations: This is needed to have a resource-conscious
interpretation for derivations, i.e., where a resource is consumed at most once.

We close this section noting that for each dpo rule we can easily construct
an spo rule, which behaves like the original one when the dangling condition is
satisfied. Clearly, the converse construction is possible as well.

Definition 6 (from dpo to spo rules, and vice versa). Let q = (L
l←֓ K

r→֒
R) be a T -typed dpo rule. Then, the associated T -typed spo rule, denoted by
S(q), is given by the partial graph morphism r ◦ l∗ : L R, where l∗ : L K
is the partial inverse of l, defined in the obvious way.

Vice versa, for a T -typed spo rule q = (L
r R), the associated dpo rule is

defined as D(q) = (L ←֓ dom(r)
r→֒ R).

2.4 Subgraph Transformation Systems

In the typed approaches to graph transformation, the type graph plays a role
analogous to the set of places in Petri nets. In particular, the constraint that a
place can contain at most one token can be translated into the requirement that
the typing morphism is injective. Both the dpo and the spo approaches can be
equipped with side conditions that guarantee that only injectively typed graphs
are generated during rewriting, but this condition is built-in in the instance of
the Subobject Transformation System approach [15] that we present here.

In the original formulation, the framework where rewriting is defined is the
distributive lattice of subobjects of a fixed object of an adhesive category. Such
generality is unnecessary here, and we instantiate the definitions to the case
where the category of concern is Graph, which is indeed adhesive. As a conse-
quence, in the following we read “sts” as Subgraph Transformation Systems.

Chosen a type graph T , a (T -typed) sts rule q is a triple q = 〈L, K, R〉,
where L, K, R ∈ Sub(T), K ⊆ L and K ⊆ R. The graphs L, K and R are called
the left-hand side, the interface and the right-hand side of the rule, respectively.

Definition 7 (sts direct derivation). Given a graph G in Sub(T) and an
sts rule q = 〈L, K, R〉, there is an sts direct derivation from G to H using q,
written G⇒sts

q H, if H ∈ Sub(T) and there exists D ∈ Sub(T) such that

(i) L ∪D = G; (iii) D ∪R = H ;

(ii) L ∩D = K; (iv) D ∩R = K.

If such a graph D exists, we shall refer to it as the context of the direct derivation
G⇒sts

q H .

46 Paolo Baldan, Andrea Corradini, Fabio Gadducci, Ugo Montanari

It is instructive to consider the relationship between an sts direct derivation
and a dpo direct derivation as introduced above. First observe that Sub(T) can
be seen as a category where the arrows are the inclusions, and a rule 〈L, K, R〉
can be seen as a span q = (L ⊇ K ⊆ R), i.e., a pair of arrows in Sub(T). Next,
we shall say that there is a contact situation for a rule 〈L, K, R〉 at a subgraph
G ⊇ L ∈ Sub(T) if G ∩ R 6⊆ L. Intuitively, this means that some items of the
subgraph G are created but not deleted by the rule: If we were allowed to apply
the rule at this match via a dpo direct derivation, the resulting object would
contain the common part twice and consequently the resulting morphism to T
would not be injective; i.e., the result would not be a subgraph of T . The next
result, presented in [15], shows that an sts direct derivation is also a dpo direct
derivation if no contact occurs.

Proposition 1 (sts derivations are contact-free double pushouts). Let
G and H be graphs in Sub(T) and q = 〈L, K, R〉 be an sts rule. Then G⇒sts

q

H if and only if L ⊆ G, G ∩ R ⊆ L, and G ⇒dpo
q H, i.e., if there is a graph

D ∈ T -Graph such that the diagram below forms two pushouts in T -Graph.

L

⊆
��

(1)

K
⊇

oo
⊆

//

��
(2)

R

��

G Doo // H

In the last result we used the fact that an sts rule can be considered as a
T -typed dpo rule, considering the inclusions as arrows in Graph. Conversely,

a T -typed dpo rule q = (L
l←֓ K

r→֒ R) induces an sts rule I(q) obtained
by considering the images of |L|, |K| and |R| in the type graph, i.e., I(q) =
〈tL(|L|), tK(|K|), tR(|R|)〉.

2.5 Other kinds of stss

We introduce here three variations of the definition of sts direct derivation,
obtained by slightly changing the properties verified by the context graph D.

The first definition is reminiscent of the sesqui-pushout approach [22], and
it leads to an spo-like approach for sts, where rules can be applied regardless
of the dangling condition, removing, as a side-effect, those edges which would
remain dangling.

Definition 8 (sts⊑ direct derivation). Given a graph G in Sub(T) and an
sts rule q = 〈L, K, R〉, there is an sts⊑ direct derivation from G to H using q,
written G⇒sts⊑

q H, if H ∈ Sub(T) and

(ii)′ D is the largest subgraph of G such that L ∩D = K;
(iii) D ∪R = H;
(iv) D ∩R = K.

Frm Ptr Nts t Grph Trnsfrmtn Sstms 47

Dropping the first condition of Definition 7 and imposing the “largest sub-
graph” requirement in (ii) implies that some items of G \L may not occur in D,
as when deleting a node forces the deletion of incident edges in the spo approach.

The next variants drop the requirement D ∩ R = K. This allows for some
overlap between the items preserved in the context D and those newly introduced
by R: The injectivity of the typing forces these items to be coalesced, similarly
to what happens in cpr nets. This is done for stss both in dpo and spo style.

Definition 9 (stsm and sts⊑m direct derivations). Given a graph G in
Sub(T) and an sts rule q = 〈L, K, R〉, there is an stsm direct derivation
from G to H using q, written G ⇒stsm

q H, if H ∈ Sub(T) and there exists
D ∈ Sub(T) such that

(i) L ∪D = G; (iii) D ∪R = H.

(ii) L ∩D = K;

Analogously, there is an sts⊑m direct derivation from G to H using q, written

G⇒sts⊑m
q H, if H ∈ Sub(T) and

(ii)′ D is the largest subgraph of G such that L ∩D = K;
(iii) D ∪R = H.

Figure 5 shows the differences among the various kinds of sts direct deriva-
tions introduced in Definitions 7, 8 and 9. The type graph T contains two nodes,
◦ and •, and one edge connected to ◦; all the elements of Sub(T) (the subgraphs
of T) are depicted, with the obvious inclusions. The arrows show all the pos-
sible direct derivations using the sts rule q = 〈{◦}, ∅, {•}〉 and the approaches
introduced in Definitions 7, 8 and 9.

T

⊂

⊂

⊂

3, 4

2, 4 ⊂⊂ ⊂1, 2
, 3,

4

⊂

4

Fig. 5. Examples of the various kinds of sts direct derivations. Arrows represent direct
derivations among elements of Sub(T) using rule q = 〈{◦}, ∅, {•}〉 and the following
approaches: 1 = sts, 2 = sts⊑, 3 = stsm, 4 = sts⊑m.

48 Paolo Baldan, Andrea Corradini, Fabio Gadducci, Ugo Montanari

2.6 Graph grammars

In the previous sections we presented six different definitions of direct derivation,
each of which determines a different algebraic approach to graph transformation.
For each one of those approaches, a graph grammar contains a type graph, a
start graph, a set of rule names, and a mapping from rule names to corresponding
rules. Clearly, the precise definition of start graph and of rule depends on the
chosen approach.

Definition 10 (graph grammar). A knd graph grammar, where knd ∈ {dpo,
spo, sts, sts⊑, stsm, sts⊑m}, is a tuple G = 〈T, Gs, P, π〉, where T ∈ Graph is
the type graph, P is a set of rule names, π is a function which associates a
knd rule1 to each rule name in P , and Gs is the start graph, which has to be
consistent with knd. That is, Gs is a T -typed graph if knd ∈ {dpo, spo}, and
Gs ∈ Sub(T) in all other cases.

A derivation over a knd grammar G is a sequence of knd direct deriva-
tions using rules in P , starting from the start graph, namely ρ = {Gi−1 ⇒knd

pi−1

Gi}i∈{1,...,n}, with G0 = Gs.

3 Enriched Petri nets

In this section we introduce some basic extensions of Petri nets, namely, nets
with read, inhibitor and reset arcs. A study of the expressiveness of these kinds
of arcs, along with a comparison with other extensions proposed in the literature,
like priorities, exclusive-or transitions and switches, is carried out in [23, 24].

To give the formal definition of these generalised nets we need some notation
for sets and multisets. Given a set X we write 2X for the powerset of X and
X⊕ for the free commutative monoid over X , with monoid operation ⊕, whose
elements will be referred to as multisets over X . Given a multiset M ∈ X⊕, with
M =

⊕
x∈X Mx · x, for x ∈ X we will write M(x) to denote the coefficient Mx.

Moreover, we denote by [[M]] the underlying subset of X , defined as [[M]] = {x ∈
X |M(x) > 0}. With little abuse of notation, we will write x ∈M iff x ∈ [[M]].

Given M, M ′ ∈ X⊕ we write M ≤M ′ when M(x) ≤M ′(x) for all x ∈ X . In
this case the multiset difference M ′⊖M is the multiset M ′′ such that M⊕M ′′ =
M ′. For Y ⊆ X and M ∈ X⊕, we denote by M [Y] the restriction of M to Y ,
i.e., M [Y](x) = M(x) if x ∈ Y , and M [Y](x) = 0 otherwise. Finally, the symbol
∅ denotes the empty multiset.

3.1 Place/Transition nets

We are now ready to define the enriched P/T nets considered in the paper.
Besides ordinary flow arcs and read arcs, the nets are endowed with so-called
“distinguished arcs” (represented by the �(.) function below), which will be
interpreted either as inhibitor or reset arcs in the token game.
1 To be precise, for knd ∈ {sts⊑, stsm, sts⊑m}, a knd rule is an sts rule.

Frm Ptr Nts t Grph Trnsfrmtn Sstms 49

Definition 11 (enriched P/T nets). An enriched (marked) P/T Petri net is
a tuple N = 〈S, T r, •(.), (.)•, (.), �(.), m〉, where

– S is a set of places;
– Tr is a set of transitions;
– •(.), (.)• : Tr→ S⊕ are functions mapping each transition to its pre-set and

post-set, respectively;
– (.) : Tr→ 2S is a function mapping each transition to its context;
– �(.) : Tr → 2S is a function mapping each transition to its distinguished

set of places, such that for all t ∈ Tr, (•t⊕ t⊕ t•)[�t] = ∅ (i.e., no token in�t can be either read, consumed or produced by t);
– m ∈ S⊕ is a multiset called the initial marking.

We assume, as usual, that S∩Tr = ∅. We shall denote with •(.), (.)•, (.) and �(.)
also the functions from S to 2Tr defined as, for s ∈ S, •s = {t ∈ Tr | s ∈ t•},
s• = {t ∈ Tr | s ∈ •t}, s = {t ∈ Tr | s ∈ t}, and �s = {t ∈ Tr | s ∈ �t}.

A state of a P/T net is defined as a marking, that is, a set of tokens distributed
over the places. Formally, a marking M is a multiset of places, i.e., M ∈ S⊕. The
token game determines when a transition t is enabled at a given marking, and, if
enabled, what marking is reached after firing the transition. For a transition t to
be enabled at a marking M , it is necessary for M to contain the pre-set of t and
an additional set of tokens which covers the context of t. Additional conditions
for enabledness, as well as the result of firing, depend on the interpretation given
to the distinguished arcs: As anticipated, we interpret them either as inhibitor
arcs or as reset arcs, obtaining the classes of nets below.

Definition 12 (inhibitor and reset P/T nets). An inhibitor P/T net is an
enriched P/T net 〈S, T r, •(.), (.)•, (.), �(.), m〉 where the distinguished arcs are
interpreted as inhibitor arcs. Given a marking M ∈ S⊕ and a transition t ∈ Tr,
t is i-enabled if •t ⊕ t ≤ M and M [�t] = ∅ (i.e., M contains no token in any
place of �t). The inhibitor transition relation between markings is defined as

M [t〉i M ′ if t is i-enabled at M and M ′ = (M ⊖ •t)⊕ t•.

A reset P/T net is an enriched P/T net where the distinguished arcs are inter-
preted as reset arcs. Given M ∈ S⊕ and t ∈ Tr, t is r-enabled if •t ⊕ t ≤ M .
The reset transition relation is defined as

M [t〉r M ′ if t is r-enabled at M and M ′ = ((M ⊖ •t)⊕ t•)⊖M [�t]

(i.e., the firing of t deletes all the tokens from places in �t: Such places are
certainly empty after the firing, because they cannot belong to the post-set of t).

For a transition t, if the distinguished set �t is empty the two alternative
enabling conditions coincide, as well as the induced transition relations on mark-
ings. In the following, we call contextual Petri nets the class of nets such that
all its transitions have the distinguished set empty.

Firing sequences and reachable markings are defined in the usual way.

50 Paolo Baldan, Andrea Corradini, Fabio Gadducci, Ugo Montanari

Example 1. An example of an enriched P/T net N can be found in the left part
of Fig. 6. Graphically, transitions are connected to context places by undirected
arcs and to distinguished places by dotted undirected arcs.

Starting from the initial marking s0⊕ s1⊕ s2⊕ s4, a possible firing sequence
is t1; t2 leading to the marking s2 ⊕ s3 ⊕ 2s4 ⊕ s.

If we first fire t2, the net reaches the marking s0 ⊕ s2 ⊕ s4 ⊕ s. Now, if N
is seen as an inhibitor P/T net, the presence of a token in s inhibits t1 which
cannot fire. If, instead, N is seen as a reset P/T net, transition t1 can fire and,
as a consequence, place s is emptied, producing the marking s2 ⊕ s3 ⊕ 2s4.

3.2 Elementary nets

Let us call elementary a net where the states are defined as (sub)sets of places,
rather than multisets of places as for P/T nets. Thus elementary nets comprise
several net models proposed in the literature, including C/E nets [3], Elementary
Net Systems [4], Consume-Produce-Read nets [5] and others.

An enriched elementary (marked) net 〈S, T r, •(.), (.)•, (.), �(.), m〉 is defined
as an enriched P/T net in Definition 11, requiring •(.), (.)• : Tr → 2S and
m ∈ 2S (i.e., •t and t• for all t ∈ Tr, as well as the initial marking m, are sets
rather than multisets). Furthermore, besides the disjointness condition on the
distinguished places, that is formulated as (•t ∪ t ∪ t•) ∩ �t = ∅, it is required
that no token in t is consumed or produced, i.e., (•t ∪ t•) ∩ t = ∅ for all t ∈ Tr.

Both inhibitor and reset elementary nets are easily defined, interpreting the
distinguished arcs as expected. However, since the states are subsets of places,
the enabling condition and the transition relation must ensure that the marking
reached by firing a transition is a set. This is obtained in a different way by the
two models of nets that we introduce: enss require a stronger enabling condition
w.r.t. P/T nets, while cpr nets, intuitively, change the transition relation by
allowing to merge tokens of the marking with those produced by the transition.

Definition 13 (inhibitor and reset Elementary Net Systems). An in-
hibitor ens is an enriched elementary net 〈S, T r, •(.), (.)•, (.), �(.), m〉 where the
distinguished arcs are interpreted as inhibitor arcs. Given a marking M ⊆ S
and a transition t ∈ Tr, t is ie-enabled if •t ∪ t ⊆ M , M ∩ �t = ∅, and
(M \ •t) ∩ t• = ∅. The ie-transition relation between markings is defined as

M [t〉ie M ′ if t is ie-enabled at M and M ′ = (M \ •t) ∪ t•.

A reset ens is an enriched elementary net where the distinguished arcs are in-
terpreted as reset arcs. Given M ⊆ S and t ∈ Tr, t is re-enabled if •t ∪ t ⊆M
and (M \ •t) ∩ t• = ∅. The re-transition relation is defined as

M [t〉re M ′ if t is re-enabled at M and M ′ = ((M \ •t) ∪ t•) \ �t.

The condition (M \ •t) ∩ t• = ∅ ensures that there is “no contact”, i.e., t
can produce a token only if it is not in M , or if it is deleted by t itself. As a
consequence the ∪ operator in the definition of M ′ is actually a disjoint union.

Frm Ptr Nts t Grph Trnsfrmtn Sstms 51

This is the main difference with respect to cpr nets, where the “no contact”
condition is omitted, and the arguments of ∪ in the definition of the follower
marking might not be disjoint.

Definition 14 (inhibitor and reset cpr nets). An inhibitor cpr net is an
enriched elementary net where for a marking M ⊆ S and a transition t ∈ Tr, t
is ic-enabled if •t∪ t ⊆M and M ∩ �t = ∅; the ic-transition relation is defined
as

M [t〉ic M ′ if t is ic-enabled at M and M ′ = (M \ •t) ∪ t•.

A reset cpr net is an enriched elementary net where for M ⊆ S and t ∈ Tr, t
is rc-enabled if •t ∪ t ⊆M ; the rc-transition relation is defined as

M [t〉rc M ′ if t is rc-enabled at M and M ′ = ((M \ •t) ∪ t•) \ �t.

Example 2. Observe that the net N in Fig. 6 can be seen as an ens. In this case,
starting from the initial marking {s0, s1, s2, s4} the transition t1 cannot fire due
to a contact situation in s4, hence the only possible firing sequence is t2.

If we interpret N as a cpr net, then t1 can fire and the reached marking is
{s1, s2, s3, s4}, where, intuitively, the token generated in s4 is “merged” with the
pre-existing one. In this state, t2 can fire producing the marking {s2, s3, s4, s}.
If we start by firing t2, as in the P/T case, t1 is blocked or can fire (emptying
place s), depending on whether we interpret N as an inhibitor or a reset cpr
net.

4 From enriched nets to graph transformation systems

This section shows how enriched Petri nets can be encoded as graph grammars.
Interestingly, the encoding is essentially the same for all kinds of nets: The
different token game flavours are obtained by changing the approach to rewriting.

4.1 Encoding Petri nets as graph grammars

It is part of the folklore (see e.g. the discussion in [2] and the references therein)
that (ordinary) Petri nets can be seen as a special kind of graph grammars. The
simplest idea is that the marking of a net is represented as a graph with no
edges typed over the places: A token in place s is a node typed over s. Then
transitions are seen as rules which consume and produce nodes, as prescribed
by their pre- and post-set. In this way, Petri nets exactly correspond to graph
grammars acting over graphs containing only nodes, where rules preserve no
item.

To make the encoding parametric with respect to the chosen class of Petri
nets, here we consider a slightly different encoding, where edges, rather than
nodes, play the role of tokens. Roughly, the idea of the encoding is the following:

– a place is represented as a node;

52 Paolo Baldan, Andrea Corradini, Fabio Gadducci, Ugo Montanari

– tokens in a place are represented as unary edges connected to the corre-
sponding node;

– a transition becomes a rule, which deletes the tokens in its pre-set, produces
the post-set and preserves the tokens in its context; for any place in the
distinguished set of t, the corresponding node is deleted and created again.

Note the chosen encoding for the distinguished set of t: In the dpo approach
this will prevent the application of the rule if there is at least one token (edge) in
the place, thus causing an inhibitor effect. In the spo approach, the application
of the rule will delete as a side-effect any edge possibly attached to the node,
thus giving raise to a reset effect.

As a first step, we show how the set of places underlying an enriched net
(either P/T or elementary) gives raise to a type graph. In all cases there will be
a node s in the type graph for each place s in the net, and the number of edges
incident on the node typed over s will represent the number of tokens in that
place. Also the way in which markings are encoded as graphs does not depend
on the specific kind of nets we are considering.

Definition 15 (type graph, markings). Let S be a set of places. Then, the
associated type graph TS is (S, S, c), where c(s) = s for all s ∈ S.

Given a subset of places S′ ⊆ S and a marking M ∈ S′⊕, we define the
graph GS(S′, M) as (S′, E(M), c), typed in the obvious way over TS, such that
E(M) = {〈s, i〉 | s ∈ [[M]]∧0 < i ≤M(s)} and c(〈s, i〉) = s for all 〈s, i〉 ∈ E(M).
We write simply GS(M) for GS(S, M).

So, each place contributes a node and an edge in the type graph TS , and a
marking can be regarded as a multiset of edges of the type graph.

We next introduce the encoding of net transitions into grammar rules. As
mentioned above, the encoding is essentially independent of the kind of nets
we are considering: The different firing behaviour will be obtained by changing
the considered rewriting approach. Indeed, we next define the encoding of a
transition as a dpo rule, but changing the rewriting approach (to spo or sts)
will just require a syntactical change in the presentation of the rule.

Definition 16 (net transitions as dpo rules). Let t be a transition of an en-
riched P/T net with place set S. Then t is encoded as a TS-typed dpo transition

GS(t) = GS(X ∪ �t, t⊕ •t)← GS(X, t)→ GS(X ∪ �t, t⊕ t•)

where X = [[•t⊕ t⊕ t•]] and the left and right morphisms are inclusions.

The dpo rule GS(t) corresponding to a transition t deletes the edges in its
pre-set, preserves the edges in its context and produces the edges in its post-set.
The nodes attached to edges in the pre-set, context and post-set (i.e., the set
X) are preserved. Finally, the nodes corresponding to the places s ∈ �t in the
distinguished set of t are deleted and produced again.

It is now immediate to provide the encoding for the different kinds of Petri
nets into graph grammars of the appropriate approach.

Frm Ptr Nts t Grph Trnsfrmtn Sstms 53

Inhibitor Reset

P/T nets
dpo spo

GS(t) S(GS(t))

ENS
sts sts⊑

I(GS(t)) I(GS(t))

CPR nets
stsm sts⊑m
I(GS(t)) I(GS(t))

Table 2. Encoding Petri nets as graph grammars.

Definition 17. An enriched Petri net N = 〈S, T r, F, C, D, m〉 of one of the six
types of nets presented in Definitions 12, 13 and 14 is encoded as a knd graph
grammar G(N) = 〈T, Gs, P, π〉 where

– T = TS

– P = Tr

– Gs = GS(m)

Moreover knd and the knd rule π(t) associated to t ∈ P are defined, according
to the type of the net, as shown in Table 2.

Obviously, the encoding also works for contextual nets (see the first column
of Table 1 in the Introduction).

It can be shown that the encoding preserves the firing relation and reacha-
bility, in the sense specified by next theorem.

Theorem 1. Let N be an enriched Petri net of one of the types introduced
in Section 3, let knd be the type of grammar corresponding to the type of
N according to Table 2, and let M be a marking of N . If M [t〉M ′ in N
then GS(M) ⇒knd

t GS(M ′) in the knd graph grammar G(N); vice versa, if
GS(M) ⇒knd

t G′ in the knd graph grammar G(N) then M [t〉M ′′ in N with
GS(M ′′) = G′.

4.2 Examples

In order to provide some more intuition, we next briefly discuss the encoding for
the various classes of Petri nets.

P/T Petri nets. As shown in Table 2, the behaviour of P/T Petri nets is
faithfully captured by standard dpo or spo graph grammars.

54 Paolo Baldan, Andrea Corradini, Fabio Gadducci, Ugo Montanari

Inhibitor nets. When N is a P/T inhibitor net, G(N) is a dpo graph grammar,
where the effects of the dangling condition are used to encode inhibitor arcs. As
an example, the net in Fig. 6, seen as an inhibitor P/T net, is encoded by the
grammar in the same figure, interpreted as a dpo grammar. Observe that since
place s ∈ �t1, i.e., s inhibits transition t1, the rule associated with t1 deletes and
produces again the node corresponding to s. In this way the presence of tokens
in place s, represented by edges connected to such node, will inhibit the rule
because of the dangling condition.

76540123•s0

1

��

76540123•s1

1
��

t2

1
��76540123•

s2

t1

1
��

22
22

2

1
����
��
�

76540123 s

76540123s3 76540123• s4

s0 s2 ss4s3

s2s0 s1 s3 s4 s

ss1 s1 s ss1

ss4s0 s3s2

s1 s3 s4 ss0 s2

s0 s4s3s2

t2

t1

T = Gs =

Fig. 6. An enriched Petri net N and the corresponding dpo grammar.

Reset nets. In the case of a P/T reset net N , the encoding G(N) is an spo gram-
mar and the side-effects related to node deletion turn out to capture precisely
the behaviour of reset arcs. As an example the net in Fig. 6, seen as a reset P/T
net, is encoded by the grammar in the same figure, seen as an spo grammar (by
transforming the rules using the function S(.)). The fact that rule t1 deletes and
produces again the node s determines, as side effect, the deletion of all edges
connected to such node, representing tokens in place s.

Contextual nets. For contextual P/T nets, i.e., P/T nets where �t = ∅ for all
t, the rules of the corresponding grammar never delete nodes. Hence, the spo
and the dpo approaches are interchangeable. In particular, ordinary P/T net
transitions t, such that t = �t = ∅, are represented by rules with an interface
containing only nodes (see the rule corresponding to t2 in Fig. 6).

Elementary nets. As shown in Table 2, enss are encoded as stss. As an
example, let us consider again the net N in Fig. 6, which can be interpreted as
an ens interpreting, correspondingly, the grammar on the right as an sts.

Observe that, even though there is a match of the rule t1 in the start graph
Gs, i.e., the left-hand side of the rule is a subgraph of Gs, the rule cannot be
applied, because there is a contact situation. More precisely, referring to Fig. 7,
condition (iv) of Definition 7 (namely, D ∩ R = K) is not satisfied, as the

Frm Ptr Nts t Grph Trnsfrmtn Sstms 55

intersection between the right-hand side of t1 and the context graph D contains
the edge connected to s4 which is not in K.

If we interpret N as a cpr net and correspondingly the grammar as an stsm,
then the diagram in Fig. 7 is a legal derivation: in fact conditions (i − iii) of
Definition 8 are satisfied, while condition (iv) is not required anymore.

ss4s0 s3s2

s4 ss2s1 s3s0

s0 s4s3s2

s0 ss4s1 s2 s3

s0 s2 ss4s3

s0 s1 s3 s4s2

t1

Fig. 7. A stsm derivation which is not a legal sts one.

5 Concluding remarks and further works

In this paper we discussed the encoding of different Petri net models into Graph
Transformation Systems. Our aim was of a methodological nature, and its ac-
complishments are summarized by the taxonomy proposed in Tables 1 and 2.
Intuitively, the results can be synthesized by the slogan “encode the net once”,
that is, a Petri net is always encoded essentially in the same way, while different
net models correspond to alternative approaches to graph transformation.

A relevant issue, which has been neglected in the present paper, concerns
the study of concurrency in Petri nets and in their graph grammar counterparts.
Admittedly, there is a shortcoming as far as inhibitor nets are considered (already
noted in [16]): If two transitions are inhibited by the same place s, their encodings
as dpo rules cannot be executed in parallel, since both rules delete and produce
again the node corresponding to s. For instance, in the inhibitor net in Fig. 8,

76540123•s1

��

76540123• s2

��
t1

��

76540123s

t2

��76540123s′1 76540123 s′2

Fig. 8. An inhibitor net NI : Transitions can fire concurrently. In G(NI) they cannot.

56 Paolo Baldan, Andrea Corradini, Fabio Gadducci, Ugo Montanari

the two transitions t1 and t2 can fire concurrently. However, in the corresponding
dpo grammar the rules associated to t1 and t2 delete and generate again the
same node s and thus they are forced to be executed sequentially. In general
terms, we would like to see how to perform a technology transfer between the
less-explored models of nets and GTSs, in order to address the issue of concurrent
computations in these yet not fully developed formalisms.

References

1. Kreowski, H.J.: A comparison between Petri nets and graph grammars. In Nolte-
meier, H., ed.: Proceedings of the Workshop on Graphtheoretic Concepts in Com-
puter Science. Volume 100 of LNCS, Springer Verlag (1981) 306–317

2. Corradini, A.: Concurrent graph and term graph rewriting. In Montanari, U.,
Sassone, V., eds.: Proceedings of CONCUR’96. Volume 1119 of LNCS, Springer
Verlag (1996) 438–464

3. Bernardinello, L., de Cindio, F.: A survey of basic net models and modular net
classes. In Rozenberg, G., ed.: Advances in Petri Nets: The DEMON Project.
Volume 609 of LNCS, Springer Verlag (1992) 304–351

4. Rozenberg, G., Engelfriet, J.: Elementary Net Systems. In Reisig, W., Rozenberg,
G., eds.: Lectures on Petri Nets I: Basic Models. Volume 1491 of LNCS, Springer
Verlag (1996) 12–121

5. Bonchi, F., Brogi, A., Corfini, S., Gadducci, F.: On the use of behavioural equiva-
lences for web services’ development. Fundamenta Informaticae 89 (2008) 479–510

6. Christensen, S., Hansen, N.D.: Coloured Petri nets extended with place capac-
ities, test arcs and inhibitor arcs. In Ajmone-Marsan, M., ed.: Proceedings of
ICAPTN’93. Volume 691 of LNCS, Springer Verlag (1993) 186–205

7. Montanari, U., Rossi, F.: Contextual nets. Acta Informatica 32 (1995) 545–596
8. Janicki, R., Koutny, M.: Semantics of inhibitor nets. Information and Computation

123 (1995) 1–16
9. Vogler, W.: Efficiency of asynchronous systems and read arcs in Petri nets. In:

Proceedings of ICALP’97. Volume 1256 of LNCS, Springer Verlag (1997) 538–548
10. Agerwala, T., Flynn, M.: Comments on capabilities, limitations and “correctness”

of Petri nets. Computer Architecture News 4 (1973) 81–86
11. Araki, T., Kasami, T.: Some decision problems related to the reachability problem

for Petri nets. Theoretical Computer Science 3 (1977) 85–104
12. Habel, A., Plump, D.: Computational completeness of programming languages

based on graph transformation. In Honsell, F., Miculan, M., eds.: Proceedings of
FoSSaCS’01. Volume 2030 of LNCS, Springer Verlag (2001) 230–245

13. Löwe, M.: Algebraic approach to single-pushout graph transformation. Theoretical
Computer Science 109 (1993) 181–224

14. Ehrig, H., Pfender, M., Schneider, H.: Graph-grammars: an algebraic approach.
In Book, R., ed.: Switching and Automata Theory, IEEE Computer Society Press
(1973) 167–180

15. Corradini, A., Hermann, F., Sobociński, P.: Subobject transformation systems.
Applied Categorical Structures 16 (2008) 389–419

16. Baldan, P., Corradini, A., Montanari, U.: Relating SPO and DPO graph rewriting
with Petri nets having read, inhibitor and reset arcs. In Ehrig, H., Padberg, J.,
Rozenberg, G., eds.: Proceedings of PNGT’04. Volume 127(2) of ENTCS, Elsevier
(2005) 5–28

Frm Ptr Nts t Grph Trnsfrmtn Sstms 57

17. Ehrig, H., Heckel, R., Korff, M., Löwe, M., Ribeiro, L., Wagner, A., Corradini,
A.: Algebraic Approaches to Graph Transformation II: Single Pushout Approach
and comparison with Double Pushout Approach. In Rozenberg, G., ed.: Hand-
book of Graph Grammars and Computing by Graph Transformation. Volume 1:
Foundations. World Scientific (1997)

18. Corradini, A., Montanari, U., Rossi, F., Ehrig, H., Heckel, R., Löwe, M.: Algebraic
Approaches to Graph Transformation I: Basic Concepts and Double Pushout Ap-
proach. In Rozenberg, G., ed.: Handbook of Graph Grammars and Computing by
Graph Transformation. Volume 1: Foundations. World Scientific (1997)

19. Corradini, A., Montanari, U., Rossi, F.: Graph processes. Fundamenta Informati-
cae 26 (1996) 241–265

20. Löwe, M., Korff, M., Wagner, A.: An Algebraic Framework for the Transformation
of Attributed Graphs. In Sleep, M., Plasmeijer, M., van Eekelen, M., eds.: Term
Graph Rewriting: Theory and Practice. Wiley, London (1993) 185–199

21. Lack, S., Sobociński, P.: Adhesive and quasiadhesive categories. Theoretical In-
formatics and Applications 39 (2005) 511–546

22. Corradini, A., Heindel, T., Hermann, F., König, B.: Sesqui-pushout rewriting. In
Corradini, A., Ehrig, H., Montanari, U., Ribeiro, L., Rozenberg, G., eds.: Proceed-
ings of ICGT 2006. Volume 4187 of LNCS, Springer Verlag (2006) 30–45

23. Peterson, J.: Petri Net Theory and the Modelling of Systems. Prentice-Hall (1981)
24. Lakos, C., Christensen, S.: A general systematic approach to arc extensions for

Coloured Petri Nets. In Valette, R., ed.: Proceedings of ICAPTN’94. Volume 815
of LNCS, Springer Verlag (1994) 338–357

. .

Prof. Dr. Paolo Baldan

Dipartimento di Matematica Pura e Applicata
Università di Padova
I-35121 Padova (Italy)
baldan@math.unipd.it
http://www.math.unipd.it/˜baldan

Paolo Baldan met Hans-Jörg Kreowski for the first time when he was a fresh
doctoral student joining the GetGraTS project (General Theory of Graph
Transformation Systems) in 1997. Since then, Hans-Jörg’s work on concurrency
in graph transformation and on the relation between Petri nets and graph
rewriting has been a reference for Paolo’s research on this subject.

. .

58 Paolo Baldan, Andrea Corradini, Fabio Gadducci, Ugo Montanari

. .

Prof. Dr. Andrea Corradini

Dipartimento di Informatica
Università di Pisa
I-56127 Pisa (Italy)
andrea@di.unipi.it
http://www.di.unipi.it/˜andrea

Andrea Corradini met Hans-Jörg Kreowski for the first time in Bremen, at
the 4th International Workshop on Graph-Grammars and Their Application
to Computer Science (1990). Along the years, they worked as partners in the
European projects CompuGraph I and II, GetGraTS, and AppliGraph,
but also in the ifip Working Group 1.3. So they co-chaired the first Interna-
tional Conference on Graph Transformation in Barcelona (2002). Andrea has
worked on several research topics on which Hans-Jörg had worked before him,
notably on notions of equivalence of graph derivations, and encodings of Petri
Nets as graph transformation systems.

. .

Prof. Dr. Fabio Gadducci

Dipartimento di Informatica
Università di Pisa
I-56127 Pisa (Italy)
gadducci@di.unipi.it
http://www.di.unipi.it/˜gadducci

Fabio Gadducci met Hans-Jörg Kreowski for the first time in Volterra, at
the 1995 Joint CompuGraph/SemaGraph Workshop. The two then met at
many further occasions, while Fabio held a grant of the GetGraTS project,
dealing with issues related to concurrency for graph transformation. Fabio
often benefitted from Hans-Jörg’s earlier work, and also from his advice.

. .

Prof. Dr. Ugo Montanari

Dipartimento di Informatica
Università di Pisa
I-56127 Pisa (Italy)
ugo@di.unipi.it
http://www.di.unipi.it/˜ugo

Ugo Montanari knows Hans-Jörg Kreowski since his first encounter with the
double-pushout graph transformation community, on the 2nd International
Workshop on Graph-Grammars and Their Application to Computer Science
(1982). Hans-Jörg’s work on concurrency has been the basis of lots of contri-
butions by his colleagues in Pisa and himself.

. .

ICGT’08

Organizing a conference isn’t no nonsense.

Organizováńı konference neńı žádný nesmysl.

Eine Konferenz zu organisieren
ist nicht kein Unsinn.

At organisere en konference er ikke ingen nonsens.

Organizer une conference n’est pas non dénué de sens.

Organizowanie konferencji nie jest żadny nonsensem.

Att organisera en konferens är inget nonsens.

Een conferentie organiseren is niet geen onzin.

Organizar un congreso no es ningún sin sentido.

A organizecar de un congresso
nao é nada sem sentido.

Organitzar una conferència no és cap sense trellat.

L’ organizzazion
e di una conferenza non é senza nessun senso.

Self-orga
nizing multi-agen

t poem.

Performed on Wednesday, September 11, 2008 at Qume Abbey, England.

Initiating and English agent: Hans-Jörg Kreowski, Bremen.

Czech agent: Eva Jeĺınková, Praha.

German agent: Tobias Heindel, Duisburg.

Danish agent: Jörg Kreiker,
München.

French agent: Michel Bauderon, Wuhan and Bordeaux.

Polish agent: Leszek Kotulski, Kraków.

Swedish agent: Karl Azab, Oldenburg.

Dutch agent: Arend Rensink, Twente.

Spanish agent: Fernando Orejas, Barcelon
a.

Brasilian
agent: Leila Ribeiro, Rio Grande do Sul and York.

Katalan
agent: Artur Boronat, Leicester

.

Italian
agent: Ugo Montanari, Pisa.

Recorded and compiled by Berthold Hoffmann, Bremen.

Lifting Parallel Graph Transformation Concepts
to Model Transformation based on the

Eclipse Modeling Framework

Enrico Biermann, Claudia Ermel, and Gabriele Taentzer

Abstract. Model transformation is one of the key concepts in model-
driven software development. An increasingly popular technology to de-
fine modeling languages is provided by the Eclipse Modeling Framework
(EMF). Several EMF model transformation approaches have been devel-
oped, focusing on different transformation aspects. This paper proposes
parallel graph transformation introduced by Ehrig and Kreowski to be a
suitable framework for modeling EMF model transformations with multi-
object structures. Multi-object structures at transformation rule level
provide a flexible way to describe the transformation of structures with
a flexible number of recurring structures, dependent on concrete model
instances. Parallel graph transformation means massively parallelizing
the application of model transformation rules synchronized at a kernel
rule. We apply our extended EMF model transformation technique to
model the simulation of statecharts with AND-states.

1 Introduction

Model-driven software development is considered as a promising paradigm in
software engineering. Models are ideal means for abstraction and enable devel-
opers to master the increasing complexity of software systems. Since models are
central artifacts in model-driven software development, the quality of generated
software is directly dependent on the quality of models. Modifying models, i.e.
for behavior simulation or for performing model refactoring [1]) is an important
part of model development.

The Eclipse Modelling Framework (EMF) [2] has evolved to one of the stan-
dard technologies to define modeling languages. EMF provides a modelling and
code generation framework for Eclipse applications based on structured data
models. The modelling approach is similar to that of MOF, actually EMF sup-
ports Essential MOF (EMOF) as part of the OMG MOF 2.0 specification [3].

EMF models can be manipulated by several approaches to rule-based model
transformations. A transformation framework for EMF models which follows
the concepts of algebraic graph transformation [4] as far as possible, is presented
in [5, 6]. Although graph transformation is an expressive, graphical and formal
means to describe computations on graphs, it has limitations. For example, when
describing the operational semantics of behavioral models, one often has the
problem of modeling an arbitrary number of parallel actions at different places
in the same model. A simple example are transformations of object structures
of the same class occurring multiple times which all have the same properties

F. Drewes, A. Habel, B. Hoffmann, D. Plump (Eds.): Manipulation of Graphs, Algebras and Pictures.
Essays Dedicated to Hans-Jörg Kreowski on the Occasion of His 60th Birthday, pp. 59–76, 2009.

60 Enrico Biermann, Claudia Ermel, Gabriele Taentzer

(e.g. being contained in the same container, or referencing the same objects).
We call such object structures multi-object structures in this paper. One way to
transform multi-object structures is the sequential application of rules such that
we have to explicitly encode an iteration over all the actions to be performed.
Usually, this is not the most natural nor efficient way to express the semantics.
Thus, it is necessary to have a more powerful means to express parallel actions.

As main contribution of this paper, we propose the use of amalgamated graph
transformation concepts, based on parallel graph transformation, originally pro-
posed by Ehrig and Kreowski in [7] and extended to synchronized, overlapping
rules in [8], to define EMF model transformations with multi-object structures.
The essence of amalgamated graph transformation is that (possibly infinite) sets
of rules which have a certain regularity, so-called rule schemes, can be described
by a finite set of multi-rules modeling the elementary actions. For the description
of such rule schemes the concept of amalgamating rules at kernel rules [9] is used
in this paper to describe the application of multi-rules in an unknown context.
The synchronization of rules along kernel rules forces a transformation step to
be maximally parallel in the following sense: an amalgamated rule, induced by
a scheme, is constructed by a number of multi-rules being synchronized at the
kernel rule. The number of multi-rules is determined by the number of different
matches found such that they overlap in the match of the kernel rule. Hence,
transforming multi-object structures can be described in a general way though
the number of actually occurring objects in the instance model is variable.

In order to respect the special restrictions of EMF models (imposed by the
containment hierarchy), we lift the concept of amalgamated graph transforma-
tion to amalgamated EMF transformation by showing that the conditions from
our previous paper [5] are sufficient to guarantee the consistency of amalgamated
EMF model transformations.

We show the usefulness of amalgamated EMF model transformation by simu-
lating the behavior of statecharts with AND-states which may have an arbitrary
number of orthogonal components (called regions in UML state machines). For
example, when the system enters an AND-state, it actually goes to the initial
simple state in each region in parallel.

The paper is organized as follows. In Section 2, we introduce EMF models as
typed, attributed graphs and present our running example, an EMF model for
a simplified variant of statecharts with AND-states. Section 3 reviews the con-
cepts of parallel graph transformation and lifts them to EMF transformations
with multi-object structures. This section contains our main result on consis-
tency of amalgamated EMF model transformations. Using EMF transformations
with multi-object structures, we model a general simulator for statecharts with
AND-states. Section 4 presents related research, and Section 5 ends with the
conclusions and future work.

Lifting Parallel Graph Transformation Concepts. . . 61

2 EMF Models as Typed, Attributed Graphs with
Containment

The Eclipse Modeling Framework (EMF) [2] has evolved to one of the standard
technologies to define modeling languages. EMF provides a modeling and code
generation framework for Eclipse applications based on structured data mod-
els. The modeling approach is similar to that of MOF, actually EMF supports
Essential MOF (EMOF) as part of the OMG MOF 2.0 specification. Contain-
ment relations, i.e. aggregations, define an ownership relation between objects.
Thereby, they induce a tree structure in model instantiations.

In [5], we consider EMF instance models1 as typed graphs with special con-
tainment edges. Typing is expressed by a type graph. It has some similarities to
a meta-model, but does not contain multiplicities and other constraints. For sim-
plicity, we consider type graphs without inheritance in this paper. For a complete
definition of EMF model transformation based on type graphs with inheritance,
see [5].

Since the containment concept plays a special role in EMF models, we dis-
tinguish a special kind of edge types defining containments in the type graph.

Example 1 (EMF Model for statecharts with AND-States). Fig. 1 shows the EMF
model for statecharts with AND-states, where an arbitrary number of states may
be grouped in orthogonal regions of the same AND-state.

Fig. 1. EMF model for statecharts with AND-states

A State may contains Regions, each of them containing States again. We at-
tribute States by Boolean flags denoting whether they are initial or final states.
States are connected by Transitions which are triggered by Events. For simula-
tion, a Current object is needed which is linked to the currently active States. The
Current object receives an Event, the first element of a queue (Events linked by
next links). The type graph with containment corresponding to the EMF model

1 Note that the EMF community uses the terms “EMF model” for meta-model and
“EMF instance model” for a model conforming to a meta-model.

62 Enrico Biermann, Claudia Ermel, Gabriele Taentzer

in Fig. 1 looks like the EMF model but has no multiplicities. We have six con-
tainment edge types (three of them have type Statechart as source, type states
starts from type Region and type reg starts from type State). Types states and
reg could lead to cycles in EMF instance models (corresponding to graphs typed
over the type graph), because there could be theoretically a Region r which
contains a State which transitively contains Region r again. Hence, we call such
containment edge types cycle-capable.

In consistent EMF instance graphs, each object node has at most one con-
tainer and no containment cycles do occur. Graphs fulfilling these requirements
are called graphs with containment. Although EMF instance models do not need
to be rooted in general, this property is important for storing them, or more
general, to define the model’s extent.

Definition 2 (Graph with containment (C-graph)). A graph with con-
tainment, short C-graph, is a graph G = (GN , GE , sG, tG) with a distinguished
set of containment edges GC ⊆ GE. The containment edges induce the following
binary relation containsG (the transitive closure of GC):

– containsG = {(x, y) ∈ GN ×GN | ∃e ∈ GC : (sG(e) = x ∧ tG(e) = y) } ∪
{(x, y) ∈ GN ×GN | ∃z ∈ GN : (x containsG z ∧ z containsG y)}

All containment edges must fulfill the following properties (containment con-
straints):

– e1, e2 ∈ GC : tG(e1) = tG(e2) ⇒ e1 = e2 (at most one container).
– (x, x) /∈ containsG for all x ∈ GN (no containment cycles).

If G is typed over a type graph TG, there is a typing morphism type : G→ TG
which is consistent with containment, i.e. ∀e ∈ GC : typeGE

(e) ∈ TGC .

Please note that a type graph TG is no C-graph in general (see e.g. our type
graph for statecharts in Fig. 1, which has a containment cycle).

Definition 3 (Rooted graph). A C-graph G is called rooted, if there is a
node r ∈ GN , called root node, such that ∀x ∈ GN with x 6= r : r containsG x.

Example 4 (Consistent EMF instance graph). Fig. 2 shows a statechart with an
AND-state. We model an ATM (automated teller machine) where the user can
insert a bank card and, after the input of the correct pin, can draw a specified
amount of cash from her or his bank account. The display region of the AND-
state shows what is being displayed on screen, and, simultaneously, the card-slot
component models whether the card slot is holding a bank card or not. The enter
event triggers the transition before the AND-state to enter the AND-state. The
card-sensed event happens if the sensor has sensed a user’s bank card being put
into the card slot. This event triggers two transitions in parallel. The next events
(pin-input, pin-ok and amount-input) are local to the display region. The end
event again triggers two transitions if the current state is any but the welcome

Lifting Parallel Graph Transformation Concepts. . . 63

Fig. 2. EMF instance graph: a statechart modelling an ATM

state for the display region and holding for the card-slot region. Then, the final
states are reached and the AND-state can be left if the leave event happens.

Fig. 3 shows the abstract syntax of the EMF instance graph corresponding to
the ATM statechart in Fig. 2. This instance graph is typed over the type graph
in Fig. 1. The initial state where we want to start the simulation is the start
state before the AND-state ATM is entered. The Current object points to the
start state and is linked to an initial event queue consisting so far of the single
event enter (the event needed to enter the AND-state) followed by the special
event denoting the queue end. During the simulation, events may be added to
the event queue such that the queue holds the events that should be processed
during the simulation. For better readability, we write names which are not
empty in quotation marks and put the name of a boolean attribute type (Initial
or Final) if its value is true. Furthermore, we omitted the containment edges
in Fig. 3 from the Statechart object named ATM-SC to all Current and Event
objects, and from the Region objects to the corresponding Transition objects.

The EMF instance graph in Fig. 3 is a C-graph since each object is contained
in at most one container and there are no containment cycles. The C-graph is
rooted, as the root node is the Statechart object named ATM-SC which contains
all objects transitively.

3 EMF Model Transformations with Multi-Object
Structures

EMF models can be manipulated by several approaches to rule-based model
transformations. A transformation framework for EMF models which follows
the concepts of algebraic graph transformation [4] as far as possible, is presented
in [6]. But EMF model transformations do not always behave like algebraic graph
transformation. The main reason is the difficulty to always satisfy the contain-
ment constraints of EMF. Hence, in our previous paper [5], we identify a kind

64 Enrico Biermann, Claudia Ermel, Gabriele Taentzer

Fig. 3. Abstract Syntax of the ATM statechart in Fig. 2 with Current pointer

of model transformation rules which lead to consistent EMF model graphs (i.e.
fulfilling the containment constraints), if applied as normal graph transforma-
tion rules to consistent EMF model graphs. Thus, we identify a kind of EMF
model transformations which behave like algebraic graph transformations. The
advantage of this approach is that we provide a basis to apply the rich theory
of algebraic graph transformation [4, 11–13] to EMF model transformations.

In Section 3.1, we shortly review the basic notions from [5]. We then intro-
duce amalgamated EMF model transformation, i.e. EMF model transformation
with multi-object structures, based on parallel graph transformation concepts
in Section 3.2 and expand the capability of consistent EMF transformations by
showing that the application of an amalgamated EMF model transformation
rule to a consistent EMF model graph results in a consistent transformed EMF
model graph again.

Lifting Parallel Graph Transformation Concepts. . . 65

3.1 Consistent EMF Model Transformation Based on Graph
Transformation Concepts

In order to precisely define consistent graph rules, we have to define relations
between typed C-graphs, so-called C-graph morphisms. They define mappings
of nodes and edges respectively, such that they are compatible with typing,
source and target functions (like typed graph morphisms) and especially preserve
containment edge types.

Definition 5 (C-graph morphism). Given two C-graphs G, H, a pair of
functions (fN , fE) with fN : GN → HN and fE : GE → HE forms a valid
C-graph morphism f : G→ H, if it has the following properties:

– fN ◦ sG(e) = sH ◦ fE(e), fN ◦ tG(e) = tH ◦ fE(e), and
– ∀e ∈ GC ⇒ fE(e) ∈ HC (containment edges are preserved).

If G and H are typed over TG, f must be type compatible, i.e. typeG = typeH ◦f .
If fN and fE are inclusions, then G is called a subgraph of H, denoted by G ⊆ H.

Definition 6 (Graph rule). A graph rule typed over a type graph TG is
given by r = (L ⊇ K ⊆ R, type, NAC), where L,K and R are C-graphs,
type is a triple of typing morphisms type = (typeL : L → TG, typeK : K →
TG, typeR : R → TG), and NAC is a set of pairs NACi = (Ni, typeNi), i ∈ N
with L ⊆ Ni, and typeNi : Ni → TG a typing morphism, such that typeL ⊇
typeK ⊆ typeR.

As a drawing convention, we omit K. All objects with equal numbers in L
and R are also in K and are preserved when the rule is applied. A rule p can
contain one or more negative application conditions (NACs) denoting situations
which must not exist for the rule to be applicable. Formally this is expressed by
attributed graphs NACi and morphisms ni : NACi ← L. A rule is applicable
to a graph G at a match m : L → G if there is no injective C-graph morphism
n′

i : NACi → G such that m = n′
i ◦ ni for all i ∈ I. The application of rule r to

graph G leads to the derivation of a graph H. Formally, a derivation G
r=⇒ H

is a DPO construction in the category of typed attributed graphs and graph
morphisms.

Example 7 (Graph rule). Rule addEvent(e), shown in Fig. 4, allows to add a
new event of name e into the event queue. In this way, the events that should
be processed during a simulation run, can be defined in the beginning of the
simulation. Moreover, events also can be inserted while a simulation is running.

Now we define a special kind of graph transformation which formalizes a
form of EMF model transformation leading always to EMF models consistent
with typing and containment constraints. For that purpose, the form of allowed
transformation rules has to be restricted. Consistent transformation rules allow
the following kinds of actions which change containments:

1. Delete an object node with its containment relation.

66 Enrico Biermann, Claudia Ermel, Gabriele Taentzer

Fig. 4. Rule addEvent(e) to insert Event e into the Event Queue

2. Create a new object node and connect it immediately to its container.
3. Delete a containment edge together with its contained object node or change

the container of a preserved object node.
4. Create a containment edge with the contained object node or change the

container of an existing object node.
5. For an object node contained via a cycle-capable containment edge, change

its container only, if the old and the new container of the object node were
already transitively related by containment.

In the following definition, we formalize all actions that preserve consistent
containment relations which have been described above.

Definition 8 (Consistent graph rule). Let L′
C := LC − KC , R′

C := RC −
KC , L

′
N := LN − KN and R′

N := RN − KN . A graph rule p = (L ⊇ K ⊆
R, type, NAC) is consistent wrt. containment if for each rule all of the following
constraints are satisfied:

1. (node deletion) ∀n ∈ L′
N : ∃e ∈ L′

C with tL′
C

(e) = n,
2. (node creation) ∀n ∈ R′

N : ∃e ∈ R′
C with tR(e) = n,

3. (containment edge deletion) ∀e ∈ L′
C with tL(e) = n:

n ∈ L′
N ∨ (n ∈ KN ∧ ∃e′ ∈ R′

C with tR(e′) = n)
4. (containment edge creation) ∀e ∈ R′

C with tR(e) = n:
n ∈ R′

N ∨ (n ∈ KN ∧ ∃e′ ∈ L′
C with tL(e′) = n)

5. (creation of cycle-capable containment edges)
∀e ∈ R′

C with sR(e) = n∧tR(e) = m : ∃e′ ∈ L′
C with sL(e′) = o∧tL(e′) = m :

((o, n) ∈ containsL ∧ (m,n) /∈ containsL) ∨ (n, o) ∈ containsL

Note that for item 5 (creation of cycle-capable containment edges), it is
sufficient to inspect the containment in the rule’s left-hand side. There cannot
be a containment edge from the matched node m to n in G, because then n
would have two containers m and o, and hence G would not be a C-graph.

Example 9 (Consistent graph rules). Rule addEvent(e) from Example 7 is a con-
sistent graph rule since for each created object its containment edge is created
as well. Two further rules are depicted in Fig. 5 which process sequential tran-
sitions outside of AND-states. Rule sequentialTransition processes a transition
in the current state which is triggered by the current event. This rule is con-
sistent since the removed event node is deleted together with its containment

Lifting Parallel Graph Transformation Concepts. . . 67

edge. Rule skipEvent models the situation that no transition is triggered by the
current event. In this case, the event is removed from the event queue. Again,
the event is deleted together with its containment edge.

Fig. 5. Rules sequentialTransition and skipEvent

In our main theorems in [5], we show that the application of a consistent
graph rule to a consistent (rooted) EMF instance graph always results again in
a consistent (rooted) EMF instance graph.

Theorem 10 (Consistent graph transformation step). Given a consistent
graph rule p = (L ⊇ K ⊆ R, type,NAC) and a match L

m−→ G to a C-graph
G which is typed by typeG : G→ TG and satisfies NAC. Then, the result graph
(H, typeH) of direct transformation (G, typeG)

p,m
=⇒ (H, typeH) is a C-graph.

Proof. See [5].

Theorem 11 (Rooted graph transformation step). A consistent graph
transformation step (G, typeG)

p,m
=⇒ (H, typeH) leads to a rooted result graph

H if graph G is rooted.

Proof. See [5].

68 Enrico Biermann, Claudia Ermel, Gabriele Taentzer

3.2 Consistent EMF Model Transformations with Multi-Object
Structures

In this section, we lift the essential concepts of parallel graph transformation [8]
to EMF model transformation and also lift the consistency result for EMF model
transformations from Section 3.1 to transformations with multi-object structures
which we also call amalgamated EMF transformations.

Using parallel graph transformation, a system state modeled by a graph can
be changed by several actions executed in parallel. Since graph transformation is
rule-based without restrictive execution prescription, parallel graph transforma-
tion offers the possibility for massively parallel execution. The synchronization
of parallel rule applications is described by common subrules, called kernel rules.

The simplest type of parallel actions is that of independent actions. If they
operate on different objects they can clearly be executed in parallel. If they
overlap just in reading actions on common objects, the situation does not change
essentially. In graph transformation, this is reflected by a parallel rule which is a
disjoint union of rules. The overlapping part, i.e. the objects which occur in the
match of more than one rule, is handled implicitly by the match of the parallel
rule. As the application of a parallel rule can model the parallel execution of
independent actions only, it is equivalent to the application of the original rules
in either order [7].

If actions are not independent of each other, they can still be applied in
parallel if they can be synchronized by subactions. If two actions contain the
deletion or the creation of the same node, this operation can be encapsulated in
a separate action which is a common subaction of the original ones. A common
subaction is modelled by the application of a kernel rule of all additional actions
(modelled by multi-rules). The application of rules synchronized by kernel rules
is then performed by gluing multi-rule instances at their kernel rules which leads
to the corresponding amalgamated rule. The application of an amalgamated rule
is called amalgamated graph transformation.

Formally, the synchronization possibilities of actions (multi-rule applications)
are defined by an interaction scheme. For consistent amalgamated EMF transfor-
mations (also called EMF model transformations with multi-object structures),
we need consistent interaction schemes where all rules are consistent.

Definition 12 (Consistent Interaction Scheme).
An interaction scheme I = (rK ,M, ke) consists of a kernel rule rK , a set M =
{ri|1 ≤ i ≤ n} of rules called multi-rules, and a set ke of kernel rule embeddings
kei : rK → ri into the multi-rules (i.e. rK is subrule of all multi-rules). I is
consistent, if all rules are consistent.

Example 13. An example of the construction of an amalgamated EMF transfor-
mation rule from an interaction scheme is given in Fig. 6.

The common sub-action (adding a loop to a object 1) is modeled by kernel
rule rK . We have only one multi-rule r1 modeling that at each possible match
(the blue) object 2 shall be deleted together with its containment edge, and a
new (red) object shall be inserted such that it is contained in object 1. Both the

Lifting Parallel Graph Transformation Concepts. . . 69

Fig. 6. Construction of an amalgamated graph rule

kernel-rule and the multi-rule are consistent, and we have a subrule embedding
from the kernel rule to the multi-rule given by the three C-graph morphisms
LK → L1,KK → K1 and RK → R1. Given graph G, we have obviously three
different matches from the multi-rule r1 to G which overlap in the match from
the kernel rule to G. Hence, we have three multi-rule instances, each of them with
a different match to G. Gluing the multi-rule instances at their common kernel
rule, we get the amalgamated rule with respect to G, shown at the bottom of
Fig. 6. The amalgamated rule contains the common action and, additionally, all
actions from the multi-rules that do not overlap. Dashed arrows in Fig. 6 indicate
rule embedding morphisms, embedding the kernel rule into the corresponding
instances of the multi-rules, and the multi-rules into the amalgamated rule.

In addition to specifying how multi-rules should be synchronized, we must
decide where and how often a set of multi-rules should be applied. The basic
way to synchronize complex parallel operations is to require that a rule should
be applied at all different matches it has in a given graph (expressing massively
parallel execution). In this paper, we restrict the covering of G (the image of all
different matches from instances of multi-rules in G) to all different matches of
multi-rules that overlap in the match of their common kernel rule and do not
overlap anywhere else. For more complex covering constructions see [8].

Definition 14. (Amalgamated EMF model transformation rule)
Given a consistent interaction scheme I = (rK , {ri|1 ≤ i ≤ n}, ke) with (Li −
LK)∩ (Lj −LK) = ∅ and a match mK for the kernel rule rK . An amalgamated

70 Enrico Biermann, Claudia Ermel, Gabriele Taentzer

EMF model transformation rule rA = (LA ← KA → RA) is an EMF model
transformation rule where as many copies riji

of multi-rules ri are joined as
there are different matches miji

: Li → G such that the copies riji
of ri in rA

all overlap at kernel rule rK and the matches miji
overlap at match mK only.

We speak of amalgamated EMF model transformation (or, alternatively, of
EMF model transformation with multi-object structures) if the definition of the
EMF model transformation is given by consistent interaction schemes. In this
case, the application of an amalgamated EMF model transformation rule de-
fines an EMF model transformation step. Note that a special interaction scheme
consists of only one rule, i.e. a kernel rule, such that the interaction scheme is
applied like a usual sequential rule.

In order to show that EMF instance graphs resulting from amalgamated EMF
model transformation are consistent (Theorem 15), we construct the amalga-
mated rule from a given consistent interaction scheme and show that this amal-
gamated rule is a consistent graph rule. Afterwards, we can apply Theorem 10.

Theorem 15. Given a consistent interaction scheme I = (rK , {ri|1 ≤ i ≤
n}, ke) and matches mk and mi to G for all 1 ≤ i ≤ n. Then, if G is a C-
graph, the resulting amalgamated EMF model transformation rule is consistent.

Proof.
Case n = 0: No multi-rule is applied. The amalgamated rule rA is equal to the
kernel rule rK , which is consistent by assumption (I is consistent).

Case n = 1: There is one application of a multi-rule. The amalgamated rule rK
is equal to this multi-rule, thus it is consistent by assumption.

Case n > 1: We have to show that the amalgamated rule rA satisfies all five
consistency constraints for EMF rules according to Def. 8:

1. (node deletion) To show: ∀n ∈ L′
AN

: ∃e ∈ L′
AC

with tL′
AC

(e) = n.
W.l.o.g. n ∈ L′

iN
: Then, there is e ∈ L′

iC
with tL′

iC
(e) = n, since ri is

consistent.
2. (node creation) To show: ∀n ∈ R′

AN
: ∃!e ∈ R′

AC
with tRA

(e) = n.
W.l.o.g. n ∈ R′

iN
: Then, there is a unique e ∈ R′

iC
with tR′

iC
(e) = n, since

ri is consistent. There cannot be another e ∈ R′
AC

with tRA
(e) = n, since

the assumption allows an overlap of multi-rules in the kernel rule only. In
this case, they would have to overlap in node n, too, which is not necessarily
required here.

3. (containment edge deletion) To show: ∀e ∈ L′
AC

with tLA
(e) = n:

n ∈ L′
AN

∨ (n ∈ KAN
∧ ∃e′ ∈ R′

AC
with tRA

(e′) = n).
W.l.o.g. e ∈ L′

iC
with tLi(e) = n. Then, n ∈ L′

iN
∨ (n ∈ KiN

∧ ∃e′ ∈ R′
iC

with tRi(e
′) = n), since ri is consistent.

4. (containment edge creation) To show: ∀e ∈ R′
AC

with tRA
(e) = n:

n ∈ R′
AN

∨ (n ∈ KAN
∧ ∃e′ ∈ L′

AC
with tLA

(e′) = n)

Lifting Parallel Graph Transformation Concepts. . . 71

W.l.o.g. ∀e ∈ R′
iC

with tRi
(e) = n. Then, n ∈ R′

iN
∨ (n ∈ KiN

∧ ∃e′ ∈ L′
iC

with tLi(e
′) = n), since ri is consistent.

5. (creation of cycle-capable containment edges)
To show: ∀e ∈ R′

ACCycle
with sRA

(e) = n ∧ tRA
(e) = m : ∃e′ ∈ L′

AC
with

sLA
(e′) = o ∧ tLA

(e′) = m :
((o, n) ∈ containsLA

∧ (m,n) /∈ containsLA
) ∨ (n, o) ∈ containsLA

.
W.l.o.g. e ∈ R′

iCCycle
with sRi(e) = n ∧ tRi(e) = m. Then, there is e′ ∈ L′

iC

with sLi(e
′) = o ∧ tLi(e

′) = m :
((o, n) ∈ containsLi

∧ (m,n) /∈ containsLi
) ∨ (n, o) ∈ containsLi

.
In addition, we have to show that there is no (m,n) ∈ containsLj

for some
j 6= i. Since ri and rj overlap in rK only, m,n ∈ L′

KN
⊆ L′

iN
and (m,n) /∈

containsLi
=⇒ (m,n) /∈ containsLj

.

Corollary 16. Given a consistent interaction scheme I = (rK , {ri|1 ≤ i ≤
n}, ke) and matches mk and mi to G for all 1 ≤ i ≤ n. Then, if G is a C-graph,
the result graph H after applying interaction scheme I to G is a C-graph as well.

Proof. Due to Theorem 15, the amalgamated rule constructed from I is con-
sistent. By Theorem 10, consistent rules preserve C-graphs. Hence, the result
graph H is again a C-graph.

Corollary 17. Given a consistent interaction scheme I like in Corollary 16.
Then, if G is a rooted C-graph, the result graph H after applying the interaction
scheme I to G is a rooted C-graph as well.

Proof. Due to Theorem 15, the amalgamated rule constructed from I is consis-
tent. By Theorems 10 and 11, we know that consistent rules preserve C-graphs
and the rootedness of C-graphs. Hence, the result graph H is a rooted C-graph.

Example 18 (Simulator for statecharts with AND-States).
In our statecharts variant, every region belonging to an AND-state has ex-

actly one initial state and at least one final state. The intended semantics for
our statecharts requires that if an AND-state is reached, the active states be-
come the initial ones of each region. A transition is processed if its pre-state
is active and its triggering event is the same as the event which is received by
the Current object (the first event in the queue). Afterwards, the state(s) fol-
lowing the transition become(s) active, the event of the processed transition is
removed from the queue, and the previously active state(s) (the pre-state(s) of
the transition) is/are not active anymore. More than one transition are processed
simultaneously if they belong to different regions of the same AND-state, if their
pre-states are all active and if they are all triggered by the same event which
is received by the Current object. All regions belonging to the same AND-state
must have reached a final state before the AND-state can be left and the transi-
tion from the AND-state to the next state can be processed. For our simulator
we use the Current object not only as object which receives the next event (and
is linked to the event queue) but also as pointer to the current active states.

72 Enrico Biermann, Claudia Ermel, Gabriele Taentzer

Thus, our simulation rules model the relinking of the Current object to the next
active states and the updating of the event queue.

Note that in the following screenshots of interaction schemes we use an inte-
grated notation, where we define the kernel rule and one multi-rule within one
rule picture. This is possible since each of our interaction schemes consists of
a kernel rule and one multi-rule only. We distinguish objects belonging to the
multi-rule by drawing them as multi-objects (with indicated multiple boxes in-
stead of simple rectangles). The kernel rule consists of all simple objects which
are not drawn as multiple boxes. All arcs adjacent to multi-objects belong to
the multi-rule only, but not to the kernel rule. All multi-objects together with
their adjacent arcs in one multi-rule form a multi-object structure.

The upper part of Fig. 7 shows the interaction scheme enterRegion which
moves the Current pointer along a transition that connects a state to an AND-
state. In this case, the Current pointer has not only to point to the AND-state
afterwards but also to all initial states of all regions of the AND-state. Hence,
the amalgamated rule consists of as many copies of the multi-rule as there are
regions in the AND-state (provided that each component has exactly one initial
state which has to be ensured by a suitable syntax grammar).

Fig. 7. Interaction Schemes enterRegion and leaveRegion

Vice versa, when an AND-state is left, the Current pointer has to be removed
from all of its regions. This step is realized by the interaction scheme leaveRegion
at the bottom of Fig. 7. The fact that the active states of all regions have to be
Final is modelled by the NAC. The multi-rule models how all inner links from
the Current pointer to the regions’ final states are removed.

Lifting Parallel Graph Transformation Concepts. . . 73

A simultaneous transition is modelled by interaction scheme simultanTrans in
Fig. 8. Here, an arbitrary number of transitions in different regions of an AND-
state are processed if triggered by the same event. In our ATM example this
happens at different points of the simulation: When the AND-state is entered
and the event card-sensed is happening, then the two first transitions of the two
regions are processed simultaneously. Similarly, at any state of the display the
user can abort the transaction: the end event triggers the return of the display
region to state welcome and the return of the card-slot region to state empty.

Fig. 8. Interaction Scheme simultanTrans

The simultanTrans interaction scheme is a good example for a concise way
to model simultaneous transitions which are triggered by a single event. This
would be quite difficult to model using simple rules. Note that this scheme is
applicable also for sequential transition processing within an AND-state. Then
there is only one copy of the multi-rule, similar to rule sequentialTrans. In the
case that no transition leaving an active state is triggered by the current event,
we have the situation that there is no copy of the multi-rule of simultanTrans,
but the kernel rule can be applied anyway. This means that an event which does
not trigger any transition inside of an AND-state simply is removed from the
event queue. Again, this is similar to applying rule skipEvent with the difference
that regions are used here.

4 Related Work

There are two tool-based approaches known to us which also realize parallel
graph transformation: AToM3 and GROOVE, where AToM3 supports the ex-
plicit definition of interaction schemes in different rule editors [14] and GROOVE
implements rule amalgamation based on nested graph predicates [15]. A related
conceptual approach aiming at transforming collections of similar subgraphs is
presented in [16]. The main conceptual difference is that we amalgamate rule in-
stances whereas the authors of [16] replace all collection operators (multi-object
structures) in a rule by the mapped number of collection match copies. Sim-
ilarly, Hoffmann et al. define a cloning operator in [17] where cloned nodes

74 Enrico Biermann, Claudia Ermel, Gabriele Taentzer

correspond to multi-objects, but complete multi-object structures cannot be
described. Moreover, the graph transformation tools PROGRES [18] and Fu-
JaBA [19] feature so-called set nodes which are duplicated as often as necessary,
but are not based on amalgamated graph transformation. None of the related
approaches support the transformation of EMF models.

5 Conclusions and Future Work

This paper presented amalgamated EMF transformation as a valuable means for
modelling and simulation. They extend the capabilities of EMF transformation
based on simple graph transformation [5] by allowing parallel execution of syn-
chronized EMF transformation rules. This is useful for specifying simulators for
formalisms in which parallel actions happen. This is the case for a great number
of formalisms, such as statecharts with AND states. It has been shown in the
paper that amalgamated EMF transformation always leads to consistent EMF
instance models which satisfy the containment constraints of EMF.

In the future, we plan to apply the approach to other kinds of EMF model
transformations, such as model refactorings, where multi-object structures are
found frequently.

Amalgamated EMF transformation are currently being implemented in the
tool EMF Tiger [10, 6] (Transformation generation), a recently developed
Eclipse plug-in supporting modeling and code generation for EMF model trans-
formations, based on structured data models and graph transformation concepts.
The goal of EMF Tiger is to provide the means to graphically define rule-based
transformations on EMF models. Rule applications change an EMF model in-
stance in-place, i.e. an EMF instance model is modified directly, without copying
it before. Moreover, control of rule applications is supported by EMF Tiger,
as well as pre-definition of (parts of) the match. EMF Tiger currently consists
of a graphical editor for visually defining EMF model transformation rules, and
a compiler, generating Java code from these transformation rules to be included
into existing projects performing EMF model transformation. It also contains an
interpreter which translates EMF transformation rules to AGG. This interpreter
is useful for verification purposes.

References

1. Mens, T., Tourwé, T.: A survey of software refactoring. Transactions on Software
Engineering 30(2) (February 2004) 126–139

2. Eclipse Consortium: Eclipse Modeling Framework (EMF) – Version 2.4. (2008)
http://www.eclipse.org/emf.

3. Object Management Group: Meta Object Facility (MOF) Core Specification Ver-
sion 2.0. http://www.omg.org/technology/documents/modeling_spec_catalog.

htm\#MOF (2008)
4. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph

Transformation. EATCS Monographs in Theor. Comp. Science. Springer (2006)

Lifting Parallel Graph Transformation Concepts. . . 75

5. Biermann, E., Ermel, C., Taentzer, G.: Precise Semantics of EMF Model Transfor-
mations by Graph Transformation. In Proc. Conf. on Model Driven Engineering
Languages and Systems (MoDELS’08). Vol. 5301 of LNCS., Springer (2008) 53–67

6. Biermann, E., Ehrig, K., Köhler, C., Kuhns, G., Taentzer, G., Weiss, E.: Graphical
Definition of In-Place Transformations in the Eclipse Modeling Framework. In
Proc. Conf. on Model Driven Engineering Languages and Systems (MoDELS’06).
Vol. 4199 of LNCS. Springer (2006) 425–439

7. Ehrig, H., Kreowski, H.J.: Parallel graph grammars. In Lindenmayer, A., Rozen-
berg, G., eds.: Automata, Languages, Development. North Holland (1976) 425–447

8. Taentzer, G.: Parallel and Distributed Graph Transformation: Formal Description
and Application to Communication-Based Systems. PhD thesis, TU Berlin (1996)

9. Böhm, P., Fonio, H.R., Habel, A.: Amalgamation of graph transformations: a
synchronization mechanism. Journal of Computer and System Science 34 (1987)
377–408

10. Tiger Project Team, Technische Universität Berlin: EMF Tiger (2009) http://

tfs.cs.tu-berlin.de/emftrans.
11. Ehrig, H., Kreowski, H.J., Montanari, U., Rozenberg, G., eds.: Handbook of Graph

Grammars and Computing by Graph Transformation. Vol 3: Concurrency, Paral-
lelism and Distribution. World Scientific (1999)

12. Ehrig, H., Engels, G., Kreowski, H.J., Rozenberg, G., eds.: Handbook of Graph
Grammars and Computing by Graph Transformation, Vol. 2: Applications, Lan-
guages and Tools. World Scientific (1999)

13. Rozenberg, G.: Handbook of Graph Grammars and Computing by Graph Trans-
formations, Vol. 1: Foundations. World Scientific (1997)

14. de Lara, J., Ermel, C., Taentzer, G., Ehrig, K.: Parallel Graph Transformation
for Model Simulation applied to Timed Transition Petri Nets. In: Proc. Graph
Transformation and Visual Modelling Techniques (GTVMT) 2004. (2004)

15. Rensink, A., Kuperus, J.H.: Repotting the geraniums: On nested graph transfor-
mation rules. In: Int. Workshop of Graph Transformation and Visual Modelling
Techniques (GT-VMT’09). (2009)

16. Grønmo, R., Krogdahl, S., Møller-Pedersen, B.: A collection operator for graph
transformation. In: Int. Conf. on Model Transformation (ICMT’09). (2009)

17. Hoffmann, B., Janssens, D., van Eetvelde, N.: Cloning and expanding graph trans-
formation rules for refactoring. In: Int. Workshop on Graph and Model Transfor-
mation (GraMoT’05). Vol. 152 of ENTCS, Elsevier (2006) 53–67

18. Schürr, A., Winter, A., Zündorf, A.: The PROGRES-approach: Language and
environment. In [12].

19. Fischer, T., Niere, J., Torunski, L., Zündorf, A.: Story diagrams: A new graph
rewrite language based on the UML. In Proc. Workshop on Theory and Application
of Graph Transformation. Vol. 1764 of LNCS, Springer (2000) 296–309

. .

Enrico Biermann

Institut für Softwaretechnik und Theoretische Informatik
Technische Universität Berlin
D-10587 Berlin (Germany)
enrico@cs.tu-berlin.de

. .

76 Enrico Biermann, Claudia Ermel, Gabriele Taentzer

. .

Dr. Claudia Ermel

Institut für Softwaretechnik und Theoretische Informatik
Technische Universität Berlin
D-10587 Berlin (Germany)
lieske@cs.tu-berlin.de
http://tfs.cs.tu-berlin.de/˜lieske

Hans-Jörg was the external examiner of Claudia Ermel’s doctoral thesis.
. .

Prof. Dr. Gabriele Taentzer

Fachbereich Mathematik und Informatik
Philipps-Universität Marburg
D-35032 Marburg (Germany)
taentzer@mathematik.uni-marburg.de
http://www.informatik.uni-marburg.de/˜taentzer

Hans-Jörg was the external examiner of Gabriele Taentzer’s doctoral thesis at
the Technical University of Berlin. Due to their common research interests in
graph transformation and visual languages, they have several joint publica-
tions.

. .

Rechnen, Denken, lebenslange Bildung

Wolfgang Coy

Am Ende von Wittgensteins Tractatus logico-philosophicus, nachdem er das
menschliche Erkenntnisvermögen vom Reich der Objekte auf sprachliche Aussa-
gen über die Welt und das Räsonnement über diese Aussagen zurückführt hat,
steht unter 6.52 die gern überlesene Bemerkung >Wir fühlen, dass selbst, wenn
alle möglichen wissenschaftlichen Fragen beantwortet sind, unsere Lebenspro-
bleme noch gar nicht berührt sind. Freilich bleibt dann eben keine Frage mehr;
und eben dies ist die Antwort.<

∗
Alan Mathison Turing steht nicht nur als Cambridge-Absolvent der sprachli-

chen Wende Wittgensteins sehr nahe. Er nähert sich dem Denken von der Seite
der Berechenbarkeit und verschiebt den linguististic turn zum Begriff der Be-
rechenbarkeit hin. Rechnen wird bei Turing anders als bei anderen gleichzeitig
formulierten formalen Kalkülen der Berechenbarkeit durch die Tätigkeit eines
menschlichen Rechners mit Bleistift, Radiergummi und Karopapier beschrie-
ben. Wir können uns ein Schulkind bei seinen Rechenaufgaben vorstellen. Zu
jedem Zeitpunkt ist dieser menschliche Rechner in einem von einigen möglichen
>Arbeitszuständen<. Betrachtet wird nur ein einziges Karokästchen, in dem ein
wohlvertrautes Zeichen aus einem endlichen Vorrat steht. Im Kopf ist eine al-
gorithmische Anweisung, eine von ein paar Anweisungen, was jetzt zu tun sei:
Ob das Zeichen durch ein anderes ersetzt wird oder ob das rechts oder das links
anschließende Kästchen zu bearbeiten sei, oder ob die Rechnung zu Ende gekom-
men ist. Eine schlichte Vorstellung, die gleichwohl alles >Rechnen< vollständig
beschreiben soll. >It is my contention that these operations include all those
which are used in the computation of a number.< Turing nennt dieses wohlerzo-
gene rechnende Schulkind paper machine.

Turings Weltbild war vom allgemeinen Stand der Wissenschaften geprägt,
soweit sie Mathematikern vertraut war, in den engen Ansätzen der formalen
Logik, die sich zu dieser Zeit sehr stark auf das Hilbertsche Grundlagenfor-
schungsprogramm konzentrierten, also die Forderung nach Vollständigkeit, Wi-
derspruchsfreiheit und Entscheidbarkeit axiomatischer Kalküle. Sein Biograf An-
drew Hodges hat dies sehr schön auf den Punkt gebracht, als er darauf hinwies,
für den ganz jungen Alan sei >Natural Wonders every Child Should Know<,
das wichtigste Buch gewesen, eine schlichte Popularisierung und Reduktion aller
Naturwissenschaften auf die Mechanik.1

Vor diesem Hintergrund wird deutlich, dass Turing zwei Vorstellungen pflegt:

– Alles Denken ist formal und symbolisch als Schlussfolgern beschreibbar (was
mit geeignetem Programm von seiner paper machine als Rechnung ausführbar
wäre).

1 Vgl. A. Hodges, Alan Turing – Enigma, a.a.O.

F. Drewes, A. Habel, B. Hoffmann, D. Plump (Eds.): Manipulation of Graphs, Algebras and Pictures.
Essays Dedicated to Hans-Jörg Kreowski on the Occasion of His 60th Birthday, pp. 77–81, 2009.

78 Wolfgang Coy

– Aus Gründen der endlichen molekularen Struktur der Gehirns lässt sich al-
les Schlußfolgern in finiten Kalkülen beschreiben. Bei Turing heißt es dazu
knapp: >For the present I shall only say that the justification lies in the
fact that the human memory is necessarily limited.<

2 Turings Überlegungen
bleiben dabei etwas vage. Roger Penrose spitzt dies m.E. angemessen zu: >It
seems likely that he [Turing] viewed physical action in general – which would
include the action of a human brain – to be always reducible to some kind of
Turing-machine action.<

3 Andrew Hodges nennt die die Turing-These (im
Unterschied zur Church-Turing These).

Er folgt damit dem Wittgensteinschen Programm des Tractatus, ohne sich ex-
plizit darauf zu beziehen – und ohne die kritischen Zweifel, die Wittgenstein in
den Jahrzehnten nach der Erstveröffentlichung quälten. Turing interessiert sich
mehr für die Frage, wie weit seine paper machines gehen können. In seinem 1950
für ein philosophisch interessiertes Publikum geschriebenen Aufsatz >Computing
machinery and intelligence< schlägt er einen Wettbewerb zwischen Mensch und
Maschine vor, um die Leistungsfähigkeit >Intelligenter Programme< zu testen.
Der Aufsatz endet mit: >We may hope that machines will eventually compete
with men in all purely intellectual fields. But which are the best ones to start
with? Even this is a difficult decision. Many people think that a very abstract
activity, like the playing of chess would be best. It can also be maintained that
it is best to provide the machine with the best sense organs that money can buy,
and then teach it to understand and speak English. This process could follow the
normal teaching of a child. Things would be pointed out and named, etc. Again
I do not know what the right answer is, but I think both approaches should be
tried.<

Mit ähnlicher Unbekümmertheit haben John McCarthy und Marvin Minsky
diese Vorgehensweise fortgeführt, als sie 1956 auf der berühmten Dartmouth-
Conference ein Forschungsprogramm zur künstlichen Intelligenz verkündeten,
dessen philosophische Höhenflüge bis heute wenig ergiebig sind, wobei die vor-
herrschenden Denkfiguren sich von Dekade zu Dekade wandeln – vom Turingtest
zum Schachspiel, vom Schachspiel zum Sprachverstehen, vom Sprachverstehen
zur Robotik, von Robotern zur Schwarmintelligenz – ohne das sie der Turing-
schen Frage >Can a machine think?< wirklich näher gekommen sind.

∗

Kant wären solch rein computationale Bestimmungen des Denkens wohl
fremd geblieben. >So kann sich niemand bloß mit der Logik wagen, über Ge-
genstände zu urteilen.< heißt es in der Kritik der reinen Vernunft. Kant hat
Denken nicht nur als Logik begriffen, sondern im Kontext von Erkenntnis, mo-
ralischer und ästhetischer Bewertung und zum Zwecke des Entscheidens und
Handelns gesehen. Drei Fragen sind laut Kant zu beantworten:
2 In “On Computable Numbers with an Application to the Entscheidungsproblem.”

a.a.O.
3 Roger Penrose, Shadows of the Mind a.a.O., S. 21

Rechnen, Denken, lebenslange Bildung 79

– Was kann ich wissen?
– Was soll ich tun?
– Was kann ich hoffen?

Zur Beantwortung der Frage, was wir sicher wissen können, wie also mensch-
liche Erkenntnis möglich sei, führte Kant drei Schichten des Denkens ein: die
Vernunft, die das logische Denken reguliert, den Verstand, der das analytische
Denken konstituiert und die Urteilskraft, die nach Erkenntnis des Sachverhal-
tes und der Handlungsmöglichkeiten die Abwägung zum Bewerten und Handeln
erlaubt. Menschliches Handeln überwindet damit die Zwänge der Natur und er-
laubt es, freie Entscheidungen zu treffen.4 Ein gutes Urteil gründet notgedrun-
gen auf Sinneseindrücken, auf dem, was der Fall zu sein scheint – also auf den
Phänomenen, die nach bester Einsicht für wahr gehalten werden. Urteilskraft
muss freilich entwickelt werden. Sie ist Ergebnis einer lebenslangen Bildung, Er-
fahrung und Übung, ein Ergebnis, das freilich nicht immer erreichbar ist: >Der
Mangel an Urteilskraft ist eigentlich das, was man Dummheit nennt, und einem
solchen Gebrechen ist gar nicht abzuhelfen.< heißt es ohne große Hoffnung in der
Kritik der reinen Vernunft.

Was bedeutet dies nun nach dem Eintritt der >Denkmaschinen< in unsere
Alltagswelt? Computer sollen die Frage >Was kann ich wissen?< zu beantworten
helfen, so dass die Antwort auf die Frage >Was soll ich tun?< leichter fällt. Die
Frage >Was kann ich hoffen?< bleibt davon unberührt. Diese wird weder bei
Wittgenstein noch bei Turing als wissenschaftliche Frage gesehen – und auch
bei Kant bleibt sie zwischen den Zeilen offen. So offen, das der preußische König
Friedrich Wilhelm II ihm in einer privat versendeten Kabinettsordre verbot,
öffentlich darüber zu räsonnieren (Was der Königsberger Rektor bis zum Tod des
Königs auch beachtete). Kants Reflexion Nr. 177 >Was wir denken, können wir
nicht immer sagen< aus den >Reflexionen zur Anthropologie< klingt unter diesen
Umständen wie Resignation vor der Zensur; es ist aber eine Bemerkung über das
Denken, das die Grenze zum Hoffen überschreitet. Damit geht Kant über eine
alleinige Bestimmung des Menschen als ”denkendem Wesen“ hinaus. Den drei
Leitfragen lässt er deshalb eine vierte Frage folgen: >Was ist der Mensch?<

5

Diese kann weder von der Formalen Logik noch von der Informatik beantwortet
werden. Jeder Vergleich mit dem Computer führt nur in die Irre.

∗

Wittgensteins Neffe Heinz v. Foerster greift die Schlussbemerkung im Trac-
tatus auf seine Weise auf. Wie Turing geht er zum Beispiel der Machine zurück,

4 Die aktuelle Debatte, ob dieser freie Wille dabei vollständig bewusst verläuft oder
auch in tieferen Schichten unseres Gehirns verankert ist, wird davon gar nicht berührt
– so wie wir nicht freiwillig für immer aufhören können zu atmen, wohl aber für eine
gewisse Dauer.

5 . . . und er fügt in Klammern hinzu >Anthropologie; über die ich schon seit mehr als
20 Jahren jährlich ein Kollegium gelesen habe.< Vgl. Hamburg: Meiner, Briefwechsel,
1989, S. 634

80 Wolfgang Coy

wobei er triviale und nichttriviale Maschinen unterscheidet. Ein funktionieren-
der Automat ist trivial, weil er genau das tut, was er tun soll. Heinz v. Foerster
führte als Beispiel gern Rolls-Royce-Motoren an, bei denen er unterstellte, die
sie genau so funktionierten, wie die Ingenieure sich das vorstellten. Auch eine
deterministische Turingmaschine ist in Bezug auf den nächsten Arbeitsschritt
trivial (so wie auch das Programm einer nicht-deterministischen Turingmachine
eine nicht genauer diskriminierte Menge möglicher Nachfolgezustände festlegt).
Die Frage, ob so eine paper machine jemals mit dem Rechnen zu Ende kommt,
ist freilich, wie wir dank Alan Turing wissen, nicht entscheidbar. Foersters Dreh
ist nun, dass er alle >interessanten< Fragen als nicht entscheidbar einstuft, wo-
bei er von der logischen Unentscheidbarkeit zur Unentscheidbarkeit des richtigen
Handelns übergeht. Ob das Weltall unendlich alt oder groß ist oder ob ein Big
Bang die Erklärung ist, ob wir jemals Zeitreisen unternehmen können, ob unsere
Galaxis in einem schwarzen Loch verschwinden wird, ob Götter oder Dämonen
existieren, ob der Mensch seinem Wesen nach gut oder böse ist, all dies sind un-
entscheidbare Fragen. Das wäre als solches eine billige Beobachtung. Spannend
wird sie bei Fragen, die ein Handeln verlangen. Bei der Frage, ob wir diesen
Partner oder jenen heiraten sollen oder besser ledig bleiben, ob wir eine Krank-
heit durch eine Operation bekämpfen lassen wollen, ob wir auswandern sollen
oder im Lande bleiben, ob wir diesen Beruf ergreifen oder jenen, ob wir aus
dem Haus gehen oder ein Buch lesen, müssen wir uns entscheiden und es gibt
keine eindeutige Handlungsanweisung. >Das ist das Amüsante an den prinzipi-
ell unentscheidbaren Fragen; dass es eben keinen Formalismus, keinen Zwang
gibt, der mich zwingt, diese Fragen in dieser oder jener Form zu beantworten.
Mit dieser prinzipiellen Unentscheidbarkeit ist ein Raum der Freiheit geöffnet, in
dem du jetzt entscheiden kannst. Das heisst, prinzipiell unentscheidbare Fragen
können nur wir entscheiden, indem wir sagen: Ich möchte diese Entscheidung
wählen, denn ich habe die Freiheit, hier zu wählen, was ich will. Die Idee, die
Freiheit mit der prinzipiellen Unentscheidbarkeit zu kombinieren, bringt jetzt die
Idee der Verantwortung mit sich, denn wenn ich eine prinzipiell unentscheidbare
Frage entscheide, habe ich mit dieser Entscheidung die Verantwortung für diese
Entscheidung übernommen.<6 An der logischen Kategorie der >nicht entscheid-
baren Fragen< spiegelt sich so die ethische Kategorie der >Zu entscheidenden
Fragen.< Turings These und mit ihr manche Hoffnungen der Künstlichen Intel-
ligenz lösen sich im Ethischen Imperativ Foersters auf. Noch einmal Heinz v.
Foerster: >Unentscheidbarkeit ist die Einladung, sich zu entscheiden. Für diese
Entscheidung trägt man dann die Verantwortung.< Das heißt also, selbst wenn
alle logisch entscheidbaren Fragen geklärt wären, alles Berechenbare berechnet
wäre, bliebe das Ethische unbearbeitet. Dafür brauchen wir Urteilskraft. Das ist
das lebenslange Ziel von Erziehung und Bildung.

6 M. Bröcker & H. V. Foerster, Teil der Welt, a.a.O. S. 178

Rechnen, Denken, lebenslange Bildung 81

Literatur

1. Lena Bonsiepen, Folgen des Marginalen, in G. Cyranek und W. Coy (Hrsg): Die ma-
schinelle Kunst des Denkens – Perspektiven und Grenzen der KI. Vieweg, Braun-
schweig/Wiesbaden, 1994.

2. Monika Bröcker und Heinz v. Foerster, Teil der Welt – Fraktale einer Ethik. Ein
Drama in drei Akten. Carl Auer Systeme Verlag, Heidelberg, 2002.

3. Wolfgang Coy, Reduziertes Denken. Informatik in der Tradition des formalistischen
Forschungsprogramms, in P. Schefe, H. Hastedt, Y. Dittrich und G. Keil (Hrsg.):
Informatik und Philosophie, 31–52. BI Wissenschaftsverlag, Mannheim-Leipzig-
Wien-Zürich, 1993.

4. Bernhard Dotzler und Friedrich Kittler (Hrsg.), Alan Turing – Intelligence Service.
Brinkmann & Bose, Berlin, 1987.

5. Heinz v. Foerster, Wissen und Gewissen. Suhrkamp, Frankfurt/Main, 1993.
6. Andrew Hodges, Alan Turing – Enigma. Kammerer und Unverzagt, Berlin, 1990.
7. Roger Penrose, Shadows of the Mind: A Search for the Missing Science of Cons-

ciousness. Oxford University Press, Oxford, 1994.
8. Alan M. Turing, On Computable Numbers, with an Application to the Entschei-

dungsproblem, Proc. London Math. Soc. 42(2) (1937), 230-265.
9. Alan M. Turing, Computing machinery and intelligence, Mind, Vol. LIX. No. 236.

Oktober 1950, S. 433–460.
10. Ludwig Wittgenstein, Logisch-philosophische Abhandlung. Tractatus logico-

philosophicus. Suhrkamp, Frankfurt/Main, 1969.

. .

Prof. Dr. Wolfgang Coy

Institut für Informatik
Humboldt-Universität zu Berlin
D-12489 Berlin (Germany)
coy@informatik.hu-berlin.de
http://www.informatik.hu-berlin.de/˜coy

Wolfgang Coy and Hans-Jörg Kreowski were university colleagues from 1982
to 1995 in Bremen and are brothers in arms in FIfF – Forum InformatikerIn-
nen für Frieden und gesellschaftliche Verantwortung (Forum Computer Pro-
fessionals for Peace and Social Responsibility). Together with Frieder Nake,
Hans-Jörg Kreowski and Wolfgang Coy founded the BIGLab (Labor für Bilder
und Grafik – Lab for Images and Graphics) in 1989 to integrate the research
of their groups.

. .

⇒ ⇒ ⇒∗

Towards the

Tree Automata Workbench MARBLES⋆

Frank Drewes

Abstract. We sketch the conceptual ideas that are intended to become
the basis for the Tree Automata Workbench MARBLES

1, an extensible
system that will facilitate the experimentation with virtually any kind
of algorithms on tree automata. Moreover, the system will come with a
library and an application programmer’s interface that can be used by
anyone wanting to apply such algorithms in research and development.

1 Introduction

Already in the 1960s, researchers in finite-automata theory realized that large
parts of this theory can be generalized by replacing strings with trees, with-
out loosing many of the positive algorithmic results, closure properties, and
the like. This observation gave rise to a flourishing theory, including a large
number of techniques and algorithms for analysis, modification, and synthe-
sis of various kinds of tree recognizers, tree grammars, and tree transducers
[GS84, NP92, GS97, FV98, CDG+07]. Throughout the rest of this paper, all
devices that fall into one of these categories will be called tree automata. Today,
probably more theoretical research than ever before is done in this area, moti-
vated by a constantly growing number of applications of tree automata in fields
such as verification and model checking [GK00, AJMd02, Löd02, FGVTT04],
natural language processing [KG05, GKM08], XML processing [Sch07], code se-
lection in compilers [FSW94], graph and picture generation [Eng94, Dre06], and
others.

The system TREEBAG
2 uses tree generators to generate sets of objects over

arbitrary domains. The central data type of TREEBAG is the ranked and ordered
tree, with nodes labelled by symbols taken from a ranked alphabet Σ. In other
words, every symbol f ∈ Σ comes with a rank k ≥ 0, such that a node labelled
with f is required to have exactly k children (which are totally ordered). This
means that a tree in the sense of TREEBAG is a term, i.e., a well-formed expression
composed of abstract (i.e., “meaningless”) operation symbols, each having a
specified rank that determines the number of subexpressions. TREEBAG deals
with two types of tree automata on this type of trees, namely tree grammars
and tree transducers. A tree grammar is a device that generates trees out of
itself, whereas a tree transducer is one that turns input trees into output trees.

⋆ Dedicated to Hans-Jörg Kreowski on the occasion of this 60th birthday.
1 Tree Automata Workbench = taw = a large marble, a game of marbles (Oxford

New Amer. Dict.).
2 Tree-Based Generator

F. Drewes, A. Habel, B. Hoffmann, D. Plump (Eds.): Manipulation of Graphs, Algebras and Pictures.
Essays Dedicated to Hans-Jörg Kreowski on the Occasion of His 60th Birthday, pp. 83–98, 2009.

84 Frank Drewes

A tree generator is a tree grammar composed with a (possibly empty) sequence
of tree transducers.

In a well-known way, trees of the type described above can be assigned a
semantics by choosing a domain A and associating an operation on A (of the ap-
propriate arity) with each symbol in the ranked alphabet Σ considered. In other
words, a Σ-algebra is specified, so that every tree evaluates to an element of A.
This means that a device generating trees provides the syntactic basis for a tree-
based generator – a system consisting of a tree generator and an interpretation,
thus generating elements of A:

tree-based generator

tree generator interpretationgenerated

trees

generated

elements of A

TREEBAG makes it possible to assemble tree-based generators. This is ex-
plained in slightly more detail in Section 2, because MARBLES is to a certain
extent inspired by TREEBAG. However, in TREEBAG, all that can be done after
having assembled a tree generator is to execute it. In contrast, the usefulness of
tree automata in most application areas does not primarily lie in the fact that
they can be executed. Their real advantage is that they are simple enough to be
effectively analyzed and manipulated. For instance, in a model checking applica-
tion, tree automata may be generated that model safety and liveness properties
of a protocol to be verified. Analyzing these automata then corresponds to check-
ing correctness criteria, thus solving a model checking problem. The idea behind
MARBLES is, therefore, to make it possible to assemble algorithms on tree au-
tomata, thus perceiving tree automata mainly as the objects to be analyzed and
manipulated, rather than as executable algorithms. The major aim is to provide
researchers with a software environment and infrastructure that enables them
to create, use, and experiment with algorithms on tree automata.

In addition to TREEBAG, there are several other systems that implement
certain types of tree automata or algorithms on them.

AutoWrite (http://dept-info.labri.fr/~idurand/autowrite) is a sys-
tem that allows the user to check properties of term rewrite systems by means of
tree automata constructions. In particular, it allows to load, save, and combine
bottom-up tree recognizers. Using the graphical user interface, one can build
and manipulate bottom-up tree recognizers related to the term rewrite systems
whose properties one wants to check.

Forest FIRE (http://www.loekcleophas.com) is a toolkit focusing on
recognition, pattern matching, and parsing algorithms in connection with reg-
ular tree languages. The system has been developed on the basis of detailed
taxonomies, with the major purpose of gaining a deeper conceptual understand-
ing of how the ideas and techniques used in various tree automata constructions
are related to each other.

MONA (http://www.brics.dk/mona) is a tool for checking the validity of
formulas in the weak second-order theory of one successor (WS1S) or of two

Towards the Tree Automata Workbench MARBLES 85

successors (WS2S). For deciding WS2S, the decision procedures convert a given
formula into a so-called guided tree automaton, a variant of a bottom-up tree
recognizers, and analyse this automaton.

Tiburon (http://www.isi.edu/licensed-sw/tiburon) is a command-line
based package of algorithms on weighted regular tree grammars, context-free
string grammars, and tree transducers, including various analyzers, modifiers,
and synthesizers. The devices and algorithms implemented in Tiburon are typi-
cal even for MARBLES, but Tiburon has mainly been developed for applications
in Natural Language Processing, without MARBLES’ emphasis on a flexible envi-
ronment that can be adapted and extended to suit the needs of researchers who
study tree automata from different points of view.

Timbuk (http://www.irisa.fr/lande/genet/timbuk) is a collection of
tools for carrying out reachability proofs of term rewrite systems, among other
techniques by manipulating nondeterministic bottom-up tree recognizers. It is
intended to be used for the verification of programs and cryptographic protocols.

The proposed system MARBLES differs from each of these systems in sev-
eral respects. Most notably, the systems above have all been developed with a
particular application or problem area in mind. They are great for their par-
ticular purpose, but they are also restricted to it. In contrast, the intention
behind MARBLES is to support tree automata research in general, by providing
researchers with a suitable platform and infrastructure for their own extensions,
making it possible to experiment with and apply tree automata algorithms of
any kind.

The remainder of this paper is structured as follows. The next section presents
some aspects of TREEBAG that have, in one way or the other, inspired the in-
tended characteristics of MARBLES. In Section 3, some of the different types of
trees, tree automata, and tree automata algorithms that should, in principle,
be covered by MARBLES, are discussed. Section 4 presents initial ideas regard-
ing some of the concepts needed for making this possible. Finally, Section 5
concludes the paper.

2 TREEBAG

Let us now have a slightly closer look at the concepts and design principles of
TREEBAG. The following description is intentionally kept at a rather abstract
level, although concrete classes of, e.g., tree grammars and algebras available
in TREEBAG are sometimes mentioned as examples, maninly for readers who
happen to be familiar with tree automata theory. Readers who want to inform
themselves in more detail should consult the TREEBAG user manual available at
http://www.cs.umu.se/~drewes/treebag or, for the theory behind, [Dre06].

The work on TREEBAG was started during the second half of the 1990s, when
the author was a member of Hans-Jörg Kreowski’s research group at the Univer-
sity of Bremen. Around this time, a significant part of our research was dedicated
to context-free graph and collage grammars; see, e.g., [HKV91, HKL93, HKT93,
DHKT95, DK96, DHK97, DK99]. Both of these can be characterized by combi-

86 Frank Drewes

nations of a certain type of tree grammars (namely regular tree grammars) with
suitable algebras in the style of Mezei and Wright [MW67], i.e., the grammars
can be viewed as tree-based generators. For graphs, this has been made explicit
by Engelfriet in [Eng94], and for collages by the author in [Dre96, Dre00]. See
also [DEKK03], where this characterization was used to establish certain de-
cidability results for collage languages. In this context, one should not forget to
mention Engelfriet’s paper [Eng80], where he discusses symbolic computation by
tree transductions, which is essentially the same idea, but now for transformation
rather than generation: a tree transduction, together with algebras interpreting
the input and output trees, is considered as a symbolic algorithm that performs
a computation on abstract trees rather than on the concrete objects of the two
domains in question.

Whereas the results mentioned above use only regular tree grammars, it is
obvious that one may in fact combine arbitrary kinds of tree generators with
any sort of algebra, yielding a large number of different grammatical formalisms
with comparatively little effort. Being a rather straightforward implementation
of this idea (in Java), TREEBAG allows its user to assemble tree-based generators
of various kinds. There are four major abstract classes, namely tree grammars,
tree transducers, algebras, and displays. The first three represent the correspond-
ing formal concepts, whereas displays are required for actually being able to
see the results of the generating process. Concrete subclasses of the four ab-
stract classes implement particular types of tree grammars, tree transducers,
algebras, and displays. For example, the classes generators.ET0LTreeGrammar
and generators.mtTransducer implement ET0L tree grammars and macro tree
transducers, resp. If a class such as these is available, this means that the user
can define specific instances (usually in ordinary ASCII text files) and use them
in assembling tree-based generators. Such instances are called components in the
following.

Figure 1 shows a typical situation when working with TREEBAG. Window 1
is the main window of the system, the so-called worksheet. When the user loads
a component, it is represented on the worksheet as a blob. These blobs repre-
sent the nodes of a directed acyclic graph whose edges determine the data flow
between components. The data-flow edges are interactively established by the
user, subject to a few rather obvious rules: The output of a tree grammar or tree
transducer can become the input of tree transducers or algebras, and the output
of an algebra can become the input of a display. The configuration in Figure 1
consists of a regular tree grammar, a free term algebra with a corresponding tree
display, a top-down tree transducer, and two copies of a collage algebra, each
with its corresponding collage display. With each display component, a window
is associated, namely the windows numbered 3–5. Thus, these windows show
the tree generated by the regular tree grammar, its interpretation by the collage
grammar, and the interpretation of the transformed tree by (another instance
of) the same collage algebra.

An additional window (numbered 2 in the figure) contains buttons that pro-
vide access to the user commands of the regular tree grammar. Double clicks on

Towards the Tree Automata Workbench MARBLES 87

Fig. 1. A typical configuration of TREEBAG

the other components on the worksheet would open similar sections in this win-
dow for them, each one being populated by the individual commands understood
by the respective component.

Let us now discuss two aspects of the design of TREEBAG which are expected
to have some influence on MARBLES. In fact, these two aspects are quite closely
related and can be seen as the two sides of the same coin.

From the point of view of the user, the way in which components can be
interconnected depends only on their types, i.e., whether they are tree grammars,
tree transducers, algebras or displays. In other words, if the user wants to connect
a tree grammar and a tree transducer, this can be done regardless of whether the
tree grammar at hand is a regular tree grammar, ET0L tree grammar, context-
free tree grammar or whatever type of tree grammar might at some point in time
be implemented in TREEBAG. Of course, users must interconnect the “right”
components to achieve a particular effect desired, but the system gives users as
much freedom as possible. Every concrete component class provides the user with
a set of commands that can be used to interact with components of this class
(recall Window 2 in Figure 1, containing buttons for the commands provided
by the implementation of regular tree grammars). While the commands would
be different for, e.g., ET0L tree grammars, this has no influence on the way in

88 Frank Drewes

which regular tree grammars or ET0L tree grammars can be connected to other
components.

The person who implements new classes of tree grammars, tree transducers,
algebras or displays will find out that the properties mentioned in the previous
paragraph simply reflect properties of the implementation. The core of TREEBAG

does not make any distinction between, e.g., different classes of tree grammars.
In fact, consider the file defining the regular tree grammar used in Figure 1:

generators.regularTreeGrammar("example grammar"):
({ S, A },
{ f:2, g:1, a:0 },
{ S -> f[S,S],
S -> g[A],
A -> f[A,A],
A -> a },

S)

When the user instructs TREEBAG to load this component, it parses only
the first line, to discover that the user wishes to load an instance of a compo-
nent class named generators.regularTreeGrammar. The rest of the file uses a
syntax which is unknown to (the core of) TREEBAG, as it is specific to the imple-
mentation of this class. To handle this, TREEBAG dynamically tries to load the
class generators.regularTreeGrammar and, upon success, creates an (unini-
tialized) object of this class. Now, it lets this very object, which is required to
contain a method called parse, initialize itself by parsing the remainder of the
file. Each of the four abstract component types of TREEBAG requires its concrete
subclasses to implement such a parsing method. To handle component-specific
user commands, each concrete subclass provides two further methods. The first
returns, at any point in time, the names of the user commands available at that
moment (which means that the list of commands may change), while the second
executes a given command.

This structure makes it possible to extend TREEBAG by new classes of tree
grammars, tree transducers, algebras, and displays in an easy way, without hav-
ing to change existing parts of the system. One only has to implement it as
a subclass of the appropriate abstract component class and place it in the ap-
propriate directory. Immediately afterwards (provided that everything has been
done correctly), it is possible to load instances of this class onto the worksheet,
interconnect them with other components, and work with them.

It may be interesting to note that the implementations of some of the classes
currently available in TREEBAG make use of decomposition results from the lit-
erature. For example, a so-called branching synchronization tree grammar of
nesting depth n can be decomposed into a regular tree grammar and a sequence
of n top-down tree transducers (see [DE04]). During the parsing step, the im-
plementation of this class in TREEBAG performs this decomposition and writes
the n+ 1 components onto the hard disk (in the syntax required by the respec-
tive classes). Afterwards, it uses TREEBAG’s loading mechanism to load them

Towards the Tree Automata Workbench MARBLES 89

as internal variables hidden from the user (i.e., so that they do not appear on
the worksheet). Every user command is basically forwarded to these internal
components, and whichever output tree they produce is returned. In this way,
the implementation of the class becomes considerably easier and less error prone
than a direct one.

3 Trees, Tree Automata, and Tree Automata Algorithms

As mentioned in the introduction, the major intended purpose of MARBLES is
to make it possible to apply and experiment with algorithms on tree automata.
The aim is to design MARBLES in such a way that it accommodates virtually
all kinds of tree automata algorithms. While this does not mean that all such
algorithms should readily be implemented in the system, the design of MARBLES

should enable researchers (and application programmers) interested in a particu-
lar type of tree automata algorithms to make the necessary extensions. As in the
case of TREEBAG, this should be possible without requiring changes of already
existing parts. However, compared to TREEBAG, the design challenge is is con-
siderably bigger for MARBLES, because its intended coverage is much wider. It
seems to be reasonable to distinguish between (at least) three central categories
of objects: trees, tree automata, and tree automata algorithms. Each of them
may, in principle, have any number of subcategories one may wish to implement
in MARBLES. In the following, some of the possible subcategories of each will be
discussed to illustrate this point.

3.1 Trees

In the traditional setting (and in TREEBAG), tree automata work on trees over
ranked alphabets, as explained above. This is appropriate, because trees are sup-
posed to be evaluated by algebras by associating with every symbol of rank k a
k-ary function on some domain. However, tree automata on unranked trees have
received a lot of attention during recent years. Here, symbols are unranked, and
a node in a tree can have any finite number of children, regardless of the symbol
it is labeled with. It turns out that this variant is well suited for applications in
connection with XML, because XML documents can appropriately be viewed as
unranked trees. (For example, a node corresponding to a list structure in HTML
may have any number of children of type list item.) Thus, an XML document
type corresponds to a tree language of unranked trees, and a tree transducer on
unranked trees corresponds to a transformation between XML document types.

While the two types of trees mentioned are the only ones that play a major
role in contemporary research on tree automata, this situation may change in the
future. Thus, MARBLES should allow programmers to implement other classes of
trees than just these.

90 Frank Drewes

3.2 Tree Automata

Tree automata can be classified according to various criteria. An important ob-
servation one can make is that the resulting classifications are, to a rather large
extent, orthogonal.

Perhaps the most obvious classification is the one that gave rise to the struc-
ture of TREEBAG, distinguishing between tree grammars, tree recognizers (not
directly available in TREEBAG), and tree transducers. From an abstract point
of view, a tree grammar is a formal device that generates output trees without
requiring input. As usual, the tree recognizer is the dual concept. It takes a tree
as input and computes an output value, usually in the range {0, 1}, indicating
whether the tree is accepted or not. Finally, a tree transducer is a formal device
transforming input trees into output trees.

The second classification distinguishes between tree automata according to
the type of trees they act upon, i.e., tree automata on ranked or unranked trees.
Each of the types of tree automata in the first classification can be ranked or
unranked. In this sense, these two classifications are orthogonal. In fact, one
may even wish to consider tree transducers that turn unranked trees into ranked
ones, or vice versa.

Finally, in addition to the traditional case of tree automata, one may consider
weighted ones [FV09]. Weighted tree automata deal with tree series instead of
tree languages, a tree series being a mapping ψ : TΣ → S, where TΣ denotes
the set of all trees over a given alphabet, and S is a semiring. In other words,
weighted tree automata generalize the traditional case, which is obtained by
choosing as S the Boolean semiring. Even this third classification is orthogonal
to the two previous ones, provided that we define the tree automata according
to the first classification in a way general enough to accommodate the weighted
case.

It is interesting to note that, from an abstract point of view, but even more
from the point of view of system design, weighted tree recognizers are very similar
to algebras. Both take a tree as input and compute a value in some other domain.

3.3 Algorithms on Tree Automata

Many useful algorithms on tree automata have been described in the literature.
For classification purposes, it is useful to distinguish between analyzers, synthe-
sizers, and decomposition algorithms.

An analyzer for tree automata takes a tree automaton as input and analyses
it with respect to certain properties. Well-known examples are algorithms that
decide whether the language represented by a tree recognizer or tree grammar
is empty or whether it is finite (cf., e.g., [DE98]).

A synthesizer is an algorithm that takes zero or more tree automata (and
maybe some additional data) as input and yields a tree automaton as output.
There are various important types of synthesizers:

– A generator is an algorithm that outputs tree automata without requiring
other tree automata as input. A prominent example is given by grammatical

Towards the Tree Automata Workbench MARBLES 91

inference algorithms for tree automata. These are algorithms whose pur-
pose it is to “learn” tree languages. For this, the algorithm is provided with
some source of information regarding the tree language (or tree series) to
be learned, such as positive and negative examples. It is then expected to
construct a tree automaton representing the tree language in question. See,
e.g., the references in [Dre09] for a variety of approaches.
Conceptually, a tree automaton A may be considered as a generator that
outputs the constant value A.

– Conversion algorithms take a tree automaton as input and yield another tree
automaton as output, usually with the same semantics as the input automa-
ton. Well-known examples are conversions between regular tree grammars
and finite-state tree recognizers and algorithms that minimize tree automata,
make them deterministic, remove useless states or nonterminals, etc (see,
e.g., [CDG+07]). There are also conversion algorithms that do not retain the
semantics of the tree automaton they are applied to. For example, a macro
tree transducer mtt [EV85] may be turned into a finite-state tree recognizer
that accepts the pre-image of the tree transformation computed by mtt . A
conversion algorithm that inverts suitable types of top-down tree transducers
would be another example.

– Composition algorithms turn n tree automata (n > 1) into one. A wealth of
such algorithms can be found in the literature. One type of example is, of
course, given by composition in the strict sense. For instance, certain types of
tree transductions are known to be closed under composition. Another exam-
ple is the main result of [DE04], which provides an algorithm for converting a
regular tree grammar g and n top-down tree transducers td1, . . . , tdn into a
branching synchronization tree grammar generating the image of L(g) under
tdn ◦ · · · ◦ td1. Composition algorithms in a more general sense may not per-
form mathematical composition, but combine tree automata in a different
way. For example, two finite-state tree recognizers can be turned into one
that recognizes the intersection of the tree languages recognized by the two
individual automata.

Finally, decomposition algorithms are the conceptual inverse of composition
algorithms, turning one tree automaton into several others. For example, for
{x, y} = {top-down, bottom-up}, every x tree transducer may be decomposed
into two y tree transducers [Eng75]. A similar example is given by the result
that every deterministic total macro tree transducer may be decomposed into a
top-down tree transducer followed by a YIELD mapping [EV85].

Of course, algorithms on tree automata may additionally be classified ac-
cording to the types of tree automata they work on, similarly to the fact that
tree automata may be classified according to the types of trees they work on.

4 A Proposed Attribute Type System for MARBLES

As mentioned earlier, the goal behind the development of MARBLES is that it
should allow its user to assemble configurations of tree automata algorithms in

92 Frank Drewes

a similar way as TREEBAG allows its user to assemble various sorts of tree-based
generators. In particular, there should be a way to load components represent-
ing (tree automata and) tree automata algorithms, establish a data-flow rela-
tion between, and execute them. However, while TREEBAG comes with a fixed
set of component types, something like this is neither possible nor desirable for
MARBLES. In contrast, users should be given the possibility to define and imple-
ment their own classes of tree automata algorithms and experiment with them.
The following two fictitious scenarios try to illustrate this.3

Scenario 1: Test Environment for Minimization Algorithms. Doctoral
student X works in a research group using bottom-up tree recognizers for model
checking purposes. A typical example is the verification of a process communica-
tion protocol P by generating a tree recognizer AP that models P ’s behavior and
then analyzing AP to establish P ’s correctness. The problem is that AP tends
to be huge, and often unnecessarily huge, so that its analysis takes too much
time. Unfortunately, AP is also nondeterministic, which means that it cannot
efficiently be minimized.

Therefore, in her thesis, X proposes and studies a number of efficient heuris-
tics for reducing nondeterministic tree recognizersA in size (called minimization,
for simplicity). The general technique used is to compute a suitable equivalence
≡ on the state set of A, such that the quotient automaton A/≡ accepts the
same language as A. The various heuristics studied differ only in the concrete
definition (and computation) of≡. Besides studying the minimization algorithms
theoretically to establish their correctness and worst case complexity, X wants
to study empirically how they behave on real examples arising in the model
checking context, in terms of size reduction and efficiency. However, X does not
have the time to implement a test environment for her algorithms from scratch,
in addition to her theoretical studies. Therefore, she decides to use MARBLES.

First, she notices that there is a type of tree automata algorithms called
generator, a special type of synthesizer. She defines and implements a simple
generator which lets the user choose the name of a protocol (from a fixed set of
possible choices) and possibly some other parameters. The generator will then
output nondeterministic bottom-up tree recognizers of increasing size, whenever
the user presses a certain button.

Next, X discovers that there are so-called converters, and decides to imple-
ment a new type of converter as an abstract class. A concrete implementation
is obtained by providing a method that, for a given bottom-up tree recognizer
A, computes an equivalence relation ≡ on the states. The converter will then
return A/≡.

Fortunately, X finds out that someone else has already implemented two
useful auxiliary components. One of them is a wrapper for arbitrary converters
that simply executes them, but also reports how much time the execution takes.
The other one takes bottom-up tree recognizers as input and saves some statistics
3 While being fictitious, the scenarios have a real background, as they are inspired by

[Kaa08] and ongoing work in our own group, resp.

Towards the Tree Automata Workbench MARBLES 93

about them to a file, such as the number of states and transitions. Now, X has
everything needed to make the desired tests. All she has to do is to implement the
different algorithms yielding the equivalence relations ≡, load and interconnect
the required components, and execute them.

Scenario 2: Simulation of Minimal Adequate Teachers Using Corpora.
The research group in which researcher Y is working has previously studied gram-
matical inference algorithms that, within Angluin’s learning model of a minimal
adequate teacher (MAT), construct bottom-up tree recognizers for recognizable
tree languages L. Now, they want to find out whether such an algorithm can
be used to learn the syntax of natural languages reasonably well, where the
necessary data is taken from a corpus.4

The major obstacle is the MAT, an oracle capable of answering two types
of queries, namely membership queries (Is the tree t in L?) and equivalence
queries (Does the bottom-up tree recognizer A satisfy L(A) = L? If not, return a
counterexample.) Clearly, a MAT is not available in the situation sketched above.
The research question is whether it can (imperfectly) be simulated on the basis
of a corpus, so that the inference algorithm as a whole runs with reasonable
efficiency and yields acceptable results.

Y decides to try out some approaches and to use MARBLES for that purpose.
Thus, she defines two new types of algorithms, namely MATs and learners. A
learner is a generator that must be connected to a MAT to create a tree automa-
ton. During the first phase, she only wants to test different realizations of the
MAT, to see whether the results are promising enough to continue. Therefore,
she implements a single learner (e.g., any of those in [Dre09]). In contrast, a vari-
ety of different MATs are implemented, using different approaches for answering
membership and equivalence queries based on a corpus.

To find out how good the various approaches are, Y implements a component
that has access to a sufficiently large sample of positive and negative examples.
It takes a tree recognizer as input, runs it on the samples, and returns statistics
regarding its sensitivity and specifitivity. In a second phase of her research work,
Y even wants to study other variants of the learner, which can be done in the
same setting by replacing the one learner with another.

In scenarios such as those above, the researcher who wants to use MARBLES

must implement certain extensions, new types of tree automata and algorithms
that become components of MARBLES. For both the system and the user, it is
necessary to know in which way instances of these components can be combined.
Thus, there must be a possibility to talk about the types of components in an
easy, but flexible way. A prerequisite for this is to be able to specify which basic
data types exist. Here, we only focus on the perspective of the user and the GUI,
which means that the only thing we need is a way to give name to different sorts
of data.
4 A corpus is a manually analyzed and annotated database of sentences in a natural

language.

94 Frank Drewes

While the tree is the basic data type in MARBLES, it may not be the only
one. Moreover, there may be different sorts of trees. We now define basic types
which make it possible to name those structures.

Definition 1 (basic type). Let ATTR be a finite set of data attributes (briefly
called attributes). The set TEXP of all basic types is the smallest set of pairs
such that, for all finite subsets T of TEXP and all attributes a, we have (a, T) ∈
TEXP. If T = {t1, . . . , tn}, then this basic type is also denoted by a〈t1, . . . , tn〉,
or by a if n = 0.

As an example, consider trees. We may, e.g., have ranked, unranked, ordered,
and unordered trees. Ranked trees may or may not be binary or monadic. Our
set of data attributes could then be ATTR = {tree, ranked , unranked , ordered ,
unordered , bin,mon}. The basic type for ranked unordered binary trees would
then be tree〈ranked〈bin〉, unordered〉. The attributes in such a basic type should
be seen as assertions stating that the data in question has certain properties.
In other words, the presence of an attribute restricts the data type. For exam-
ple, tree is a basic type meaning just any tree, and tree〈unordered〉 means “any
type of unordered trees”. Note that we, intentionally, do not associate a spe-
cific semantics with the attributes. It should, however, be possible to do this in
MARBLES by, e.g., associating an attribute with an abstract class in the imple-
mentation. A similar remark applies to the types at the higher levels discussed
next.

Next, we define what the type of an automaton looks like. We take a very
general approach, where an automaton is a device that turns a finite number of
input values of specified basic types and into a finite number of output values,
also of specified basic types.

Definition 2 (automaton type). An automaton type is a pair (in, out) with
in ∈ TEXPk and out ∈ TEXP l for some k, l ≥ 0. Such a type will normally be
written as in → out. The set of all automaton types is denoted by AUT.

As an example, a tree grammar of the most general form could be described
as being an automaton of type () → (tree), as it takes no input and yields
any type of tree as output. Slightly more specific would be a tree grammar
generating ranked trees, its type being () → (tree〈ranked〉). For weighted tree
automata over a semifield that work on ranked trees, the type (tree〈ranked〉) →
(semiring〈semifield〉) could be an appropriate description, and for tree trans-
ducers on unranked trees one could use (tree〈unranked〉) → (tree〈unranked〉).
Though uncommon in the literature, one may also wish to consider, e.g., tree
transducers that take two trees as input and produce one output tree, the cor-
responding type being (tree, tree) → (tree).

Note that the concept is very general. For example, an algebra can be seen
as an automaton of type (tree〈ranked〉) → (any), if we let any be the most
general basic type, standing for arbitrary data. Also weighted tree automata
over multioperator monoids [Kui00] have this type. In fact, the concept covers
even devices that do not work on trees at all.

Towards the Tree Automata Workbench MARBLES 95

We finally define how to distinguish between different types of algorithms on
tree automata.

Definition 3 (algorithm type). The set ALG of algorithm types is induc-
tively defined to be the smallest set containing all triples (in , use, out) such that,
for some k, l,m ≥ 0, in ∈ AUT k, out ∈ AUTm, and use ∈ ALG l. Such a triple
is denoted by in use−−→ out.

The intuitive interpretation of in use−−→ out is that of an algorithm which turns
inputs according to in into outputs according to out , thereby possibly making
use of other algorithms given by use. A typical example is the MAT learner in
Scenario 2, which could be of the type () MAT−−−→ (TA), where TA is the automaton
type tree〈ranked〉 → bool .

As mentioned earlier, one of the ideas behind MARBLES is that its GUI,
similar to the one of TREEBAG, should allow the user to assemble configurations
of tree automata in order to experiment with them. The basic (and still somewhat
tentative) plan is that every implementation of a class of tree automata or tree
automata algorithms comes with a specified type according to the definitions
above. When the user loads an instance of such a component, this information
is used in order to determine which connections between these components are
possible. For example, an algorithm of the type in Definition 3 will, from the
point of view of the user, have k + l+m slots representing the inputs, the used
algorithms, and the outputs. For instance, if a component has an output slot s
of type tree〈ranked〉 → bool (a recognizer for ranked trees) and another one has
an input slot s′ of type tree → bool (a recognizer for any sort of trees), then the
data flow can be directed from s to s′.

5 Concluding Remarks

In this paper, ideas and plans regarding a successor of the system TREEBAG have
been presented. While this work is still in a very preliminary phase, the overall
goal is clear. MARBLES should make it possible to experiment with configurations
of tree automata algorithms in a similar way as TREEBAG makes it possible to
experiment with tree-based generators. Moreover, MARBLES should be extensible
by researchers who are not directly involved in the development of the system
itself, but want to use it for their own purposes. For this, concepts such as those
presented in Section 4 seem to be a necessity, because the GUI must be able to
handle extensions without explicitly being adapted.

An aspect that has not been discussed in the present paper, but which is a
necessity as well, is to provide programmers with a well-documented library and
a clearly structured application programmer’s interface (API). Without this, it
would be too difficult, error prone, and time consuming for other researchers to
make their own extensions. In fact, it should also be possible to make use of the
API without adopting the rest of MARBLES, and especially its GUI. This would
programmers give the possibility to apply tree automata algorithms in their own
applications. Another aspect that has not yet been decided upon is whether and

96 Frank Drewes

to what extent MARBLES shall be compatible and able to interoperate with other
systems dealing with tree automata, such as those mentioned in Section 1.

Acknowledgment I thank the anonymous referees for their thorough reading of
the manuscript and for giving numerous useful comments.

However, most of all, I want to thank you, Hans-Jörg, for the support
and inspiration during all those years, for teaching me so much about our
profession, and for being a good example in all respects. Happy Birthday
to you!

References

[AJMd02] Parosh Aziz Abdulla, Bengt Jonsson, Pritha Mahata, and Julien d’Orso.
Regular tree model checking. In E. Brinksma and K. Guldstrand Larsen,
editors, Proc. 14th Intl. Conf. on Computer Aided Verification (CAV’02),
volume 2404 of Lecture Notes in Computer Science, pages 555–568, 2002.

[CDG+07] Hubert Comon, Max Dauchet, Rémi Gilleron, Florent Jacquemard,
Christof Löding, Denis Lugiez, Sophie Tison, and Marc Tommasi. Tree
Automata Techniques and Applications. Internet publication available at
http://tata.gforge.inria.fr, 2007. Release October 2007.

[DE98] Frank Drewes and Joost Engelfriet. Decidability of the finiteness of
ranges of tree transductions. Information and Computation, 145:1–50,
1998.

[DE04] Frank Drewes and Joost Engelfriet. Branching synchronization grammars
with nested tables. Journal of Computer and System Sciences, 68:611–
656, 2004.

[DEKK03] Frank Drewes, Sigrid Ewert, Renate Klempien-Hinrichs, and Hans-Jörg
Kreowski. Computing raster images from grid picture grammars. Journal
of Automata, Languages and Combinatorics, 8:499–519, 2003.

[DHK97] Frank Drewes, Annegret Habel, and Hans-Jörg Kreowski. Hyperedge re-
placement graph grammars. In G. Rozenberg, editor, Handbook of Graph
Grammars and Computing by Graph Transformation. Vol. 1: Founda-
tions, chapter 2, pages 95–162. World Scientific, Singapore, 1997.

[DHKT95] Frank Drewes, Annegret Habel, Hans-Jörg Kreowski, and Stefan Tauben-
berger. Generating self-affine fractals by collage grammars. Theoretical
Computer Science, 145:159–187, 1995.

[DK96] Frank Drewes and Hans-Jörg Kreowski. (Un-)decidability of geomet-
ric properties of pictures generated by collage grammars. Fundamenta
Informaticae, 25:295–325, 1996.

[DK99] Frank Drewes and Hans-Jörg Kreowski. Picture generation by collage
grammars. In H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg,
editors, Handbook of Graph Grammars and Computing by Graph Trans-
formation, Vol. 2: Applications, Languages, and Tools, chapter 11, pages
397–457. World Scientific, Singapore, 1999.

[Dre96] Frank Drewes. Language theoretic and algorithmic properties of d-di-
mensional collages and patterns in a grid. Journal of Computer and
System Sciences, 53:33–60, 1996.

Towards the Tree Automata Workbench MARBLES 97

[Dre00] Frank Drewes. Tree-based picture generation. Theoretical Computer
Science, 246:1–51, 2000.

[Dre06] Frank Drewes. Grammatical Picture Generation – A Tree-Based Ap-
proach. Texts in Theoretical Computer Science. An EATCS Series.
Springer, 2006.

[Dre09] Frank Drewes. Mat learners for recognizable tree languages and tree
series. Acta Cybernetica, 2009. To appear.

[Eng75] Joost Engelfriet. Bottom-up and top-down tree transformations – a com-
parison. Mathematical Systems Theory, 9:198–231, 1975.

[Eng80] Joost Engelfriet. Some open questions and recent results on tree trans-
ducers and tree languages. In R. V. Book, editor, Formal Language The-
ory: Perspectives and Open Problems, pages 241–286. Academic Press,
New York, 1980.

[Eng94] Joost Engelfriet. Graph grammars and tree transducers. In S. Tison,
editor, Proceedings of the CAAP 94, volume 787 of Lecture Notes in
Computer Science, pages 15–37. Springer, 1994.

[EV85] Joost Engelfriet and Heiko Vogler. Macro tree transducers. Journal of
Computer and System Sciences, 31:71–146, 1985.

[FGVTT04] Guillaume Feuillade, Thomas Genet, and Valérie Viet Triem Tong.
Reachability analysis over term rewriting systems. Journal of Automated
Reasoning, 33:341–383, 2004.

[FSW94] Christian Ferdinand, Helmut Seidl, and Reinhard Wilhelm. Tree au-
tomata for code selection. Acta Informatica, 31(8):741–760, 1994.

[FV98] Zoltán Fülöp and Heiko Vogler. Syntax-Directed Semantics: Formal Mod-
els Based on Tree Transducers. Springer, 1998.

[FV09] Zoltán Fülöp and Heiko Vogler. Weighted tree automata and tree trans-
ducers. In Werner Kuich, Manfred Droste, and Heiko Vogler, editors,
Handbook of Weighted Automata. Springer, 2009.

[GK00] Thomas Genet and Francis Klay. Rewriting for cryptographic protocol
verification. In D.A. McAllester, editor, Proc. 17th International Confer-
ence on Automated Deduction (CADE’00), volume 1831 of Lecture Notes
in Computer Science, pages 271–290, 2000.

[GKM08] Jonathan Graehl, Kevin Knight, and Jonathan May. Training tree trans-
ducers. Computational Linguistics, 34(3):391–427, 2008.

[GS84] Ferenc Gécseg and Magnus Steinby. Tree Automata. Akadémiai Kiadó,
Budapest, 1984.

[GS97] Ferenc Gécseg and Magnus Steinby. Tree languages. In G. Rozenberg
and A. Salomaa, editors, Handbook of Formal Languages. Vol. 3: Beyond
Words, chapter 1, pages 1–68. Springer, 1997.

[HKL93] Annegret Habel, Hans-Jörg Kreowski, and Clemens Lautemann. A com-
parison of compatible, finite, and inductive graph properties. Theoretical
Computer Science, 110:145–168, 1993.

[HKT93] Annegret Habel, Hans-Jörg Kreowski, and Stefan Taubenberger. Col-
lages and patterns generated by hyperedge replacement. Languages of
Design, 1:125–145, 1993.

[HKV91] Annegret Habel, Hans-Jörg Kreowski, and Walter Vogler. Decid-
able boundedness problems for sets of graphs generated by hyperedge-
replacement. Theoretical Computer Science, 89:33–62, 1991.

[Kaa08] Lisa Kaati. Reduction Techniques for Finite (Tree) Automata. Doctoral
dissertation, Uppsala University, Sweden, 2008.

98 Frank Drewes

[KG05] Kevin Knight and Jonathan Graehl. An overview of probabilistic tree
transducers for natural language processing. In Alexander F. Gelbukh,
editor, Proc. 6th Intl. Conf. on Computational Linguistics and Intelli-
gent Text Processing (CICLing 2005), volume 3406 of Lecture Notes in
Computer Science, pages 1–24. Springer, 2005.

[Kui00] Werner Kuich. Linear systems of equations and automata on distributive
multioperator monoids. In D. Dorninger, G. Eigenthaler, M. Goldstern,
H.K. Kaiser, W. More, and W.B. Müller, editors, Proc. 58th Workshop on
General Algebra (1999), volume 12 of Contributions to General Algebra,
pages 247–256, Klagenfurt, 2000. Johannes Heyn.

[Löd02] Christof Löding. Model-checking infinite systems generated by ground
tree rewriting. In M. Nielsen and U. Engberg, editors, Proc. 5th Intl.
Conf. on Foundations of Software Science and Computation Structures
(FOSSACS’02), volume 2303 of Lecture Notes in Computer Science,
pages 280–294, 2002.

[MW67] Jorge Mezei and Jesse B. Wright. Algebraic automata and context-free
sets. Information and Control, 11:3–29, 1967.

[NP92] Maurice Nivat and Andreas Podelski, editors. Tree Automata and Lan-
guages. Elsevier, Amsterdam, 1992.

[Sch07] Thomas Schwentick. Automata for XML - a survey. Journal of Computer
and System Sciences, 73(3):289–315, 2007.

. .

Dr. Frank Drewes

Institutionen för datavetenskap
Ume̊a universitet
S-90187 Ume̊a (Sweden)
drewes@cs.umu.se
http://www.cs.umu.se/˜drewes

Frank Drewes studied Computer Science at the University of Bremen. He was
introduced to Theoretical Computer Science by Hans-Jörg Kreowski and Dr.
Clemens Lautemann who, during those years, was a member of Hans-Jörg’s
team. After his graduation in 1990, Frank became a doctoral student super-
vised by Hans-Jörg. After the defense in 1996, he worked as an assistant pro-
fessor in Hans-Jörg’s team until he accepted an offer from the University of
Ume̊a in 2000.

. .

Processes Based on Biochemical Interactions:

Natural Computing Point of View⋆

Andrzej Ehrenfeucht and Grzegorz Rozenberg

Introduction

In this paper we investigate the interactions between biochemical reactions from
the natural computing point of view. Natural computing (see, e.g., [6, 7]) is
concerned with human-designed computing inspired by nature and with compu-
tation taking place in nature (i.e., it investigates processes taking place in na-
ture in terms of information processing). The former strand of research is quite
well-established: some of the well-known examples are evolutionary computing,
neural computing, cellular automata, swarm intelligence, molecular computing,
quantum computing, artificial immune systems, and membrane computing. Ex-
amples of research themes from the latter strand of research are: computational
nature of self-assembly, computational nature of developmental processes, com-
putational nature of bacterial communication, computational nature of brain
processes, computational nature of biochemical reactions, and system biology
approach to bionetworks. A lot of research from this research strand underscores
the fact that computer science is also the fundamental science of information
processing, and as such a basic science for other scientific disciplines such as,
e.g., biology.

This paper is concerned with the computational nature of processes driven by
interactions between biochemical reactions in living cells. It presents a formal
framework for investigating such processes, called the framework of reaction
systems (see, e.g., [1–4]). In particular, it provides basic definitions together
with the intuition/motivation behind them. The paper is of a tutorial and rather
informal style – the reader is advised to consult the references provided in the
paper for a precise formal treatment of reaction systems.

1 Reactions

The functioning of a biochemical reaction is based on facilitation and inhibition: a
reaction can take place if all of its reactants are present and none of its inhibitors
is present. If a reaction takes place, then it creates its product. Therefore to
specify a reaction one needs to specify its set of reactants, its set of inhibitors,
and its set of products – this leads to the following definition.

⋆ This paper is dedicated to Hans-Joerg Kreowski on the occasion of his 60th birthday.

F. Drewes, A. Habel, B. Hoffmann, D. Plump (Eds.): Manipulation of Graphs, Algebras and Pictures.
Essays Dedicated to Hans-Jörg Kreowski on the Occasion of His 60th Birthday, pp. 99–108, 2009.

100 Andrzej Ehrenfeucht, Grzegorz Rozenberg

Definition 1. A reaction is a triplet a = (R, I, P), where R, I, P are finite sets.
If S is a set such that R, I, P ⊆ S, then a is a reaction in S.

The sets R, I, P are also denoted by Ra, Ia, Pa, and called the reactant set of a,
the inhibitor set of a, and the product set of a, respectively. Also, rac(S) denotes
the set of all reactions in S.
For a finite set of reactions A, RA =

⋃
a∈A Ra, IA =

⋃
a∈A Ia, and PA =

⋃
a∈A Pa

are called the reactant set of A, the inhibitor set of A, and the product set of
A, respectively.
The effect of a reaction a is conditional: if Ra is present and no element of
Ia is present then Pa is produced, otherwise reaction does not take place and
“nothing” is produced. This is formalised as follows.

Definition 2. Let a be a reaction, A a finite set of reactions, and T a finite set.
(1) a is enabled by T , denoted by a en T , if Ra ⊆ T and Ia ∩ T = ∅.
(2) The result of a on T , denoted by resa(T), is defined by: resa(T) = Pa if
a en T , and resa(T) = ∅ otherwise.
(3) The result of A on T , denoted by resA(T), is defined by:
resA(T) =

⋃
a∈A resa(T).

Clearly, if Ra ∩ Ia 6= ∅, then resa(T) = ∅ for every T . Therefore we assume
that, for each reaction a, Ra ∩ Ia = ∅; in this paper we will also assume that
Ra 6= ∅, Ia 6= ∅, and Pa 6= ∅.
As an example consider the reaction a with Ra = {c, x1, x2}, Ia = {y1, y2},
and Pa = {c, z}. We can interpret c as the catalyzer of a (it is needed for a
to take place, but is not “consumed” by a), x1, x2 as “real” reactants, y1, y2 as
inhibitors (e.g., acids inhibiting the functioning of c as the catalyzer), and z as the
compound that is produced by this reaction. Then a en T for T = {c, x1, x2, z},
and a is not enabled on neither {c, x1, x2, z, y1} nor on {x1, x2, z}.
An important notion is the activity of a set of reactions A on a finite set (state)
T – it is denoted by enA(T), and defined by: enA(T) = {a ∈ A : a en T }. Hence
enA(T) is the set of all reactions from A that are enabled by (active on) T . Note
that resA(T) = resenA(T)(T): only the reactions from A which are enabled on
T contribute to the result of A on T .

2 Basic Assumptions and Intuition

We will discuss now in more detail the basic notions of enabling and applica-
tion (result) of reactions and sets of reactions, as they reflect our assumptions
about biochemical reactions (motivated by organic chemistry of living organ-
isms), which are very different from the underlying assumptions of majority of
models (of human-designed systems) in theoretical computer science.
A reaction a is enabled on a set T if T separates Ra from Ia (i.e., Ra ⊆ T and
Ia ∩ T = ∅). We make no assumption about the relationship of Pa to either Ra

Processes Based on Biochemical Interactions 101

or Ia. When a is enabled by a finite set T , then resa(T) = Pa. Thus the result of
a on T is “locally determined” in the sense that it uses only a subset of T , viz.,
the set of reactants Ra. However the result of the transformation is global: in
comparing T with Pa we note that all elements from T −Pa “vanished”. This is
in great contrast to classical models in theoretical computer science; e.g., in Petri
nets (see, e.g., [5]) the firing of a single transition has only a local influence on
the global marking which may be changed only on places that are neighbouring
the given transition. Our way of defining the result of a reaction on a state T
reflects our assumption that there is no permanency of elements: an element
(molecule) of a global state vanishes unless it is sustained by a reaction.
The result of applying a set of reactions A to a state T is cumulative: it is the
union of results of individual reactions from A. We do not set any conditions
on the relationship between reactions in A. In particular, we do not have the
(standard) notion of conflict here: if a, b ∈ A with a en T and b en T , then, even
if Ra∩Rb 6= ∅, still both a and b contribute to resA(T), i.e., (resa(T) ∪ resb(T))
⊆ resA(T). Such a conflict of resources (standard in classical models such as,
e.g., Petri nets) does not exist here. There is no counting in reaction systems,
and so we deal with a qualitative rather than a quantitative model. This reflects
our assumption about the “threshold supply” of elements (molecules): either an
element is present, and then there is “enough” of it, or an element is not present.
There is a notion in reaction systems that reflects an intuition of conflict, viz.,
the notion of consistency. A set of reactions A is called consistent if RA∩IA = ∅,
i.e., Ra ∩ Ib = ∅ for any two reactions a, b ∈ A; clearly if Ra ∩ Ib 6= ∅, then a and
b can never be together enabled.

3 Reaction Systems and Interactive Processes

We are ready now to define reaction systems.

Definition 3. A reaction system, abbreviated rs, is an ordered pair A = (S, A)
such that S is a finite set, and A ⊆ rac(S).

The set S is called the background set of A, and A is called the set of reactions
of A. All the notions and notations introduced for sets of reactions carry over
to reaction systems through their underlying sets of reactions. For example, for
T ⊆ S, enA(T) = enA(T) and resA(T) = resA(T) – also, we say that T is active
in A, if enA(T) 6= ∅.
It is important to note here that, in the setup of reaction systems, reactions
are primary while structures are secondary. Since we do not have permanency
of elements – elements vanish unless they are sustained by reactions, (sets of)
reactions create states rather than transform states. Thus reaction systems do
not work in an environment, but rather they create an environment.
The interactions of reaction systems is given by unions. For reaction systems
A1 = (S1, A1) and A2 = (S2, A2) their union, denoted A1 + A2, is defined

102 Andrzej Ehrenfeucht, Grzegorz Rozenberg

by A1 + A2 = (S1 ∪ S2, A1 ∪ A2). This way of combining reaction systems re-
flects the bottom-up modularity: local descriptions (reaction systems A1,A2)
are combined into global picture (A1 + A2) in such a way that the interac-
tions of local descriptions is provided automatically. Thus a major difference
with standard models in theoretical computer science is that no interface is
given/needed for combining reaction systems: the sheer fact that the sets of reac-
tions A1, A2 operate in the same molecular soup (tube) causes A1, A2 to interact
(again through facilitation and inhibition). Thus union is the basic mechanism
for composing/decomposing reaction systems.
The dynamic behaviour of reaction systems is captured through the notion of
an interactive process which is formally defined as follows.

Definition 4. Let A = (S, A) be a rs. An interactive proces in A is a pair
π = (γ, δ) of finite sequences such that γ = C0, C1, ...Cn, δ = D1, ..., Dn, n ≥ 1,
where C0, ..., Cn, D1, ..., Dn ⊆ S, D1 = resA(C0), and Di = resA(Di−1 ∪Ci−1)
for each 2 ≤ i ≤ n.

The sequence C0, ..., Cn is the context sequence of π, and the sequence D1, ..., Dn

is the result sequence of π. Let W0 = C0, and Wi = Di ∪ Ci for all 1 ≤ i ≤ n.
Then the sequence W0, ..., Wn is the state sequence of π, denoted sts(π), and W0

is the initial state of π. For each 0 ≤ j ≤ n, Cj is the context of Wj . The sequence
E0, ..., En−1 of subsets of A such that Ei = enA(Wi), for all 0 ≤ i ≤ n−1, is the
activity sequence of π, denoted act(π). If act(π) consists of nonempty sets only,
then sts(π) is active – in this case all states W1, ..., Wn−1 are active. The set of
all state sequences of (all interactive processes in) A is denoted by STS(A).
The basic intuition behind the notion of an interactive process is rather straight-
forward. Context C0 represents the initial state of π, i.e., the state in which π
begins (is initiated), and the contexts C1, ..., Cn represent the influence of (the
interaction with) the “rest of the world”. Then D1 is the result of A on C0, i.e.,
the result of applying to C0 all the reactions from A enabled on C0. Together
with context C1, D1 forms the successor state W1 of the initial state. Then, it-
eratively, the result of applying A to state Wi−1 = Di−1 ∪Ci−1 yields the result
Di which together with the context Ci forms the successor state Wi. Note that
even if Di = ∅, Wi can still be an active state (if enA(Ci) 6= ∅). The definition
of an interactive process is illustrated in Figure 1.

4 Extended Reaction Systems

Reaction systems form the basic construct of the broad “framework of reaction
systems”. However, within this framework we use an “onion approach” meaning
that additional levels/components can be incrementally added (or removed) so
that the resulting model is well fitted for the research issue at hand. An example
of such an (incremental) approach are extended reaction systems which are suit-
able for investigating the issue of emergence of modules in biochemical systems,

Processes Based on Biochemical Interactions 103

W0

δ:

Dn−1D2D1 Dn

CnCn−1C2C1C0

. . .
→

→

→
En−1E1

E0

γ:

WnWn−1W2W1

Fig. 1. An interactive process.

investigated in [3] and presented in the next section. We use the notation 2S to
denote the set of subsets of a set S.

Definition 5. An extended reaction system, abbreviated ers, is a triplet A =
(S, A, R) such that (S, A) is a reaction system, and R is a binary relation, R ⊆
2S × 2S.

We refer to (S, A) as the underlying reaction system of A denoted by und(A).

The role of the restriction relation is to restrict the set of interactive processes as
follows. An interactive process of A is an interactive process π = (γ, δ) of und(A)
such that if sts(π) = W0, W1, . . . , Wn, then, for each 0 ≤ i ≤ n−1, (Wi, Wi+1) ∈
R. Thus interactive processes of A are these interactive processes of und(A),
where each two consecutive states in the state sequence are related (allowed)
by R. We also require that the restriction relation is not too restrictive, i.e.,
that for each state sequence W0, W1, ..., Wn of A there exists Wn+1 ⊆ S such
that W0, W1, ..., Wn, Wn+1 is also a state sequence of A. In other words, each
interactive process of A can be extended, as is the case in reaction systems.

A distinct feature of extended reaction systems is the existence of periodic
elements – such elements cannot exist in reaction systems. An element t of
an ers A is periodic (in A) if there exists a positive integer n such that for
each W0, W1, ..., Wn ∈ STS(A), t ∈ W0 if and only if t ∈ Wn; the smallest
such n is called the period of t. Hence, if t is a periodic element with period
n, W0, W1, ..., Wq ∈ STS(A), and 0 ≤ i ≤ q, then if t ∈ Wi then also t ∈ Wi−n

(providing that i − n ≥ 0) and t ∈ Wi+n (providing that i + n ≤ q). The
set of all periodic elements of A is denoted by per(A), and for each T ⊆ S,
perA(T) = T ∩ per(A) is the set of periodic elements of T .

104 Andrzej Ehrenfeucht, Grzegorz Rozenberg

The existence of periodic elements motivates the following definition of com-
puting the images of subsets of a given state (of an interactive process) in the
successor state. Let A = (S, A, R) be an ers, let τ = W0, W1, ..., Wn ∈ STS(A),
let i ∈ {0, ..., n − 1}, and let Q ⊆ Wi. Then the image of Q in Wi+1 (within
τ), denoted by imA,τ,i(Q), is defined by imA,τ,i(Q) = resEi(Q ∪ perA(Wi)) −
perA(resEi(Wi)). The intuition behind this definition of an image is as follows:
since periodic elements are included in fixed states of state sequences “indepen-
dently of the applied reactions” (i.e., we can predict/compute the states of a
state sequence where a periodic element belongs without knowing reactions that
are actually applied to states), they are added to a “real argument” (i.e., Q) of
the resEi when computing imA,τ,i. For the same reason we substract the peri-
odic elements of resEi(Wi), because we want in the image of Q only the “real
results” (which excludes elements from perA(resEi(Wi)) which will be in Wi+1

anyhow because of their periodicity).

5 Events and Modules

Among all the subsets of a state of an interactive process we will distinguish
“material subsets” – these are subsets that are the result of applying reac-
tions of a system to subsets of the predecessor state. More formally, let τ =
W0, W1, . . . , Wn be a state sequence of an ers A, and let us consider state Wi

for some 1 ≤ i ≤ n. A subset X ⊆ Wi is a “material subset” of Wi if there exists
a subset Y ⊆ Wi−1 such that X is the product of the set of reactions enabled
on Wi−1 applied to Y . Such products included in Wi are “modules” of Wi. If
we now consider the sequence of modules in consecutive states of τ initiated by
Y ⊆ Wi−1, beginning in Wi (with X) and ending in some Wj for j ≥ i, then we
are tracing the fate of Y (as a sequence of products) through (j− i + 1) steps of
(an interactive process π behind) τ . Such sequences of modules are called events
which are formally defined below. If we are interested in a module Q in some
Wk, for 1 ≤ k ≤ n, and follow backwards an event that produced Q in Wk, then
we get a possible history of Q, hence an explanation of why and how Q was
created in Wk.

Definition 6. Let A be an ers, let τ = W0, W1, . . . , Wn ∈ STS(A), let i, j ∈
{1, . . . , n} be such that i ≤ j, and let ω = Qi, . . . , Qj be such that Qi ⊆
Wi, . . . , Qj ⊆ Wj, and all Qi, . . . , Qj−1 are nonempty. Then ω is an event
in τ if there is a Qi−1 ⊆ Wi−1 such that, for each k ∈ {i, . . . , j}, Qk =
imA,τ,k−1(Qk−1).

We say that ω is passing through each of Wi, . . . , Wj ; if Qj = ∅, then ω dies in
Wj . The sets Qi, . . . , Qj are called the modules of ω in Wi, . . . , Wj , respectively.
More specifically, each module Ql, i ≤ l ≤ j, is called a l-module.
Thus, intuitively, an event (ω) is tracing the fate of a subset (Qi−1) of a state
(Wi−1) of a state sequence τ within a segment (Wi, . . . , Wj) of τ . More specifi-
cally, suppose that we are interested in a state sequence τ (or in an interactive

Processes Based on Biochemical Interactions 105

process π with sts(π) = τ), and in particular we are interested in the dynamic
development of some Qi−1 ⊆ Wi−1 as τ evolves from Wi on until Wj is reached.
This dynamic development of Qi−1 in the segment Wi, . . . , Wj is the sequence
Qi, . . . , Qj of material subsets (modules) of Wi, . . . , Wj , respectively. Note that
both the notion of the result of transforming Ql into Ql+1, l ∈ {i, . . . , j − 1},
and the notion of a material subset are modified (w.r.t. reaction systems) to take
into account the existence of periodic elements in extended reaction systems.
When an event ω is passing through a state Wl then it leaves a “trace” there,
viz., its module Ql. The set of all such traces in Wl left there by all events
passing through Wl is called the snapshot of Wl in τ , denoted by snpτ (k). Thus
for the given state sequence τ = W0, . . . , Wn we get the corresponding sequence
of snapshots snp(τ) = S1, . . . ,Sn, where Si = snpτ (i) for each 1 ≤ i ≤ n, called
the snapshot sequence of τ , and also called the snapshot sequence of A.
Given a snapshot sequence ρ = S1, . . . ,Sn of a state sequence τ = W0, . . . , Wn

there exists a natural sequence of partial functions nextτ,1, nextτ,2, . . . , nextτ,n−1

transforming consecutive snapshots of ρ into their successor snapshots, where,
for each 1 ≤ k ≤ n − 1, nextτ,k : Sk → Sk+1 is defined as follows. For Q ∈ Sk

and Q′ ∈ Sk+1, nextτ,k(Q) = Q′ if and only if Q, Q′ are nonempty and there
exists an event ω in τ such that Q is the module of ω in Wk and Q′ is the
module of ω in Wk+1. If we extend the nextτ,k function also to pairs (Q, Q′)
with Q′ possibly empty, then the resulting function is denoted by sucτ,k. Thus,
intuitively, the function nextτ,k connects nonempty modules that are consecutive
in an event passing through Wk and Wk+1. In this way the sequence of functions
nextτ,1, . . . , nextτ,n−1 delineate all the events of τ as they are passing through
the states of τ , but it does not explicitly indicate the “moment of death” (if an
event dies). The sequence of functions sucτ,1, . . . , sucτ,n−1 does indicate also the
death moments. As a matter of fact the empty module has really no physical
interpretation – it is clearly no material subset, but rather its role is to signal
the termination (the death) of an event. It is therefore convenient to consider
snapshots with the empty set removed. In this way, for a given snapshot sequence
ρ = S1, . . . ,Sn we obtain its ∅-free version ρ̄ = S̄1, . . . , S̄n, where for each 1 ≤ i ≤
n, S̄i = Si − {∅}. Accordingly, each nextτ,k function is modified to the rnextτ,k

function which is nextτ,k restricted to S̄k.
We move now to present the structure of snapshots. First we need a couple of
set-theoretical notions.

Definition 7. Let L be a family of sets and let F1,F2 ⊆ L be nonempty.
(1) We say that F1 is embedded in F2 if

⋃F1 ⊆
⋂F2.

(2) We say that F1 is separated from F2 in L if there exists U ∈ L such that⋃F1 ⊆ U ⊆ ⋂F2.

Theorem 1. Let A be an ers, let τ = W0, W1, . . . , Wn ∈ STS(A) where n ≥ 2,
let snp(τ) = S1, . . . ,Sn, and let 1 ≤ k ≤ n − 1. If F1,F2 ⊆ S̄k are nonempty
families of sets such that F1 is embedded in F2 and nextτ,k is defined on all
modules in F1 ∪ F2, then nextτ,k(F1) is separated from nextτ,k(F2) in S̄k+1.

106 Andrzej Ehrenfeucht, Grzegorz Rozenberg

This is a remarkable result as it allows us to view (extended) reaction systems
as self-organizing systems, where a possible goal of interactive processes is to
ensure (improve on) separability!
An interactive process (hence a run) of an ers A produces a sequence ρ of snap-
shots S1, . . . ,Sk, . . . ,Sn. In general such a sequence may be very “unstable” be-
cause there may be no “mathematical similarity” between Sk and Sk+1: remem-
ber that the context of the state Wk+1 (in the state sequence τ = W0, . . . , Wn

for which ρ = snp(τ)) can “throw anything” into Wk+1. So we can talk about
local stability (at Wk) only if there is a strong mathematical similarity between
Sk and Sk+1. Perhaps the most natural choice for such a strong similarity is
to require that rnextτ,k is an isomorphism between partial orders (S̄k,⊆) and
(S̄k+1,⊆). When this happens, we get a local stability – it is local because, again,
“anything can happen” to Sk+2 (through the context of Wk+2). Hence we say
that (Sk,Sk+1) is a locally stable situation if rnextk is an isomorphism between
(S̄k,⊆) and (S̄k+1,⊆). We want to point out that the situation is quite subtle
here, e.g., the fact that S̄k = S̄k+1 does not necessarily imply that rnextτ,k is
an isomorphism of S̄k onto S̄k+1.
It turns out that local stability is reflected in the structure of the corresponding
snapshots.

Theorem 2. Let A be an ers, let τ ∈ STS(A), and let S,S′ be two consecutive
elements of snp(τ). If (S,S′) is a locally stable situation, then both (S,⊆) and
(S′,⊆) are complete lattices.

6 Discussion

We have presented in this paper an informal introduction to the framework of
reaction systems. It is motivated by organic chemistry of living cells, and more
specifically by interactions between biochemical reactions. The basic notions
here are reactions and their results, i.e., the way they process states – this way
of processing the states of a system is very different from the manner that state
processing happens in common models in theoretical computer science. The dif-
ferences (and motivation between them) are discussed in detail in this paper. The
basic model of our framework are reaction systems and the basic notion/tool to
investigate their dynamics is an interactive process. Although reaction systems
form the core of our framework, the framework is constructed in an “incremen-
tal” way: depending on a research issue the notion of reaction system can be
modified so that the resulting model is well-suited for the investigation of the
given research issue. For example, reaction systems form a qualitative model
where we do not have counting (of elements), as is the case for models based
on multisets rather than on sets. However there are many situations where one
needs to assign quantitative parameters to states (e.g., when dealing with time
issues). Our point of view is that a numerical value can be assigned to a state
T if there is a measurement of T yielding this value. This leads to the notion of

Processes Based on Biochemical Interactions 107

reaction systems with measurements, where a finite set of measurement functions
is added as a third component to reaction systems (see [4]).
Another example of research leading to an incremental modification of the notion
of a reaction system, is the investigation of the way that the products are formed
and evolve within the runs of biochemical systems. The resulting extended re-
action systems and the formation of products (the topics of [3]) are discussed
in detail in this paper. The basic dynamic notion here is the notion of an event
which traces the formation of modules (products) within interactive processes of
a system. The rather surprising results that (extended) reaction systems can be
seen as self-organising systems which in stable situations produce well-structured
sets of molecules are also presented.
Altogether this paper presents both the basic setup, its motivation, and some
typical research themes and results of the framework of reaction systems.

Acknowledgements The authors are indebted to Robert Brijder and Hendrik
Jan Hoogeboom for comments on this paper, and to Robert Brijder and Marloes
van der Nat for their help in producing this paper.

References

1. Ehrenfeucht, A., Rozenberg, G., Basic notions of reaction systems, Lecture Notes
in Computer Science, v. 3340, 27-29, Springer, 2004.

2. Ehrenfeucht, A., Rozenberg, G., Reaction systems, Fundamenta Informaticae, v.
75, 263-280, 2007.

3. Ehrenfeucht, A., Rozenberg, G., Events and modules in reaction systems, Theo-
retical Computer Science, v. 376, 3-16, 2007.

4. Ehrenfeucht, A., Rozenberg, G., Introducing time in reaction systems, Theoretical
Computer Science, v. 410, 310-322, 2009.

5. Engelfriet, J., Rozenberg, G., Elementary net systems, Lecture Notes in Computer
Science, v. 1491, 12-121, Springer, 1998.

6. Kari, L., Rozenberg, G., The many facets of natural computing, Communications
of the ACM, v. 51, 72-83, 2008.

7. Rozenberg, G., Computer science, informatics, and natural computing – personal
reflections, in S.B. Cooper, B. Löwe, A. Sorbi, eds., New Computational Paradigms
– Changing Conceptions of What is Computable, Springer, Berlin, Heidelberg, 2007.

. .

Prof. Dr. Andrzej Ehrenfeucht

Department of Computer Science
University of Colorado at Boulder
Boulder, CO 80309-0430 (U.S.A.)
andrzej@cs.colorado.edu
http://www.cs.colorado.edu/˜andrzej

. .

108 Andrzej Ehrenfeucht, Grzegorz Rozenberg

. .

Prof. Dr. Grzegorz Rozenberg

Department of Computer Science
University of Colorado at Boulder
Boulder, CO 80309-0430 (U.S.A.)
and
Leiden Institute of Advanced Computer Science,
Leiden Center for Natural Computing,
Leiden University, NL-2333 CA Leiden (The Netherlands)
rozenber@liacs.nl
http://www.liacs.nl/˜rozenber

Grzegorz Rozenberg has been knowing Hans-Jörg Kreowski for about 30 years
now. For the first time, they met during one of Grzegorz’ visits to Hartmut
Ehrig in Berlin. Since then they wrote a number of joint papers, the first one
already in 1981. They also participated in a number of joint European research
projects.
Hans-Jörg visited Grzegorz many times in Bilthoven, and Grzegorz visited
him in Berlin and Bremen. They have become good family friends, with active
mutual interest in the artistic careers of their sons Daniel and Kai, and look
forward to many more meetings to come.

. .

1 2

3 4

e1

1
2

3
e2

e3

1

2
3 e4H −B =⇒

R1

R2

R3

R4H −B

Parallelism and Concurrency Theorems

for Rules with Nested Application Conditions

Hartmut Ehrig, Annegret Habel, and Leen Lambers

Abstract. We present Local Church-Rosser, Parallelism, and Concur-
rency Theorems for rules with nested application conditions in the frame-
work of weak adhesive HLR categories including different kinds of graphs.
The proofs of the statements are based on the corresponding statements
for rules without application conditions and two Shift-Lemmas, saying
that nested application conditions can be shifted over morphisms and
rules.

Keywords: High-level transformation systems, weak adhesive HLR categories,
parallelism, concurrency, nested application conditions, negative application con-
ditions.

1 Introduction

Graph replacement systems have been studied extensively and applied to several
areas of computer science [1,2,3] and were generalized to high-level replacement
(HLR) systems [4] and weak adhesive HLR systems [5,6]. Application conditions
restrict the applicability of a rule. Originally, they were defined in [7], special-
ized to negative application conditions (NACs) [8], and generalized to nested
application conditions (ACs) [9].
The Local Church-Rosser, Parallelism, and Concurrency Theorems are well-
known theorems for graph replacement systems on rules without application con-
ditions [10,11,12,13,14,15] and are generalized to high-level replacement (HLR)
systems [4] and rules with negative application conditions [16]. Nested applica-
tion conditions (ACs) were introduced in [9] and intensively studied in [17]. They
generalize the well-known negative application conditions (NACs) in the sense
of [8,16] and are expressively equivalent to first order formulas on graphs. In this
paper, we generalize the theorems to weak adhesive HLR systems on rules with
nested application conditions.

Theorem without ACs with NACs with ACs
Local Church-Rosser [10,13,4,6] [8,16] this paper

Parallelism [11,12,4,6] [8,16] this paper
Concurrency [14,15,4,6] [16] this paper

The proofs of the theorems are based on the corresponding theorems for weak
adhesive HLR systems on rules without application conditions in [6] and facts
on nested application conditions in [17], saying that application conditions can
be shifted over morphisms and rules.

Theorem + Shift-Lemmas for ACs ⇒ Theorem for rules with ACs

F. Drewes, A. Habel, B. Hoffmann, D. Plump (Eds.): Manipulation of Graphs, Algebras and Pictures.
Essays Dedicated to Hans-Jörg Kreowski on the Occasion of His 60th Birthday, pp. 109–133, 2009.

110 Hartmut Ehrig, Annegret Habel, Leen Lambers

The paper is organized as follows: In Sections 2 and 3, we review the definitions
of a weak adhesive HLR category, nested conditions, and rules. In Section 4, we
state and prove the Local Church-Rosser, Parallelism, and Concurrency Theo-
rems for rules with nested application conditions. The concepts are illustrated
by examples in the category of graphs with the class M of all injective graph
morphisms. A conclusion including further work is given in Section 5.

2 Graphs and high-level structures

We recall the basic notions of directed, labeled graphs [13,18] and generalize
them to high-level structures [4]. The idea behind the consideration of high-
level structures is to avoid similar investigations for similar structures such as
Petri-nets and hypergraphs.
Directed, labeled graphs and graph morphisms are defined as follows.

Definition 1 (graphs and graph morphisms). Let C = 〈CV, CE〉 be a fixed,
finite label alphabet. A graph over C is a system G = (VG, EG, sG, tG, lG, mG)
consisting of two finite sets VG and EG of nodes (or vertices) and edges, source
and target functions sG, tG: EG → VG, and two labeling functions lG: VG → CV

and mG: EG → CE. A graph with an empty set of nodes is empty and denoted
by ∅. A graph morphism g: G→ H consists of two functions gV: VG → VH and
gE: EG → EH that preserve sources, targets, and labels, that is, sH ◦gE = gV◦sG,
tH ◦ gE = gV ◦ tG, lH ◦ gV = lG, and mH ◦ gE = mG. A morphism g is injective
(surjective) if gV and gE are injective (surjective), and an isomorphism if it
is both injective and surjective. The composition h ◦ g of g with a morphism
h: H →M consists of the composed functions hV ◦ gV and hE ◦ gE.

Our considerations are based on weak adhesive HLR categories, i.e. categories
based on objects of many kinds of structures which are of interest in computer
science and mathematics, e.g. Petri-nets, (hyper)graphs, and algebraic specifica-
tions, together with their corresponding morphisms and with specific properties.
Readers interested in the category-theoretic background of these concepts may
consult e.g. [6].

Definition 2 (weak adhesive HLR category). A category C with a morphism
classM is a weak adhesive HLR category, if the following properties hold:

1. M is a class of monomorphisms closed under isomorphisms, composition,
and decomposition. I.e. for morphisms g ◦ f : f ∈M, g isomorphism (or vice
versa) implies g◦f ∈ M; f, g ∈M implies g◦f ∈M; and g◦f ∈M, g ∈M
implies f ∈ M.

2. C has pushouts and pullbacks along M-morphisms, i.e. pushouts and pull-
backs, where at least one of the given morphisms is inM, andM-morphisms
are closed under pushouts and pullbacks, i.e. given a pushout (1) as in the
figure below, m ∈ M implies n ∈ M and, given a pullback (1), n ∈ M
implies m ∈M.

Parallelism and Concurrency Theorems for Rules with NACs 111

3. Pushouts in C along M-morphisms are weak VK-squares, i.e. for any com-
mutative cube in C where we have the pushout with m ∈ M and (f ∈ M
or b, c, d ∈ M) in the bottom and the back faces are pullbacks, it holds: the
top is pushout iff the front faces are pullbacks.

A

B

C

D

m n(1)

A′

A C

C′

f

cB′

B D

D′

b d
m

Fact 1. The category 〈Graphs, Inj〉 of graphs with class Inj of all injective graph
morphisms is a weak adhesive HLR category [6].

Further examples of weak adhesive HLR categories are the categories of hy-
pergraphs with all injective hypergraph morphisms, place-transition nets with
all injective net morphisms, and algebraic specifications with all strict injective
specification morphisms [6]. Weak adhesive HLR-categories have a number of
nice properties, called HLR properties [4].

Fact 2 (properties of weak adhesive HLR categories [19,6]). For a weak
adhesive HLR-category 〈C,M〉, the following properties hold:

1. Pushouts alongM-morphisms are pullbacks.
2. M pushout-pullback decomposition. If the diagram (1)+(2) in the figure

below is a pushout, (2) a pullback, w ∈M and (l ∈ M or c ∈ M), then (1)
and (2) are pushouts and also pullbacks.

3. Cube pushout-pullback decomposition. Given the commutative cube (3) in
the figure below, where all morphisms in the top and the bottom are inM,
the top is pullback, and the front faces are pushouts, then the bottom is a
pullback iff the back faces of the cube are pushouts.

A C E

B D F

c r

u w

l s v(1) (2)

A′

AC

C′

B′

BD

D′

(3)

4. Uniqueness of pushout complements. Given morphisms c: A→ C inM and
s: C → D, then there is, up to isomorphism, at most one B with l: A → B
and u: B → D such that diagram (1) is a pushout.

In the following, we consider weak adhesive HLR categories with an epi-M
factorization and binary coproducts.

112 Hartmut Ehrig, Annegret Habel, Leen Lambers

Definition 3 (epi-M factorization). A weak adhesive HLR category 〈C,M〉
has an epi-M factorization if, for every morphism, there is an epi-mono factori-
zation with monomorphism in M and this decomposition is unique up to iso-
morphism.

Remark 1 (binary coproducts). In a weak adhesive HLR category 〈C,M〉
with binary coproducts, the binary coproducts are compatible with M in the
sense that f, g ∈ M implies f+g ∈ M. In fact, PO (1) in the figure below with
f ∈ M implies (f+id) ∈ M and PO (2) with g ∈ M implies (id+g) ∈ M, but
now (f+g) = (id+g) ◦ (f+id) ∈M by closure under composition.[1em]

A B

A+C B+C B+D

DC
f g

f+id id+g

(1) (2)

[1em] For the category 〈Graphs, Inj〉 of graphs with class Inj of all injective graph
morphisms, these specific properties are satisfied.

Fact 3. 〈Graphs, Inj〉 has an epi-Inj factorization and binary coproducts [6].

3 Conditions and rules

We use the framework of weak adhesive HLR categories and introduce conditions
and rules for high-level structures like Petri nets, (hyper)graphs, and algebraic
specifications.

Assumption 1. We assume that 〈C,M〉 is a weak adhesive HLR category with
an epi-M factorization and binary coproducts.

Conditions are defined as in [9,17]. Syntactically, the conditions may be seen as
a tree of morphisms equipped with certain logical symbols such as quantifiers
and connectives.

Definition 4 (conditions). A (nested) condition over an object P is of the
form true or ∃(a, c), where a: P → C is a morphism and c is a condition over
C. Moreover, Boolean formulas over conditions over P are conditions over P :
for conditions c, ci over P with i ∈ I (for all index sets I), ¬ c and ∧i∈Ici are
conditions over P . ∃a abbreviates ∃(a, true), ∀(a, c) abbreviates ¬∃(a,¬c). Every
morphism satisfies true. A morphism p: P → G satisfies a condition ∃(a, c) if
there exists a morphism q in M such that q ◦ a = p and q |= c.

P

G

C,a

p q
=

c

|=
)∃(

Parallelism and Concurrency Theorems for Rules with NACs 113

The satisfaction of conditions over P by morphisms with domain P is extended
to Boolean formulas over conditions in the usual way. We write p |= c to denote
that the morphism p satisfies c. Two conditions c and c′ over P are equivalent,
denoted by c ≡ c′, if for all morphisms p with domain P , p |= c iff p |= c′.

Remark 2. The definition of conditions generalizes those in [8,20,21,5]. In the
context of rules, conditions are also called application conditions. Negative appli-
cation conditions [8,16] correspond to nested application conditions of the form
∄a. Examples of nested application conditions are given in Figure 1.

∃(
1 2

→֒
1 2

) There is an edge from the image of 1 to the im. of 2.
∄(

1 2
→֒

1 2
) There is no edge from the image of 1 to the im. of 2.

∃(
1 2

→֒
1 2

)
∧∄(

1 2
→֒

1 2
)

There is a directed path of length 2, but not of
length 1, from the image of 1 to the image of 2.

∃(
1
→֒

1 2
,

∄(
1 2

→֒
1 2

))
There is a proper edge outgoing from the image of 1
without edge in converse direction.

∀(
1
→֒

1 2
,

∃(
1 2

→֒
1 2

))
For every proper edge outgoing from the image of 1,
the target has a loop.

∃(
1
→֒

1 2
,

∀(
1 2

→֒
1 2 3

,
∃(

1 2 3
→֒

1 2 3
)))

For the image of node 1, there exists an outgoing
edge such that, for all edges outgoing from the
target, the target has a loop.

Fig. 1. Nested application conditions

In the presence of an M-initial object I [17], conditions ∃(a, c) with morphism
a: I → C can be used to define constraints for objects G, namely G satisfies
∃(a, c) if the initial morphism iG satisfies ∃(a, c).

Remark 3. In general, one could choose a satisfiability notion, i.e. a class of
morphisms M′, and require that the morphism q in Definition 4 is in M′. Ex-
amples are A- and M-satisfiability [22] where A and M are the classes of all
morphisms and all monomorphisms, respectively.

Conditions can be shifted over morphisms into corresponding conditions over
the codomain of the morphism. We present a Shift-construction based on jointly
epimorphic pairs of morphisms. A morphism pair (e1, e2) with ei: Ai → B (i =
1, 2) is jointly epimorphic if, for all morphisms g, h: B → C with g ◦ ei = h ◦ ei

for i = 1, 2, we have g = h. In the case of graphs, “jointly epimorphic” means
“jointly surjective”: a morphism pair (e1, e2) is jointly surjective, if for each
b ∈ B there is a preimage a1 ∈ A1 with e1(a1) = b or a2 ∈ A2 with e2(a2) = b.

Definition 5 (shift of conditions over morphisms). Let 〈C,M〉 be a weak
adhesive HLR category with epi-M-factorization. The transformation Shift is

114 Hartmut Ehrig, Annegret Habel, Leen Lambers

inductively defined as follows:

P

C

P ′

C′
a a′(1)

b

b′

c

Shift(b, true) = true.
Shift(b, ∃(a, c)) =

∨
(a′,b′)∈F ∃(a′, Shift(b′, c))

with F = {(a′, b′) | (a′, b′) jointly epimorphic, b′ ∈ M, and
(1) commutes}.

For Boolean formulas over conditions, Shift is extended in the usual way: For
conditions c, ci with i ∈ I (for all index sets I), Shift(b,¬c) = ¬Shift(b, c) and
Shift(b,∧i∈Ici) = ∧i∈IShift(b, ci).

Remark 4. In the special case that F is empty, the result of the transformation
is false. For previous versions of the Shift-construction see [16,17].

Example 1. Given the morphism b: P → P ′ below, the condition ∃ a is shifted
into the condition Shift(b, ∃ a) = ∃ a′ ∨ ∃ a′′ ∨ ∃ idP ′ where a′ is the morphism
depicted in the figure below and a′′ obtained from a′ by identifying the nodes
with label ordernr in C′. The condition can be simplified to true because ∃ idP ′ is
equivalent to true. The condition ∄ a is shifted into the condition Shift(b, ∄ a) =
¬Shift(b, ∃ a) ≡ ¬ true ≡ false.

�� ��name�
 �	orders�
 �	name’

P �� ��name�
 �	orders �
 �	name’

�
 �	ordernr
�
 �	title

P ′

�� ��name�
 �	orders�
 �	name’

�
 �	ordernr

C

�� ��name�
 �	orders �
 �	name’

�
 �	ordernr�
 �	ordernr

�
 �	title

C′

b

b′

a a′

Lemma 1 (shift of conditions over morphisms). Let 〈C,M〉 be a weak
adhesive HLR category with epi-M-factorization. Then, for all conditions c over
P and all morphisms b: P → P ′, n: P ′ → H , n ◦ b |= c⇔ n |= Shift(b, c).

P

H

P ′b

n ◦ b n

Shift(b, c)c

Parallelism and Concurrency Theorems for Rules with NACs 115

Proof. The statement is proved by structural induction.
Basis. For the condition true, the equivalence holds trivially.
Inductive step. For a condition of the form ∃(a, c), we have to show

n ◦ b |= ∃(a, c)⇔ n |= Shift(b, ∃(a, c)).

”⇒”: Let n◦ b |= ∃(a, c). By definition of satisfiability, there is some q ∈M with
q ◦a = n◦b and q |= c. Let (ā, b̄) be the pushout in (1) in the left diagram below.
By the universal property of pushouts, there is an induced morphism q̄: C̄ → H
such that q = q̄ ◦ b̄ and n = q̄ ◦ ā. By epi-M factorization of q̄, q̄ = m ◦ e with
epimorphism e and monomorphism m ∈M. Define now a′ = e◦ ā and b′ = e◦ b̄.
Then the diagram PP ′CC′ commutes. Since M is closed under decomposition,
q = m ◦ b′ ∈ M, m ∈ M implies b′ ∈ M. Since 〈ā, b̄〉 is jointly epimorphic and
e is an epimorphism, (a′, b′) is jointly epimorphic. Thus, (a′, b′) ∈ F . By the in-
ductive hypothesis, q = m◦b′ |= c⇔ m |= Shift(b′, c). Now n |= ∃(a′, Shift(b′, c))
and, by definition of Shift, n |= ∃(b, Shift(a, c)).

P

P ′

C

C̄

C′

H

a

ā

a′

n

b b̄
b′

e

m

q̄

q

(1)

c
P

P ′

C

C′

H

a

a′
b b′

n m

c

”⇐”: Let n |= Shift(b, ∃(a, c)). By definition of Shift, there is some (a′, b′) ∈ F
with b′ ∈ M such that n |= ∃(a′, Shift(b′, c)). By definition of satisfiability, there
is some m ∈ M such that m ◦ a′ = n and m |= Shift(b′, c). By the inductive
hypothesis, m |= Shift(b′, c) ⇔ m ◦ b′ |= c. Now m ◦ b′ ∈ M, m ◦ b′ ◦ a = n ◦ b
(see the right diagram above), and m ◦ b′ |= c, i.e., n ◦ b |= ∃(a, c). 2

Rules are defined as in [5,17]. They are specified by a span of M-morphisms〈
L ←֓ K →֒ R

〉
with a left and a right application condition. We consider the

classical semantics based on the double-pushout construction [13,18].

Definition 6 (rules). A rule ρ = 〈p, acL, acR〉 consists of a plain rule p =〈
L ←֓ K →֒ R

〉
with K →֒ L and K →֒ R inM and two application conditions

acL and acR over L and R, respectively. L and R are called the left- and the
right-hand side of p and K the interface; acL and acR are the left and right
application condition of p.

L K R

DG H

m m∗(1) (2)

acL

=|

acR

|=

116 Hartmut Ehrig, Annegret Habel, Leen Lambers

A direct derivation consists of two pushouts (1) and (2) such that m |= acL and
m∗ |= acR. We write G ⇒ρ,m,m∗ H and say that m: L → G is the match of ρ
in G and m∗: R → H is the comatch of ρ in H . We also write G ⇒ρ,m H or
G ⇒ρ H to express that there is an m∗ or there are m and m∗, respectively,
such that G⇒ρ,m,m∗ H .

The concept of rules is completely symmetric.

Fact 4. For ρ = 〈p, acL, acR〉 with p =
〈
L ←֓ K →֒ R

〉
, ρ−1 = 〈p−1, acR, acL〉

with p−1 =
〈
R ←֓ K →֒ L

〉
, is the inverse rule of ρ. For every direct derivation

G⇒ρ,m,m∗ H , there is a direct derivation H ⇒ρ−1,m∗,m G via the inverse rule.

Notation. In the case of graphs, a rule
〈
L ←֓ K →֒ R

〉
with discrete interface

K is shortly depicted by L ⇒ R, where the nodes of K are indexed in the left-
and the right-hand side of the rule. A negative application condition of the form
∄(L →֒ L′) is integrated in the left-hand side of a rule by crossing the part L′−L
out. E.g. the rule

p =
〈�
 �	authors ←֓

�
 �	authors →֒
�
 �	authors

�� ��name
〉

with

acL = ∄
(�
 �	authors →֒

�
 �	authors
�� ��name

)

is depicted by

�
 �	authors
1

�� ��name =⇒
�
 �	authors

1

�� ��name .

A conjunction
∧

i ∄(Li →֒ L′
i) of negative application conditions is represented

by coloring the parts L′
i−Li in grey and crossing them out. A grey edge with

labels l1, . . . , ln represents the conjunction of the negative application conditions
“There does not exist an li-labelled edge” for i = 1, . . . , n.

Example 2. In the figure below, rules with left application conditions are given,
corresponding more or less to the operations of the small library system originally
investigated in [23].

Parallelism and Concurrency Theorems for Rules with NACs 117

AddAuthor(name):�
 �	authors
1

�� ��name =⇒
�
 �	authors

1

�� ��name

AddPublisher(name’):�
 �	publishers
1

�� ��name =⇒
�
 �	publishers

1

�� ��name

AddReader(readernr):�
 �	readers
1

�
 �	readernr =⇒
�
 �	readers

1

�
 �	readernr

OrderBook(ordernr,name,title,name’):�� ��name
2�
 �	orders

1 �
 �	name’
3

�
 �	ordernr =⇒

�� ��name
2�
 �	orders

1

�
 �	ordernr
�
 �	title�
 �	name’

3

RegisterBook(ordernr,catnr):�
 �	orders
1�
 �	catalog
5

�
 �	ordernr

�
 �	catnr

�� ��name
2�
 �	title
3�
 �	name’
4

+,-
=⇒

�
 �	orders
1�
 �	catalog
4

�
 �	catnr

�� ��name
2�
 �	title
3�
 �	name’
4

+

LendBook(catnr,readernr):�
 �	catalog
1

�
 �	catnr
2

�
 �	readernr
3

+
=⇒

�
 �	catalog
1

�
 �	catnr
2

�
 �	readernr
3

–

By Theorem 6 in [17], right application conditions of rules can be shifted into
corresponding left application conditions and vice versa.

Lemma 2 (shift of conditions over rules). There are transformations L and
R of application conditions such that, for every right application condition acR

and every left application condition acL of a rule ρ and every direct derivation
G⇒ρ,m,m∗ H , m |= L(ρ, acR)⇔ m∗ |= acR and m |= acL ⇔ m∗ |= R(ρ, acL).

L K R

DG H

m m∗(1) (2)

L(ρ, acR)

=|

acR

|=

118 Hartmut Ehrig, Annegret Habel, Leen Lambers

Construction. The transformation L is inductively defined as follows:

L K R

ZY X

l r

l∗ r∗

b a(2) (1)

L(ρ∗, ac) ac

L(ρ, true) = true
L(ρ, ∃(a, ac)) = ∃(b, L(ρ∗, ac)) if 〈r, a〉 has a pushout
complement (1) and ρ∗ = 〈Y ← Z → X〉 is the
derived rule by constructing the pushout (2).
L(ρ, ∃(a, ac)) = false, otherwise.

For Boolean formulas over application conditions, L is extended in the usual way:
For conditions c, ci with i ∈ I, L(b,¬c) = ¬L(b, c) and L(b,∧i∈Ici) = ∧i∈IL(b, ci).
The transformation R is given by R(ρ, acL) = L(ρ−1, acL).

Example 3. Given the library rule ρ = OrderBook(ordernr, name, title, name′)
in the upper row of the figure below, the right application condition ∄(R → X)
is shifted over ρ into the left application condition ∄(L→ Y).

�� ��name�
 �	orders �
 �	name’

L �� ��name�
 �	orders �
 �	name’

K �� ��name�
 �	orders �
 �	name’

�
 �	ordernr
�
 �	title

R

�� ��name�
 �	orders �
 �	name’

�
 �	ordernr

Z

�� ��name�
 �	orders �
 �	name’

�
 �	ordernr

Y

�� ��name�
 �	orders
�
 �	ordernr

�
 �	title�
 �	ordernr
�
 �	name’

X

In the following, we define the equivalence of rules and the equivalence of appli-
cation conditions with respect to a rule. The equivalence with respect to a rule
is more restrictive than the unrestricted one in Definition 4.

Definition 7 (equivalence). Two rules ρ and ρ′ are equivalent, denoted by
ρ ≡ ρ′, if the relations⇒ρ and⇒ρ′ are equal. For a rule ρ, two left (right) appli-
cation conditions ac and ac′ are ρ-equivalent, denoted by ac ≡ρ ac′, if the rules
obtained from ρ by adding the application condition ac and ac′, respectively, are
equivalent.

There is a close relationship between the transformations L and R: For every
rule ρ, Shift of a condition over the rule to the left and then over the rule to the
right is ρ-equivalent to the original condition.

Fact 5 (L and R). For every rule ρ and every application condition ac over R,
the right-hand side of the plain rule of ρ, the application conditions R(ρ, L(ρ, ac))
and ac are ρ-equivalent: R(ρ, L(ρ, ac)) ≡ρ ac.

Parallelism and Concurrency Theorems for Rules with NACs 119

Proof. By the Shift-Lemma 2, for every direct derivation G⇒ρ,m,m∗ H , m∗ |=
R(ρ, L(ρ, ac)) ⇔ m |= L(ρ, ac) ⇔ m∗ |= ac, i.e., the application conditions
R(ρ, L(ρ, ac)) and ac are ρ-equivalent. 2

Remark 5. In general, the application conditions R(ρ, L(ρ, ac)) and ac are not
equivalent in the sense of Definition 4. E.g., for the rule ρ =

〈∅ ←֓ ∅ →֒
1

〉
and

the application condition ac = ∃(
1
→

1
), L(ρ,¬ac) = ¬L(ρ, ac) = ¬false ≡

true and R(ρ, L(ρ,¬ac)) = R(ρ, true) = true 6≡ ¬ac.

Furthermore, there is a nice interchange result of Shift and L saying that, for
a rule ρ, the shift of a right application condition over a rule and a match is
ρ-equivalent to the shift of the application condition over the comatch and the
rule induced by the match.

Lemma 3 (Shift and L). For every direct derivation L∗ ⇒ρ,k,k∗ R∗ via a rule
ρ and every application condition ac, Shift(k, L(ρ, ac)) ≡ρ∗ L(ρ∗, Shift(k∗, ac)),
where ρ∗ denotes the rule derived from ρ and k. A corresponding statement holds
for Shift and R.

L K R

K∗L∗ R∗
k k∗(11) (21)

Proof. Let G⇒ρ∗,l,l∗ H be a direct derivation, m = l ◦ k and m∗ = l∗ ◦ k∗. By
Shift-Lemmas 1 and 2, we have l |= Shift(k, L(ρ, ac)) ⇔ m |= L(ρ, ac) ⇔ m∗ |=
acR ⇔ l∗ |= Shift(k∗, ac)⇔ l |= L(ρ∗, Shift(k∗, ac)).

L K R

K∗L∗ R∗

DG H

k k∗

l l∗

(11) (21)

(12) (22)

m m∗

2

As a consequence of Shift-Lemma 2, every rule can be transformed into an equiv-
alent one with true right application condition. A rule of the form 〈p, acL, true〉
is said to be a rule with left application condition and is abbreviated by 〈p, acL〉.

Corollary 1 (rules with left application condition). There is a transfor-
mation Left from rules into rules with left application condition such that, for
every rule ρ, ρ, and Left(ρ) are equivalent.

Proof. For a rule ρ = 〈p, acL, acR〉, the transformation Left is defined by
Left(ρ) = 〈p, acL ∧ L(ρ, acR)〉. By Definition 6, Shift-Lemma 2, and the defi-

120 Hartmut Ehrig, Annegret Habel, Leen Lambers

nition of Left,

G⇒ρ,m,m∗ H ⇔ G⇒p,m,m∗ H ∧m |= acL ∧m∗ |= acR

⇔ G⇒p,m,m∗ H ∧m |= acL ∧m |= L(ρ, acR)
⇔ G⇒p,m,m∗ H ∧m |= acL ∧ L(ρ, acR)
⇔ G⇒Left(ρ),m,m∗ H,

i.e., the rules ρ and Left(ρ) are equivalent. 2

4 Local Church-Rosser, Parallelism, and Concurrency

In this section, we present Local Church-Rosser, Parallelism, and Concurrency
Theorems for rules with application conditions. The proofs of the statements are
based on the corresponding statements for rules without application conditions
[6] and Shift-Lemmas 1 and 2, saying that application conditions can be shifted
over morphisms and rules.
First, we study parallel and sequential independence of direct derivations leading
to the Local Church-Rosser and Parallelism Theorems for rules with application
conditions. By Corollary 1, we may assume that the rules are rules with left
application condition.

Assumption 2. In the following, let ρ1 = 〈p1, acL1〉 and ρ2 = 〈p2, acL2〉 be
rules with pi =

〈
Li ←֓ Ki →֒ Ri

〉
for i = 1, 2.

Roughly speaking, two direct derivations are parallel (sequentially) independent
if the underlying direct derivations without application conditions are parallel
(sequentially) independent and the induced matches satisfy the corresponding
application conditions. For rules with negative application conditions, the defi-
nition corresponds to the one in [24].

Definition 8 (parallel and sequential independence). Two direct deriva-
tions H1 ⇐ρ1,m1 G ⇒ρ2,m2 H2 are parallel independent if there are morphisms
d2: L1 → D2 and d1: L2 → D1 such that the triangles L1D2G and L2D1G com-
mute, m′

1 = c2 ◦ d2 |= acL1 , and m′
2 = c1 ◦ d1 |= acL2 .

GD1H1

R1 K1 L1

D2 H2

R2K2L2

=c1 = c2

d1 d2

acL1 acL2

Two direct derivations G ⇒ρ1,m1 H1 ⇒ρ2,m′
2

M are sequentially independent
if there are morphisms d2: R1 → D2 and d1: L2 → D1 such that the triangles
R1D2H1 and L2D1H1 commute, m′∗

1 = c2 ◦d2 |= R(ρ1, acL1) and m2 = c1◦d1 |=
acL2 .

Parallelism and Concurrency Theorems for Rules with NACs 121

H1D1G

L1 K1 R1

D2 M

R2K2L2

=c1 = c2

d1 d2

acL1 acL2

Two direct derivations that are not parallel (sequentially) independent, are called
parallel (sequentially) dependent.

By definition, parallel and sequential independence are closely related.

Fact 6 (parallel and sequential independence are closely related). Two
direct derivations H1 ⇐ρ1,m1 G ⇒ρ2,m2 H2 are parallel independent iff the two
direct derivations H1 ⇒ρ−1

1 ,m∗
1

G⇒ρ2,m2 H2 are sequentially independent, where
m∗

1 is the comatch of ρ1 in H1.

Example 4. The two direct derivations H1 ⇐ρ1 G ⇒ρ2 H2 via the rules ρ1 =
AddAuthor(name) and ρ2 = AddPublisher(name′) are parallel independent.

�
 �	authors�
 �	publishers

�
 �	authors�
 �	publishers

�
 �	authors�
 �	publishers

�� ��name

�
 �	authors
�� ��name

�
 �	authors
�
 �	authors

�
 �	authors�
 �	publishers

�
 �	authors�
 �	publishers
�
 �	name’

�
 �	publishers
�
 �	name’

�
 �	publishers
�
 �	publishers

GH1 D1 D2 H2

In the proofs of the Local Church-Rosser, Parallelism and Concurrency Theo-
rems, we proceed as follows: (1) We switch from derivations with ACs to the
corresponding derivations without ACs, (2) use the results for derivations with-
out ACs, and (3) lift the results without ACs to ACs.

derivations with ACs =⇒ result with ACs
↓ ↑

derivations without ACs =⇒ result without ACs

Fact 7 (Every derivation with ACs induces a derivation without ACs).
For every direct derivation G ⇒ρ,m H via the rule ρ = 〈p, ac〉, there is a direct
derivation G⇒p,m H via the plain rule p, called the underlying direct derivation
without ACs.

Fact 8 (independence with ACs implies independence without ACs).
Parallel (sequential) independence of direct derivations implies parallel (sequen-
tial) independence of the underlying direct derivations without ACs.

122 Hartmut Ehrig, Annegret Habel, Leen Lambers

Now we present a Local Church-Rosser Theorem for rules with application con-
ditions. It generalizes the well-known Local Church-Rosser Theorems for rules
without application conditions [6] and with negative application conditions [24].

Theorem 1 (Local Church-Rosser Theorem). Given two parallel indepen-
dent direct derivations H1 ⇐ρ1,m1 G ⇒ρ2,m2 H2, there are an object M and
direct derivations H1 ⇒ρ2,m′

2
M ⇐ρ1,m′

1
H2 such that G⇒ρ1,m1 H1 ⇒ρ2,m′

2
M

and G ⇒ρ2,m2 H2 ⇒ρ1,m′
1

M are sequentially independent. Given two sequen-
tially independent direct derivations G ⇒ρ1,m1 H1 ⇒ρ2,m′

2
M , there are an

object H2 and direct derivations G⇒ρ2,m2 H2 ⇒ρ1,m′
1

M such that H1 ⇐ρ1,m1

G⇒ρ2,m2 H2 are parallel independent.

G

H1

H2

M

ρ1

ρ2

ρ2

ρ1

Proof. Let H1 ⇐ρ1,m1 G ⇒ρ2,m2 H2 be parallel independent. Then the un-
derlying direct derivations without ACs are parallel independent. By the Local
Church-Rosser Theorem without ACs [6], there are an object M and direct
derivations H1 ⇒p2,m′

2
M ⇐p1,m′

1
H2 such that G ⇒p1,m1 H1 ⇒p2,m′

2
M and

G⇒p2,m2 H2 ⇒p1,m′
1

M are sequentially independent. By assumption, mi, m
′
i |=

acLi for i = 1, 2. Thus, there are direct derivations H1 ⇒ρ2,m′
2

M ⇐ρ1,m′
1

H2

with ACs. Let R1 → D̄2 and L2 → D1 be the morphisms in Figure 2. Then
R1 → D̄2 → H1 = m∗

1 and L2 → D1 → H1 = m′
2. By Shift-Lemma 2,

R1 → D̄2 → M = m′∗
1 |= R(ρ1, acL1) and L2 → D1 → G = m2 |= acL2 .

Thus, the derivation G⇒ρ1,m1 H1 ⇒ρ2,m′
2

M is sequentially independent. Anal-
ogously, the second derivation is sequentially independent.
Vice versa, let G ⇒ρ1,m1 H1 ⇒ρ2,m′

2
M be sequentially independent. Then the

underlying direct derivations without ACs are sequentially independent. By the
Local Church-Rosser Theorem without ACs [6], there are an object H2 and di-
rect derivations G⇒p2,m2 H2 ⇒p1,m′

1
M such that H1 ⇐p1,m1 G⇒p2,m2 H2 are

parallel independent. By assumption, we know that m1, m
′
1 |= acL1 , m2 |= acL2

(by Shift-Lemma 2, m′∗
1 |= R(ρ1, acL1) implies m′

1 |= acL1). Thus, G ⇒ρ2,m2

H2 ⇒ρ1,m′
1

M is a derivation with ACs. Let L2 → D1 and L1 → D2 in Figure 2
be the morphisms with L1 → D2 → G = L1 → G and L2 → D1 → G = L→ G.
Then L1 → D2 → H2 = m′

1 and L2 → D1 → H1 = m′
2 |= acL2 . Thus, the

direct derivations H1 ⇐p1,m1 G ⇒p2,m2 H2 become parallel independent. The
statement also can be proved with the help of the first statement and Fact 6. 2

For clarifying the notations, a sketch a part of the proof of Local Church-Rosser
Theorem for rules without ACs is given oriented at the one in [30].

Sketch of proof. Let H1 ⇐p1,m1 G ⇒p2,m2 H2 be parallel independent. Then
there are morphisms L1 → D2 and L2 → D1 such that the triangles L1D2G

Parallelism and Concurrency Theorems for Rules with NACs 123

andL2D1G in the figure below commute.

GD1H1

R1 K1 L1

D2 H2

R2K2L2

(1)(2) (3) (4)

The morphisms are used for the decomposition of the pushouts (i) into pushouts
(i1),(i2) for i = 1, . . . , 4 (Figure 2.1). The pushouts can be rearranged as in
Figure 2.2 and 2.3. Furthermore, diagram (5) is constructed as pushout. Since the
composition of pushouts yields pushouts, we obtain direct derivations H1 ⇒p2,m′

2

M ⇐p1,m′
1

H2 such that the direct derivations G ⇒p1,m1 H1 ⇒p2,m′
2

M and
G⇒p2,m2 H2 ⇒p1,m′

1
M are sequentially independent. 2

GD1H1 D2 H2

D̄2 D0 D2 D0D1 D̄1

R1 K1 L1 R2K2L2

m1 m2m∗
1 m∗

2

(21)

(22)

(11)

(12)

(31)

(32)

(41)

(42)

H1D1G D̄2 M

D2 D0 D̄2 D0D1 D̄1

L1 K1 R1 R2K2L2

m1 m∗
1 m′

2 m′∗
2

(11)

(12)

(21)

(22)

(31)

(22)

(41)

(5)

H2D2G D̄1 M

D1 D0 D̄1 D0D2 D̄2

L2 K2 R2 R1K1L1

m2 m∗
2 m′

1 m′∗
1

(31)

(12)

(41)

(42)

(11)

(42)

(21)

(5)

Fig. 2. Decomposition and composition

124 Hartmut Ehrig, Annegret Habel, Leen Lambers

Next, we present the construction of a parallel rule of rules with application
conditions. It generalizes the construction of a parallel rule of rules without
application conditions [6] and makes use of the Shift of application conditions
over morphisms and rules (see Shift-Lemmas 1 and 2). As in [6], we have to
assume that 〈C,M〉 has binary coproducts. The application condition of the
parallel rule ρ1 + ρ2 guarantees that, whenever the parallel rule is applicable,
the rules ρ1 and ρ2 are applicable and, after the application of ρ1, the rule ρ2 is
applicable and, after the application of ρ2, the rule ρ1 is applicable.

Definition 9 (parallel rule and derivation). The parallel rule of ρ1 and ρ2

is the rule ρ1+ρ2 = 〈p, ac′L〉 where p = p1+p2 is the parallel rule of p1 and p2,
and acL′ = acL ∧ L(ρ1+ρ2, acR), where

acL = Shift(k1, acL1) ∧ Shift(k2, acL2)
acR = Shift(k∗1 , R(ρ1, acL1)) ∧ Shift(k∗2 , R(ρ2, acL2)).

L1+L2 K1+K2 R1+R2

L1 K1 R1

L2 K2 R2k1

k∗1
k2 k∗2

A direct derivation via a parallel rule is called parallel direct derivation or parallel
derivation, for short.

Example 5. The parallel rule of AddAuthor(name) and AddPublisher(name′)
is the rule with the plain rule

p =

〈 �
 �	authors�
 �	publishers
←֓

�
 �	authors�
 �	publishers
→֒

�
 �	authors
�� ��name�
 �	publishers
�
 �	name’

〉

and the application conditions

acL = ∄
(�
 �	publishers

�
 �	authors
�� ��name

)
∧ ∄

(�
 �	authors
�
 �	publishers

�
 �	name’
)

acR = ∄

 �
 �	authors
�� ��name

�� ��name

�
 �	publishers
�
 �	name’

 ∧ ∄

�
 �	authors�
 �	publishers

�� ��name�
 �	name’�
 �	name’

requiring that “There does not exist an author node with label name”, “There
does not exist a publisher node with label name′”, “Afterwards, there do not
exist two author nodes with label name”, and “Afterwards, there do not exist
two publisher nodes with label name′”. Here an author node is a node which
is connected with the node with label authors by a directed edge. Shifting the
application condition acR over the rule ρ yields the application condition acL.

Parallelism and Concurrency Theorems for Rules with NACs 125

Thus, the parallel rule is equivalent to the rule with left application condition
depicted below.

AddAuthorPublisher(name, name′):�
 �	authors
�� ��name�
 �	publishers
�
 �	name’

=⇒
�
 �	authors

�� ��name�
 �	publishers
�
 �	name’

The connection between sequentially independent direct derivations and paral-
lel direct derivations is expressed by the Parallelism Theorem. We present the
Parallelism Theorem for rules with application conditions. It generalizes the
well-known Parallelism Theorems for rules without application conditions [6]
and with negative application conditions [16].

Theorem 2 (Parallelism). Given sequentially independent direct derivations
G⇒ρ1,m1 H1 ⇒ρ2,m′

2
M , there is a parallel derivation G⇒ρ1+ρ2,m M . Given a

parallel derivation G⇒ρ1+ρ2,m M , there are two sequentially independent direct
derivations G⇒ρ1,m1 H1 ⇒ρ2,m′

2
M and G⇒ρ2,m2 H2 ⇒ρ1,m′

1
M .

G

H1

H2

M

ρ1

ρ2

ρ2

ρ1

ρ1 + ρ2

Proof. Let G⇒ρ1,m1 H1 ⇒ρ2,m′
2

M be sequentially independent. Then the un-
derlying derivation without ACs is sequentially independent and, by the Paral-
lelism Theorem without ACs [6], there is a parallel derivation G⇒p1+p2,m M . By
Shift-Lemmas 1 and 2, (*) m |= acL and m∗ |= acR if and only if mi, m

′
i |= acLi

for i = 1, 2. This may be seen as follows:

m |= acL ⇔ m |= Shift(k1, acL1) ∧ Shift(k2, acL2)
⇔ m1 |= acL1 and m2 |= acL2

m∗ |= acR ⇔ m∗ |= Shift(k∗1 , R(ρ1, acL1)) ∧ Shift(k∗2 , R(ρ2, acL2))
⇔ m′∗

1 |= R(ρ1, acL1) and m′∗
2 |= R(ρ2, acL2)

⇔ m′
1 |= acL1 and m′

2 |= acL2

L1 L1+L2 L2

G

k1 k2

m1 m2m

R1 R1+R2 R2

M

k∗
1 k∗

2

m′∗
1 m′∗

2m∗

By assumption, mi, m
′
i |= acLi for i = 1, 2. By (∗), m |= acL and m∗ |= acR,

i.e., G ⇒p1+p2,m M satisfies ACs. Vice versa, let G ⇒ρ1+ρ2,m M be a parallel

126 Hartmut Ehrig, Annegret Habel, Leen Lambers

derivation. Then there is an underlying parallel derivation without ACs, and,
by the Parallelism Theorem without ACs [6], there are sequentially independent
direct derivations G ⇒p1,m1 H1 ⇒p2,m′

2
M and G ⇒p2,m2 H2 ⇒p1,m′

1
M . By

assumption, m |= acL and m∗ |= acR. By (∗), mi, m
′
i |= acLi for i = 1, 2, i.e.,

the sequentially independent direct derivations satisfy ACs. 2

Shift operations over parallel rules can be sequentialized into a sequence of shifts
over induced rules.

Fact 9 (shift over parallel rules). For every parallel rule ρ = ρ1+ρ2, ev-
ery right application condition ac for ρ, and i, j ∈ {1, 2} with i 6= j, we have
L(ρ, ac) ≡ρ L(ρ∗i , L(ρ∗j , ac)) where ρ∗i is induced by ρi and ki and ρ∗j is induced
by ρj and k′j .

Proof. By the Parallelism Theorem, for every direct derivation G ⇒ρ,m,m∗ M
there are direct derivations G ⇒ρi,mi Hi ⇒ρj ,mj M . By analysis arguments
as in the proof of the Parallelism Theorem [6], there are direct derivations
G ⇒ρ∗i ,m Hi ⇒ρ∗j ,m′ M depicted in Figure 3. By the Shift-Lemma 2, m |=
L(ρ, ac)⇔ m∗ |= ac ⇔ m′ |= L(ρ∗j , ac)⇔ m |= L(ρ∗i , L(ρ∗j , ac)), i.e, the applica-
tion conditions L(ρ, ac) and L(ρ∗i , L(ρ∗j , ac)) are ρ-equivalent. 2

Ri+LjKi+LjLi+Lj Ri+Kj Ri+Rj

Li Ki Ri KjLj Rj

HiE1G E2 M

Ki+Kj

E

ki

m m′

k′
j k∗

j

m∗

(PO) (PO) (PO) (PO)

(PO)
(PO)

(PO) (PO)

Fig. 3. Sequentialization of a parallel derivation

Finally, we present the construction of a concurrent rule for rules with application
conditions. It generalizes the construction of concurrent rules for rules without
application conditions [6] and makes use of shifting of application conditions
over morphisms and rules (see Shift-Lemmas 1 and 2).

Definition 10 (E-concurrent rule). Let E ′ be a class of morphism pairs with
the same codomain. Given two rules ρ1 and ρ2, an object E with morphisms
e1: R1 → E and e2: L2 → E is an E-dependency relation for ρ1 and ρ2 if (e1, e2) ∈

Parallelism and Concurrency Theorems for Rules with NACs 127

E ′ and the pushout complements (1) and (2) over K1 →֒ R1 → E and K2 →֒
L2 → E in the figure below exist. Given such an E-dependency relation for
ρ1 and ρ2, the E-concurrent rule of ρ1 and ρ2 is the rule ρ1 ∗E ρ2 = 〈p, acL〉
where p = p1 ∗E p2 is E-concurrent rule of p1 and p2 with pushouts (3), (4) and
pullback (5), ρ∗1 =

〈
L ←֓ D1 →֒ E

〉
is the rule derived by ρ1 and k1, and

acL = Shift(k1, acL1) ∧ L(ρ∗1, Shift(k2, acL2).

ED1L

L1 K1 R1

D2

K

R

R2K2L2

K

k1 k2(3) (1) (2) (4)

(5)

Example 6. The E-concurrent rule of ρ1=OrderBook(ordernr, name, title,
name′) and ρ2 = RegisterBook(ordernr, catnr) according to the dependency
relation E, being the right-hand side E of ρ1 and the left-hand side of ρ2, is the
rule

p =

〈 �
 �	orders�
 �	catalog

�� ��name�
 �	name’

←֓
�
 �	orders�
 �	catalog

�� ��name�
 �	name’

→֒
�
 �	orders�
 �	catalog

�� ��name�
 �	title�
 �	name’
�
 �	catnr

+

〉

with the left application condition

acL = ∄

(�
 �	orders�
 �	catalog

�� ��name�
 �	name’
�
 �	catnr

)
∧ ∄

(�
 �	orders�
 �	catalog

�� ��name�
 �	name’

�
 �	ordernr
)

requiring that “There does not exist a catalog node with label catnr” and “There
does not exist an order node with label ordernr”. The E-concurrent rule may be
depicted as follows.

Order;RegisterBook(ordernr, catnr, name, title, name′):

�
 �	orders
1�
 �	catalog
4

�� ��name
2�
 �	name’
3

�
 �	ordernr�
 �	catnr
=⇒

�
 �	orders
1�
 �	catalog
4

�
 �	catnr

�� ��name
2�
 �	title�
 �	name’
3

+

The non-existence of a node with label catnr guarantees that, whenever the
E-concurrent rule of ρ1 and ρ2 is applicable, then the rule ρ1 with ordernr is
applicable and, afterwards, the rule ρ2 with catnr is applicable.

128 Hartmut Ehrig, Annegret Habel, Leen Lambers

For rules without ACs, the parallel rule is a special case of the concurrent rule
[6]. For rules with ACs, in general, this is not the case: While the application
conditions for the parallel rule must guarantee the applicability of the rules in
each order, the application condition for the concurrent rule only must guarantee
the applicability of the rules in the given order. Nevertheless, the parallel rule
of two rules can be constructed from two concurrent rules of the rules, one for
each order.

Fact 10. The parallel rule ρ1+ρ2 = 〈p1+p2, acL, acR〉 and the rule 〈p1+p2, acL12∧
acL21〉 obtained from the R1+L2-concurrent rule 〈p1 + p2, acL12〉 of ρ1 and ρ2

and the R2+L1-concurrent rule 〈p2 + p1, acL21〉 of ρ2 and ρ1 are equivalent.

R1+L2K1+L2L1+L2

L1 K1 R1 L2

k1 k′2

R2+L1K2+L1L2+L1

L2 K2 R2 L1

k2 k′1

Proof. For every parallel derivation G⇒ρ1+ρ2,m,m∗ M (see Figure 3) and i, j ∈
{1, 2} with i 6= j, we have

(∗ ∗ ∗) m∗ |= Shift(k∗j , R(ρj , acLj))
⇔ m∗ |= R(ρ∗j , Shift(kj , acLj)) (Lemma 3)
⇔ m |= L(ρ∗j , R(ρ∗j , Shift(kj , acLj)) (Shift-Lemma 2)
⇔ m |= Shift(kj , acLj)) (Fact 5)

By the definitions and statement (***),

m |= acL and m∗ |= acR

⇔ m |= Shift(k1, acL1) ∧ Shift(k2, acL2) and
m∗ |= Shift(k∗1 , R(ρ1, acL1)) ∧ Shift(k∗2 , R(ρ2, acL2)) (Definition 9)

⇔ m |= Shift(k1, acL1) ∧ L(ρ∗1, Shift(k′2, acL2)) and
m |= Shift(k2, acL2) ∧ L(ρ∗2, Shift(k′1, acL1)) (***)

⇔ m |= acL12 ∧ acL21 (Definition 10)

i.e., the parallel rule and the rule constructed from the concurrent rules are
equivalent. 2

We consider E-concurrent derivations via E-concurrent rules and E-related
derivations via pairs of rules.

Definition 11 (E-concurrent and E-related derivation). A direct deriva-
tion via an E-concurrent rule is called E-concurrent direct derivation or E-
concurrent derivation, for short. A derivation G ⇒ρ1 H ⇒ρ2 M is E-related if
there are morphisms E → H , D1 → E1, and D2 → E2 as shown below such
that the triangles R1EH , L2EH , K1D1E1, and K2D2E2 in the figure below

Parallelism and Concurrency Theorems for Rules with NACs 129

commute and the diagrams (6) and (7) are pushouts.

E

R1K1L1

D1

L2 K2 R2

D2

E1 E2G MH

(6) (7)

= =
= =

Now we present a Concurrency Theorem for rules with application conditions. It
generalizes the well-known Concurrency Theorems for rules without application
conditions [6] and with negative application conditions [16].

Theorem 3 (Concurrency). Let E be a dependency relation for ρ1 and ρ2.
For every E-related derivation G⇒ρ1,m1 H ⇒ρ2,m2 M , there is an E-concurrent
derivation G⇒ρ1∗Eρ2,m M . Vice versa, for every E-concurrent derivation
G⇒ρ1∗Eρ2,m M , there is an E-related derivation G⇒ρ1,m1 H ⇒ρ2,m2 M .

G

H

M

ρ1 ρ2

ρ1 ∗E ρ2

Proof. Let G ⇒ρ1,m1 H ⇒ρ2,m2 M be E-related. Then the underlying deriva-
tion without ACs is E-related and, by the Concurrency Theorem without ACs
[6], there is an E-concurrent derivation G ⇒p1∗p2,m M . By Shift-Lemmas 1
and 2, (**) m1 |= acL1 and m2 |= acL2 iff m |= acL. This may be seen as follows:

m1 |= acL1 and m2 |= acL2

⇔ m |= Shift(k1, acL1) and m′ |= Shift(k2, acL2)
⇔ m |= Shift(k1, acL1) and m |= L(p∗1, Shift(k2, acL2))
⇔ m |= Shift(k1, acL1) ∧ L(p∗1, Shift(k2, acL2)) = acL.

By assumption, mi |= acLi for i = 1, 2. By (**), m |= acL, i.e. the E-concurrent
derivation satisfies ACs.

ED1L

L1 K1 R1

D2 R

R2K2L2

E1 E2G MH

k1 k2(3) (1) (2) (4)

(3’) (1’) (2’) (4’)m m′

m1
m2

Vice versa, let G⇒ρ,m M be an E-concurrent derivation, then the underlying di-
rect derivation without ACs is E-concurrent, and, by the Concurrency Theorem
without ACs [6], there is an E-related derivation G ⇒p1,m1 H ⇒p2,m2 M . By
assumption, m |= acL. By (∗∗), m1 |= acL1 and m2 |= acL2 , i.e., the E-related
derivation satisfies ACs. 2

130 Hartmut Ehrig, Annegret Habel, Leen Lambers

5 Conclusion

In this paper we present the well-known Local Church-Rosser, Parallelism, and
Concurrency Theorems, known already for rules with negative application con-
ditions [16], for rules with nested application conditions. The proofs are based
on the corresponding theorems for rules without application conditions [6] and
two Shift-Lemmas [17], saying that application conditions can be shifted over
morphisms and rules and assume that 〈C,M〉 is a weak adhesive HLR category
with an epi-M-factorization and binary coproducts.

statement requirements
Local Church-Rosser Shift 1 & 2
Parallelism Shift 1 & 2, binary coproducts
Concurrency Shift 1 & 2
Shift 1 epi-M-factorization
Shift 2 –

Further topics might be the following:

– Amalgamation Theorem for rules with ACs. It would be important to
generalize the AmalgamationTheorem [25,18] to weak adhesive HLR systems
and rules with nested application conditions.

– Embedding and Local Confluence Theorems for rules with ACs.
It would be important to generalize the Embedding and Local Confluence
Theorems [26,13,27,28,6,29] to rules with nested application conditions.

– Theory to rules with merging. It would be important to generalize the
theory to the case of merging as indicated in [30].

References

1. Rozenberg, G. ed.: Handbook of Graph Grammars and Computing by Graph
Transformation. Volume 1: Foundations. World Scientific (1997)

2. Ehrig, H. Engels, G. Kreowski, H.J. Rozenberg, G. eds.: Handbook of Graph
Grammars and Computing by Graph Transformation. Volume 2: Applications,
Languages and Tools. World Scientific (1999)

3. Ehrig, H. Kreowski, H.J. Montanari, U. Rozenberg, G. eds.: Handbook of Graph
Grammars and Computing by Graph Transformation. Volume 3: Concurrency,
Parallelism, and Distribution. World Scientific (1999)

4. Ehrig, H. Habel, A. Kreowski, H.J. Parisi-Presicce, F.: Parallelism and concurrency
in high level replacement systems. Mathematical Structures in Computer Science
1 (1991) 361–404

5. Ehrig, H. Ehrig, K. Habel, A. Pennemann, K.H.: Theory of constraints and appli-
cation conditions: From graphs to high-level structures. Fundamenta Informaticae
74(1) (2006) 135–166

6. Ehrig, H. Ehrig, K. Prange, U. Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. EATCS Monographs of Theoretical Computer Science. Springer,
Berlin (2006)

Parallelism and Concurrency Theorems for Rules with NACs 131

7. Ehrig, H. Habel, A.: Graph grammars with application conditions. In Rozenberg,
G. Salomaa, A. eds.: The Book of L. Springer, Berlin (1986) 87–100

8. Habel, A. Heckel, R. Taentzer, G.: Graph grammars with negative application
conditions. Fundamenta Informaticae 26 (1996) 287–313

9. Habel, A. Pennemann, K.H.: Nested constraints and application conditions for
high-level structures. In: Formal Methods in Software and System Modeling. Vol-
ume 3393 of LNCS. Springer (2005) 293–308

10. Ehrig, H. Kreowski, H.J.: Parallelism of manipulations in multidimensional infor-
mation structures. In: Mathematical Foundations of Computer Science. Volume 45
of LNCS. Springer (1976) 284–293

11. Kreowski, H.J.: Manipulationen von Graphmanipulationen. PhD thesis, Technical
University of Berlin (1977)

12. Kreowski, H.J.: Transformations of derivation sequences in graph grammars. In:
Fundamentals of Computation Theory. Volume 56 of LNCS. Springer (1977) 275–
286

13. Ehrig, H.: Introduction to the algebraic theory of graph grammars. In: Graph-
Grammars and Their Application to Computer Science and Biology. Volume 73 of
LNCS. Springer (1979) 1–69

14. Ehrig, H. Rosen, B.K.: Parallelism and concurrency of graph manipulations. The-
oretical Computer Science 11 (1980) 247–275

15. Habel, A.: Concurrency in Graph-Grammatiken. Technical Report 80-11, Technical
University of Berlin (1980)

16. Lambers, L. Ehrig, H. Prange, U. Orejas, F.: Parallelism and concurrency in ad-
hesive high-level replacement systems with negative application conditions. In:
Workshop on Applied and Computational Category Theory (ACCAT 2007). Vol-
ume 2003 of ENTCS. Elsevier (2008) 43–66

17. Habel, A. Pennemann, K.H.: Correctness of high-level transformation systems
relative to nested conditions. Mathematical Structures in Computer Science 19
(2009) 245–296

18. Corradini, A. Montanari, U. Rossi, F. Ehrig, H. Heckel, R. Löwe, M.: Algebraic
approaches to graph transformation. Part I: Basic concepts and double pushout
approach. In: Handbook of Graph Grammars and Computing by Graph Transfor-
mation. Volume 1. World Scientific (1997) 163–245

19. Lack, S. Sobociński, P.: Adhesive categories. In: Foundations of Software Sci-
ence and Computation Structures (FOSSACS’04). Volume 2987 of LNCS. Springer
(2004) 273–288

20. Heckel, R. Wagner, A.: Ensuring consistency of conditional graph grammars — a
constructive approach. In: SEGRAGRA ’95. Volume 2 of ENTCS. (1995) 95–104

21. Koch, M. Mancini, L.V. Parisi-Presicce, F.: Graph-based specification of access
control policies. Journal of Computer and System Sciences 71 (2005) 1–33

22. Habel, A. Pennemann, K.H.: Satisfiability of high-level conditions. In: Graph
Transformations (ICGT 2006). Volume 4178 of LNCS. Springer (2006) 430–444

23. Ehrig, H. Kreowski, H.J.: Applications of graph grammar theory to consistency,
synchronization and scheduling in data base systems. Information Systems 5 (1980)
225–238

24. Lambers, L. Ehrig, H. Orejas, F.: Conflict detection for graph transformation with
negative application conditions. In: Graph Transformations (ICGT 2006). Volume
4178 of LNCS. Springer (2006) 61–76

25. Boehm, P. Fonio, H.R. Habel, A.: Amalgamation of graph transformations: A
synchronization mechanism. Journal of Computer and System Sciences 34 (1987)
377–408

132 Hartmut Ehrig, Annegret Habel, Leen Lambers

26. Ehrig, H.: Embedding theorems in the algebraic theory of graph grammars. In:
Fundamentals of Computation Theory. Volume 56 of LNCS. Springer (1977) 245–
255

27. Plump, D.: Hypergraph rewriting: Critical pairs and undecidability of confluence.
In: Term Graph Rewriting: Theory and Practice. John Wiley, New York (1993)
201–213

28. Plump, D.: Confluence of graph transformation revisited. In: Processes, Terms and
Cycles: Steps on the Road to Infinity: Essays Dedicated to Jan Willem Klop on the
Occasion of His 60th Birthday. Volume 3838 of LNCS. Springer (2005) 280–308

29. Lambers, L. Ehrig, H. Prange, U. Orejas, F.: Embedding and confluence of graph
transformations with negative application conditions. In: Graph Transformations
(ICGT 2008). Volume 5214 of LNCS. Springer (2008) 162–177

30. Habel, A. Müller, J. Plump, D.: Double-pushout graph transformation revisited.
Mathematical Structures in Computer Science 11 (2001) 637–688

. .

Prof. Dr. Hartmut Ehrig

Institut für Softwaretechnik und Theoretische Informatik
Technische Universität Berlin
D-10587 Berlin (Germany)
ehrig@cs.tu-berlin.de
http://tfs.cs.tu-berlin.de/˜ehrig

Hartmut Ehrig knows Hans-Jörg Kreowski since 1970 when he was one of the
most engaged students in Hartmut’s seminar on Kategorien und Automaten
at the Mathematical Department of TU Berlin. This seminar was a great
success, leading to a textbook with the same title, published 1971 by Wal-
ter de Gruyter. In 1974 followed a joint international book Universal Theory
of Automata, published by Teubner, which was mainly based on Hans-Jörg’s
Diploma thesis. Meanwhile, Hartmut had become assistant professor at the
new Department of Computer Science at TU Berlin, and hired Hans-Jörg as
an assistant. The main focus of their joint work switched from Categorical Au-
tomata Theory to Graph Transformation, based on the DPO-approach, and
Algebraic Specification, following the initial algebra approach of the ADJ-
group at IBM Yorktown Heights. A very important contribution in the first
area was Hans-Jörg’s doctoral thesis Manipulationen von Graphmanipulatio-
nen, on the concurrent semantics of graph transformation systems. In the area
of algebraic specifications, their joint research focussed on parametrized spec-
ifications and parameter passing, which led to the well-known ACT-approach
and the algebraic specification language Act One. With respect to both areas,
this period was most successful for them, with interesting contributions to im-
portant conferences and publications in the Springer LNCS series and several
well-known journals. Meanwhile, Hans-Jörg finished his habilitation thesis in
Berlin. In 1982, he accepted a call for a professorship in Bremen, where he
built up a strong research group in the areas of Algebraic Specification and
Graph Transformation. Since that time the research groups in Berlin and Bre-
men have been working together with great success, especially in the European

Parallelism and Concurrency Theorems for Rules with NACs 133

Research Projects CompuGraph, Compass, GetGraTS, AppliGraph, and
SeGraVis.

. .

Prof. Dr. Annegret Habel

Carl v. Ossietzky Universität Oldenburg
Fachbereich Informatik
D-26111 Oldenburg (Germany)
Annegret.Habel@informatik.uni-oldenburg.de
http://theoretica.informatik.uni-oldenburg.de/˜habel

Annegret Habel was the first doctoral student of Hans-Jörg Kreowski. She
joined his team as a research associate in 1986. Having received her doctoral
degree in 1989, she continued to work in his team as an assistant professor until
1995, when she was offered a professorship in Hildesheim, and later moved to
Oldenburg.

. .

Leen Lambers

Institut für Softwaretechnik und Theoretische Informatik
Technische Universität Berlin
D-10587 Berlin (Germany)
leen@cs.tu-berlin.de
http://tfs.cs.tu-berlin.de/˜leen

. .

T

3

21

=⇒

T

3

21

T

3

21

T

3

21

F

3

21

=⇒∗

=⇒∗

Random Context Picture Grammars:
The State of the Art

Sigrid Ewert

Abstract. We present a summary of results on random context picture
grammars (rcpgs), which are a method of syntactic picture generation.
The productions of such a grammar are context-free, but their appli-
cation is regulated—permitted or forbidden—by context randomly dis-
tributed in the developing picture. Thus far we have investigated three
important subclasses of rcpgs, namely random permitting context pic-
ture grammars, random forbidding context picture grammars and table-
driven context-free picture grammars. For each subclass we have proven
characterization theorems and shown that it is properly contained in the
class of rcpgs. We have also developed a characterization theorem for all
picture sets generated by rcpgs, and used it to find a set that cannot be
generated by any rcpg.

Key words: formal languages, picture grammars, syntactic picture gen-
eration, image analysis, random context grammars, scene understanding

1 Introduction

Picture generation is a challenging task in Computer Science and applied ar-
eas, such as document processing (character recognition), industrial automation
(inspection) and medicine (radiology).

Syntactic methods of picture generation have become established during the
last decade or two. A variety of methods is discussed and extensive lists of
references are given in [9, 11, 12]. Random context picture grammars (rcpgs) [7]
generate pictures through successive refinement. They are context-free grammars
with regulated rewriting; the motivation for their development was the fact that
context-free grammars are often too weak to describe a given picture set, eg. the
approximations of the Sierpiński carpet, while context-sensitive grammars are
too complex to use.

Random context picture grammars have at least three interesting subclasses,
namely random permitting context picture grammars (rPcpgs), random forbid-
ding context picture grammars (rFcpgs) and table-driven context-free picture
grammars (Tcfpgs). For each of these classes we have developed characteriza-
tion theorems. In particular, for rPcpgs we proved a pumping lemma and used
it to show that these grammars are strictly weaker than rcpgs [5]. For rFcpgs we
proved a shrinking lemma [4], and showed that they too are strictly weaker than
rcpgs [6]. In the case of Tcfpgs, we developed two characterization theorems and
showed that these grammars are strictly weaker than rFcpgs [1].

Finally, we have developed a characterization theorem for all galleries gen-
erated by rcpgs, and used it to find a picture set, more commonly known as a
gallery, that cannot be generated by any rcpg [13].

F. Drewes, A. Habel, B. Hoffmann, D. Plump (Eds.): Manipulation of Graphs, Algebras and Pictures.
Essays Dedicated to Hans-Jörg Kreowski on the Occasion of His 60th Birthday, pp. 135–147, 2009.

136 Sigrid Ewert

In this paper we present a summary of the above results. We formally define
rcpgs in Section 2. In Section 3 we present the pumping lemma for rPcpgs, and
use it to show that no rPcpg can generate the approximations of the Sierpiński
carpet. In Section 4 we state the shrinking lemma for rFcpgs, and present a
gallery that cannot be generated by any rFcpg. Then, in Section 5, we define
Tcfpgs, present two characterization theorems for these grammars and show that
they are strictly weaker than rFcpgs. In Section 6 we present a property of all
galleries generated with rcpgs, and then construct a gallery that does not belong
to this class. We briefly touch on a generalization of rcpgs in Section 7. Future
work is recommended in Section 8.

2 Random context picture grammars

In this section we introduce random context picture grammars. For picture gram-
mars we need a geometric context; we choose the situation of squares divided
into equal squares.

In the following, let N+ = {1, 2, 3, . . .}. For k ∈ N+, let [k] = {1, 2, . . . , k}.

A −→

xm1 xm2 . . . xmm

...
...

. . .
...

x21 x22 . . . x2m

x11 x12 . . . x1m

(P;F)

Fig. 1. Production.

Random context picture grammars generate pictures using productions of
the form in Figure 1, where A is a variable, m ∈ N+, x12, . . . , xmm are variables
or terminals, and P and F are sets of variables. The interpretation is as follows:
if a developing picture contains a square labelled A and if all variables of P and
none of F appear as labels of squares in the picture, then the square labelled A
may be divided into equal squares with labels x11, x12, . . . , xmm.

We denote a square by a lowercase Greek letter, eg., (A,α) denotes a square
α labelled A. If α is a square, α11, α12, . . . , αmm denote the equal subsquares
into which α can be divided, with, eg., α11 denoting the left bottom one.

A random context picture grammar G = (VN, VT, P, (S, σ)) has a finite al-
phabet V of labels, consisting of disjoint subsets VN of variables and VT of termi-
nals. P is a finite set of productions of the form A→ [x11, x12, . . . , xmm](P;F),

Random Context Picture Grammars: The State of the Art 137

m ∈ N+, where A ∈ VN, x11, x12, . . . , xmm ∈ V and P,F ⊆ VN. Finally, there is
an initial labelled square (S, σ) with S ∈ VN.

A pictorial form is any finite set of nonoverlapping labelled squares in the
plane. If Π is a pictorial form, we denote by l(Π) the set of labels used in Π.

Thirdly, the size of a pictorial form Π is the number of squares contained in
it, denoted |Π|.

For an rcpg G and pictorial forms Π and Γ we write Π =⇒G Γ if there is
a production A→ [x11, x12, . . . , xmm](P;F) in G, Π contains a labelled square
(A,α), l(Π\{(A,α)}) ⊇ P and l(Π\{(A,α)})∩F = ∅, and Γ = (Π\{(A,α)})∪
{(x11, α11), (x12, α12), . . . , (xmm, αmm)}. As usual, =⇒∗G denotes the reflexive
transitive closure of =⇒G.

If every production in G has P = F = ∅, we call G a context-free picture
grammar (cfpg); if F = ∅ for every production, G is a random permitting context
picture grammar , and when P = ∅, G is a random forbidding context picture
grammar . The gallery G(G) generated by a grammar G = (VN, VT, P, (S, σ)) is
{Φ | {(S, σ)} =⇒∗G Φ and l(Φ) ⊆ VT}. An element of G(G) is called a picture.

Let Φ be a picture in the square σ. For any m ∈ N+, let σ be divided into
equal subsquares, say σ11, σ12, . . . , σmm. A subpicture Γ of Φ is any subset of
Φ that fills a square σij , i, j ∈ [m], i.e., the union of all the squares in Γ is the
square σij .

Finally, please note that we write a production A→ [x11](P;F) as
A→ x11(P;F).

3 Permitting context only

In this section we concentrate on grammars that use permitting context only.
We present a pumping lemma for the corresponding galleries, and show that
rPcpgs cannot generate Gcarpet, the gallery of approximations of the Sierpiński
carpet.

We first introduce some notation. Let Π be a pictorial form that occupies a
square α, i.e., the union of all the squares in Π is the square α; this we denote
by (Π,α). Let β be any square in the plane. Then (Π → β) denotes the pictorial
form obtained from Π by uniformly scaling (up or down) and translating all the
labeled squares in Π to fill the square β, retaining all the labels.

The pumping lemma for rPcpgs and some corollaries are proven in [5]. It
states:

Theorem 1. For any rPcpg G there is an m ∈ N+ such that for any picture
Φ ∈ G(G) with |Φ| ≥ m there is a number l, l ∈ [m], such that:

1. Φ contains l mutually disjoint nonempty subpictures (Ω1, α1), . . . , (Ωl, αl)
and l mutually disjoint nonempty subpictures (Ψ1, β1), . . . , (Ψl, βl), these be-
ing related by a function ϑ : {1, . . . , l} → {1, . . . , l} such that for each i,
i ∈ [l], βi ⊆ αϑ(i) and for at least one i, i ∈ [l], βi

⊂
6= αϑ(i);

2. the picture obtained from Φ by substituting (Ωi → βi) for (Ψi, βi) for all i,
i ∈ [l], is in G(G);

138 Sigrid Ewert

3. recursively carrying out the operation described in (2) always results in a
picture in G(G).

Example 1. Consider Φ1 in Figure 2(a). Let (Ω1, α1) be the lower left hand quar-
ter, (Ω2, α2) the lower right hand quarter, (Ω3, α3) the upper left hand quarter
and (Ω4, α4) the upper right hand quarter of Φ1. Furthermore, let (Ψ1, β1) be
equal to (Ω2, α2), (Ψ2, β2) the letter Y , (Ψ3, β3) the letter Z and (Ψ4, β4) the
letter H. Then ϑ(1) = 2, ϑ(2) = ϑ(3) = 1 and ϑ(4) = 4.

We obtain Φ2 in Figure 2(b) by substituting (Ωi → βi) for (Ψi, βi), i ∈ [4],
in Φ1. Then we obtain Φ3 in Figure 2(c) by carrying out this operation on Φ2.

(a) Φ1

(b) Φ2 (c) Φ3

Fig. 2. Pumping Φ1.

An immediate consequence of the pumping property is that the set of sizes
of the pictures in an infinite gallery generated by an rPcpg contains an infinite
arithmetic progression. From this it follows that Gcarpet, two pictures of which
are shown in Figure 3, cannot be generated using permitting context only. This
gallery can be created by an rFcpg, as is shown in [1].

Random Context Picture Grammars: The State of the Art 139

Fig. 3. Two pictures from Gcarpet.

4 Forbidding context only

In this section we concentrate on grammars that use forbidding context only and
present a shrinking lemma for the corresponding galleries. The lemma is proven
in [4] and states:

Theorem 2. Let G be an rFcpg. For any integer t ≥ 2 there exists an integer
k = k(t) such that for any picture Φ ∈ G(G) with |Φ| ≥ k there are t pictures
Φ1, . . . , Φt = Φ in G(G) and t − 1 numbers l2, . . . , lt such that for each j, 2 ≤
j ≤ t,
1. Φj contains lj mutually disjoint nonempty subpictures (Φj1, αj1), . . .,

(Φjlj , αjlj) and lj mutually disjoint nonempty subpictures (φj1, βj1), . . .,
(φjlj , βjlj), these being related by a function ϑj : {1, . . . , lj} → {1, . . . , lj}
such that for each i, i ∈ [lj], βji ⊆ αjϑj(i) and for at least one i, i ∈ [lj],
βji

⊂
6= αjϑj(i);

2. the picture Φj−1 is obtained by substituting (φji → αji) for (Φji, αji) for all
i, i ∈ [lj], in Φj.

Example 2. Consider Φ3 in Figure 4(a). We can choose (Φ31, α31) as the lower left
hand quarter, (Φ32, α32) as the lower right hand quarter and (Φ33, α33) as the up-
per right hand quarter of Φ3, furthermore (φ31, β31) equal to (Φ32, α32), (φ32, β32)
as the letter X and (φ33, β33) as the lower right hand quarter of (Φ33, α33). Here
l3 = 3 and ϑ3(1) = 2, ϑ3(2) = 1 and ϑ3(3) = 3.

Φ2 in Figure 4(b) is obtained by substituting (φ3i → α3i) for (Φ3i, α3i),
1 ≤ i ≤ 3, in Φ3.

Now consider Φ2 in Figure 4(b). We can choose (Φ21, α21) as the lower left
hand quarter, (Φ22, α22) as the lower right hand quarter, (Φ23, α23) as the up-
per left hand quarter and (Φ24, α24) as the upper right hand quarter of Φ2,
furthermore (φ21, β21) equal to (Φ22, α22), (φ22, β22) as the letter Y , (φ23, β23)
as the letter Z and (φ24, β24) as the letter H. Here l2 = 4 and ϑ2(1) = 2,
ϑ2(2) = ϑ2(3) = 1 and ϑ2(4) = 4.

Φ1 in Figure 4(c) is obtained by substituting (φ2i → α2i) for (Φ2i, α2i),
1 ≤ i ≤ 4, in Φ2.

140 Sigrid Ewert

(a) Φ3

(b) Φ2 (c) Φ1

Fig. 4. Shrinking Φ3.

In [6] we use the technique developed for the proof of the shrinking lemma
to show that a certain gallery, Gtrail, cannot be generated by any rFcpg, but can
be generated by an rcpg. Therefore rFcpgs are strictly weaker than rcpgs.

Consider Gtrail =
{
Φ1, Φ2, . . .

}
, where Φ1, Φ2 and Φ3 are shown in Fig-

ures 5(a), 5(b) and 5(c), respectively. For the sake of clarity, an enlargement
of the bottom left hand ninth of Φ3 is given in Figure 5(d).

For i = 2, 3, . . ., Φi is obtained by dividing each dark square in Φi−1 into four
and placing a copy of Φ1, modified so that it has exactly i+ 2 dark squares, all
on the bottom left to top right diagonal, into each quarter.

The modification of Φ1 is effected in its middle dark square only and proceeds
in detail as follows: The square is divided into four and the newly-created bottom
left hand quarter coloured dark. The newly-created top right hand quarter is
again divided into four and its bottom left hand quarter coloured dark. This
successive quartering of the top right hand square is repeated until a total of
i − 1 dark squares have been created, then the top right hand square is also
coloured dark. The new dark squares thus get successively smaller, except for
the last two, which are of equal size.

Random Context Picture Grammars: The State of the Art 141

(a) Φ1 (b) Φ2

(c) Φ3 (d) Bottom left hand ninth of Φ3 en-
larged

Fig. 5. The pictures Φ1, Φ2 and Φ3 from Gtrail.

5 Table-driven context-free picture grammars

In [1] we introduce table-driven context-free picture grammars, and compare
them to cfpgs, rPcpgs and rFcpgs. We also give two necessary conditions for a
gallery to be generated by a Tcfpg, and use them to find galleries that cannot
be made by any Tcfpg.

A table-driven context-free picture grammar is a system G =
(VN, VT, T , (S, σ)), where VN, VT, V = VN ∪ VT and (S, σ) are as defined in
Section 2. T is a finite set of tables, each table R ∈ T satisfying the following
two conditions:

1. R is a finite set of productions of the form A→ [x11, x12, . . . , xmm], m ∈ N+,
where A ∈ VN, and x11, x12, . . . , xmm ∈ V.

2. R is complete, i.e., for each A ∈ VN, there exist an m ∈ N+ and
x11, x12, . . . , xmm ∈ V such that A→ [x11, x12, . . . , xmm] is in R.

As in the case of rcpgs, the squares containing variables are replaced, but the
terminals are never rewritten. Every direct derivation must replace all variables
in the pictorial form; the completeness condition ensures that this is possible.

142 Sigrid Ewert

For any production p, say A→ [x11, x12, . . . , xmm], A is called the left hand
side of p, and [x11, x12, . . . , xmm] the right hand side of p, denoted by lhs (p) and
rhs (p), respectively.

For a labelled square (A,α) and a production p with
A = lhs (p), say A→ [x11, x12, . . . , xmm], m ∈ N+, we denote
{(x11, α11), (x12, α12), . . . , (xmm, αmm)} by repl ((A,α)) p 1.

For pictorial form Π, we define var (Π) = {(A,α) ∈ Π | A ∈ VN}. For pic-
torial form Π and table R, we call b : var (Π) → R a base 2 on Π if for each
(A,α) ∈ var (Π), lhs (b ((A,α))) = A.

Let Π and Γ be pictorial forms. We say that Π directly derives Γ (Π =⇒ Γ)
if there exists a base b on Π such that

Γ = Π \ var (Π) ∪
⋃

(A,α)∈var(Π)

repl ((A,α)) b ((A,α)).

For Tcfpgs, the terms =⇒∗G, gallery , and picture are defined as for rcpgs in
Section 2.

Finally, please note that we write a production A→ [x11] as A→ x11.
In [1] we present a Tcfpg that generates Gcarpet. From this it follows that

Tcfpgs can generate a gallery that no rPcpg can and that Tcfpgs are strictly
more powerful than context-free picture grammars.

In [1] we state two necessary conditions for a gallery to be generated by a
Tcfpg.

Before we can state the first such condition, we need a definition. Let Π be
a pictorial form and B a set. Then #B (Π) denotes the number of occurrences
of elements of B in Π.

Theorem 3. Let G be a gallery generated by a Tcfpg with terminal alphabet VT.
Then for every B ⊆ VT, B 6= ∅, there exists a positive integer k such that, for
every picture Φ ∈ G either

1. #B (Φ) ≤ 1, or
2. Φ contains a subpicture Ψ such that |Ψ | ≤ k and #B (Ψ) ≥ 2, or
3. there exist infinitely many Υ ∈ G such that #B (Υ) = #B (Φ).

In [1] we use Theorem 3 to show that a certain gallery, Gnot−Tcfpg, cannot
be generated by any Tcfpg. Consider Gnot−Tcfpg =

{
Φ1, Φ2, . . .

}
, where Φ1, Φ2

and Φ3 are given in Figure 6 from left to right. Let the terminals b, g and w
represent squares with the colours black, grey and white respectively. Then Φn,
n ∈ N+, is such that the terminals on its diagonal, read from bottom left to top
right, form the string b (bgn)n, while the rest of the picture is white.

Before we can state the second necessary condition for a gallery to be gen-
erated by a Tcfpg, we introduce the properties nonfrequent and rare, which are
based on properties presented in [3]. Let G be a set of pictures with labels from
the alphabet VT, and B a nonempty subset of VT. Then
1 The use of “repl” was inspired by the concept repl defined in [2].
2 The use of “base” was inspired by the concept base defined in [2].

Random Context Picture Grammars: The State of the Art 143

Fig. 6. The pictures Φ1, Φ2 and Φ3 from the gallery Gnot−Tcfpg.

– B is called nonfrequent in G if there exists a constant k such that for every
Φ ∈ G, #B(Φ) < k.

– B is rare in G if for every k ∈ N+ there exists an nk > 0 such that for every
n ∈ N with n > nk, if a picture Φ ∈ G contains n occurrences of letters from
B then for each two such occurrences, the smallest subpicture containing
those occurrences has size at least k.

Theorem 4. Let G = (VN, VT, T , (S, σ)) be a Tcfpg and B ⊆ VT, B 6= ∅. If B
is rare in G(G), then B is nonfrequent in G(G).

In [1] we use Theorem 4 to show that a certain gallery, GrFcpg−Tcfpg, cannot be
generated by any Tcfpg. Consider GrFcpg−Tcfpg = {Φm,n | n ≥ 1,m ≥ n}, where
Φ2,2 and Φ4,3 are given in Figure 7 from left to right. Let the terminals b, g and
w represent squares with the colours black, grey and white respectively. Then
Φm,n is such that the terminals on its diagonal, read from bottom left to top
right, form the string (bgm)n, while the rest of the picture is white.

In [1] we show that every gallery generated by a Tcfpg can be generated by
an rFcpg. Then we present an rFcpg that generates the gallery GrFcpg−Tcfpg.
From that it follows that Tcfpgs are strictly weaker than rFcpgs.

6 The Limitations of Random Context

In [13] we investigate the limitations of random context picture grammars. First
we study those grammars that generate only pictures that are composed of
squares of equal size and show that the corresponding galleries enjoy a certain
commutativity. This enables us to construct a set of pictures that cannot be
generated by any rcpg. Then we generalize the commutativity theorem to the
class of all rcpgs.

For the sake of simplicity, we consider only rcpgs of which every production
that effects a subdivision produces exactly four subsquares. Also, we let σ be
the unit square ((0, 0) , (1, 1)). The result we state below can be formulated for
the case of rcpgs with productions that effect other subdivisions [13].

144 Sigrid Ewert

Fig. 7. The pictures Φ2,2 and Φ4,3 from the gallery GrFcpg−Tcfpg.

Before we can state the theorem, we need some definitions. A picture is
called n-divided , for n ∈ N+, if it consists of 4n equal subsquares, each labeled
with a terminal. For example, the picture on the left hand side of Figure 8 is
4-divided. A level-m subsquare of an n-divided picture, with 1 ≤ m ≤ n, is a
square ((x2−m, y2−m) , ((x+ 1)2−m, (y + 1)2−m)), where x and y are integers
and 0 ≤ x, y < 2m. Note that, for m < n, a level-m subsquare consists of
all 4n−m labeled subsquares contained in it. For example, the upper left hand
quarter of the above mentioned picture is a level-1 subsquare of the picture and
consists of 43 labeled subsquares.

Two n-divided pictures Φ1 and Φ2 are said to commute at level m if Φ1

contains two different level-m subsquares α and β such that Φ2 can be obtained
by simply interchanging the labeling of α and β. A picture Φ1 is called self-
commutative at level m if Φ1 and Φ1 commute at level m.

In [13] we give a proof of the following theorem:

Theorem 5. Let G = (VN, VT, P, (S, σ)) be an rcpg that generates an infinite
gallery of n-divided pictures, where n ∈ N+. Then there exist an m and a c
such that each picture that is c-divided is either self-commutative at level m or
commutes with another picture in the gallery at level m.

We now use Theorem 5 to construct a gallery that cannot be generated by
any rcpg.

Let m ∈ N+. Consider the 2m-divided picture Φ that is constructed as fol-
lows: For any level-m subsquare α in Φ, if α is in row i and column j of Φ, then
the level-2m subsquare in row i and column j of α is coloured dark. All the other
level-2m subsquares are coloured light.

For example, in Figure 8, m = 2. The picture on the left hand side is 2× 2-
divided, i.e., 4-divided. On the right hand side, we show the level-2 subsquares

Random Context Picture Grammars: The State of the Art 145

α1 in row 2, column 2, and α2 in row 3, column 4. The level-4 subsquare in
row 2, column 2 of α1 is coloured dark and all other level-4 subsquares of α1

are coloured light. Similarly, the level-4 subsquare in row 3, column 4 of α2 is
coloured dark and all other level-4 subsquares of α2 are coloured light.

Then Φ is not self-commutative at level m. Thus we have:

Theorem 6. There exists a set of pictures, each consisting of the unit square
subdivided into equal subsquares and coloured with two colours, that cannot be
generated by an rcpg.

Fig. 8. 4-divided.

In [13] we generalize Theorem 5 to the class of all rcpgs.

7 Generalized Random Context Picture Grammars

As geometric context for random context picture grammars we used squares
divided into equal, non-overlapping squares. Clearly we could start with another
shape, eg. a triangle, and divide it successively into non-overlapping triangles of
equal size. We could also divide a shape into shapes that do not all have the
same size or have the same shape as the original. For any given gallery there
may be a combination of shapes and arrangement of subshapes that is most
effective. This leads us to a generalization of rcpgs, so-called generalized random
context picture grammars (grcpgs). In [8] we define grcpgs as grammars where
the terminals are subsets of the Euclidean plane and the replacement of variables
involves the building of functions that will eventually be applied to terminals.
Context is again used to enable or inhibit the application of production rules.

In this form generalized random context picture grammars can be seen as a
generalization of (context-free) collage grammars [9].

Iterated Function Systems (IFSs) are among the best-known methods for
constructing fractals. In [8] we show that any picture sequence generated by an
IFS can also be generated by a grcpg that uses forbidding context only. Moreover,

146 Sigrid Ewert

since grcpgs use context to control the sequence in which functions are applied,
they can generate a wider range of fractals or, more generally, pictures than IFSs
[8].

Mutually Recursive Function Systems (MRFSs) are a generalization of IFSs.
In [10] we show that any picture sequence generated by an IFS can also be
generated by a grcpg that uses forbidding context only. Moreover, grcpgs can
generate sequences of pictures that MRFSs cannot [10].

8 Future work

In this paper we give a summary of results for random context picture gram-
mars and three of their more interesting subclasses, namely random permitting
context picture grammars, random forbidding context picture grammars and
table-driven context-free picture grammars.

It has been established that Tcfpgs are strictly weaker than rFcpgs. Moreover,
it is known that Tcfpgs can generate a gallery that rPcpgs cannot, namely the
gallery of approximations of the Sierpiński carpet. However, it is not known
whether there exists a gallery that can be generated by an rPcpg, but not by any
Tcfpg. Moreover, it is also not known if there is a gallery that can be generated
by an rPcpg, but not by any rFcpg.

Acknowledgments The author would like to thank the referees for their helpful
comments.

References

1. C. Bhika, S. Ewert, R. Schwartz, and M. Waruhiu. Table-driven context-free
picture grammars. International Journal of Foundations of Computer Science,
18(6):1151–1160, 2007.

2. F. Drewes, R. Klempien-Hinrichs, and H.-J. Kreowski. Table-driven and context-
sensitive collage languages. Journal of Automata, Languages and Combinatorics,
8(1):5–24, 2003.

3. A. Ehrenfeucht and G. Rozenberg. On proving that certain languages are not
ET0L. Acta Informatica, 6:407–415, 1976.

4. S. Ewert and A. van der Walt. Generating pictures using random forbidding
context. International Journal of Pattern Recognition and Artificial Intelligence,
12(7):939–950, 1998.

5. S. Ewert and A. van der Walt. Generating pictures using random permitting
context. International Journal of Pattern Recognition and Artificial Intelligence,
13(3):339–355, 1999.

6. S. Ewert and A. van der Walt. A hierarchy result for random forbidding context
picture grammars. International Journal of Pattern Recognition and Artificial
Intelligence, 13(7):997–1007, 1999.

7. S. Ewert and A. van der Walt. Random context picture grammars. Publicationes
Mathematicae (Debrecen), 54 (Supp):763–786, 1999.

Random Context Picture Grammars: The State of the Art 147

8. S. Ewert and A. van der Walt. Shrink indecomposable fractals. Journal of Universal
Computer Science, 5(9):521–531, 1999.

9. A. Habel, H.-J. Kreowski, and S. Taubenberger. Collages and patterns generated
by hyperedge replacement. Languages of Design, 1:125–145, 1993.

10. H. Kruger and S. Ewert. Translating mutually recursive function systems into
generalised random context picture grammars. South African Computer Journal,
(36):99–109, 2006.

11. A. Nakamura, M. Nivat, A. Saoudi, P. S. P. Wang, and K. Inoue, editors. Proceed-
ings of the Second International Conference on Parallel Image Analysis, ICPIA
’92, Ube, Japan, December 1992, volume 654 of Lecture Notes in Computer Sci-
ence, Berlin. Springer.

12. A. Rosenfeld and R. Siromoney. Picture languages—a survey. Languages of Design,
1:229–245, 1993.

13. A. van der Walt and S. Ewert. A property of random context picture grammars.
Theoretical Computer Science, (301):313–320, 2003.

. .

Prof. Dr. Sigrid Ewert

School of Computer Science
University of the Witwatersrand, Johannesburg
Private Bag 3
Wits, 2050 (South Africa)
sigrid.ewert@wits.ac.za
http://www.cs.wits.ac.za/˜sigrid/

Sigrid Ewert was a guest researcher in Hans-Jörg Kreowski’s group from 1999
to 2000.

. .

S ::=

B

A
A ::=

1 2
0/1 A

1 2
0/1

B ::=
1 2

C
B

1

2

A

C ::=

1 2

0/1 0/1

C

1 2

1 1

D

D ::=

1 2

0/1 0/1

D

1 2

0/1 0/1

C

C

C

From Algebraic Specifications to
Graph Transformation Rules to

UML and OCL Models

Martin Gogolla and Karsten Hölscher

Abstract. Graph transformation and algebraic specification are well-
established techniques in theoretical and practical computer science and
claim to support software development with fundamental methods in a
formal manner. Equational algebraic specifications can be translated into
a graph transformation system in a systematic way. A graph transforma-
tion system in turn can be analyzed and processed by a number of tools.
This paper studies how to step from equational algebraic specifications
to graph transformation and from there to an operational representation
in various graph transformation tools. We work with USE (UML-based
Specification Environment), AGG (Attributed Graph Grammar system),
and GrGen (Graph rewrite Generator). In particular, we discuss how to
establish a connection between algebraic specifications and UML class
diagrams and OCL constraints.

1 Introduction

Equational algebraic specifications [EM85,EGL89,Wir90] as well as graph gram-
mars and graph transformation [Roz97,EEKR99] are two fields which have been
studied since about thirty years and which share the use of fundamental categor-
ical and algebraic techniques. Both fields claim to support software development
with fundamental methods in a formal manner. In recent years, graph transfor-
mation attracted substantial research effort because of its closeness to model-
driven and model transformation-oriented approaches. For a graph transforma-
tion system, practically applicable tools like AGG [dLT04], FUJABA [BGN+04],
GrGen [GK07], GReAT [BNvBK06], MOFLON [AKRS06] or GROOVE [Ren03]
have been developed and UML tools like USE have been extended to cope with
graph transformation [BG06].
The transformation in our paper basically follows the method for translat-
ing algebraic specifications into graph transformation which has been proposed
in [Löw90] but which has not been realized in a tool (in contrast to the work
presented in this paper). Our work is based on the UML and OCL tool USE
developed in our group since about ten years [GBR05,GBR07] and on the tools
AGG [dLT04] and GrGen [GK07]. This selection of tools was determined by the
fact that the authors have experience and knowhow in the use of these tools.
We are sure that the other mentioned tools and further ones can be used for our
purpose as well.
One main result of the paper is our observation that it is feasible to build
a conceptual bridge between so distant fields like “hard” algebraic specifica-

F. Drewes, A. Habel, B. Hoffmann, D. Plump (Eds.): Manipulation of Graphs, Algebras and Pictures.
Essays Dedicated to Hans-Jörg Kreowski on the Occasion of His 60th Birthday, pp. 149–169, 2009.

150 Martin Gogolla, Karsten Hölscher

tion (AlgSpec) and “soft” popular approaches like the Unified Modeling Lan-
guage (UML). We regard Graph Transformation (GraTra) as the missing link.
GraTra tools provide the possibility of analyzing the underlying model. For ex-
ample, GraTra tools apart from validating the model are able to check the model
consistency or can provide a critical pair analysis of the underlying equations in
the algebraic specification. Thus a central ingredient in the interplay between
AlgSpec and UML is the ability of GraTra to mediate between the other fields
and to broadcast results in both directions. There are some scientists which have
been working in all three fields. Among them is Hans-Jörg Kreowski. According
to DBLP, his earliest contribution in the GraTra field is from 1977 [Kre77], the
earliest one on AlgSpec is from 1978 [EKW78], and the earliest one on UML is
from 2002 [KGKK02].
The structure of the rest of the paper is as follows. Section 2 introduces our
simple running example within the context of equational algebraic specification
and graph transformation. Sections 3, 4 and 5 discuss the realization of this
example in the tools USE, AGG, and GrGen, respectively. The paper is finished
with concluding remarks in Sect. 6.

2 Running Example

We will study the relationship between equational algebraic specification, graph
transformation, and tool realizations of graph transformation by a very simple
equational algebraic specification for the natural numbers as shown in Fig. 1.
The specification includes the two constructors zero and succ and an opera-
tion plus realizing the addition on natural numbers. Any term incorporating
the operation plus can be reduced by means of the equations to a term using
only the constructors zero and succ, and the different terms built over zero
and succ represent all values for the sort nat.
spec Nat

srts nat

opns zero: -> nat

succ: nat -> nat

plus: nat nat -> nat

vars N, M: nat

eqns plus(zero,N) = N

plus(succ(N),M) = succ(plus(N,M))

Fig. 1. Algebraic Example Specification for Addition on Natural Numbers

In Fig. 2 we have represented the two example equations as two graph trans-
formation rules with left and right side: Each operation symbol and each vari-
able becomes a node and the edges connect operation symbols with their ar-
guments. The first argument of the operation plus is established with edges
labelled PlusNat1 and the second argument with label PlusNat2. Analogously,
the argument of the constructor succ shows the label SuccNat. Although the

From Algebraic Specifications to GT Rules to UML and OCL Models 151

Fig. 2. Naive Representation of Example Equations as a Graph Transformation System

representation seems straight forward, it is too naive for general graph transfor-
mation and must be extended as explained below.
The main problem with the above representation in Fig. 2 lies in the fact that
the context in which the rules are to be applied is not handled properly. For
example, if the first rule is applied in the term succ(plus(zero,zero)), the
context information that in this case plus is a subterm of succ is not preserved
by the rule. In order to preserve this context information additional nodes are
introduced. These nodes embody the context information and explicitly state
the type information for each term. This extended representation of the rules is
pictured in Fig. 3. The context information is held within the NatType nodes.
In both rules it is essential, that the topmost NatType nodes are preserved by
the rules, i.e., the topmost NatType nodes appear in the left and right side
of the rules. Roughly speaking, incoming edges for both rules are handled by
the NatType nodes (1). Outgoing edges for the first rule are handled by node (6)
whereas outgoing edges for the second rule are handled by nodes (6) and (8).

3 USE

The example graph transformation system corresponding to the algebraic speci-
fication is given to USE in textual form. First, the underlying UML class diagram
including classes, inheritance relationships, and associations is stated. The over-
all class diagram is shown in Fig. 4. Currently, our translator from rules to OCL

152 Martin Gogolla, Karsten Hölscher

Fig. 3. Representation of Example Equations as a Graph Transformation System

only supports 0..* multiplicities. Therefore only those multiplicities are stated
in the class diagram, although more restricting multiplicities could be chosen.

In addition to the class diagram, the two rules are stated in textual form in Fig. 5
and are called plusZeroN 2 N and plusSuccNM 2 succPlusNM. These names will
be used for generated UML operations. The rules basically make declarations for
nodes and edges on the left and right hand side of the rule. In the UML class dia-
gram context, nodes correspond to objects and edges to links. Additionally, OCL
conditions could be declared in the left or right hand side, although this feature
is not used in this example. OCL conditions in the left side correspond to rule
preconditions and OCL conditions in the right side to rule postconditions. Left
hand side conditions are called application conditions within the graph transfor-
mation area. A representation of the rules in form of UML object diagrams is
pictured in Fig. 6.
In Fig. 7 the class diagram generated from the rules resp. the operations gener-
ated from the rules are pictured. Each rule induces three operations: The first
operation is responsible for applying the rule and for replacing in the so-called
working graph a matching left-hand side by the rule’s right hand side; the second

From Algebraic Specifications to GT Rules to UML and OCL Models 153

Fig. 4. UML Class Diagram for Terms over Natural Numbers Employed in USE

operation checks the precondition of the rule, and the third operation searches
in the working graph for rule redexes, i.e., locations in the working graph where
the rule can be applied. The parameters of the operations are determined by the
objects (nodes) appearing on the left hand side of the rule.
An example for the reduction of a working graph is given in Fig. 8, basi-
cally as a sequence of working graphs in form of UML object diagrams. The
reduction corresponds to the calculation [(0+1)+(0)]+1 = [(0)+(0)]+1+1 =
0+1+1. The lower part shows the calculation close to a mathematical nota-
tion, the middle part uses the naive term representation, and the upper part
employs the correct detailed representation with nodes representing the types.
The left column represents the term [(0+1)+(0)]+1, the middle column the
term [(0)+(0)]+1+1 and the right column the term 0+1+1. The transition from
the left column to the middle column is basically induced by an operation call
to plusSuccNM 2 succPlusNM corresponding to an application of the second rule
from Fig. 3 and the transition from the middle column to the right column by
an operation call to plusZeroN 2 N corresponding to an application of the first
rule from Fig. 3.
The example calculation is also pictured in Fig. 9 in form of a UML sequence
diagram. The commands and calls in the sequence diagram can be classified into
three parts: The first commands build up the working graph by creating objects
representing the start term [(0+1)+(0)]+1, the second part is the application of
the second rule, and the third part shows the application of the first rule. In the
first part, also the links are introduced, however this is not shown in the sequence
diagram in order to keep the diagram small. Because object-oriented ideas stand
behind USE, every operation call must be directed to an object. Therefore,
exactly one object rc of class RuleCollection is created. The following calls are
directed to this object rc. The operation call in the third part which corresponds

154 Martin Gogolla, Karsten Hölscher

-- plus(zero,N) = N -- plus(succ(N),M) = succ(plus(N,M))

rule plusZeroN_2_N rule plusSuccNM_2_succPlusNM

left N:NatExpr left N:NatExpr

NT:NatType NT:NatType

zero:ZeroExpr M:NatExpr

zeroT:NatType MT:NatType

plus:PlusExpr succ:SuccExpr

plusT:NatType succT:NatType

-- plus:PlusExpr

(NT,N):TypeExpr plusT:NatType

(zeroT,zero):TypeExpr --

(plusT,plus):TypeExpr (NT,N):TypeExpr

-- (MT,M):TypeExpr

(plus,zeroT):PlusNat1 (succT,succ):TypeExpr

(plus,NT):PlusNat2 (plusT,plus):TypeExpr

right N:NatExpr --

-- (succ,NT):SuccNat

plusT:NatType (plus,succT):PlusNat1

-- (plus,MT):PlusNat2

(plusT,N):TypeExpr right N:NatExpr

NT:NatType

M:NatExpr

MT:NatType

succ:SuccExpr

succT:NatType

plus:PlusExpr

plusT:NatType

--

(NT,N):TypeExpr

(MT,M):TypeExpr

(plusT,succ):TypeExpr

(succT,plus):TypeExpr

--

(succ,succT):SuccNat

(plus,NT):PlusNat1

(plus,MT):PlusNat2

Fig. 5. Representation of Example Equations in Textual Form

to the application of first rule eliminates certain objects which corresponds to the
fact that this rule deletes nodes. The redexes for rule application are determined
by calls to the redexes operations.
Finally let us comment on the role of OCL within our approach. In USE, OCL
plays a central role. In our view, OCL is the formal specification language of the
UML and is comparable to other formal specification languages like Z or CASL
although the emphasis is much more on practical usability than on theoretical
underpinning, for example, on proof theory. The representation of graph trans-
formation in USE is achieved by representing a rule as an operation which is
characterized by OCL pre- and postconditions and an operational realization as
a command script. Furthermore, OCL can be employed for analyzing the work-

From Algebraic Specifications to GT Rules to UML and OCL Models 155

Fig. 6. Representation of Example Equations as Object Diagram Pairs

Fig. 7. Class Diagram Induced by the Rules

156 Martin Gogolla, Karsten Hölscher

Fig. 8. Example Calculation as an Object Diagram Filmstrip

ing graph at any stage during its development by querying the underlying UML
object diagram.

From Algebraic Specifications to GT Rules to UML and OCL Models 157

Fig. 9. Example Calculation as a UML Sequence Diagram

4 AGG

In order to animate graph transformation in AGG it is necessary to specify a
graph grammar first. Such a grammar makes declarations for the node and edge
types of the needed graph items. In the case of the sample algebraic specifica-
tion from Fig. 1, a straightforward translation requires a node of type Nat as a
base node for the sort. Additionally, a node of type NatType is needed for the
same reason as explained in Section 2. Now for every operation of the algebraic
specification a corresponding node type being a subtype of Nat is needed. An in-
heritance relation cannot be specified in the AGG grammar, but in a type graph
for the corresponding grammar. For this reason the type graph in Fig. 10 is
created. In AGG this can be done in a graphical editor. The type graph specifies
the nodes PlusExp, SuccExp, and ZeroExp to be subtypes of the node Nat.
Additionally edge types are declared for the arguments of the operations defined
in the algebraic specification. Since the order of these arguments is usually im-

158 Martin Gogolla, Karsten Hölscher

Fig. 10. Type Graph for Terms over Natural Numbers Employed in AGG

portant, a digit is appended to the type names. So the additional edge types are
Succ1, Plus1, and Plus2.
Having specified a suitable graph grammar, it is now possible to create a host
graph for the transformation, which can also be done in a graphical editor. Fig. 11
shows the host graph for the sample term succ(plus(succ(zero),zero)). The
recipe for creating a host graph of a given equation is to read the equation from
left to right and add the corresponding nodes and edges in that order. For every
node that represents a sort it is additionally necessary to add a corresponding
node for the context.
The sample term in Fig. 11 starts with succ, so a node of type SuccExp is added.
This node is connected to a newly created context node NatType using an edge
of type Nat. Since a Nat node is always attached to a NatType context node in
this way, it is hence refered to as a Nat node pair.
The next operation occurring in the term is plus, so a PlusExp node pair is
inserted into the graph. Since this node pair is an argument to the previous
succ operation, an edge of type Succ1 is added which connects the SuccExp
node with the NatType node belonging to the new PlusExp node. The remainder
of the equation can be treated in an analogous way.
Now that we have specified a host graph, the actual graph transformation rules
can be derived. The specification contains two equations. These equations can
be translated into a graph transformation rule in an analogous way as the trans-
lation above. The left-hand side of the equation is translated to a graph which
becomes the left-hand side of the rule. Similarly the right-hand side of the equa-
tion becomes the right-hand side of the rule. The rule creation is finished by
the specification of those elements that have to be preserved when the rule is
actually applied.
Consider the first equation plus(zero,N)=N of the specification. The left-hand
side of this equation, i.e., plus(zero,N) has to be translated into a graph first.
As previously explained, this is accomplished by reading the expression from
left to right and inserting corresponding elements into the graph. The expression
starts with plus, so a new PlusExp node pair is inserted into the graph. The first
argument of the operation plus is zero, so a new ZeroExp node pair is added to

From Algebraic Specifications to GT Rules to UML and OCL Models 159

Fig. 11. AGG Graph Representation of succ(plus(succ(zero),zero))

the graph. Additionally the PlusExp node is connected to the NatType node of
the ZeroExp node pair with an edge of type Plus1. The second argument of plus
in the equation is N, so a new Nat node pair is created. The NatType node of this
pair is connected to the PlusExp node with an edge of type Plus2. Since N is
not further specified, the concrete subtype is not known. For this reason a node
of the supertype Nat is used.
The right-hand side of the equation is N. So the graph for the right-hand side of
the new rule contains only a Nat node pair.
In AGG a rule can also be created in a graphical editor. Fig. 12 shows a screen-
shot of the rule corresponding to the equation plus(zero,N)=N.
The graph to the left of the vertical bar is the left-hand side of the rule while
the graph to its right is the right-hand side. The items that have to be preserved
are represented by identical numbers in graph elements of the left-hand and the
right-hand side. In this case, only the NatType node indicated by 1: and the Nat
node indicated by 2: are specified as elements that have to be preserved when
the rule is applied. Since the equation specifies that plus and zero do not occur

160 Martin Gogolla, Karsten Hölscher

Fig. 12. AGG Rule Representing the Equation plus(zero,N)=N

in the right-hand side, the graph transformation rule specifies to delete the corre-
sponding nodes. It may be an intuitive approach to simply keep the N:Nat node
pair when the rule is applied, but this may yield a wrong result. If the NatType
node of the PlusExp node pair is connected to another node, e.g., to a SuccExp
node via a Succ1 edge (representing an expression like succ(plus(...)), then
this connection would be deleted together with the respective NatType node. For
this reason, the NatType node of the Nat node pair representing the first term
in the equation expression always has to be preserved. The additional context
following N is preserved anyway, since the Nat node representing N is preserved
and with it all its connections.
So the rule creation works as stated above bearing in mind that the the topmost
(in the sense of no incoming edges) NatType of the left-hand side has to be
preserved.

Fig. 13. AGG Rule Representing the Equation plus(succ(N),M)=succ(plus(N,M))

Fig. 13 pictures the AGG rule that corresponds to the second equation
plus(succ(N),M) = succ(plus(N,M)) of the specification. It has been created
analogously to the first rule.

From Algebraic Specifications to GT Rules to UML and OCL Models 161

Fig. 14. Transformed Graph After Applying the First Rule in AGG

Considering the host graph from Fig. 11 the first rule cannot be applied. This
holds, since the first argument of plus would have to be zero for the rule to
be applicable. The second rule can be applied in exactly one fashion and in the
same way as one would apply the second equation. It yields the transformed
graph in Fig. 14. The figure shows a screenshot of the actual transformation in
AGG which can directly be observed in the GUI version of the tool.
The second rule is not applicable to the transformed graph. This holds, since the
rule expects a succ as first argument of plus. But in the expression represented
by the graph, the first argument of the only plus is zero. For this reason the
first graph transformation rule is applicable, yielding the transformed graph
depicted in Fig. 15. It represents the term succ(succ(zero)), which is the
expected result.

5 GrGen

In GrGen the specification of the underlying graph model as well as the graph
transformation rules is given in textual form. Since GrGen supports subtypes for
nodes and edges as well as subtype matching in rule application, the algebraic

162 Martin Gogolla, Karsten Hölscher

Fig. 15. Transformed Graph After Applying the Second Rule in AGG

specification can be translated in a straight-forward way. The graph model can be
derived from a specification in the following way. For every sort there is a node
type with the same name and a context node type. Then for every operation
that yields a certain sort, there is a node type which extends the node type
representing the sort. For every argument of an operation there is an edge type
with a type name consisting of the operation name and a successive number
to indicate the order of the arguments. Therefore, in the case of the running
example specification from Fig. 1, the GrGen graph model description can be
stated textually as follows.

node class NatType;

node class Nat;

node class Zero extends Nat;

node class Succ extends Nat;

node class Plus extends Nat;

edge class nat;

edge class succ1;

edge class plus1;

edge class plus2;

This model can also be pictured as a UML class diagram as shown in Fig. 16.
In addition to the simple, but sufficient model we have used here, GrGen would
also allow to declare the edges to possess more specific types.

From Algebraic Specifications to GT Rules to UML and OCL Models 163

Fig. 16. UML Class Diagram for Terms over Natural Numbers Employed in GrGen

In GrGen a graph transformation rule consists of a pattern part and a replace
part. The pattern part represents the left-hand side of the rule, while the
replace part corresponds to the right-hand side. The graph items that have
to be preserved are indicated by using the same identifiers for nodes and edges
in both parts.
In order to specify the left-hand side of the rule for plus(zero,N) a node pair
consisting of the corresponding Nat node connected to its context NatType node
is inserted for every Nat expression. Then connecting edges are specified for the
operation arguments, which can be directly derived from the specification. The
right-hand side is specified analogously. Similarly to the AGG specification the
topmost NatType node of the left-hand side has to be mapped to the topmost
NatType node of the right-hand side in order to preserve a possible context. So
the first rule looks like this:

rule plusZeroN {

plus:Plus -:nat-> plusType:NatType;

zero:Zero -:nat-> zeroType:NatType;

n:Nat -:nat-> nType:NatType;

plus -:plus1-> zeroType;

plus -:plus2-> nType;

replace {

n -:nat-> plusType;

}

}

Analogously the second rule looks like this:

164 Martin Gogolla, Karsten Hölscher

rule plusSuccNM {

plus:Plus -:nat-> plusType:NatType;

suc:Succ -:nat-> sucType:NatType;

n:Nat -:nat-> nType:NatType;

m:Nat -:nat-> mType:NatType;

plus -:plus1-> sucType;

plus -:plus2-> mType;

suc -:succ1-> nType;

replace {

suc -:nat-> plusType;

suc -:succ1-> newPlusType:NatType;

plus -:nat-> newPlusType;

plus -:plus1-> newNType:NatType;

n -:nat-> newNType;

plus -:plus2-> newMType:NatType;

m -:nat-> newMType;

}

}

The actual graph transformation is executed in GrGen’s grshell. Within grshell,
a graph transformation specification can be loaded and a graph can be created
manually or by a script. Testing the above specification using an initial graph rep-
resenting the sample term succ(plus(succ(zero),zero)) yields the expected
result. Initially only the rule plusSuccNM and after that only the rule plusSuccNM
is applicable. For debuging purposes, GrGen is shipped with yComp, a graph
visualization tool that draws the current host graph handled in GrGen. Fig. 17
shows a screenshot of the graph after the two rule applications. As expected it
is the graph representation of the term succ(succ(zero)).

6 Conclusion

This paper has explained how algebraic specification in their basic form as con-
ditional equations can be represented as a graph transformation system and how
the result can be validated, animated, and executed in various graph transfor-
mation tools. These graph transformation tools offer the possibility of analyzing
the underlying model (although we have not demonstrated this feature). We
have considered the equational specification as a rewriting system which works
in one direction only. The work shows that classical software specification tech-
niques still have a close connection to modern object-oriented techniques like
UML. The translation may also be seen as an example for a conceptual model
transformation from one computer science field (Algebraic Specification) into
another one (UML and OCL). Another aspect of the current work was to show
and compare the graph models in the different tools by formally fixed UML class
diagrams. These different graph models underpin the flexibility of current graph
transformation tools.

From Algebraic Specifications to GT Rules to UML and OCL Models 165

Fig. 17. Final Graph in GrGen Drawn with yComp

Future work might concentrate on the question how to utilize the strengths
and analysis features of the different tools in order to give feedback to sys-
tem developers. Apart from the considered tools, other tools like FUJABA,
MOFLON, GReAT, GROOVE, VIATRA, or VMTS might be taken into consid-
eration. The equations might also be treated as rules in both directions. We think
that for courses on formal software development the translation which we have
proposed gives insight into connections between the different computer science
fields, namely algebraic specification, graph transformation, and model-driven
development.

References

[AKRS06] C. Amelunxen, A. Königs, T. Rötschke, A. Schürr. MOFLON: A Standard-
Compliant Metamodeling Framework with Graph Transformations. In A.
Rensink, J. Warmer, editors, Proc. 2nd Eur. Conf. Model Driven Architec-
ture (ECMDA’2006), 361–375. LNCS 4066, Springer, Berlin, 2006.

[BG06] F. Büttner and M. Gogolla. Realizing Graph Transformations by Pre- and
Postconditions and Command Sequences. In A. Corradini, H. Ehrig, U.
Montanari, L. Ribeiro, and G. Rozenberg, editors, Proc. 3rd Int. Conf.
Graph Transformations (ICGT’2006), 398-412. LNCS 4178, Springer,
Berlin, 2006.

[BGN+04] S. Burmester, H. Giese, J. Niere, M. Tichy, J.P. Wadsack, R. Wagner,
L. Wendehals, and A. Zündorf. Tool Integration at the Meta-Model Level:
The FUJABA Approach. STTT, 6(3):203-218, 2004.

[BNvBK06] D. Balasubramanian, A. Narayanan, C.P. van Buskirk, and G. Karsai.
The Graph Rewriting and Transformation Language: GReAT. ECEASST,
1, 2006.

166 Martin Gogolla, Karsten Hölscher

[dLT04] J. de Lara and G. Taentzer. Automated Model Transformation and Its
Validation Using AToM 3 and AGG. In A.F. Blackwell, K. Marriott, and
A. Shimojima, editors, Diagrams, LNCS 2980, 182-198. Springer, 2004.

[EEKR99] H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg, editors. Handbook
of Graph Grammars and Computing by Graph Transformation, Vol. 2:
Applications, Languages and Tools. World Scientific, Singapore, 1999.

[EGL89] H.-D. Ehrich, M. Gogolla, U.W. Lipeck. Algebraische Spezifikation abstrak-
ter Datentypen. Teubner, Stuttgart, 1989.

[EKW78] H. Ehrig, H.-J. Kreowski, H. Weber. Algebraic Specification Schemes for
Data Base Systems. In S. Bing Yao, editor, Proc. 4th Int. Conf. Very Large
Data Bases, IEEE, 427-440, 1978.

[EM85] H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification. Springer,
Berlin, Germany, 1985.

[GBR05] M. Gogolla, J. Bohling, and M. Richters. Validating UML and OCL Models
in USE by Automatic Snapshot Generation. Journal on Software and
System Modeling, 4(4):386-398, 2005.

[GBR07] M. Gogolla, F. Büttner, and M. Richters. USE: A UML-Based Specifi-
cation Environment for Validating UML and OCL. Science of Computer
Programming, 69:27-34, 2007.

[GK07] R. Geiß and M. Kroll. GrGen.Net: A Fast, Expressive, and General Pur-
pose Graph Rewrite Tool. In A. Schürr, M. Nagl, and A. Zündorf, editors,
AGTIVE, LNCS 5088, 568-569. Springer, 2007.

[Kre77] H.-J. Kreowski. Transformations of Derivation Sequences in Graph Gram-
mars. In M.Karpinski, editor, Proc. 1st Int. Conf. Fundamentals of Com-
putation Theory, Springer, LNCS 56, 275-286, 1977.

[KGKK02] S. Kuske and M. Gogolla and R. Kollmann and H.-J. Kreowski. An In-
tegrated Semantics for UML Class, Object and State Diagrams Based on
Graph Transformation. In M.J. Butler, L. Petre, K. Sere, editors, Proc.
3rd Int. Conf. Integrated Formal Methods, Springer, LNCS 2335, 11-28,
2002.

[Löw90] M. Löwe. Implementing Algebraic Specifications by Graph Transforma-
tion Systems. Elektronische Informationsverarbeitung und Kybernetik,
26 (11/12):615-641, 1990.

[Ren03] A. Rensink. The GROOVE Simulator: A Tool for State Space Generation.
In J.L. Pfaltz, M. Nagl, and B. Böhlen, editors, AGTIVE, LNCS 3062,
479-485. Springer, 2003.

[Roz97] G. Rozenberg, editor. Handbook on Graph Grammars and Computing by
Graph Transformation, Vol. 1: Foundations. World Scientific, Singapore,
1997.

[Wir90] M. Wirsing. Algebraic specification. In J. van Leeuwen, editor, Handbook
of Theoretical Computer Science. North-Holland, 1990.

From Algebraic Specifications to GT Rules to UML and OCL Models 167

Appendix: USE Protocol for the Example Calculation

--

use> open alg2ocl.use

--

use> !create n1:ZeroExpr

use> !create n1T:NatType

use> !insert (n1T,n1) into TypeExpr

use> !create n2:SuccExpr

use> !create n2T:NatType

use> !insert (n2T,n2) into TypeExpr

use> !insert (n2,n1T) into SuccNat

use> !create n3:ZeroExpr

use> !create n3T:NatType

use> !insert (n3T,n3) into TypeExpr

use> !create n4:PlusExpr

use> !create n4T:NatType

use> !insert (n4T,n4) into TypeExpr

use> !insert (n4,n2T) into PlusNat1

use> !insert (n4,n3T) into PlusNat2

use> !create n5:SuccExpr

use> !create n5T:NatType

use> !insert (n5T,n5) into TypeExpr

use> !insert (n5,n4T) into SuccNat

--

use> !create rc:RuleCollection

use> ?rc.plusZeroN_2_N_redexes()

Set{}: Set(Sequence(OclAny))

use> ?rc.plusSuccNM_2_succPlusNM_redexes()

Set{Sequence{@n1,@n1T,@n3,@n3T,@n2,@n2T,@n4,@n4T}}:

Set(Sequence(OclAny))

--

use> read plusSuccNM_2_succPlusNM_find_redex.cmd

-- the following commands are executed by reading the command file

CMD> !let _redex = rc.plusSuccNM_2_succPlusNM_redexes()->any(true)

CMD> !let _N = _redex->at(1)

CMD> !let _NT = _redex->at(2)

CMD> !let _M = _redex->at(3)

CMD> !let _MT = _redex->at(4)

CMD> !let _succ = _redex->at(5)

CMD> !let _succT = _redex->at(6)

CMD> !let _plus = _redex->at(7)

168 Martin Gogolla, Karsten Hölscher

CMD> !let _plusT = _redex->at(8)

CMD> !openter rc plusSuccNM_2_succPlusNM

(_N,_NT,_M,_MT,_succ,_succT,_plus,_plusT)

precondition ‘plusSuccNM_2_succPlusNM_pre’ is true

CMD> !insert(_plusT,_succ) into TypeExpr

CMD> !insert(_succT,_plus) into TypeExpr

CMD> !insert(_succ,_succT) into SuccNat

CMD> !insert(_plus,_NT) into PlusNat1

CMD> !delete(_succT,_succ) from TypeExpr

CMD> !delete(_plusT,_plus) from TypeExpr

CMD> !delete(_succ,_NT) from SuccNat

CMD> !delete(_plus,_succT) from PlusNat1

CMD> !opexit

postcondition ‘plusSuccNM_2_succPlusNM_post’ is true

--

use> ?rc.plusZeroN_2_N_redexes()

Set{Sequence{@n3,@n3T,@n1,@n1T,@n4,@n2T}}: Set(Sequence(OclAny))

use> ?rc.plusSuccNM_2_succPlusNM_redexes()

Set{}: Set(Sequence(OclAny))

--

use> read plusZeroN_2_N_find_redex.cmd

-- the following commands are executed by reading the command file

CMD> !let _redex = rc.plusZeroN_2_N_redexes()->any(true)

CMD> !let _N = _redex->at(1)

CMD> !let _NT = _redex->at(2)

CMD> !let _zero = _redex->at(3)

CMD> !let _zeroT = _redex->at(4)

CMD> !let _plus = _redex->at(5)

CMD> !let _plusT = _redex->at(6)

CMD> !openter rc plusZeroN_2_N(_N,_NT,_zero,_zeroT,_plus,_plusT)

precondition ‘plusZeroN_2_N_pre’ is true

CMD> !insert(_plusT,_N) into TypeExpr

CMD> !delete(_NT,_N) from TypeExpr

CMD> !delete(_zeroT,_zero) from TypeExpr

CMD> !delete(_plusT,_plus) from TypeExpr

CMD> !delete(_plus,_zeroT) from PlusNat1

CMD> !delete(_plus,_NT) from PlusNat2

CMD> !destroy _NT

CMD> !destroy _zero

CMD> !destroy _zeroT

CMD> !destroy _plus

CMD> !opexit

postcondition ‘plusZeroN_2_N_post’ is true

--

From Algebraic Specifications to GT Rules to UML and OCL Models 169

. .

Prof. Dr. Martin Gogolla

Fachbereich 3 – Informatik
Universität Bremen
D-28334 Bremen (Germany)
gogolla@informatik.uni-bremen.de
http://www.db.informatik.uni-bremen.de

Being a professor for Computer Science at the University of Bremen, Martin
Gogolla has been a colleague of Hans-Jörg Kreowski since 1994. They first met
in 1982 the 1st Workshop on Abstract Data Types, and have collaborated in
both international (e.g., Compass) and national projects (e.g., Uml-Aid).

. .

Dr. Karsten Hölscher

Fachbereich 3 – Informatik
Universität Bremen
D-28334 Bremen (Germany)
hoelsch@informatik.uni-bremen.de

Karsten Hölscher studied Computer Science at the University of Bremen. He
was introduced to Theoretical Computer Science by Hans-Jörg Kreowski and
Frank Drewes, who, during that time, was an assistant professor in Hans-
Jörg’s team. Karsten graduated in 2003 under Hans-Jörg’s supervision and
became a doctoral student in his group, working as a research associate from
2003 to 2008. Karsten received his doctoral degree in September 2008 under
Hans-Jörg’s supervision. After a short intermezzo in software industry, Karsten
returned to the University of Bremen, switching sides to a more practical
field. He now works as a research associate in the Software Engineering Group
headed by Rainer Koschke.

. .

meets
docu

menta

Twelv
e is a

dozen
.

Zw�olf
ist ein

Dutze
nd.

Äâàí
àéñåò

å äóç
èíà.

Twaa
lf is e

en dozijn
.

Tizen
kett�o

egy tucat
.

Divpa
dsmit ir d

ucis.

Äâåí
àäöàò

ü - ýòî
äþæèíà.

Douz
e est

une d
ouzai

ne.

Twaa
lf is e

en dozijn
.

Tolv
�ar ett

dussin
.

Doce
es un

a docen
a.

Seque
ntially

multi
-voca

l poe
m, in

spired
by the co-loc

ation
of Ag

tive
, the

third

quadr
ennia

l Worksh
op on Appli

cation
s of G

raph
Trans

forma
tion with

Indus
trial

Relev
ance,

and docu
menta

, the
twelft

h quinq
uenni

al exh
ibitio

n of con
temp

orary

art in
Kasse

l.

Perfo
rmed

on Thurs
day, O

ctobe
r 11,

2007
at the

Orang
erie, K

assel.

Comp
oser a

nd condu
cter:

Hans-
J�org K

reows
ki, Br

emen
.

Engli
sh voice:

Greg
Mannin

g, Yo
rk.

Germ
an voice:

J�orn
Dreye

r, Ka
ssel.

Bulga
rian voice:

Iovka
Bonev

a, Tw
ente.

Dutch
voice:

Arend
Rensi

nk, T
wente

.

Hung
arian

voice:
Danie

l Varr
�o, Bu

dapes
t.

Latvi
an voice:

Edgar
s Ren

cis, R
iga.

Russi
an voice:

Maria S
emeny

ak, P
aderb

orn.

Frenc
h voice:

Elodi
e Leg

ros, D
armst

adt.

Flemi
sh voice:

Tom
Mens, M

ons.

Arabi
an voice:

Eugen
e Syri

ani, M
ontr�ea

l.

Swedi
sh voice:

Karl
Azab,

Olden
burg.

Spani
sh voice:

Juan
de La

ra, M
adrid

.

Recor
ded and comp

iled by Berth
old Ho�m

ann,
Brem

en, w
ith the help of Ser

gey

Gonch
arov,

Brem
en and Modar

Ibrah
eem,

Brem
en.

Conditional Adaptive Star Grammars

Berthold Hoffmann

Abstract. The precise specification of software models is a major con-
cern in model-driven design of object-oriented software. In this paper,
we investigate how program graphs, a language-independent model of
object-oriented programs, can be specified precisely, with a focus on
static structure rather than behavior. Graph grammars are a natural
candidate for specifying the structure of a class of graphs. However, nei-
ther star grammars—which are equivalent to the well-known hyperedge
replacement grammars—nor the recently proposed adaptive star gram-
mars allow all relevant properties of program graphs to be specified. So
we extend adaptive star rules by positive and negative application con-
ditions, and show that the resulting conditional adaptive star grammars
are powerful enough to generate program graphs.

1 Introduction

Model-driven design of object-oriented software aims at describing the static
structure, dynamic behavior, and gradual evolution of a system in a comprehen-
sive way. Typically, a software model is a collection of graph-like diagrams that
is often specified by a meta-model. For instance, the static structure of a system
is often defined by class diagrams of the Uml. Since graph grammars are another
candidate for specifying graph-like structures, we investigate how they can be
used to define software models. As a case study, we consider program graphs, a
language-independent model of object-oriented programs that has been devised
for specifying refactoring operations on programs [14]. Several kinds of graph
grammars have been proposed in the literature. Here we need a formalism that
is powerful so that all properties of models can be captured, and simple in order
to be practically useful, in particular for parsing models in order to determine
their consistency. However, neither star grammars (equivalent to the well-known
hyperedge replacement grammars [13, 4]), nor node replacement grammars [12]
are powerful enough for our purpose. Even the recently proposed adaptive star
grammars [6, 5] fail for certain more delicate properties of program graphs. So
we define conditional adaptive star grammars in this paper. In these grammars,
adaptive star rules are extended by positive and negative application condi-
tions. (Informally, application conditions have already been considered in [9, 7].)
Conditional adaptive star grammars capture all relevant properties of program
graphs.

The paper is structured as follows. In Section 2, we recall how object-oriented
programs can abstractly be represented as program graphs. Then we introduce
star grammars in Section 3, show that they can define program trees, a sub-
structure of program graphs, and discuss why they cannot define program graphs
themselves. In Section 4, we therfore recall the adaptive star grammars devised

F. Drewes, A. Habel, B. Hoffmann, D. Plump (Eds.): Manipulation of Graphs, Algebras and Pictures.
Essays Dedicated to Hans-Jörg Kreowski on the Occasion of His 60th Birthday, pp. 171–189, 2009.

172 Berthold Hoffmann

in [6, 5]. Close inspection reveals that even this formalism fails to capture prop-
erties of program graphs. So we extend adaptive star grammars further, by rules
with positive and negative application conditions, in Section 5. These conditional
adaptive star grammars, finally, allow program graphs to be defined completely.
We conclude with some remarks on related and future work in Section 6.

2 Graphs Representing Object-Oriented Software

In model-driven software development, software is represented by diagrams, e.g.,
of Uml. Formally, such diagrams can be defined as many-sorted graphs.

Definition 2.1 (Graph). Let Σ = 〈Σ̇, Σ̄〉 be a pair of disjoint finite sets of
sorts.

A many-sorted directed graph over Σ (graph, for short) is a tuple G =
〈Ġ, Ḡ, s, t, σ〉 where Ġ is a finite set of nodes, Ḡ is a finite set of edges, the
functions s, t : Ḡ → Ġ define the source and target nodes of edges, and the pair
σ = 〈σ̇, σ̄〉 of functions σ̇ : Ġ → Σ̇ and σ̄ : Ḡ → Σ̄ associate nodes and edges
with sorts.

Given graphs G and H , a pair m = 〈ṁ, m̄〉 of functions ṁ : Ġ → Ḣ and
m̄ : Ḡ → H̄ is a morphism if it preserves sources, targets and sorts. A morphism
m is surjective or injective if both ṁ and m̄ have the respective property. If the
morphism m : G → H is both injective and surjective, it is an isomorphism, and
G and H are called isomorphic, written G ∼= H .

In figures of graphs, different sorts of edges are represented by arrows drawn
with different widths or dashing, whereas nodes are distinguished by their shape,
which may be a box or a circle, and by a label inscribed to that shape.

Program graphs have been devised as a language-independent representation
of object-oriented code that can be used for studying refactoring operations [14].
They capture concepts that are common to many object-oriented languages, like
single inheritance and method overriding, whereas properties particular to a few
languages—like multiple inheritance—are left out.

Example 2.1 (A Program Graph). Figure 1 depicts a program graph for a simple
object-oriented program from [1], which is shown in Figure 2. The nodes of a
program graph, drawn as circles, represent syntactic entities of a program: classes
(C), variables (V), method signatures (M) and bodies (B), and expressions (E).
Edges establish relations between entities: “ ” is pronounced “contains” , and
“ ” is pronounced “refers to”.

Nodes of sort C are called “class nodes” or just “classes”, and so for the
other sorts of nodes. The variables contained in a method signature are called
its parameters, and we say that a class c′ is a super-class of a class c if either
c′ equals c, of if some class contained in c′ is a super-class of c. In a similar
way, we define a sub-expression of a body or expression. If a body b refers to
a method signature m, we say that b implements m. In expressions, only data
flow is represented: a reference to a method represents a call ; a reference to a

Conditional Adaptive Star Grammars 173

CAny

C

Cell

M B

V

B M C

get set ReCell

E E

V

B

V

M B

restore

cts

backupn

E E E E

E E E

Fig. 1. A program graph

class Cell is

var cts: Any;

method get() Any is
return cts;

method set(var n: Any) is
cts := n

subclass ReCell of Cell is

var backup: Any;

method restore() is
cts := backup;

override set(var n: Any) is
backup := cts;
super.set(n)

Fig. 2. A simple OO program

variable represents an access that either uses its value, or assigns the value of
an expression to it.

Definition 2.2 (Program Graph). A graph G is a program graph if the fol-
lowing conditions are satisfied:

1. In G, nodes and edges are of the sorts {C, V, M, B, E} and { , }, respectively.
2. Nodes and edges may be incident as shown in Figure 3. In particular,

(a) a body contains at least one expression, and implements exactly one
method signature, and

(b) an expression either calls exactly one method, or it accesses exactly one
variable; in the latter case, it contain at most one expression.

3. The subgraph Ḡ of G induced by -edges is a spanning tree of G; the root
of Ḡ is a class.

4. An expression may call any method contained in any class.
5. An expression contained in a class c may access any variable contained in

any super-class of c.
6. An expression e may access a parameter of a method m if e is a sub-

expression of a body implementing m.

C

V M B

E

Fig. 3. Incidence of nodes and edges in program graphs

174 Berthold Hoffmann

7. A body b contained in some class c may implement any method signature
contained in any super-class of c.

8. Every class may contain at most one body implementing a particular method
signature m.

9. If an expression e calls a method m, the number of m’s parameters must
match the number of expressions contained in e.

The class of program graphs is denoted by P .

The graph in in Figure 3 is called a type graph in [10], and a graph schema in
Progres [17]; Properties 2.2.1–3 could be described by a class diagram in Uml.
Property 2.2.4 defines the visibility of all methods as public, and Property 2.2.5
defines the visibility of all variables as protected, in the terminology of Java.

The graph-theoretic structure of program graphs is as follows.

Definition 2.3. A rooted, connected, acyclic graph is called a collapsed tree.

Fact 2.1. Program graphs are collapsed trees.

Proof Sketch. Acyclicity follows from Property 2.2.2: Cyclic incidences are al-
lowed only for nesting of classes and expressions, but these occur in the underly-
ing the spanning tree so that they do not lead to cycles. Property 2.2.3 implies
connectedness; The root class of the spanning tree is the root of the program
graph as well, because property 2.2.2 forbids references to classes.

3 Star Grammars

Star grammars are a special case of double pushout (DPO) graph transforma-
tion [10], and equivalent to hyperedge replacement grammars [13, 4], a well-
understood context-free kind of graph grammars. They are recalled just as a
basis for the extensions defined in Sections 4 and 5.

Definition 3.1 (Variable). From now on we assume that the node sorts con-
tain variable sorts Σ̇v ⊆ Σ̇ that define the terminal node sorts as Σ̇t = Σ̇ \ Σ̇v.

Consider a star-like graph X , with one center node cX of sort x ∈ Σ̇v, and
with some border nodes (of terminal sorts from Σ̇t) so that the edges connect
cX to every border node; Then X is called a (syntactic) variable named x. A
variable is straight if every border node is incident with exactly one edge.

A graph G is a graph with variables if all nodes named with variables are not
adjacent to each other.1 Let X denote the class of (syntactic) variables, G(X)
the class of graphs with variables, and G be the class of graphs without variables
(with node sorts from Σ̇t).

Definition 3.2 (Star Replacement). A star rule is written L ::= R, where
the left-hand side L ∈ X is a straight variable and the replacement is a graph
R ∈ G(X) that contains the border nodes of L.

1 Then all nodes labeled with variable names are centers of stars.

Conditional Adaptive Star Grammars 175

A variable Y in a graph G is a match for a star rule L ::= R if there is a
surjective morphism m : L → Y where m̄ is bijective. Then a star replacement
yields the graph denoted as G[Y/mR], which is constructed by adding the nodes
Ṙ \ L̇ and edges R̄ disjointly to G, and by replacing, for every edge in R̄, every
source or target node v ∈ L̇ by the node ṁ(v), and by removing the edges Ȳ
and center node cY .

Let R be a finite set of star rules. Then we write G ⇒R H if H = G[Y/mR]
for some L ::= R ∈ R, some variable Y in G, and some match Y , and denote
the reflexive-transitive closure of this relation by ⇒∗

R.

Example 3.1 (Star Replacement). Figure 4 shows a star rule L ::= R for an
assignment expression. The center nodes of variables are drawn as boxes enclos-
ing the variable name. We shall draw a star rule “blowing up” the center node
of L and placing the new nodes and edges of R inside, as can be seen on the
right-hand side of Figure 4. A star rule can be represented as it is drawn, as a
single rule graph wherein a variable is distinguished as the rule’s left-hand side.
This way, graph operations can be applied to star rules as well. Figure 5 shows
a schematic star replacement G0 ⇒ass G1 using the rule.

Definition 3.3 (Star Grammar). Γ = 〈G(X),X ,R, Z〉 is a star grammar
with a start variable Z ∈ X . The language of Γ is obtained by exhaustive star
replacement with its rules, starting from the start variable:

L(Γ) = {G ∈ G | Z ⇒∗
R G}

Example 3.2 (Star Grammar for Program Trees). Figure 6 shows the star rules
generating the program trees that underlie program graphs. The rules define a
star grammar PT according to the following convention: The left-hand side of
the first rule indicates the start variable, a variable named Prg with a class as
a border node in this case. The sorts used in the rules define the sorts of the
grammar.

Boxes with dashed lines and/or shades indicate multiple subgraphs: a shade
indicates that the subgraph may have several copies, which are called clones as
each of them is connected to the remaining graph in the same way; a dashed
line indicates that a subgraph may be present, or missing. (In hy, a hierarchy

Exp

E

: : =
ass

E

E

ExpV

ass

Exp

E

E

ExpV

Fig. 4. A star rule and its boxed form

G0

Exp

E

=⇒
ass

G1

E

E

ExpV

Fig. 5. A star replacement

176 Berthold Hoffmann

start

Prg

C

Hy

hy

Hy h

C

C

Cls

Hy

cls

Cls
f

C

Fea

var

Fea

C

V

sig

Fea

C

M

Vp

impl

Fea

C

M B

V Bdyp

bdy

Bdy

e

B

E

Exp

use

Exp

E

V

ass

Exp

E

E

ExpV

call

Exp

E

e
M E

V Expp

Fig. 6. The rules of the star grammar PT generating program trees

may have n > 0 sub-hierarchies; in bdy, a body contains n > 1 expressions.)
Analogously, the dashed and shaded variables in sig, impl, and call indicate mul-
tiple nodes that may have n > 0 clones. Note that multiple nodes and subgraphs
are just abbreviations, which can be replaced by auxiliary variables that are
defined by auxiliary star rules, just as the iteration operators of the extended
Backus-Naur Form for context-free word grammars.

Grey nodes designate nodes in the program tree that have to be identified
with nodes representing their declarations in order to get a program graph ac-
cording to Definition 2.2: These are the method and parameters generated in
impl and call, and the variables accessed in use and ass.

Inspection of the rules in PT reveals the following.

Fact 3.1. L(PT) is a language of trees.

The language of PT is closely related to program graphs.

Definition 3.4. The unraveling Ĝ of a collapsed tree G is a tree so that there is
a surjective morphism r : Ĝ → G. Let P̂ = {Ĝ | G ∈ P} denote the unravelings
of program graphs.

Fact 3.2. P̂ (L(PT).

Proof Idea. (I): P̂ 6= L(PT). Inspection of the rules shows that the trees gener-
ated with PT satisfy Properties 2.2.1–2.

Also, every graph G in P satisfies Properties 2.2.1–9. Properties 2.2.1–2 are
preserved in the unraveling Ĝ. Properties 2.2.4–8 are irrelevant for Ĝ, as the
methods, variables, and parameters referred are copied by the unraveling oper-
ation. Property 2.2.9 is unchanged under unraveling

(II): P̂ 6= L(PT). Rule call may have clones where the formal parameters p
have n clones, whereas the actual parameters e have m 6= n clones. However, a

Conditional Adaptive Star Grammars 177

tree generated with such a clone cannot be the unraveling of a program graph,
which satisfies Property 2.2.9. (For other rules, one can find similar examples.)

Star grammars are context-free in the sense defined by Courcelle [3]. This
suggests that their generative power is limited. Indeed, we have the following

Conjecture 3.1. There is no star grammar Γ with L(Γ) = P.

Consider Figure 5 to see why we have this conjecture. The rule ass allows to
derive trees of assignments. However, for generating a program graph, the rule
should insert a reference to a variable that already exists in graph G0, and is
accessible in the expression. Due to the restricted form of star rules, such a
node had to be on the border of ass. Since assignments may set every accessible
variable, rule ass must have all these variables on its border nodes so that one
of them can be selected in the rule. However, the number of accessible variables
depends on the size of the program, and is unbounded. Thus a finite set of star
rules cannot suffice to define all legal assignments.

4 Adaptive Star Grammars

Proposition 3.1 gives a clue how the limitation of star grammars can be overcome.
We make the left-hand sides of star rules adaptive wrt. the numbers of border
nodes, as proposed in [6, 5]. Formally, this is defined by cloning.

Definition 4.1 (Singular and Multiple Nodes). We assume that the sorts
Σ = 〈Σ̇, Σ̄〉 are given so that the terminal node sorts Σ̇t contain a set Σ̈t of
multiple sorts so that every remaining singular sort s ∈ Σ̇t \ Σ̈t has a unique
multiple sort s̈ ∈ Σ̈t, and vice versa.

From now on, X , G and G(X) denote classes of graphs with singular sorts
only, whereas Ẍ , G̈ and G̈(Ẍ) denote classes of adaptive graphs that may contain
multiple sorts as well.

A star rule L ::= R is called adaptive if L ∈ Ẍ and R ∈ G̈(Ẍ).

Definition 4.2 (Cloning). Let G be a graph in G̈(Ẍ) with a multiple node v
that is labeled with ℓ̈ ∈ Σ̈, and incident with edges e1, . . . , en (n > 0). Then G v

k
denotes the clone of G in which v is replaced by k > 0 singular nodes v1, . . . , vk

that are labeled with ℓ, where every clone vi is incident with copies ei,1, . . . , ei,n

of the edges e1, . . . , en incident with v.
If r = L ::= R is an adaptive star rule with a multiple node v, its clone r v

k
is obtained by cloning its rule graph.

Example 4.1 (Adaptive Star Cloning, and Label Specialization). The star rule
ass on the left of Figure 7 is adaptive: its variable a is a multiple node, and
shall match a set of n > 0 variables in the host graph that are accessible in the
expression. On the right-hand side, a schematic view of the clone ass a

n is given,
for n > 0.

The abstract sort F of nodes a and ai is a placeholder for the concrete sub-
sorts V and M. (F stands for for feature.) Before applying the clone ass a

n , each

178 Berthold Hoffmann

of the labels F is specialized either to V or M. As with multiple nodes and
subgraphs, a star rule with abstract sorts is just an abbreviation for a set of star
rules wherein these abstract sorts are replaced with any combination of concrete
sub-sorts.

Definition 4.3 (Adaptive Star Grammar). Let Γ = 〈G̈(Ẍ), Ẍ ,R, Z〉 be a
star grammar over adaptive variables and graphs. Then Γ is called adaptive if
Z ∈ X (i.e., has no multiple nodes).

Let R̈ denote the set of all possible clones of a set R of adaptive star rules.
Then Γ generates the language

L̈(Γ) = {G ∈ G | Z ⇒∗
R̈ G}

The set of star rules R̈ generated from a set of adaptive star rules is infinite
if at least one of the adaptive star rules contains a multiple node or subgraph. It
has been shown in [5] that this gives adaptive star grammars greater generative
power than grammars based on hyperedge [13] or node replacement [12], but
they are still parseable [6].

Example 4.2 (Adaptive Star Grammar for Program Graphs). The adaptive star
rules in Figure 9 define an adaptive star grammar PG that systematically extends
the program tree grammar PT of Figure 6.

With two exceptions, the rules of PG just extend those of PT. In PG, rule meth
defines a method declaration, which combines a signature sig with an (optional)
implementation impl, whereas ovrd defines the overriding of a method in the
subclass of the original method definition.

In Figure 8 we show the general form of variables in PG and of the program
subgraphs they generate. (In derivations, the multiple nodes d, v, and o of X
are cloned.) The sorts of edges indicate the following roles of the border nodes.
Node r is the root of the program subgraph GX derived from X . Clones of d
are the features declared in GX . Clones of v are the features that are visible in
GX . Clones of o are the methods that are overridable in GX . Features may have
multiple roles in X and GX : every feature declared by X is also visible in X , and

ass

Exp

E

E

Exp

V
a

F
x

ass a
n

Exp

E

E

Exp

V
x

F F
a1 an

· · ·
· · ·
· · ·

Fig. 7. An adaptive rule and its clones

X

R

r

x F

d

M
o

F
v

∗
=⇒
PG

R

r

GX F

d

M
o

F
v

Fig. 8. Variables and derivations in PG

Conditional Adaptive Star Grammars 179

overridable methods are visible as well so that some clones d and v, and some
clones of v and o in X may identified. On the left-hand side of rules, the clones
of d, v and o in a variable X are be distinct (they are required to be straight) so
that they must be identified by matching. The graph GX is directed and acyclic.
Some of its visible border nodes may be isolated. The rest is a collapsed tree
with root r.

The rules in Figure 9 extend the rules of Figure 6 by adding border nodes
to variables according to the roles explained above. The rules for Fea declare a
variable or a method (or just override an existing method). The rule cls declares
its member variables and methods. A hierarchy declares all methods of its top
class and of its sub-hierarchies, makes the variables of the top class visible in the
class itself and in the sub-hierarchies, and makes the methods of the top class
overridable in the classes of its sub-hierarchies. The rule start makes all methods
declared by the program hierarchy visible in it. All rules pass visible features
down to the leaves of the program graph. The rules for Exp then select visible
variables for being used or assigned to, and methods for being called; rule ovrd
selects an overridable method signature for overriding it with a body.

start

Prg

C

M

Hy

hy

Hy

C M

C

M

VCls

Hy

FM

cls

Cls

C F

Fea

FM

var

Fea

C V

FM

meth

Fea

M C

B

Vp Bdy

FM

ovrd

Fea

C

M

B

Vp Bdy

FM

bdy

Bdy

e

B

E

Exp

F

use

Exp

E

V F

ass

Exp

E

E

Exp

V F

call

Exp

E

e

E

Exp

M F

Fig. 9. Rules of the adaptive star grammar PG defining program graphs

180 Berthold Hoffmann

Figure 10 shows parts of a derivation of the program graph shown in Figure 1
with PG. We simplify the drawing of edges as follows: A pair of counter-parallel
edges “ ” is drawn as a single line “ ”, and a pair of parallel edges of the
form “ ” is drawn as a single arrow “ ”.

The class hierarchy is derived in the first row. Exponents of the rules (if
present) indicate how many clones are made of the multiple subgraphs and nodes
on the right-hand side; for border nodes, it is easy to see how many clones have
to be made, and how their labels have to be specialized. Classes Cell and Recell
will introduce three and two features, resp.; the methods are visible in both
classes, but the variables introduced are only visible in the defining class and

R

Prg
=⇒
start

R

Hy

M M M

=⇒
hy1

R Any

Cls

C

Hy

M M M

=⇒
cls0

R Any

C

Hy

M M M

=⇒
hy1

R Any

C Cell

Cls C

Hy

M V M M

=⇒
hy0

R Any

C Cell

Cls C ReCell

Cls

M
get

V
cts

M
set

M
restore

V
backup

C Cell

Cls

M
get

V
cts

M
set

M
restore

=⇒
fea3

C

Fea Fea Fea

M V M M

=⇒
meth0

C

B

Bdy Fea Fea

M V M M

=⇒
var

C

B

Bdy Fea

M V M M

=⇒
meth1

C

B B
get

C.set

Bdy Bdy

M V
cts

M M V
n

C ReCell

Cls

M
get V

cts M
set

V
backup

M
restore

=⇒
fea3

C

Fea Fea Fea

M
V

M
V

M

=⇒
ovrd

C

B

Bdy Fea Fea

M V M V M

=⇒
var

C

B

Bdy Fea

M V M V M

=⇒
meth0

C

B B

R.set

restore

Bdy Bdy

M V
cts

M
set

V
backup

M

B R.set

Bdy

V

backup

V
cts

M
set

V

n
=⇒
bdy2

B

E E

Exp Exp

V M

VV

=⇒
ass

B

E E

E Exp

Exp

V M VV

=⇒
use

B

E

E

E

Exp

V M VV

=⇒
call1

B

E

E

E

E

Exp

V M VV

=⇒
use

B

E

E

E

E

V M VV

Fig. 10. Deriving the program graph of Figure 1 with PG

Conditional Adaptive Star Grammars 181

in its subclasses so that the variable backup in ReCell will not be visible in Cell.
The methods defined in Cell are overridable in ReCell.

The features get, backup, and restore of the class Cell are introduced in the
second row, and the features of the class ReCell are derived in the third row: the
variable backup and the method restore are introduced, and the method set of
Cell is overridden. The last row shows a derivation of the body overriding the
method set of class Cell in ReCell.

The derivations in rows one to three can be combined to one big derivation
by embedding. However, the start graph of the last row cannot be embedded into
the final graph of the derivation in the third row. This is because the rule ovrd
does not make the parameter n (drawn in grey) of the signature of set visible in
the overriding body. The parameter is needed to derive the body, and it should
be visible in it. This reveals one of two problems in the grammar, which cannot
be overcome with adaptive star grammars.

Theorem 4.1. A graph G is in L(PG) iff it satisfies Properties 2.2.(1–5,7).

Proof Sketch. “⇒”: Inspection of the rules (as done in Example 4.2 and Figure 8
above) shows that the border nodes of variables do indeed play the roles given
to them. Using these invariants, it can be shown by induction over the structure
of rules that every G ∈ L(PG) satisfies Properties 2.2.(1–5,7).

“⇐”: Let G satisfy Properties 2.2.(1–5,7). We construct a derivation

Z = H0 =⇒
PG

H1 =⇒
PG

· · ·=⇒
PG

Hn

so that there are injective morphism hi : H̄i → G, where H̄i is the terminal
subgraph of Hi with all nodes that are reachable from the root class via edges
of types { , }, for 0 6 i 6 n.

By Fact 2.1, G is a collapsed tree that has a class, say c, as its root, which is
also the root of a spanning tree induced by -edges (Property 2.2.3). The unique
class in Z is then mapped onto c. The number, say s, of direct subclasses of c
determines the instance hyh

s that must be applied to ĉ so that the clones of the
C-nodes in H1 can be mapped to the subclasses of c in G so that they can be
extended to an injective morphism h1 : H̄1 → G. (The number of clones for the
border nodes in Z and hyh

s are left open for the moment.) The construction of
further graphs H̄i can be continued in the same way. (See the program graph
in Figure 1 as an example.) When a graph H̄n has been constructed so that
hi is injective and surjective, no variables are left in H . Then all the open
multiple border nodes in graphs H0, . . . , Hn−1 can be determined by considering
the number of their clones as multiplicity variables, the values of which are
determined by the rules used in the derivation. In the rule used in the first
step, for instance, the multiplicity of the multiple M-node in Z is given as the
sum of the multiplicities of all declared multiple M-nodes in hyh

s , which in turn
equals the multiplicity of the multiple F -node in hyh

s . The multiplicity for the
overridable M-node in hyh

s equals 0, and the multiplicity of the multiple C-node in
hyh

s is determined by the rule that has been applied to Cls. The process of finding

182 Berthold Hoffmann

equations for the multiplicities of nodes yields a unique solution, because the
equations satisfy the invariants on border nodes. The solutions for the multiple
nodes define complete instances for all multiple nodes in the graphs Hi and in
the rules of the derivation. Thus Hn is in L(PG), so that hi is an isomorphism
for Ĥn = Hn, and Hn

∼= G.

The proof constructs a derivation for a given graph. The construction is
unique up to isomorphism so that we get the following:

Corollary 4.1. PG is unambiguous.

The grammar PG falsely derives some graphs that are not program graphs. In a
graph G ∈ L(PG) \P , a class may contain several bodies that override the same
method, method bodies that access a wrong number of parameters, and method
calls with a wrong number of actual parameters. Let us discuss why adaptive
star grammars fail to describe two properties of program graphs.

Property 2.2.6. In rule ovrd, the parameters of the method m being overridden
cannot be made visible in its body. Parameters are only visible in the body of
their first definition, so they are not among the clones of the F -node in that rule.
(See the overriding of the method set in class ReCell discussed in Example 4.2.)

We could pass around all parameters of all methods (not in the role “visible”,
but in their role as “parameters”). Then, we had to select the parameters of m
to be passed on to its body. We thus have to distinguish the parameters of m
from those of other visible methods. However, the number of visible methods
is unbounded, whereas our supply of edge sorts is finite. So this is not possi-
ble. Alternatively, we could generate copies of the formal parameters for every
overridden body. But then we must know how many formal parameters m has.
Again, this information cannot be made available.

Property 2.2.9. In rule call, the number of actual parameters needs not match
the formal parameters of the method being called. As in the previous case, we
would need access to the parameters of the method being called, or need to know
their number in order to assure parameter correspondence.

These considerations lead to the following

Conjecture 4.1. There is no adaptive star grammar Γ with L(Γ) = P.

5 Conditional Adaptive Star Grammars

To overcome the deficiencies of adaptive star grammars, we extend adaptive
star rules with application conditions. This has been proposed for general (DPO)
graph transformation rules in [11], and has been discussed informally for adaptive
star grammars in [8].

Definition 5.1 (Conditional Adaptive Star Replacement). An applica-
tion condition A for an adaptive star rule L ::= R is one of the following: (i)

Conditional Adaptive Star Grammars 183

a positive condition C or (ii) a negative condition ¬C where C ∈ G̈, or (iii) a
clone condition ∀x : A′ where x is a multiple node in L, and A′ is an application
condition for L wherein the node x occurs as a singular node that carries the
same label as in L. The graphs in an application condition may contain further
nodes from L, which carry the same label and are singular or multiple in both A
and L. If A1, . . . , An are application conditions for L, r = A1∧· · ·∧An [] L ::= R
is a conditional adaptive star rule. If n = 0, the rule r is written without the
symbol “[]”, like an unconditional rule.

In a clone r̈ = Ä1 ∧ · · · ∧ Än [] L̈ ::= R̈ of a conditional rule r, all multiple
nodes have as many clones in Ä as in L̈. Let m : L̈ → Y be a match of r̈ with
a variable Y in some host graph G. We define recursively over the structure
of application conditions in which cases m satisfies an application condition A,
written m � A:

– m � C if m can be extended to C;
– m � ¬C if m cannot be extended to C;
– m � ∀x : A if m � A(x/x′) for every clone x′ of x, where A(x/x′) is obtained

from A by renaming x to x′.

If m � Äi for 1 6 i 6 n, the star replacement G[Y/mR̈] is a conditional star
replacement, and we write G

c=⇒r̈ H .

When drawing conditional rules, as in Figure 11, we indicate shared nodes of
application conditions and left-hand sides of conditional rules by attaching the
same letters to them.

Definition 5.2 (Conditional Adaptive Star Grammar). Let C be a finite
set of conditional adaptive star rules. Then Γ = 〈G̈(Ẍ), Ẍ , C, Z〉 is a conditional
adaptive star grammar over if Z ∈ X .

Let C̈ denote the set of all possible clones of a set C of conditional adaptive
star rules. Then Γ generates the language

L̈(Γ) = {G ∈ G | Z c=⇒∗
C̈ G}

Example 5.1. [Conditional Adaptive Star Grammar for Program Graphs] Fig-
ure 11 shows the rules of the conditional adaptive star grammar PGc, which
refines the adaptive star grammar PG of Example 4.2 as follows. The variables
in PGc are attached to the border nodes used in PG, and may be attached to
two additional sets of nodes, see Figure 12: Outgoing dashed edges 99K rep-
resent the formal parameters contained in variables named Hy, Cls, and Fea,
and ingoing dashed edges represent the formal parameters known in a variable.
The rules make that all formal parameters contained in the features, classes and
hierarchies of the program are known to every variable.

In rule call, the positive condition on nodes m and p (where p is multiple
as it occurs inside a multiple subgraph) requires that the clones of p are formal
parameters of m, and the negative clone condition on nodes m and o forbids, for
every other clone o′ of o, i.e., for every other parameter known in the program,

184 Berthold Hoffmann

start

Prg

C

Hy

V M

hy

Hy

V C M

C

M V

VCls

Hy

M F V

cls

Cls

C F V

Fea

FM V

var

Fea

C V

M F V

meth

Fea

M C

B

V

Bdy

FM V

M
m

V
p

∧ ∀o : ¬ M
m

V
o

∧ ¬ X M
m

∧ ¬ C
c

B M
m

ovrd

Fea

Cc

B

Bdy

M
m

V
p

V
o

F M

bdy

Bdy

e

B

E

Exp

F V

use

Exp

E

V F V

ass

Exp

E

E

Exp

V F V

M
m

V
p

∧ ∀o : ¬ M
m

V
o

∧ ¬ X M
m call

Exp

E

e

E

Exp

M
m

V
p

F V
o

Fig. 11. Rules of the conditional adaptive star grammar PGc defining program graphs

that o′ is a parameter of m. Thus the nhclones of p are all parameters of m. The
remaining condition forbids m to be a declared node of any variable named X ∈
Σv to m. This makes sure that the parameters of m have been generated before
rule call is applied. Since the multiple subgraph contains the formal parameter p
as well as the variable named Exp generating the actual parameters, this makes

X

R

r

xV

c

F

d

V
k

M
o

F
v

∗
=⇒
PGc

R

r

GXV

c

F

d

M
k

V
o

F
v

Fig. 12. Variables and derivations in PGc

Conditional Adaptive Star Grammars 185

sure that call will generate an actual parameter for every formal parameter of m.
Thus Property 2.2.9 is respected.

In rule ovrd, the first three application conditions (which equal that of call)
make sure that the clones of p are all formal parameters of m. These parameters
are not only made known to the overriding body of m, but also made visible to
it so that they may be accessed as variables in use and ass. Thus Property 2.2.6
is respected. The fourth application condition makes sure that no other method
body contained in the current class c does override the same method m; this
guarantees Property 2.2.8.

In Figure 13, we show some steps of a derivation with PGc that could even-
tually derive the program graph in Figure 1. The grey region contains nodes
representing the declarations of get, n, backup, and restore. A pair of counter-
parallel edges “ ” is drawn as a single line “ ”.

Note that rule meth, which generates the definition of set in class Cell makes
the parameter n visible, as a parameter, to the entire program.

When the rule ovrd is applied to the method set, n is made visible as a
variable inside its body. The other part of the applicability condition holds as
well: Class ReCell does not contain another body overriding set, and no variable
has m as a declared border node (but just as a visible border node of Bdy and
an overridable border node of Fea). Note that in class ReCell, the method set
cannot be overridden by another body since this would violate the application
condition of ovrd. Now the derivation in the last row of Figure 10 can be inserted

C

Prg
=⇒
start

C

Hy

M
get

M
set

M
restore

V
n

∗
=⇒

C

Any

C

Cell

C

ReCell

Fea

Fea

M
get

V
cts

M
set

V
n

V
backup

M
restore

=⇒
meth

C

Any

C

Cell

B C

ReCell

Bdy Fea

M
get

V
cts

M
set

V
n

V
backup

M
restore

=⇒
ovrd

C

Any

C

Cell

B C

ReCell

Bdy B

Bdy
M
get

V
cts

M
set

V
n

V
backup

M
restore

Fig. 13. Deriving the program graph of Figure 1 with PGc

186 Berthold Hoffmann

for the body of set in ReCell because n is present. In that derivation, in the step
using rule call, the application condition of PGc guarantees that exactly one
expression will be generated as an actual parameter since method set has one
formal parameter.

Definition 5.3 (Complete Node). Consider a graph G ∈ G(X) and a condi-
tional adaptive star grammar Γ .

A node v ∈ Ġ is called complete wrt. structural edges if for every derivation
G

c=⇒∗
Γ H , v is incident to the same terminal edges in H as it was in G.

Fact 5.1. In graphs derived with PGc, M-nodes are complete wrt. structural
edges if they are not declared nodes of any variables.

Proof Sketch. By inspection of the right-hand sides of the rules for these vari-
ables in PGc, it is clear that structural edges are added only to declared nodes
of these rules’ left-hand sides.

According to this fact, application conditions over structural edges can safely
be checked as soon as the relevant nodes are only visible or overridable border
nodes of variables. This is the case for the conditions concerning the parameters
of methods.

Thus PGc generates the program graph in Figure 1, and will not generate
calls with mismatching parameters, nor with methods that are overridden twice
in a class.

Theorem 5.1. L(PGc) = P.

Proof Sketch. The proof is similar to that of Theorem 4.1.
“⇒”: Inspection of the rules (as done in Example 5.1 and Figure 12 above)

shows that the border nodes of variables do indeed play the roles given to them.
Using these invariants, it can be shown by induction over the structure of rules
that every G ∈ L(PG) satisfies all Properties 2.2.(1–9) of a program graph.

“⇐”: Given a program graph G ∈ P , we can construct a derivation according
to the underlying structure (with edges of type) first, before we determine the
clones for border nodes according to the equations on the multiplicity variables.
At last, it can be verified that the conditional rules ovrd and call satisfy their
application conditions.

Application conditions do not sacrifice parseability of adaptive star gram-
mars. Because, checking a condition, which consists of a positive and negative
terminal graph, is always decidable. In contrast to simple adaptive star rules, the
matches of conditional adaptive star rules in a graph may have critical overlaps.
The application condition of one rule may contradict the application application
condition of another rule. Consider, e.g., the node ReCell in the rightmost graph
in the top row of Figure 13. The rule ovrd matches every Fea node in reCell.
However, if the match includes the same method (get or set), then the applica-
tion of the rule to one feature would disable the other application, due to the

Conditional Adaptive Star Grammars 187

negative application concerning unique implementation. The critical pair analy-
sis for graph transformation rules (as implemented in the Agg-system) applies
to conditional graph transformation rules; it might be used to analyze conflicts
in conditional adaptive star rules if we can extend it to multiple nodes.

6 Conclusions

In this paper, we have attempted to define the well-known class of program
graphs [14] by graph grammars. This seems to be impossible with star gram-
mars and even adaptive star grammars [6, 5], whereas it can be done with the
conditional adaptive star grammars that have been introduced informally in [9,
8]. A richer class of program graphs, featuring more general visibility rules, con-
textual rules for abstract methods and classes, control flow in method bodies,
and static typing of variables and methods has been specified in [9] by conditional
adaptive star grammars as well.

There are too many kinds of graph grammars to relate conditional adaptive
star grammars to all of them. So we restrict our discussion to approaches that
aim at a similar application. Context-embedding rules [15] extend hyperedge-
replacement grammars by rules that add a single edge to an arbitrary graph
pattern. They are used to define and parse diagram languages and are not pow-
erful enough to define models like program graphs. Graph reduction grammars [2]
have been proposed to define and check the shape of data structures with point-
ers. The form of their rules is not restricted, but reductions with the inverse rules
are required to be terminating and confluent, providing a backtracking-free pars-
ing algorithm. It is an open question whether graph reduction grammars suffice
to define program graphs.

A lot of work has to be done until we get a graph grammar mechanism that is
useful for defining software models. Yet another problem is to convince software
engineers that it is a practical benefit for their daily work!

First of all, graph grammars should be compared with the conventional soft-
ware models, like Uml diagrams. For instance, can such a model be derived from
a grammar? Can at least parts of a model be obtained “automatically”? There is
some indication that a class diagram specifying Properties 2.2.(1–3) of program
graphs can be inferred from the rules of a (conditional) adaptive star grammar.

Even if conditional adaptive star grammars are powerful enough, their rules
tend to be rather complicated, both to write and to read. So a more general
challenge would be to come up with yet another graph grammar formalism that
is easier to use, but enjoys many of the formal properties of (adaptive) star rules.

The proof of conjectures 3.1 and 4.1 poses the theoretical challenge to dis-
prove membership in a class of graph languages. While there are at some con-
cepts for star languages (e.g., the pumping lemma for the equivalent hyperedge
replacement languages [13, 4]), nothing is known for (conditional) adaptive star
languages.

188 Berthold Hoffmann

Acknowledgments. I thank my favorite co-authors for their constructive re-
views of this paper.

Special Thanks. Danke, Hans-Jörg! For your long-lasting support in form of
scientific (and other) discussions, opportunities to visit conferences, never-ending
supply of co-authors from your PhD students, and—last but not least—for fruit
and cake in meetings!

References

1. Mart́ın Abadi and Luca Cardelli. A Theory of Objects. Monographs in Computer
Science. Springer, New York, 1996.

2. Adam Bakewell, Detlef Plump, and Colin Runciman. Specifying pointer structures
by graph reduction. Mathematical Structures in Computer Science, 2009. Accepted
for publication.

3. Bruno Courcelle. An axiomatic definition of context-free rewriting and its appli-
cation to NLC rewriting. Theoretical Computer Science, 55:141–181, 1987.

4. Frank Drewes, Annegret Habel, and Hans-Jörg Kreowski. Hyperedge replacement
graph grammars. In Rozenberg [16], chapter 2, pages 95–162.

5. Frank Drewes, Berthold Hoffmann, Dirk Janssens, and Mark Minas. Adaptive star
grammars and their languages. Technical Report 2008-01, Departement Wiskunde-
Informatica, Universiteit Antwerpen, 2008.

6. Frank Drewes, Berthold Hoffmann, Dirk Janssens, Mark Minas, and Niels Van
Eetvelde. Adaptive star grammars. In Andrea Corradini, Hartmut Ehrig, Ugo
Montanari, Leila Ribeiro, and Grzegorz Rozenberg, editors, 3rd Int’l Conference
on Graph Transformation (ICGT’06), number 4178 in Lecture Notes in Computer
Science, pages 77–91. Springer, 2006.

7. Frank Drewes, Berthold Hoffmann, Dirk Janssens, Mark Minas, and Niels Van
Eetvelde. Shaped generic graph transformation. In Andy Schürr, Manfred Nagl,
and Albert Zündorf, editors, Applications of Graph Transformation with Industrial
Relevance (AGTIVE’07), number 5088 in Lecture Notes in Computer Science,
pages 201–216. Springer, 2008.

8. Frank Drewes, Berthold Hoffmann, and Mark Minas. Adaptive star grammars
for graph models. In Hartmut Ehrig, Reiko Heckel, Grzegorz Rozenberg, and
Gabriele Taentzer, editors, 4th International Conference on Graph Transformation
(ICGT’08), number 5214 in Lecture Notes in Computer Science, pages 201–216.
Springer, 2008.

9. Niels Van Eetvelde. A Graph Transformation Approach to Refactoring. Doctoral
thesis, Universiteit Antwerpen, May 2007.

10. Hartmut Ehrig, Karsten Ehrig, Ulrike Prange, and Gabriele Taentzer. Funda-
mentals of Algebraic Graph Transformation. EATCS Monographs on Theoretical
Computer Science. Springer, 2006.

11. Hartmut Ehrig and Annegret Habel. Graph grammars with application conditions.
In Grzegorz Rozenberg and Arto Salomaa, editors, The Book of L, pages 87–100.
Springer, Berlin, 1986.

12. Joost Engelfriet and Grzegorz Rozenberg. Node replacement graph grammars. In
Rozenberg [16], chapter 1, pages 1–94.

Conditional Adaptive Star Grammars 189

13. Annegret Habel. Hyperedge Replacement: Grammars and Languages. Number 643
in Lecture Notes in Computer Science. Springer, 1992.

14. Tom Mens, Niels Van Eetvelde, Serge Demeyer, and Dirk Janssens. Formalizing
refactorings with graph transformations. Journal on Software Maintenance and
Evolution: Research and Practice, 17(4):247–276, 2005.

15. Mark Minas. Concepts and realization of a diagram editor generator based on
hypergraph transformation. Science of Computer Programming, 44(2):157–180,
2002.

16. Grzegorz Rozenberg, editor. Handbook of Graph Grammars and Computing by
Graph Transformation, Vol. I: Foundations. World Scientific, Singapore, 1997.

17. Andy Schürr, Andreas Winter, and Albert Zündorf. The Progres approach: Lan-
guage and environment. In Gregor Engels, Hartmut Ehrig, Hans-Jörg Kreowski,
and Grzegorz Rozenberg, editors, Handbook of Graph Grammars and Computing
by Graph Transformation. Vol. II: Applications, Languages, and Tools, chapter 13,
pages 487–550. World Scientific, Singapore, 1999.

. .

Dr. Berthold Hoffmann

Fachbereich 3 – Informatik
Universität Bremen
D-28334 Bremen (Germany)
hof@informatik.uni-bremen.de
http://www.informatik.uni-bremen.de/˜hof

Berthold Hoffmann became a colleague of Hans-Jörg Kreowski in 1978 at TU
Berlin. After both of them moved to the University of Bremen in 1982, he
took part in research activities of Hans-Jörg’s group, particularly in the EC
Working Groups CompuGraph, AppliGraph, and SeGraVis.

. .

S• =⇒

1

2

a

b

c
A

1

2

3

4

=⇒

1

2

a

b

c

a

b

c A

1

2

3

4

=⇒∗

1

2

· · ·

· · ·

· · ·

a

b

c

a

b

c A

1

2

3

4

=⇒

1

2

· · ·

· · ·

· · ·

a

b

c

a

b

c

a

b

c

Assemblies as Graph Processes

Dirk Janssens

Abstract. This short paper explores the potential of embedding-based
graph rewriting as a tool for understanding natural computing, and in
particular self-assembly. The basic point of view is that aggregation steps
in self-assembly can be adequately described by graph rewriting steps in
an embedding-based graph transformation system: the building blocks of
an assembly correspond to occurrences of rewriting rules, and hence as-
semblies correspond to graph processes. However, meaningful algorithms
do not consist only of aggregation steps, but also of global steps in which
assemblies are modified. A theoretical algorithm is presented in which
the two kinds of steps are combined: on the one hand aggregation steps
that build assemblies, and on the other hand global steps which act on
the assemblies.

1 Introduction

The study of self-assembly has been an interesting and promising part of the fas-
cinating area of natural computing for several years
[WLWS98,KR08,Cas06]. The phenomenon is an important aspect of biologi-
cal systems [ETP+04] and has potential applications in nanotechnology, chem-
istry and material sciences [GJC91]. The basic idea is that components such as
molecules or proteins aggregate to form assemblies that have interesting emerg-
ing properties which are not present in the original components. It is obviously
important to control this aggregation process, i.e. we want to be able to de-
sign the building blocks in such a way that certain a priori known structures
emerge as a result of spontaneous aggregation. These structures may in their
turn interact in a meaningful way with other components.

The basic step in an assembly process is sketched in Figure 1: two components
(left) aggregate to form an assembly (right). It is assumed that this happens
because there is a particular relationship between their surface structures: these
contain active parts (bold segments) that spontaneously stick together; one may
think of atoms or molecules that form bonds between them, like in the case of
Watson-Crick complementarity. Components will be called assemblies whenever
we want to stress that they are built by self-assembly.

The use of graph rewriting [EKMR97,EEPT] as a tool for studying natural
computing and self-assembly has been explored before [HLP08,KGL04]. However
there are a lot of possible directions to follow because of the variety of processes
that need to be described as well as the variety of graph rewriting mechanisms.
The aim of this paper is to explore, in a very preliminary and perhaps naive way,
how the work on graph rewriting with embedding and the corresponding theory
of graph processes from, e.g., [VJ02] can be used in this context. It turns out
that components, surface structure and assemblies correspond to rules, graphs
and graph processes, respectively.

F. Drewes, A. Habel, B. Hoffmann, D. Plump (Eds.): Manipulation of Graphs, Algebras and Pictures.
Essays Dedicated to Hans-Jörg Kreowski on the Occasion of His 60th Birthday, pp. 191–203, 2009.

192 Dirk Janssens

Fig. 1. Aggregation

The fact that both the surface structure and the assemblies are described
within the same formal framework enables one to switch between the graph/surface
structure and the process/assembly view: the former allows one to describe the
aggregation steps (combination of various assemblies based on their surface struc-
ture) whereas the latter allows one to describe global steps, caused by external
manipulation (heating, extraction, ...). The first kind of step occurs when a large
amount of simple building blocks (molecules) is put into a solution and allowed
to form assemblies; the latter kind happens in response to other manipulations
acting in a uniform way on the assemblies as a whole (e.g. partially breaking
them down). We present an algorithm in which the two kinds of steps are com-
bined; it (theoretically, at least) allows one to recognize the difference between
two solutions, a ”pure” one and one that is contaminated with one or more extra
(but unknown) components, by building assemblies that encode the contaminat-
ing components (but only those). These assemblies can then be extracted and
used to mark the contaminating components, so that they can be removed from
the contaminated solution.

In Section 2 the basic assumptions underlying this work are given, and the
relationship is discussed between components, surface structure and assemblies
on the one hand and rules, graphs and graph processes on the other hand.
The example algorithm is presented in Section 3 and the paper ends by a brief
discussion section.

2 Components, rules and processes

In this section the basic assumptions of the approach are given, and the necessary
elements of graph rewriting, embedding mechanism and processes are briefly
sketched. A formal treatment can be found in, e.g., [VJ02].

2.1 Basic assumptions

A graph transformation system consist essentially of a set of rules that describe
local changes applied to graphs. Traditionally, a rule has a left-hand side and a
right-hand side, which are both also graphs. A rule is applied to a graph g by
matching its left-hand side with a subgraph of g. That subgraph is then removed
and replaced by the right-hand side. In the approach used in this paper the rules

Assemblies as Graph Processes 193

are equipped with additional information, called ”embedding mechanism”, which
is used to determine the edges of the resulting graph.

The way graph rewriting is related to aggregation is the following. Consider
an assembly step, like the one depicted in the upper part of Figure 2: an existing
assembly (top) gets larger by aggregating with a building block (bottom). The
surface structure of the former is represented by a graph g1 with nodes a, b, c, d, e.
The aggregation leads to a larger assembly with a modified surface structure,
represented by a graph g2 with nodes c, d, e, f, g, h. Thus the effect of adding the
new building block on the surface structures is that g1 is changed into g2, in a
way that can be captured by graph rewriting: the building block is viewed as
a graph rewriting rule and the aggregation step corresponds to its application,
removing the nodes a, b and replacing them by f, g, h. Evidently one also has to
deal with the edges, which represent relationships between surface elements. We
come back to this in subsection 2.2. The approach entails the following three
assumptions concerning aggregation.

a b
c

d

e

a b̄

f
h

g

c
d

e

f hg

a b
c d

e c
d

e

f hg

ˉ

Fig. 2. Aggregation and graph transformation

The first working hypothesis is that the surface structure of components,
which governs the way in which they aggregate, can be adequately described
as a labeled graph. The nodes represent atoms, molecules, ... that are present
at specific locations on the surface, the node labels distinguish between various
kinds of such surface elements, and the edges describe relationships between these
elements that are important for determining whether a group of nodes is active
in the sense that it causes aggregation. One may think of spatial relationships
or vicinity, but there may be others. In Figure 2 the symbols a and b are used
to indicate the fact that binding or aggregation between physical components is

194 Dirk Janssens

caused by elements that are ”complementary” in some sense (e.g. having opposite
polarities, Watson-Crick complements, ...). In our approach this information is
implicitly represented by the fact that building blocks are described by graph
rewriting rules which have a designated left-hand side. This is why we will not
use complementary labels such as a and a in the next section; the usual notion
of matching suffices.

The second hypothesis is that the relevant relationships between the elements
of the new surface (i.e., the new edges) can be determined from (1) the surface
of the existing component and (2) the new component. Thus the components,
such as the ones depicted in the left part of Figure 1 will not be treated equally:
one of them (the upper one in the figures) may be thought of as a large assembly
that grows by aggregating with the other one, which is small and simple. Hence
the large assembly ”grows” by adding a new building block. As a result of this,
the building blocks of an assembly are partially ordered, making them similar to
graph processes. The surface of the assembly after the aggregation step consists
of most of the ”old” surface combined with a small, new part that belongs to the
building block. It is assumed that in determining the new surface structure, one
does not need the entire internal structure of the large assembly. The upper half
of Figure 2 depicts an aggregation step where the surface structures are graphs.
Technically the letters a, b, . . . are node labels, but throughout this section we
need not to distinguish between nodes and their label. The lower half of Fig-
ure 2 depicts the transformation of the surface structure, which is now a graph
transformation.

A last assumption is that the effect of an aggregation step is local : a surface
element that is irrelevant for a location does not suddenly become relevant when
an aggregation takes place involving that location: e.g. in Figure 2, e is not
relevant to the locations a and b involved in the aggregation – and thus e is not
connected to either of them. In terms of graph rewriting, the assumption means
that the newly introduced nodes can only be connected to those existing nodes
that are neighbors of the nodes removed by the rewriting. Thus the neighbors of
the new nodes f, g, h are either also new or chosen among the ”old” neighbors
c, d of a and b.

2.2 The embedding mechanism

The lower half of Figure 2 depicts the change in surface structure that corre-
sponds to the aggregation step in the upper half of the figure. This change can
be described by the application of a graph rewriting rule to the graph on the
left: the rule removes nodes a, b and creates f, g, h. The edges of the new surface
are either edges of the old surface, such as (d, e), or edges of the surface of the
newly added building block, such a (f, g), or edges that connect the new nodes
with the old ones, such as (c, f) or (h, d). The mechanism for establishing the
latter kind of edges is known as an embedding mechanism. Here the embedding
mechanism is very simple: each of the new nodes may take over the incoming
and/or outgoing edges of one or more of the nodes that have been removed. In

Assemblies as Graph Processes 195

Figure 2, f takes over the incoming edges from a and h takes over the outgoing
edges of b. The rule applied is depicted in Figure 3: it consists of two graphs (the
left-hand side and the right-hand side) and two binary relations in and out that
express the way edges are established. In Figure 3 both relations contain only
one pair; in general in, out ⊆ NL ×NR where NL and NR are the sets of nodes
of the left-hand side and the right-hand side, respectively.

b

f hg

in out

a
left-hand side

right-hand side

Fig. 3. A rule

2.3 Processes

In [CMR96,VJ02] graph processes are proposed as a way to describe ”runs” of
a graph rewriting system. Informally, a graph process is a structure obtained
by gluing together the rule occurrences of a run, where the gluing is consistent
with the way the rules are applied. Thus a graph process is essentially a directed
acyclic graph where the nodes are those that occur in the run and where the
edges represent the direct causal dependency relation: whenever a rule occur-
rence removes a node a and introduces a new node b, then b is directly causally
dependent on a. This DAG is further decorated with extra information: the ini-
tial graph of the run is given as well as the rule occurrences. However there is no
information on the order in which the rules are applied other than the causality
relation. Figure 4 depicts a process: the initial graph is the linear structure at
the top and there are three occurrences of the rule depicted at the left. There is
no information about the relative order of rule occurrences 1 and 2, and so the
process describes in fact three possible runs: the three rule occurrences may hap-
pen either in the order 1,2,3, or 2,1,3, or 1 and 2 may happen simultaneously,
followed by 3. The dotted edges are established according to the embedding
mechanism.

Using this notion one has three ways to view the components that act as
building blocks in aggregation steps such as the one considered in Figure 2: a
component with a surface structure, a graph rewriting rule, and a process. Since
such components are not composed of smaller ones they are called ”atomic”.
Similarly, the processes that represent a single rule are called atomic processes.
Figure 5 depicts the three views; the arrows/lines labeled in and out represent
the embedding mechanism.

196 Dirk Janssens

1 2

3

in out

Fig. 4. Process

b̄

f
h

g

b

f hg

b

f hg

in out outin

ā a a

Fig. 5. Atomic component, rule and atomic process

The relationship between processes and assemblies is illustrated in Figure 6
(in the process, on the right, only the direct causality relation is represented).
An important property of processes is that, when the embedding satisfies cer-
tain conditions, each slice (maximal set of causally unrelated nodes) uniquely
determines a graph corresponding to that slice: the graph obtained by applying
the rule occurrences that precede the slice in the causality relation to the initial
graph – in any order consistent with the causality relation. In particular, the
graph resulting from the process is uniquely determined; it is the configuration
corresponding to the set of maximal nodes of the causality relation. It has been
proven earlier [VJ02] that the embedding mechanism used in this paper satisfies
the necessary condition. In Figure 6, one may e.g. consider the situation of the
assembly after building blocks 1 and 2 are added. The corresponding slice con-
sists of the square nodes. The property then means that the surface structure
at this point of the aggregation process does not depend on the order in which
blocks 1 and 2 were added; a posteriori inspection of an assembly (which blocks
are present and how are they glued together) suffices to determine its surface
structure. Since the order in which the aggregation takes place would probably
be very hard to control, this property is of crucial importance.

Assemblies as Graph Processes 197

ProcessAssembly

1 2

3

4

Fig. 6. Assembly and process

3 The algorithm

The aim of this section is to sketch how aggregation steps (building assemblies)
and global steps (acting in a uniform way on all components) may be combined
into a meaningful algorithm. In the context of this paper an algorithm describes
a sequence of steps in which test tubes containing a solution are manipulated
in order to obtain a solution with certain desired properties. One important
way to manipulate a test tube is to cause a self-assembly process in it: atomic
components (encoding graph transformation rules) are added to the test tube
and self-assembly is allowed to happen.

The design of aggregation steps is now viewed as the design of a suitable set
of graph transformation rules, and thus it is implicitly assumed that for each of
those rules a component can be constructed which has the right surface structure,
and that this component interacts in the right way with the other components.
It has to be noted that the latter assumption is not obvious; however there is
evidence that unintended interactions can be made improbable by a clever design
of the components. The problem is similar to the DNA code word problem, which
is an interesting research topic on its own.

The global steps, where all components in a solution are modified in a uniform
way, are not local changes based on the surface structure of components, and
thus the rewriting of graphs describing their surface structure is not a natural
way to formalize them. However the more complete description of an assembly
by a graph process provides information that is sufficient to express the global
steps: the atomic components it is built from and the way they are combined.
Two kinds of global steps are needed.

1. extract(m), where the symbol m represents a marker, i.e. a part of a com-
ponent that can easily be detected by its physical properties. The operation
removes all components in which the marker occurs from the test tube.

2. disassemble(R), where R is a set of rules used for aggregation. The operation
removes all atomic components corresponding to rules of R from the assem-

198 Dirk Janssens

blies in the test tube. Hence this operation may cause assemblies to fall apart
into smaller pieces. The physical implementation would be a manipulation
that breaks down the components corresponding to R, and only those. This
could be achieved by designing these components in such a way that they
are less stable or less resistant to heat than the other components.

The problem we focus on is the following. Consider two test tubes X and
Y ; Y contains the same components as X but also some additional ones; these
are viewed as a contamination that has to be removed. The algorithm has to
recognize the contaminating components, by yielding a test tube containing as-
semblies that encode the latter, where ”encoding” means that their surface struc-
ture contains a copy, up to a relabeling, of that of the encoded components. The
relabeling is needed to distinguish the encoding from the original.

It is assumed that only some of the components are relevant; in the example
these have the surface structure depicted in Figure 7, where the xi belong to the
set {a, b}. The symbols a, b, l, r represent certain kinds of surface elements and
n is even. The symbols a, b, l, r are relabeled ã, b̃, l̃, r̃ in the encoding.

x1 x2 xnl r
...

Fig. 7. Initial structure

For our purposes X and Y are sets of concrete structures, And obviously
both of them will in general contain many isomorphic copies of each of their
elements.

The algorithm consists of the following steps:

1. Recognize the relevant components of Y : prepare their encoding by forming
a suitable assembly around each of them.

2. Extract these assemblies from Y .
3. Add the result of this to X and form assemblies that mark the encodings of

components that occur in X.
4. Extract the marked encodings; the remaining ones are the desired ones.

To realize step 1, first ignore the relabeling. Then the step can be carried out
by adding to Y the rules (i.e. components realizing the rules) of Figure 8: these
form an assembly that is essentially a binary tree where the leaves are labeled a
or b and each two consecutive leaves have the same parent.

The graph process in the upper part of Figure 9 represents an intermediate
stage in the formation of such an assembly: one more step (applied to the two
square nodes) will complete the tree. Only if the component is of the right form

Assemblies as Graph Processes 199

in out
in out

y x l

c

rc

m

either x,y ∈ {a,b}
 or x = y = c

Fig. 8. Rules for assembly in step 1

the process can be completed by an application of the rule at the right of Figure 8
which attaches the marker m to the assembly (lower left part of Figure 9). The
relabeling of a, b, l, r into ã, b̃, l̃, r̃ can be taken into account by modifying the
rules in the way depicted in Figure 10: a relabeled copy of the encoded structure
is produced.

l ab raa bb

cc c

c
l r

m

Fig. 9. Assembly in step 1

Step 2 can be realized by an extract(m) operation. A potential problem is
that the rules of step 1 can be applied to a component of the right form in
such a way that the assembly obtained is a forest, but not a tree; then that
component is not encoded. However, one may improve the result by using an

200 Dirk Janssens

in out

ba

c
in out

ba

c

ba~
~

Fig. 10. Modified rule

iterative procedure: repeat the sequence (step 1, extract(m), disassemble(R1)),
where R1 is the set of rules of step 1, until nothing is extracted.

Step 3 can be realized by adding the assemblies extracted in step 2 and the
rules of Figure 11 to X. The effect is depicted in Figure 12: an encoding (starting
with l̃) and a component (starting with l) are traversed, until L becomes adjacent
to r and r̃. In that case the encoding is marked, using the rule at the right of
Figure 11. The dotted edges in Figure 12 are established by the embedding
mechanism. If the encoding and the component do not correspond, then L does
not become adjacent to both r and r̃ and the marking does not occur. Step 4
can be done by an extract operation. Again, there is a potential problem because
the assemblies with the encodings may get neutralized by trying to combine
with the wrong component: e.g. when an assembly encoding aaba combines with
component aabba the aggregation process of Figure 12 gets stuck after 4 steps.
Again, an iterative procedure is needed: repeat the sequence (step 3, step 4,
disassemble(R3)) where R3 is the set of rules of step 3.

x, x ∈ {a,b}~

out out

x xL

L

~

out out

l l

L

~
r rL

m

~

Fig. 11. Rules for traversal

Assemblies as Graph Processes 201

l~

l
L L L ...

Fig. 12. Traversal - assembly view

The result of the algorithm is a test tube containing assemblies which encode
the contaminants, i.e. the components of Y that do not occur in X. Using an
iterative procedure similar to the one combining steps 3 and 4 above, it is in
principle possible to use this to remove the contaminants from Y.

4 Discussion

The aim of the paper is to explore the use of graph rewriting based on embed-
ding for the understanding of self-assembly and natural computing. The basic
idea is that graphs capture the active surface structure that controls the way
components in a solution aggregate, and that the way in which such aggregation
changes the surface structure can be captured by graph rewriting. However one
may expect that most meaningful algorithms in this context do not only re-
quire the building of ever larger assemblies, but also operations that break down
or modify such assemblies, and in the algorithm sketched in Section 3 a few of
these operations are used: extracting certain components according to particular
”marker” labels, or removing certain atomic components from the assemblies in
a solution. Thus what seems to be needed is an interplay between aggregation
operations, which are described by graph transformation rules, and which act
on the graphs that describe the active surface of components, and global oper-
ations in which all assemblies of a given kind in a solution are modified. Since
assemblies correspond to processes of the graph rewriting systems that describe
their formation, the theory of graph rewriting and graph processes may provide
a way to obtain a formal framework in which both kinds of operations can be
combined in an elegant way.

Obviously, the material presented here is of a very speculative nature, since
the implicit assumptions concerning the possible realization of the approach in
the physical world may turn out to be naive or unrealistic. To mention just a few:
when reducing the problem of controlling self-assemby to the problem of writing
a suitable graph transformation system, it is assumed that each rule written
down can be realized by a component that behaves exactly in the right way: not
only does it aggregate with another component when the structure corresponding

202 Dirk Janssens

to its left-hand side matches part of the structure of the other component, but
this is also the only way it interacts with other components. Another thorny
issue is the assumption about the information to be encoded into the edges,
information that is handled by the embedding mechanism: what are exactly
the relationships between locations on a component that are relevant? How to
encode spatial information into those edges? Also for the the global operations
many questions remain: on the one hand they may seem rather ad-hoc, but on
the other hand they are quite simple. In spite of these reservations, however, the
correspondence between graph rewriting and graph processes on the one hand
and aggregation and assemblies on the other hand seems simple and natural
enough to deserve further attention.

References

[Cas06] Leandro N. De Castro. Fundamentals of natural computing: basic concepts,
algorithms, and applications. Published by CRC Press, 2006.

[CMR96] A. Corradini, U. Montanari, and F. Rossi. Graph processes. Fundam. Inf.,
26(3-4):241–265, 1996.

[EEPT] H. Ehrig, K. Ehrig, U. Prange, and G. Taenzer. Fundamentals of Algebraic
Graph Transformation. EATCS Monographs in Theoretical Computer Sci-
ence.

[EKMR97] H. Ehrig, H-J. Kreowski, U. Montanari, and G. Rozenberg. Handbook of
Graph grammars and Computing by Graph Transformation. World Scien-
tific, 1997.

[ETP+04] A. Ehrenfeucht, T.Harju, I. Petre, D.M. Prescott, and G. Rozenberg. Com-
putation in Living Cells - Gene Assembly in Ciliates. Natural Computing
Series. Springer Verlag, 2004.

[GJC91] GM.Whitesides, JP.Mathias, and CT.Seto. Molecular self-assembly and
nanochemistry - a chemical strategy for the synthesis of nanotructures.
Science, 254:1312–1319, 1991.

[HLP08] Tero Harju, Chang Li, and Ion Petre. Graph theoretic approach to parallel
gene assembly. Discrete Applied Mathematics, 156(18):3416–3429, 2008.

[KGL04] Eric Klavins, Robert Ghrist, and David Lipsky. Graph grammars for self
assembling robotic systems. In Proceedings of the 2004 IEEE International
Conference on Robotics and Automation, pages 5293–5300, 2004.

[KR08] Lila Kari and Grzegorz Rozenberg. The many facets of natural computing.
Commun. ACM, 51(10):72–83, 2008.

[VJ02] N. Verlinden and D. Janssens. Algebraic properties of processes for local
action systems. Mathematical. Structures in Comp. Sci., 12(4):423–448,
2002.

[WLWS98] E. Winfree, F. Liu, L.A. Wenzler, and N.C. Seeman. Design and self-
assembly of two-dimensional dna crystals. Nature, (394):539–544, 1998.

Assemblies as Graph Processes 203

. .

Prof. Dr. Dirk Janssens

Department of Computer Science
University of Antwerp
2020 Antwerpen
Dirk.Janssens@ua.ac.be

Dirk Janssens and Hans-Jörg Kreowski have co-authored several papers. More-
over, Hans-Jörg Kreowski was in Dirk Janssens’ Ph.D. jury in 1983. When be-
ing asked for their relation, Dirk points out that it has always been a pleasure
to meet Hans-Jörg Kreowski, not only because of his inspiring scientific ideas
and his way of concentrating on the right questions, but also because of his
kindness and patience.

. .

Generation of Celtic Key Patterns

with Tree-based Collage Grammars

Renate Klempien-Hinrichs and Caroline von Totth

Abstract. Tree-based collage grammars are a syntactic device for mod-
elling visual languages. Celtic art provides such languages, which follow
precise rules of construction, for instance key patterns and knotwork.
In this paper, we study the syntactic generation of Celtic key patterns
using tree-based collage grammars. Moreover, we compare the regulation
mechanisms employed here in order to ensure that only consistent key
patterns are generated with those that were used in a previous study for
knotwork.

1 Modelling with collage grammars

Collage grammars are a device to generate sets of pictures in a syntactic manner
[HK91,HKT93,DK99]. They were developed by equipping hyperedge replace-
ment grammars with spatial information: nonterminals come with a location
and an extension in some Euclidean space, and the role of terminals is played by
collages, where a collage is a union of parts and a part is a set of points. Equiv-
alently, collage grammars may be seen as a combination of a tree grammar and
an algebra interpreting the generated trees as collages [Dre00,Dre06], so-called
tree-based collage grammars.

The initially proposed collage grammars were context-free. More powerful
grammar types include the table-driven (or T0L) grammars, where nonterminals
are replaced in parallel with rules from one of finitely many tables [KRS97]
(for T0L collage grammars see [DKK03]). The behaviour of a table-driven tree
grammar may be emulated by a regular tree grammar generating unary trees
as input for a top-down tree transducer; such a unary tree basically states the
sequence of the applied tables in the T0L grammar [Dre06, Lemma 2.5.7].

For any picture-generating mechanism, it is of particular interest to find out
whether a certain class of pictures can be generated. For table-driven collage
grammars, the case study in [DK00] (see also [Dre06, Sect. 3.5]) shows a way to
produce Celtic knotwork. The idea is to identify a small pattern that is repeated
in a tiling-like manner to form the whole design (see [Bai90,Slo95] for distinct
ways to divide a design).

In addition to knotwork, there are three other major design types in Celtic
art: key patterns, spirals, and interlacings with animal or human forms (see
[All93,Bai51] for overviews). Historically, the designs were drawn in medieval
manuscripts, carved on standing stones, or forged in precious metalwork.

In this paper, we present a case study modelling Celtic key patterns, some-
times also called maze patterns, by means of collage grammars. Where a Celtic
knot consists of continuous cords that interweave, key patterns have continuous

F. Drewes, A. Habel, B. Hoffmann, D. Plump (Eds.): Manipulation of Graphs, Algebras and Pictures.
Essays Dedicated to Hans-Jörg Kreowski on the Occasion of His 60th Birthday, pp. 205–222, 2009.

206 Renate Klempien-Hinrichs, Caroline von Totth

Fig. 1. Celtic designs: a knot (left) and a key pattern (right)

paths that follow straight lines, usually at 45◦ angles, and meet at crossings (see
Figure 1 for examples).

Methods for the construction of key patterns by hand, that may have been
used by the original Celtic artists, are described in [Bai90,Bai93,Mee02]; these
methods are mainly oriented at which straight long lines may be drawn. On the
other hand, small patterns or tiles may be identified that are repeated through-
out the whole design. For this, Sloss [Slo97] overlays a key pattern with a grid
whose axes run parallel to the pattern border, obtaining rectangles of various
sizes. In contrast (and more in line with [Bai93]), we propose to use triangles and
squares with a 45◦ slope as tiles. We then use tree-based collage grammars to
show how these tiles can be structurally combined to yield well-formed key pat-
terns. Moreover, we discuss the structural differences between knotwork [DK00]
and key patterns. All collage grammars for key patterns that we developed were
implemented using Frank Drewes’ system Treebag [Dre06, Sect. 8].

The paper is organised as follows: In Section 2, basic notions of tree-based
collage grammars are recalled. Section 3 contains a structural analysis of basic
key patterns and a description of the collage grammar that we used to gener-
ate them. In Section 4, variations of the first model are proposed. The paper
concludes with a brief summary and ideas for various lines of future research.

2 Tree-based collage grammars

The basic notions for tree-based collage grammars collected in this section follow
presentations given in [DKL03,DEKK03,Dre06]. Please consult these, [Dre06] in
particular, for more detail, including examples.

Let N = {0, 1, 2, 3, . . .} denote the set of natural numbers, and [n] = {1, . . . , n}
for n ∈ N. Moreover, R denotes the set of real numbers, and R2 the Euclidean
plane, which contains points (x, y) ∈ R2.

We will use expressions to represent collages and call such an expression a
term (or tree) over a certain signature. In general, a signature is a finite set Σ of
symbols, each symbol f ∈ Σ being assigned a unique rank rankΣ(f) ∈ N. The
set TΣ of terms over Σ is the smallest set such that for n ∈ N, f [t1, . . . , tn] ∈ TΣ

for all f ∈ Σ with rankΣ(f) = n and all t1, . . . , tn ∈ TΣ. For n = 0, we may
omit the parentheses in f [], writing just f instead.

Generation of Celtic Key Patterns with Tree-based Collage Grammars 207

It is now possible to define collages and the relationship between collages
and terms in TΣ formally. A part p ⊆ R2 is a bounded subset of the Euclidean
plane; intuitively, p is a set of black points. A collage C is a finite set of parts,
and the set of all collages is denoted by C. Transformations f : R2 → R2 on R2

are canonically extended from points to parts and collages, i.e., f(p) = {f(x, y) |
(x, y) ∈ p} for a part p, and f(C) = {f(p) | p ∈ C} for a collage C. For affine
transformations f1, . . . , fn on R2, 〈〈f1 · · · fn〉〉 denotes the operation f : Cn → C
given by f(C1, . . . , Cn) =

⋃
i∈[n]

fi(Ci) for all C1, . . . , Cn ∈ C. A collage operation

is either an operation of the form 〈〈f1 · · · fn〉〉 for affine transformations f1, . . . , fn

(n ≥ 1) or a constant collage, viewed as an operation of arity 0. A collage
signature is a finite signature Σ consisting of collage operations, where ranks
coincide with arities. For a term t ∈ TΣ, its value is val(t), i.e., the collage
val(t) = f(val(t1), . . . , val(tn)) if t = f [t1, . . . , tn].

By such an interpretation of ranked symbols as collage operations, appropri-
ate grammatical devices for generating sets of terms allow us to generate sets
of collages. Among such devices, we consider the regular tree grammar and the
top-down tree transducer, and we call the combination of a tree generator and
a collage algebra a tree-based collage grammar. Since we deal exclusively with
tree-based collage grammars in this paper, in the following we will refer to them
simply as collage grammars.

A regular tree grammar works analogously to a regular string grammar,
but by replacing nonterminals in terms and having nonterminals occur only
without subterms. Formally, a regular tree grammar is a system G = (N, Σ, P, S)
consisting of

– a finite set N of nonterminals, which are considered to be symbols of rank
0,

– a signature Σ disjoint with N ,
– a finite set P ⊆ N × TΣ∪N of productions, and
– an initial nonterminal S ∈ N .

A term t ∈ TΣ∪N directly derives a term t′ ∈ TΣ∪N , denoted by t −→P t′, if
there is a production A ::= s in P such that t′ is obtained from t by replacing
an occurrence of A in t with s. The language generated by G is L(G) = {t ∈
TΣ | S −→∗

P t}, where −→∗
P denotes the reflexive and transitive closure of −→P ;

such a language is called a regular tree language.
A tree transducer transforms some input tree into an output tree by travers-

ing the input tree symbol by symbol, possibly storing some information in
one of finitely many states. Formally, a top-down tree transducer is a system
td = (Σ, Σ′, Γ, R, γ0) consisting of

– finite input and output signatures Σ and Σ′,
– a finite signature Γ of states of rank 1, where Γ ∩ (Σ ∪Σ′) = ∅,
– a finite set R of rules, and
– an initial state γ0 ∈ Γ .

208 Renate Klempien-Hinrichs, Caroline von Totth

Each rule in R has the form

γ[f [x1, . . . , xn]] → t[[γ1[xi1], . . . , γm[xim]]],

where γ, γ1, . . . , γm ∈ Γ are states, n is the rank of symbol f ∈ Σ and x1, . . . , xn

are pairwise distinct variables (of rank 0 and not occurring in Σ ∪Σ′ ∪ Γ); and
t is a term with symbols from Σ′ and m ∈ N subterms of the form γj [xij] with
ij ∈ [n], i.e., xij ∈ {x1, . . . , xn}.

There is a computation step of td from a term s to a term s′, denoted by
s ⇒R s′, if R contains a rule γ[f [x1, . . . , xn]] → t[[γ1[xi1], . . . , γm[xim]]], s has
a subterm of the form γ[f [t1, . . . , tn]], and replacing this subterm in s with
t[[γ1[ti1], . . . , γm[tim]]] (which is formed as in the rule, but with corresponding
subtrees ti1 , . . . , tim from s instead of variables xi1 , . . . , xim) yields s′. The tree
transformation computed by td is given by td(s) = {s′ ∈ TΣ′ | γ0[s] ⇒∗

R s′} for
every tree s ∈ TΣ , where ⇒∗

R denotes the reflexive and transitive closure of ⇒R.

3 The structure of Celtic key patterns

In this section, we show a way to structure Celtic key patterns so that they can
be easily generated by collage grammars. We first identify a small set of tiles –
the constant collages – that allows us to put together a whole pattern, and then
describe the syntactic synthesis.

Following [Bai93], a typical key pattern will often be a coherent composition
of isosceles right-angled triangles to which a border line needs to be added, see
Figure 2 left.

Moreover, note that the smooth borders must be produced by triangle hy-
potenuses. In particular, the top and bottom border triangles have horizontal
hypotenuses, whereas the hypotenuses of all other triangles are vertical. This

Fig. 2. Division of a key pattern into triangles (left) and squares (right)

Generation of Celtic Key Patterns with Tree-based Collage Grammars 209

sq d1 d2 d′
1 d′

2

Fig. 3. The set of basic tiles

suggests a division into square tiles as indicated in Figure 2 right, which also
takes care of drawing the border lines. The resulting set of basic tiles (modulo
reflections and 90◦ rotations) is shown in Figure 3. At first glance, the last two
of the five tiles appear to be identical to the preceding two. There are, however,
subtle differences, for two reasons. First, key patterns have two different types
of corners since a corner is obtained by so-called mitring, which means reflecting
a basic triangle at one of its shorter sides; compare, e.g., the two right corners
of a pattern in Figure 2. Secondly, a line always comes with a thickness, and
where a hand-drawn line lies on the connecting sides of two tiles, then each of
the graphic tiles gets a line of half the thickness. Thus, the two middle tiles d1

and d2 in Figure 3 have a short line at a 135◦ angle that is not present in the
last two tiles, and in tile d′1 the left corner of its left black triangle is pointed.

Now let us come to the syntactic arrangement of these tiles in a rectangular
key pattern. The task is to overlay the pattern with a tree whose interpretation
through collage operations yields the pattern. In order to find the tree, we reuse
the idea from [DK00] for rectangular knotwork, namely to develop the pattern
from its centre. One can immediately observe from Figure 2 that the left half
of the pattern may be obtained from the right half by a rotation of 180◦ about
the centre. The right half in turn may be seen as having a horizontal backbone
through the centre, where each vertical line of square tiles above the backbone
may be obtained from the same line below the backbone by a rotation of 180◦

about the crossing point of the vertical line with the backbone. (The border,
however, will need special treatment, which we will discuss at the end of the
section.) Thus, we can concentrate on the lower right section as sketched in
Figure 4 to get an idea of the required collage signature.

As proposed earlier, the figure displays a portion of the tree for the key
pattern in Figure 2 overlaying the pattern structure. The constant symbols sq,
d1 and d2 refer to the tiles given in Figure 3; their placement results from the
operations above them in the tree and reflects the layout of the tiles in the
pattern. Constants r1 and r2 result from mitring d1 and d2, respectively, as
described above. Constant sqm results also from a reflection of sq, but this time
in the vertical (or, equivalently, horizontal) axis through the middle of the tile.
This reflection is necessary because two adjoining tiles need to agree in the path
linking them (this is unlike the knotwork tiles considered in [DK00], where the
cord always leaves through the centre of a tile side).

210 Renate Klempien-Hinrichs, Caroline von Totth

a1

sq

...

a2

mv

sq

d2

...

b1

mv

sqm

d1

...

b2

sq

mv

sq

d2

...

b1

mv

sqm

d1

...

b2

r1

mv

r1

d2

...

b1

mv

r2

r2

Fig. 4. A sketch of a tree over collage operations that generates the lower right section
of the key pattern in Figure 2

The operations work as follows. For all collages C1, C2, C3, C4:

– mv(C1, C2) puts C1 at the current position (meaning the affine transfor-
mation applied to C1 is the identity), and translates C2 downward for the
diagonal length of a tile;

– b1(C2, C3, C4) moves C2 half this length downward, C3 half the length to the
right, and C4 half the length downward followed by a rotation of 180◦ about
its current position;

– b2(C1, C2, C3, C4) behaves as b1, but has in addition collage C1 which is put
at the current position;

– a2(C1, C2) moves C1 one diagonal length downward and C2 half the length
to the right; and

– a1(C1, C2, C3) puts C1 and C2 both at the current position and rotates C3

by 180◦ about that position.

Now these operations have to be organised in order to yield well-formed key
patterns. Let us first take a look at a successful generation process, like the one
shown in Figure 5, where pictorial representations of terms are given for easier
understanding. Starting from some initial item, the idea is to specify the width
of the pattern before the height.

In order to get uniform growth both horizontally and vertically, some regu-
lation mechanism has to be employed. For this, we use a regular tree grammar
producing unary terms over the symbols w1, w2, h1 of rank 1 and h2, wh2 of rank
0 such that the terms without parentheses belong to the string language of the
regular expression w∗

1(w2h1h
∗
1h2|wh2). Symbols wi specify the width and sym-

bols hj the height of the pattern, symbols x1 (i.e., symbols with the index 1) the

Generation of Celtic Key Patterns with Tree-based Collage Grammars 211

⇓

⇓∗

⇓∗

⇓∗

Fig. 5. Typical derivation sequence for a key pattern

212 Renate Klempien-Hinrichs, Caroline von Totth

::=

Fig. 6. Transducer rules to start a computation from the initial state

internal growth and symbols y2 the border construction, with symbol wh2 for
the special case that no vertical growth is to take place. These control terms are
then used as input for a top-down tree transducer that consumes in each step the
first symbol of the term and copies the rest of the term identically to all newly
introduced states. The rules of the transducer are shown in Figures 6–10, in the
same pictorial representation as above, and with grey squares representing the
named transducer states.

::=

Fig. 7. Transducer rules to grow a design horizontally

– State S is the initial state and may encounter symbols w1, w2, wh2 (Figure 6).
As the centre of a key pattern may either lie inside a tile sq or inbetween two
such tiles, there are two options for processing each of the three symbols,
making the transducer nondeterministic. The right-hand-sides in the first
row of Figure 6 are created when w1 is consumed by S. The next two right-
hand-sides result when state S encounters immediately symbol w2, i.e., when
no horizontal growth takes place. In this case, state OM is introduced to work
analogously to state O by producing tiles sqm, but producing tile d′1 instead

Generation of Celtic Key Patterns with Tree-based Collage Grammars 213

::=

::= ::=

Fig. 8. Transducer rules to grow a design vertically

of d1 for the top and bottom border (Figure 8 on the right). We leave it to
the interested reader to find out why nevertheless the key pattern shown in
Figure 1 cannot be generated by the resulting set of transducer rules, and
how to remedy the problem.

– State R executes horizontal growth and may encounter symbols w1, w2, wh2

(Figure 7). The first right-hand-side is the result of processing w1, the second
results from consuming w2, and the last from consuming wh2, respectively.

– State E ignores symbols wi (i.e., it consumes them and proceeds to their
subtree without any further action) and produces the even-numbered vertical
lines using tile sq; analogously, state O produces the odd-numbered vertical
lines using tile sqm. Finally, state OM behaves nearly the same as O, with
the difference that it places tile d′1 instead of d1 for the border (Figure 8).

– States D2 and D3 encounter only symbols hi, from which they grow the lower
half of the right border (and the upper half of the left border).

::= ::=

Fig. 9. Transducer rules to grow the vertical borders

::= ::=

::= ::=

Fig. 10. Transducer rules to produce the second type of corner

214 Renate Klempien-Hinrichs, Caroline von Totth

– The upper half of the right border (and the lower half of the left border)
is grown through states U1, U2 and U3 from symbols hi (Figure 10). These
states produce the alternative corner with tiles d′1 and d′2 as follows: As may
be seen in Figure 5, state U2 is one step behind the other two states, with the
retardation provided by state X on the first occurrence of symbol h1. This
is because U2 has to produce (a rotation of) tile d1 while reading symbol
h1, but on encountering h2, i.e., for the corner, it has to be tile d′1 instead,
which is suitably combined with tile d′2.

Reconsidering the complete model, one may ask why one should start growing
key patterns from their centre, and not rather from the centre of one of their
sides, or indeed a corner. These are, in fact, viable and sometimes even preferable
alternatives. The question will be discussed with the variations of key patterns
studied in the next section.

4 Variations of Celtic key patterns

In Celtic key patterns, both the basic tiles and their structural arrangements
offer many possiblities for distinctive designs. A small collection of alternatives
is presented in this section.

The considerations of the preceding section started with identifying a ba-
sic triangle tile in a complete key pattern. In the original Celtic artwork, many
variations of this first, very typical, triangle may be found. A small collection of
triangles is shown in the first row of Figure 11. Note that in all triangles, the

Fig. 11. Various basic triangles, smallest corresponding key patterns, and derived
square tiles for larger key patterns

path enters at the same position close to the right angle, continues along the
hypotenuse with half the original width, and leaves again at the acute angle op-
posite of the entrance. Any triangle complying with these geometric constraints
can be used instead of the basic triangle of the previous section to produce a

Generation of Celtic Key Patterns with Tree-based Collage Grammars 215

well-formed pattern with continuous paths. The smallest such patterns, consist-
ing entirely of border triangles, are shown in the second row of the figure. In order
to grow larger patterns with the method of the preceding section, one needs to
compose a triangle with its 180◦ rotation about the centre of the hypotenuse to
form a square tile. The derived square tiles are shown in the last two rows of
Figure 11: The third row contains the squares with vertical centre path (as used
in the preceding section), and the fourth row the squares with horizontal centre
path, obtained from the upper squares by a 90◦ rotation. A small selection of
key patterns using these squares is shown in Figure 12.

Fig. 12. Key patterns based uniformly on a triangle

The geometric constraints for triangles imply similar constraints for squares:
A path enters at a fixed position on each side of a square, and the paths within
a square are connected in some way. In Celtic art, many such squares have been
used (see Figure 13 for a small sample). Since these squares cannot be divided
satisfyingly into triangles, they have to be combined with border triangles so
that full key patterns may be generated. Some samples are shown in Figure 14.

One can also combine more than one square type in a key pattern. To avoid
disorderly arrangements, suitable syntactic rules may be employed. One such
rule is to distinguish between constants sq and sqm (rather than having sqm as
a reflection of sq) and thus admit interpretations by different squares; the key
patterns in Figure 15 are of this kind. This rule may be refined by requiring

216 Renate Klempien-Hinrichs, Caroline von Totth

Fig. 13. Sample collection of square tiles

Fig. 14. Key patterns based on a square with a triangle border

Generation of Celtic Key Patterns with Tree-based Collage Grammars 217

that two distinct squares be used alternately to interpret sq, which leads to key
patterns as shown in Figure 16.

Fig. 15. Key patterns where sq and sqm are interpreted differently

Further distribution rules for different squares in a key pattern include:

– Using different squares for the lower half and the upper half; this may be im-
plemented in our model by doubling the states of the transducer so that the
two halves may be treated independently, but to the same vertical extension
as given by the input term.

– Using different squares for each row of squares, but having the choice for the
upper half reflected in the lower half; this may be implemented in the input
term of the transducer by replacing the symbols h1 with references to the
squares that shall be used.

– Finally, one may use branching synchronization to achieve a more general
symmetric distribution of synchronized squares. The method used to gener-
ate breaklines within the rectangular Celtic knot designs in [Dre06] is well-
suited for this. A nesting depth of 2 for the resulting branching collage gram-
mar is sufficient to ensure that the overall design maintains horizontal and
vertical symmetry even though blocks of different squares may alternate in
a nondeterministic fashion.

Coming back to the question at the end of Section 3, the two rules above are
good reasons to start the growth of a key pattern from the centre at least of the

218 Renate Klempien-Hinrichs, Caroline von Totth

Fig. 16. Key patterns where sq is interpreted alternately by two distinct squares

vertical direction. A further reason lies in the last four tiles shown in Figure 13,
i.e., the dead-end spiral, the only type of tile given in that figure that does not
have (at least) 180◦ rotational symmetry. Our model admits rotation of this tile
between the lower and the upper half of a key pattern; see, e.g., the last pattern
in Figure 15. If, however, it is desired that all occurrences of this tile have the
same orientation, then it is preferable to start vertical growth from the top (or
the bottom) of the pattern.

5 Conclusion

In this paper we have shown how rectangular key patterns with interior and
border variations can be modelled using tree-based collage grammars to interpret
the generated terms. All considered key pattern variations are covered by a class
of tree generators that combine a regular tree grammar for unary terms with a
top-down tree transducer.

The model for rectangular knotwork as proposed in [DK00,Dre06] is also
based on square tiles, but uses branching tree grammars to encode a horizon-
tally and vertically symmetric distribution of so-called breaklines over a knot.
Consequently, the syntactic structure of rectangular knotwork with breaklines
may be assumed to be one level more complex than the structure of rectangular
key patterns with regular distribution of tiles.

Generation of Celtic Key Patterns with Tree-based Collage Grammars 219

For both knotwork and key patterns, it is interesting to study how evenly
placed holes of varying sizes and shapes can be added to the base pattern. These
holes can either be left plain, or they can be filled with any type of Celtic tiling.
The designs so produced are called carpet-page designs. We note that for an
authentic look, the holes will have to be distributed in a symmetric fashion
across the expanse of the base design.

While the basic shape of such a hole is rectangular, in Celtic art holes also
come in L, cross or crosslet shapes. The boundary of the hole itself needs to be
sealed off with specific border tiles. Of course, holes need not be restricted to the
interior of the key pattern boundary, but may also lie directly on it, breaking
up the rectangular border. If these border cutouts are regularly distributed as
well, the resulting key pattern designs display a multitude of interesting shapes,
of which the cross is the most basic.

In [DK00,Dre06], a way to include such holes is proposed for square knotwork
panels that are grown diagonally from the centre to the corners and thus come
with a natural vertical/horizontal synchronisation. It would be nice to have a
generalised method that works for rectangular patterns (and therefore needs
additional synchronisation), in any kind of tiling with defined border tiles.

In Celtic art, it is often customary to fill such holes with some contrasting
decorative pattern. This presents a modelling problem, since whatever pattern is
created may not grow beyond the boundaries of the hole, and collage grammars
do not offer context-sensitive queries. No matter whether the new pattern is
created by subdivision or growth, information about the shape and size of the
hole is required in order to create a correct pattern with a border that seamlessly
joins the boundary of its parent hole. Then, a formalism is required that can deal
with the multitude of possible shapes and sizes and create matching patterns.
Additionally, some synchronisation between the scale of the tiles in the base
panel – which inform the dimensions of possible holes – and the scale of hole-
filling tiles must take place.

The creation of round key pattern (or knotwork) panels with a circular tesse-
lation pattern calls for another type of construction method altogether. Collage
grammars as they are used here rely on local replacement, which cannot be used
to recompute the scaling and placement operations necessary to evenly place tiles
along a growing circle. A suitable construction method for circular tesselation
patterns might also shed some light on how to generate Celtic spiral patterns. It
may be interesting to note that in [Dre06], a method is suggested for generating
a tiling of concentric rings of triangles, and from there spiral tilings, including
the Frazer spiral. This which might work for circular Celtic patterns, as the basic
idea is growing concentric rings of tiles outward from an inner circle which is
subdivided in a fan-like arrangement of triangles. This process, however, cannot
generate a truly circular outer border by subdivision.

In the illuminated pages of Celtic manuscripts, key patterns come with colour.
Often, this just entails giving a different colour to the paths than to the back-
ground, which can be achieved just like having white paths on a black back-
ground. Just as often, however, a sophisticated colouring scheme is used based

220 Renate Klempien-Hinrichs, Caroline von Totth

on colour blocks in rectangular or lozenge shapes. How to add colour to key pat-
terns in such a way is an open problem, though colour operations as presented in
[Dre06] might allow simulating at least a simplified version of the original Celtic
colour schemes.

Finally, there are two classes of Celtic key patterns for which we have not
yet devised a collage grammar-based generation technique. The first class uses
squares tiles that are obtained from basic triangles by reflection at the hy-
potenuse. Consequently, these tiles do not have rotational symmetry with respect
to path entry points at their sides, so that they have to be arranged differently
to form entire patterns. The second class uses hook-like squares such as the four
last squares in Figure 13, but some of the path entries may be sealed off. The
reason for this can be seen in Figure 17: There are many long straight black lines
that do not finish off by properly meeting with other black lines at each end. Of
course, lengthening these lines at their ends requires the two neighbouring tiles
which form the line end to agree. Moreover, the orientation of the tiles in hook
patterns is not so uniform as in the key patterns considered in this paper. Next
steps for future work may include writing collage grammars for these classes of
key patterns, too.

Fig. 17. Pseudo hook pattern

References

[All93] J. Romilly Allen. Celtic Art in Pagan and Christian Times. Bracken Books,
London, 1993.

[Bai51] George Bain. Celtic Art. The Methods of Construction. Constable, London,
1951.

[Bai90] Iain Bain. Celtic Knotwork. Constable, London, 1990.

[Bai93] Iain Bain. Celtic Key Patterns. Constable, London, 1993.

[DEKK03] Frank Drewes, Sigrid Ewert, Renate Klempien-Hinrichs, and Hans-Jörg
Kreowski. Computing raster images from grid picture grammars. Jour-
nal of Automata, Languages and Combinatorics, 8(3):499–519, 2003.

Generation of Celtic Key Patterns with Tree-based Collage Grammars 221

[DK99] Frank Drewes and Hans-Jörg Kreowski. Picture generation by collage gram-
mars. In H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg, edi-
tors, Handbook of Graph Grammars and Computing by Graph Transforma-
tion, Vol. 2: Applications, Languages, and Tools, chapter 11, pages 397–457.
World Scientific, 1999.

[DK00] Frank Drewes and Renate Klempien-Hinrichs. Picking knots from trees –
the syntactic structure of celtic knotwork. In Proc. 1st Intl. Conference on
Theory and Application of Diagrams 2000, volume 1889 of Lecture Notes in
Artificial Intelligence, pages 89–104. Springer, 2000.

[DKK03] Frank Drewes, Renate Klempien-Hinrichs, and Hans-Jörg Kreowski. Table-
driven and context-sensitive collage languages. Journal of Automata, Lan-
guages and Combinatorics, 8(1):5–24, 2003.

[DKL03] Frank Drewes, Hans-Jörg Kreowski, and Denis Lapoire. Criteria to dis-
prove context freeness of collage languages. Theoretical Computer Science,
290:1445–1458, 2003.

[Dre00] Frank Drewes. Tree-based picture generation. Theoretical Computer Sci-
ence, 246:1–51, 2000.

[Dre06] Frank Drewes. Grammatical Picture Generation – A Tree-Based Approach.
Texts in Theoretical Computer Science. An EATCS Series. Springer, 2006.

[HK91] Annegret Habel and Hans-Jörg Kreowski. Collage grammars. In H. Ehrig,
H.-J. Kreowski, and G. Rozenberg, editors, Proc. 4th Intl. Workshop on
Graph Grammars and Their Application to Computer Science, volume 532
of Lecture Notes in Computer Science, pages 411–429, 1991.

[HKT93] Annegret Habel, Hans-Jörg Kreowski, and Stefan Taubenberger. Collages
and patterns generated by hyperedge replacement. Languages of Design,
1:125–145, 1993.

[KRS97] Lila Kari, Grzegorz Rozenberg, and Arto Salomaa. L systems. In G. Rozen-
berg and A. Salomaa, editors, Handbook of Formal Languages. Vol. I: Word,
Language, Grammar, chapter 5, pages 253–328. Springer, 1997.

[Mee02] Aidan Meehan. Maze Patterns. Thames & Hudson, London, 2002.
[Slo95] Andy Sloss. How to Draw Celtic Knotwork: A Practical Handbook. Bland-

ford Press, 1995.
[Slo97] Andy Sloss. How to Draw Celtic Key Patterns: A Practical Handbook.

Blandford Press, 1997.

. .

Dr. Renate Klempien-Hinrichs

Fachbereich 3 – Informatik
Universität Bremen
D-28334 Bremen (Germany)
rena@informatik.uni-bremen.de
http://www.informatik.uni-bremen.de/˜rena

Renate Klempien-Hinrichs was a member of Hans-Jörg Kreowski’s team from
1993 to 2009. In 2000, she received her doctoral degree from the University of
Bremen under Hans-Jörg’s supervision.

. .

222 Renate Klempien-Hinrichs, Caroline von Totth

. .

Caroline von Totth

Fachbereich 3 – Informatik
Universität Bremen
D-28334 Bremen (Germany)
caro@informatik.uni-bremen.de
http://www.informatik.uni-bremen.de/˜caro

Hans-Jörg Kreowski supervised Caroline von Totth’s diploma thesis. Since
2004, she is a member of his group, working on her doctoral thesis, again
under his supervision.

. .

C ::=

1

2

C

C

1

2

D

1

2 3

1

2

D

1

2

3

1

2

c

D ::=

1

2 3

D

C

1

2 3

1

2 3

D

C

1

2

3

1

2 3

D

D

1

2

3

1

2 3

1

2 3

D

D

1

2

3

1

2

3

1

2 3

D

C

1

2

3

1

2 3

D

D

1

2

3
1

2 3

1

2 3

D

D

1

2

31

2

3

1

2 3

d

1

2 3

Autonomous Units for Solving the

Capacitated Vehicle Routing Problem Based on
Ant Colony Optimization ⋆

Sabine Kuske, Melanie Luderer, and Hauke Tönnies

Abstract. Communities of autonomous units and ant colony systems
have fundamental features in common. Both consists of a set of au-
tonomously acting units that transform and move around a common
environment that is usually a graph. In contrast to ant colony systems,
the actions of autonomous units are specified by graph transformation
rules which have a precisely defined operational semantics and can be vi-
sualized in a straighforward way. In this paper, we model an ant colony
system solving the capacitated vehicle routing problem as a community
of autonomous units. The presented case study shows that the main
characteristics such as tour construction and pheromone update can be
captured in a natural way by autonomous units. Hence, autonomous
units provide a formal and visual framework for ant colony optimization
algorithms.

1 Introduction

Communities of autonomous units are rule-based systems, in which the units act
and interact autonomously in a common environment while striving for a goal
(cf. [KK07,KK08,HKK09]). More concretely, every autonomous unit is composed
of a set of graph transformation rules, a control condition, a specification of ini-
tial private states, and a goal. Moreover, it can ask auxiliary units for help.
Autonomous units transform the common environment and their private states
simultaneously, can communicate with each other via the common environment,
and may act in parallel. A current state of an autonomous unit consists of a com-
mon environment and a private state which are both graphs. An autonomous
unit specifies all state transformation processes that (1) start with an initial
private state and an arbitrary common environment (2) are allowed by the con-
trol condition, and (3) can be obtained via (parallel) applications of the unit’s
rules, auxiliary units, and other autonomous units in the community. Hence,
the semantics of a single autonomous unit includes actions of other autonomous
units which are not known by the unit. This means that the semantics of an
autonomous unit is loose in the sense that it is defined with respect to a set
of (parallel) rules that model the actions of other units. These rules are called
metarules. A state transformation process is called successful if it meets the goal.
⋆ The authors would like to acknowledge that their research is partially supported

by the Collaborative Research Centre 637 (Autonomous Cooperating Logistic Pro-
cesses: A Paradigm Shift and Its Limitations) funded by the German Research Foun-
dation (DFG).

F. Drewes, A. Habel, B. Hoffmann, D. Plump (Eds.): Manipulation of Graphs, Algebras and Pictures.
Essays Dedicated to Hans-Jörg Kreowski on the Occasion of His 60th Birthday, pp. 223–246, 2009.

224 Sabine Kuske, Melanie Luderer, Hauke Tönnies

A community consists of a set of autonomous units, a specification of initial
common environments, a global control condition, and an overall goal. A current
state of a community is composed of a current common environment plus a pri-
vate state for every autonomous unit. The semantics of a community consists of
all state transformation processes performed by the autonomous units, allowed
by the global control condition, and starting with an initial state. A transfor-
mation process is successful if it reaches the overall goal. The basic components
of communities are provided by a graph transformation approach consisting of
a class of graphs, a class of graph class expressions, a class of rules with a rule
application operator, and a class of control conditions. In the literature there
exists a variety of graph transformation approaches that differ mainly in the
kind of rules and graphs (cf. [Roz97] for an overview on graph transformation
approaches). They all can be used as underlying approach for communities.

Ant colony systems consist of a set of autonomously behaving artificial ants
that move around a common graph and make their decisions according to the
pheromone concentration in their neighbourhood. They are inspired by the way
how ants find short routes between food and their formicary and have been
shown to be well-suited not only for the solving of shortest path problems, but
for a series of more complex problems, typically ocurring in logistics (cf. [DS04]).
Basically, in an ant colony system, a set of ants constructs solutions for a given
problem (mostly NP-hard) by moving along the edges of an underlying graph.
According to the quality of the constructed solutions the ants walk back and
put some pheromone on the traversed items, i.e., the better the solution is the
more pheromone is placed by an ant. During solution construction the pheromone
concentration as well as some further heuristic value help the ants to decide where
to go in each step. Every ant has a memory for storing important information
such as the length of the traversed path, etc.

In this paper, we show that ant colony systems can be modeled by commu-
nities of autonomous units in a natural way. This is illustrated with the example
of the Capacitated Vehicle Routing Problem (CVRP) (cf., e.g., [RDH04,DS04]).
The advantages of modeling ant colony systems as communities of autonomous
units are the following. (1) Autonomous units provide ant colony systems with
a well-founded operational semantics so that verification techniques for graph
transformation can be applied to ant colony systems. (2) The fact that ant ac-
tions can be specified as graph transformation rules allows for a visual modeling
of ant algorithms and hence for a visual representation of ant colony behaviour.
(3) Existing graph transformation tools such as GrGEN [GK08] or AGG [ERT99]
can be used to implement ant algorithms.

This paper is organized as follows. In Section 2, ant colony systems for the
heuristic solving of optimization problems are briefly introduced and a particular
ant colony optimization algorithm for solving the CVRP is recalled. Section 3
presents a particular graph transformation approach that is used throughout this
paper. Section 4 introduces autonomous units and communities of autonomous
units. Section 5 shows how fundamental features of ant colony systems can be

Autonomous Units for Capacitated Vehicle Routing 225

modeled with autonomous units by translating an ant colony system solving the
CVRP into a community. The conclusion is given in Section 6.

2 Ant Colony Opimization

Ant colony optimization (ACO) systems are algorithmic frameworks for the
heuristic solving of optimization problems, typically problems belonging to the
complexity class NP-hard, since no efficient algorithms for this kind of problems
are known that always solve the problem. The idea of ACO originates in the
observation of how ants find short ways between food and their formicary. An
individual ant can hardly see and has a very narrow perspective of its environ-
ment. While searching for food, it leaves a chemical substance on the ground,
called pheromone, which can be sensed by other ants and influence their route
decision. The higher the concentration of pheromone along a way, the higher
the probability that an ant will choose this way as well, thus leaving even more
pheromone. The crucial point is that pheromone evaporates with time. An ant
following a short route to food will return sooner to the formicary (returning ob-
viously on the same way) so that the pheromone concentration on shorter routes
becomes more intense than on longer routes. The higher pheromone concentra-
tion makes more ants choose the short route which in turn raises the pheromone
concentration further. Finally, almost all ants end up choosing one short route,
although not necessarily the shortest one. Since typical optimization problems
can be nicely modeled as graphs, it is the prefered data structure for ACO. The
graphs used in this paper are edge-labeled and undirected and can be defined as
follows.

Definition 1 (Graphs). A graph is a tuple (V, E, att, m), where V is a finite
set of nodes, E is a finite set of edges such that V and E are disjoint, att : E →⋃

k∈{1,2}
(
V
k

)
assigns to every edge a set of one or two sources in V , and m is a

mapping that assigns a label to every edge in E. A graph with no nodes and no
edges is called the empty graph which is denoted by ∅. The components of G are
also denoted by VG, EG, respectively. The set of all graphs is denoted by G.

A solution to an optimization problem consists typically of a tour (e.g. an
ordered sequence of nodes) within the given graph. Intuitively, the complexity of
most NP-hard optimization problems lies in the exponentially growing number
of possible tours when new nodes and edges are added. The lack of an efficient
search method for the ‘best’ way requires an (almost) exhaustive search of all
the possible tours. To solve an optimization problem with ACO, some additional
information is needed. We define optimization problems as follows.

Definition 2 (Optimization Problem). An optimization problem is a 6-
tuple (CG, d, τ, η, S, g) where CG ∈ G is a construction graph, d is a function
that associates every edge with a cost value (e.g. the distance), τ is a function
that associates every edge with a pheromone value, η is a function that asso-
ciates every edge with a number as an heuristic value for the quality of the edge,
S ⊆ V ∗ is the set of solutions, and g assigns a cost g(s) to every s ∈ S.

226 Sabine Kuske, Melanie Luderer, Hauke Tönnies

Basically, ACO works as follows. At first, a predefined number of ants are
placed randomly at some nodes. These ants decide in parallel which edge they
follow in the next step according to a transition rule. Let a be an index to choose
one of n ants and Ua the set of all edges that can be chosen from ant a residing
at some node. The decision, which edge e ∈ Ua to take, is probability-based. The
probabilities are calculated as follows.

pa(e) =
[τ(e)]α · [η(e)]β∑

e∈Ua
[τ(e)]α · [η(e)]β

∀e ∈ Ua

In words this formula states that ants prefer edges with low cost und a high
concentration of pheromone. The experimental parameters α and β control the
influence of the pheromone resp. heuristic value in the decision. In every step
this formula is applied, until all the ants have constructed a complete tour.

The next step concerns the pheromone values. Simulating the evaporation,
the values of τ are reduced: τ(e) ← (1 − ρ) · τ(e) ∀e ∈ ECG where ρ is a
pheromone decay parameter in the intervall (0, 1]. Furthermore the release of
pheromone of the ants is simulated:

τ(e)← τ(e) +
n∑

a=1

∆τa(e), with ∆τa(e) =
{ 1

length(toura) , e ∈ toura

0 otherwise

where toura is the solution constructed by ant a. In contrast to nature, the
release of pheromone takes place after the ants constructed a complete tour,
since the amount of pheromone corresponds to the overall quality of the tour
(e.g. the length of the tour). Furthermore, in some ACO systems not every ant
leaves pheromone, but just the ones having constructed the best tours.

Now the ants are placed again at some randomly chosen nodes and the algo-
rithm starts with the modified values of pheromone. Some variants of this basic
ACO yielding better performance have been proposed in the literature. Details
can be found in [DS04].

2.1 Application: Capacitated Vehicle Routing Problem

An important application field of ACO concerns all kinds of tour planning with
the Traveling Salesperson Problem (TSP) as the most famous one. Another
problem often occurring in distribution logistics is the so called Capacitated
Vehicle Routing Problem (CVRP), which can be described as follows. A number
of customers must be served with some goods that are stored at a central depot.
A number of vehicles with finite and equal capacity is available. The aim is to find
a set of tours such that the demands of all customers are met and the total cost
(the sum of the distances of the tours) is minimized. Combinatorially, a solution
can be formally described as a partition of the cities into m routes {R1, . . . , Rm}.
Each route must satisfy the condition

∑
j∈Ri

demj ≤ k, where demj describes
the demand of the j -th customer and k is the capacity restriction of the vehicles.
Within each partition, an associated permutation function specifies the customer
order.

Autonomous Units for Capacitated Vehicle Routing 227

Relaxing the conditions by allowing any partition (respectively setting k =
∞), the CVRP is transformed into an instance of the Multiple Traveling Sales-
person Problem. Leaving the condition unchanged but with a cost function that
counts the number of partitions CVRP becomes the well-known bin packing
problem. CVRP contains in this sense two NP-hard problems, which in practice
makes it a lot more complicated to solve than TSP for example and it seems
a good idea to use ACO. A formulation of CVRP according to Definition 2
is quickly found. Nevertheless, there are different ways to design the function
η : ECG → R. One easy possibility consists of the reciprocal cost-value of the
edge.

Nevertheless, sometimes other methods are used to calculate the heuristic
values; one elegant way is based on the so-called Savings algorithm. Starting
from the initial (and unfavoured) solution, where every route consists of exactly
one customer, it is calculated, how the quality of the solution changes (how much
one would save), putting two customers i and j in one route. Let di0 denote
the distance between customer i and the depot and dij the distance between
customer i and j. Then the saving value obtained by merging the routes Ri and
Rj together is calculated as follows:

sij = 2 ∗ di0 + 2 ∗ dj0 − (di0 + dij + dj0) (1)
= di0 + dj0 − dij (2)

Elaborated experiments concerning the performance of ACO and Saving Algo-
rithm for the CVRP can be found in [RDH04].

3 A Graph Transformation Approach

Graph transformation approaches provide the main ingredients for communities
of autonomus units. They consist of a class of graphs, a class of rules, a class of
control conditions, and a class of graph class expressions. The graphs are used
to represent the common environments and the private states of communities.
The rules are needed to transform these graphs. Moreover, control conditions can
restrict the non-determinism of rule application, and with graph class expressions
one can specify specific graph sets such as initial environments or goals to be
reached. In the literature, there exists a series of different graph transformation
approaches (cf. [Roz97]).

In the following, we tailor a particular graph transformation approach that
can be used for modeling ACO algorithms. Concretely, the rule class and the
graph class are based on the double-pushout approach [CEH+97]. Additionally,
we introduce a class of control conditions that is suitable for autonomous units
running in parallel. These control conditions are proactive meaning that rules
must always be applied as soon as possible. The class of graph class expressions
allows to specify graph languages in a rule-based way.

228 Sabine Kuske, Melanie Luderer, Hauke Tönnies

3.1 Graphs and Rules

The graphs we use are edge-labeled and undirected as presented in Section 2.
Subgraphs and graph morphisms are defined as follows.

Definition 3 (Subgraph, graph morphism). For G, G′ ∈ G, the graph G is a
subgraph of G′, denoted by G ⊆ G′, if VG ⊆ VG′ , EG ⊆ EG′ , att(e) = att′(e), and
m(e) = m′(e) for all e ∈ EG. A graph morphism g: G→ G′ is a pair (gV , gE) of
mappings with gV : VG → VG′ and gE : EG → EG′ such that labels and sources are
kept, i.e., for all e ∈ EG, gV (attG(e)) = attG′(gE(e)) and mG′(gE(e)) = mG(e).1

The image of G in G′ is the subgraph g(G) of G′ such that Vg(G) = gV (VG) and
Eg(G) = gE(EG).

Remark. In the following, the subscripts V and E of gV and gE are often omitted,
i.e., g(x) means gV (x) for x ∈ V and gE(x) for x ∈ E.

Graphs are depicted as usual with round or boxed nodes and lines as edges.
A loop can be omitted by putting its label inside the node to which the loop
is attached. This can be done for at most one loop per node. We assume the
existence of a special label unlabeled that is omitted in graph drawings.

Graphs can be modified by rules consisting of a negative context, a left-hand
side, a gluing graph, and a right-hand side. Roughly speaking, the negative
context specifies components that must not occur in the graph to which the rule
is applied. The left-hand side, the gluing graph, and the right-hand side are used
to determine which components should be deleted, kept and added, respectively.
In every computation step of a community, the autonomous units transform the
common environment and their private states simultaneously. For this purpose,
every unit applies pairs of rules (r1, r2), where the first rule r1 is applied to the
common environment and r2 to the private state.

Definition 4 (Rule, rule pair). A rule r is a quadruple (N, L, K, R) of graphs
with N ⊇ L ⊇ K ⊆ R where N is the negative context, L is the left-hand side,
K is the gluing graph, and R is the right-hand side. If all components of r are
empty, r is the empty rule. The set of all rules is denoted by R. A rule pair is
a pair of rules r = (r1, r2) where r1 is called the global rule and r2 the private
rule. The set of all rule pairs is denoted by R̃.

Remark. A rule pair r = (r1, r2) where r2 is the empty rule can be regarded as
a single rule. Hence, in the following, we often do not distinguish between single
rules and rule pairs with an empty private rule.

A rule (N, L, K, R) is depicted as N → R where the nodes and edges of K
have the same forms, labels, and relative positions in N and R. The nodes of N
that do not belong to L are coloured grey. The edges of N that do not belong
to L are dashed. Fig. 1 shows a rule in which the negative context consists of
a round node and two rectangle nodes. Each of the rectangle nodes has exactly
1 For a mapping f : A → B and C ⊆ A the set f(C) is defined as {f(x) | x ∈ C}, i.e.,

gV (attG(e)) = {gV (v) | v ∈ attG(e)}.

Autonomous Units for Capacitated Vehicle Routing 229

one loop labeled with a and b, respectively. The round node is connected to both
rectangle nodes. The left-hand side contains the round node, the a-node (i.e., the
rectangle node with the a-loop) and the edge between both. The gluing graph
consists of the round node, and the right-hand side is obtained from the gluing
graph by connecting the round node with a new b-node.

ba −→ b

Fig. 1. A rule

A rule pair r = ((N1, L1, K1, R1), (N2, L2, K2, R2)) (with non-empty private
rule) is depicted as L1|L2 → R1|R2 where the negative contexts and the gluing
graphs are represented as in single rules.

A rule (N, L, K, R) is applied to a graph as follows. (1) Choose an image g(L)
of L in G. (2) Check if g(L) has no negative context given by N up to L. (3)
Delete g(L) up to g(K) from G provided that no dangling edges are produced.
(4) Glue R and the remaining graph in K. The construction needed in the fourth
step can be defined as follows.

Definition 5 (Gluing of graphs). Let K ⊆ R and h: K → Z. Let ≈V be the
equivalence relation on VZ + VR generated by the relation {(v, hV (v)) | v ∈ VK}
and let ≈E be the equivalence relation on EZ +ER generated by {(e, hE(e)) | e ∈
EK}. Let (VZ + VR)/≈V and (EZ + ER)/≈E be the quotient sets of the disjoint
union VZ + VR and EZ + ER, respectively. Then the gluing of Z and R in K
with respect to h yields the graph D = ((VZ + VR)/≈V , (EZ + ER)/≈E , att , m)
where for all e ∈ (EZ + ER)/≈E

att(e) =

{
[attZ(e)] if e = [e] for some e ∈ EZ

2

[attR(e)] if e = [e] for some e ∈ ER − EK

m(e) =

{
mZ(e) if e = [e] for some e ∈ EZ

mR(e) if e = [e] for some e ∈ ER − EK

The application of a rule to a graph is formally defined as follows.

Definition 6 (Rule application). Let r = (N, L, K, R) ∈ R, let G ∈ G, and
let g: L→ G such that g is injective and the following gluing condition is satisfied.

– If L ⊂ N , there exists no g′: N → G with g′(x) = g(x) for all x ∈ VL ∪EL.
– For all e ∈ EG − Eg(L), attG(e) ⊆ VG − (Vg(L) − Vg(K)).

2 For a quotient set A/≈, []: A → A/≈ denotes its natural associated function.

230 Sabine Kuske, Melanie Luderer, Hauke Tönnies

Then r is applied to G by (1) deleting Vg(L) − Vg(K) and Eg(L) − Eg(K), and
(2) constructing the gluing of the resulting graph D and R in K with respect
to g|K: K → D where g|K(x) = g(x) for all x ∈ VK ∪ EK . The semantic
relation of r is denoted by SEM (r) and consists of all pairs (G, G′) such that
G′ can be derived from G via the application of r. For a set P ⊆ R, we define
SEM (P) =

⋃
r∈P SEM (r). For (r1, r2) ∈ R̃, the semantic relation is equal to

{((G1, G2), (G′
1, G

′
2)) | (Gi, G

′
i) ∈ SEM (ri), i = 1, 2}.

Remark. The described kind of applying graph transformation rules corresponds
to the double-pushout approach presented in e.g. [CEH+97], where also non-
injective matchings of the left-hand side are allowed.

The rule in Fig. 1 can be applied to a graph containing a node v connected
to an a-node but not connected to a b-node. Its application removes the a-node
plus the edge to v and adds a b-node and an edge from this b-node to v. Because
of the gluing condition, the a-node is only connected to v but not to other nodes;
otherwise its deletion would produce dangling edges.

In general, the autonomous units of a community apply their rules in parallel.
A parallel rule application step involving two rules can be defined as follows.

Definition 7 (Parallel rule application). Let G ∈ G and for i = 1, 2, let ri =
(Ni, Li, Ki, Ri) be two rules. Let gi: Li → G be two injective graph morphisms
that satisfy the gluing condition of Definition 6 and the independence condition
g1(L1) ∩ g2(L2) ⊆ g1(K1) ∩ g2(K2).3 Then r1 and r2 can be applied in parallel
to G by (1) deleting Vgi(L) − Vgi(K) and Egi(L) − Egi(K) (for i = 1, 2), and (2)
constructing the gluing of the resulting graph D and R1 + R2 in K1 + K2 with
respect to g: K1 + K2 → D, where g(x) = gi(x) if x ∈ VKi ∪ EKi , for i = 1, 2.4

Remarks.

1. Definition 7 can be extended in a straightforward way from two rules to
arbitrary non-empty multisets of rules. For a multiset m of rules, SEM (m)
denotes the set of all (G, G′) ∈ G × G where G′ is derived from G via the
parallel application of the rules in m. A multiset m of rules will be called
a parallel rule, and for a set P ⊆ R, the set of all parallel rules over P is
denoted by P∗.

2. For a rule pair r = (r1, r2), SEM (r||m) denotes all ((G1, G2), (G′
1, G

′
2)) ∈

(G × G) × (G × G) where G′
1 is derived from G1 by applying the multiset

obtained from adding r1 to m, and (G2, G
′
2) ∈ SEM (r2).

3.2 Control Conditions

It is often desirable to restrict the non-determinism of rule application. This can
be achieved with control conditions. Concretely, we use as control conditions
3 For G1, G2 ∈ G the intersection G1 ∩G2 yields the pair (V, E) where V = VG1 ∩VG2

and E = EG1 ∩EG2 . Moreover, we have (V1, E1) ⊆ (V2, E2) if V1 ⊆ V2 and E1 ⊆ E2.
4 The morphism g may be non-injective.

Autonomous Units for Capacitated Vehicle Routing 231

regular expressions equipped with as long as possible and the parallel operator
||.
Definition 8 (Control conditions). Let ID be a set such that P ⊆ ID for
some set P of rule pairs. Then the class C(ID) of control conditions over ID is
inductively defined as follows.

1. {lambda} ∪ ID ∪ {x! | x ∈ P} ⊆ C(ID).
2. For c, c1, c2 ∈ C(ID), we have (c1 + c2), (c1 ; c2), (c∗), (c1||c2) ∈ C(ID).

Remark. For practical applications, the set ID would consist of names refering
to rule pairs (or units) but for technical simplicity we do not distinguish between
rule pairs (units) and their names.

If ID consists only of rule pairs, a semantics of control conditions can be
defined in an intuitive way. Roughly speaking, the condition lambda applies no
rule. Every rule pair r is a control condition that prescribes one application of
r. The condition c1 + c2 stands for applying c1 or c2, c1 ; c2 means that c1 must
be applied before c2, c∗ applies c arbitrarily often, r! requires that the pair r
be applied as long as possible, and c1||c2 allows only transformations where c1

and c2 are applied in parallel. For example, the expression r1; r∗2 + r3! allows all
sequences in which r1 is applied before an arbitrarily often application of r2 or
in which r3 is applied whenever this is possible.5

As stated before, the application of a rule pair by an autonomous unit aut
is generally done in parallel with transformations of the common environment
executed by other autonomous units. Moreover, it may also happen that other
units perform actions before or after rule applications of aut . When defining the
semantics of control conditions the rules of other units are not known. Hence,
the semantics is loose, i.e., it is defined with respect to a setMR of parallel rules
called metarules. For modeling ant-based systems in a suitable way, we require
additionally that rules be applied as early as possible. This leads to proactive
transformation processes. In more detail, for a set P of rule pairs, every proactive
transformation process s specified by a control condition c ∈ C(P) must have
the following property: If in s an application of a rule pair r ∈ P is preceded
by a sequence of k mere metarule applications, the application of r cannot be
shifted to any of the k preceding steps. For defining a proactive semantics of
control conditions, i.e., a semantics that consists only of proactive transformation
processes, we also have to define proactive transformation processes in which no
metarules are applied after the last application of a rule in P . For example, for
i = 1, 2, let SEMMR(ri) be the proactive transformation processes specified by
the rule ri. In order to get all proactive transformation processes specified by
r1 ; r2, we cannot take the sequential composition of the processes in SEMMR(r1)
and SEMMR(r2), because of the following reason. Let s1 be a transformation
process in SEMMR(r1) in which some metarules are applied after r1. Let s2

be a transformation process in SEMMR(r2). Then the sequential composition

5 The operator ∗ has a stronger binding than ; which in turn has a stronger binding
than +.

232 Sabine Kuske, Melanie Luderer, Hauke Tönnies

s1 ◦ s2 is not proactive if r2 is applicable after the application of r1 in s1 but
before the end of s1 because in this case the application of r2 can be shifted to
an earlier step. Hence, before sequentially composing s1 and s2 we have to cut
all metarule applications from s1 that take place after the application of r1.

In the following, a proactive semantics of control conditions is defined for the
case where ID consists of rules, only. In Section 4 we show how this definition
can be employed for the more general case where ID contains units, too.

Definition 9 (Proactive semantics of control conditions). LetMR ⊆ R∗
be a set of parallel rules called metarules and let P ⊆ R̃. Then for each control
condition in C(P) its proactive semantics is defined as follows.

1. SEMMR(lambda) consists of all sequences (G0, . . . , Gn) of graph pairs such
that for i = 1, . . . , n, (Gi−1, Gi) ∈ SEM (m) for some m ∈ MR.6 Moreover,
we define CUT (SEMMR(lambda)) = G × G.

2. SEMMR(r) consists of all sequences s = (G0, . . . , Gn) for which there exist
some j ∈ {1, . . . , n} and m1, . . . , mn ∈ MR such that for i = 1, . . . , j − 1
and i = j + 1, . . . , n, (Gi−1, Gi) ∈ SEM (mi), (Gj−1, Gj) ∈ SEM (r||mj) and
for i = 0, . . . , j − 1, there is no G ∈ G × G such that (Gi, G) ∈ SEM (r||mi).
Moreover, we define cut(s) = true iff j = n and CUT (SEMMR(r)) = {s ∈
SEMMR(r) | cut(s) = true}.

3. SEMMR(c1 + c2) = SEMMR(c1) ∪ SEMMR(c2) and

CUT (SEMMR(c1 + c2)) = CUT (SEMMR(c1)) ∪ CUT (SEMMR(c2)).

4. SEMMR(c1 ; c2) = CUT (SEMMR(c1)) ◦ SEMMR(c2) and

CUT (SEMMR(c1 ; c2)) = CUT (SEMMR(c1)) ◦ CUT (SEMMR(c2)).7

5. SEMMR(c∗) = SEMMR(lambda)∪CUT (SEMMR(c))∗◦SEMMR(c). More-
over, CUT (SEMMR(c∗)) = (CUT (SEMMR(c)))∗.

6. SEMMR(r!) = CUT (SEMMR(r∗)) ◦ {(G0, . . . , Gk) ∈ SEMMR(lambda) |
Gi ∈ red(r) for i = 1, . . . , k} where for (r1, r2) ∈ R̃, red(r1, r2) consists of all
(G1, G2) ∈ G×G such that r1 is not applicable to G1 or r2 is not applicable to
G2. Moreover, CUT (SEMMR(r!)) = {(G0, . . . , Gk) ∈ CUT (SEMMR(r∗)) |
Gk ∈ red(r)}.

7. SEMMR(c1||c2) = SEMMR∪Rules(c2)∗(c1) ∩ SEMMR∪Rules(c1)∗(c2) where
for i = 1, 2, Rules(ci) is the set of all rule pairs occurring in ci. Moreover,
CUT (SEMMR(c1||c2)) = SEMMR(c1||c2)∩(CUT (SEMMR∪Rules(c2)∗(c1))∪
CUT (SEMMR∪Rules(c1)∗(c2))).

Remark. In the above definition SEMMR(c) is the set of proactive transforma-
tion processes specified by c whereas CUT (SEMMR(c)) is needed for defining
the proactive semantics of control conditions involving sequential composition.
6 In this transformation, the second component of every graph pair remains un-

changed, because m is a multiset of single rules.
7 For sets of sequences S, S′, their sequential composition is denoted by S ◦ S′, and

S∗ is defined as
S

i∈N Si with S0 = G × G and Si+1 = Si ◦ S.

Autonomous Units for Capacitated Vehicle Routing 233

3.3 Graph Class Expressions

In order to use graph transformation in a meaningful way, it should be possible to
specify initial and terminal graphs of graph transformation processes with graph
class expressions. In general, a graph class expression can be any expression that
specifies a set of graphs. In particular, the graph class expressions used in this
paper are the following.

Definition 10 (Graph class expressions). The class X of all graph class
expressions is defined as follows.

1. all , empty, red(P), (P, C) ∈ X with P ⊆ R and C ∈ C(P) where SEM (all) =
G, SEM (empty) = ∅, SEM (red(P)) consists of all graphs G to which no rule
of P can be applied, and SEM (P, C) consists of all graphs G for which there
is a sequence (G0, . . . , Gn) such that Gn = G, for i = 1, . . . , n (Gi−1, Gi) ∈
SEM (P) and (G0, . . . , Gn) ∈ SEM ∅(C).8

2. For I, T ∈ X , P ⊆ R, and C ∈ C, (I, P, C, T) ∈ X where SEM (I, P, C, T) =
SEM (P, C) ∩ (SEM (I)× SEM (T)).

One example of graph class expressions of the second type is complete =
(empty, {nodes, edges}, nodes∗; edges∗, red({edges})), where nodes and edges are
the rules in Fig. 2.

nodes: c −→
c∈A

c
id

edges: −→

Fig. 2. The rules nodes and edges

Given some alphabet A, the expression complete specifies all complete graphs
composed of round nodes in which every round node is additionally connected
to exactly one uniquely labeled boxed node via an id -edge. The labels of the
boxed nodes are taken from A. It is worth noting that the rule edges cannot
produce loops because we only use injective morphisms to choose a matching
of the left-hand side. In addition, we technically distinguish between round and
boxed nodes by using particularly labeled loops that indicate the respective node
type (round or boxed).

4 Communities of Autonomous Units

Every community is mainly composed of a set of autonomous units that act and
interact in a common environment (see e.g. [HKK09] where a sequential and a
parallel semantics of communities is introduced).
8 Control conditions can be used to define sequences of graphs (instead of sequences

of graph pairs) because, as stated before, rules can be regarded as rule pairs with
empty private component.

234 Sabine Kuske, Melanie Luderer, Hauke Tönnies

4.1 Autonomous Units

Autonomous units transform a common graph and have an additional private
graph where they can store private information. Since the rule set of an au-
tonomous unit can be very large, structuring concepts should be provided to
keep it manageable. Autonomous units allow to import auxiliary units and pro-
vide control conditions as well as graph class expressions. Auxiliary units differ
from autonomous units in the sense that they do not contain graph class expres-
sions. The graph class expressions of every autonomous unit are used to specify
the initial private states as well as the goal. The latter consists of a private goal
concerning the private state and a goal concerning the common environment
that the autonomous unit wants to reach.

Definition 11 (Autonomous units).

1. A unit of import depth 0 is a system unit = (I, U, P, C, g) where I ∈ X is
the initial private graph class expression, U = ∅ is the empty set, P ⊆ R̃ is
a set of rule pairs, C ∈ C(P ∪ U) is a control condition, and g ∈ X × X is
the goal.

2. A unit of import depth n+1 (n ∈ N) is a system unit = (I, U, P, C, g) where
U is a set of units of import depth at most n, and I, P , C, and g are defined
as in point 1.

3. (I, U, P, C, g) is an auxiliary unit if I = all , g = (all , all), and every u ∈ U
is an auxiliary unit.

4. (I, U, P, C, g) is an autonomous unit if every u ∈ U is an auxiliary unit. The
set of autonomous units is denoted by AUT

5. The components of unit are also denoted by Iunit , Uunit , Punit , Cunit , and
gunit , respectively.

Every unit can be converted into a flattened unit with import depth zero.
The rule set and the control condition of the flattened unit can be constructed
as follows.

Definition 12 (Flattening). For unit = (I, U, P, C, g) its flattened rule set
Rules(unit) and its flattened control condition flC (unit) is defined as follows.
If U = ∅, Rules(unit) = P and flC (unit) = C. If U 6= ∅, Rules(unit) = P ∪⋃

u∈U Rules(u) and flC (unit) = C[a] where a: U → C(R̃) is defined as a(u) =
flC (u).9

The parallel semantics of autonomous units consists of all transformation
sequences that start with a pair consisting of an initial private graph and an ar-
bitrary common environment and that are allowed by the flattened control con-
dition. Like for control conditions, we assume the existence of a set of metarules
specifying the common environment transformations that can be performed by
other units. If the transformation reaches the goal, it is called successful.
9 For a control condition c and a mapping a: U ∈ C, C[a] is obtained by replacing

every occurrence of u with a(u), for all u ∈ U .

Autonomous Units for Capacitated Vehicle Routing 235

Definition 13 (Parallel semantics). Let aut = (I, U, P, C, (g1, g2)) be an
autonomous unit, let MR ⊆ R∗, and let s = ((G0, G

′
0), . . . , (Gn, G′

n)) be a
sequence of graph pairs. Then s ∈ PARMR(aut) if G′

0 ∈ SEM (I) and s ∈
SEMMR(flC (aut)). Moreover, s is successful if (Gn, G′

n) ∈ SEM (g1)×SEM (g2).

Remark. In general, the transformation processes of autonomous units may also
be infinite which is appropiate to describe infinite processes and in particular
to investigate convergence behavior of ant-based systems. However, in this first
approach we consider only the finite case, but an extension to the infinite case
is straightforward (cf. [HKK09]).

A community consists of a set of autonomous units, a specification of all
possible initial environments, a global control condition, and an overall goal. In
the following, global control conditions are regular expressions equipped with
the parallel operator ||.
Definition 14 (Global control conditions). Let Aut ⊆ AUT . Then the set
of global control conditions GLC(Aut) is recursively defined as follows.

1. Aut ∪ {aut1|| · · · ||autk | aut i ∈ Aut , i = 1, . . . , k} ⊆ GLC(Aut)
2. For c, c1, c2 ∈ GLC(Aut), we have (c1 + c2), (c1 ; c2), (c∗) ∈ GLC(Aut).

Global control conditions specify sequences of states where every state con-
sists of a common environment plus a private state for every autonomous unit
in a community. Roughly speaking, the global control condition aut specifies all
transformation processes of aut where the private states of all other units are
not changed. The global control condition aut1|| · · · ||autk prescribes the parallel
running of aut1, . . . , autk. The semantics of the remaining control conditions are
defined as expected. In the following we define Aut -states and the semantics of
global control conditions.

Definition 15 (Aut-states and semantics of global control conditions).
For Aut ⊆ AUT , an Aut-state is a pair (G,map) where G ∈ G and map:Aut → G
is a mapping. The semantics of each global control condition in GLC(Aut) is
defined as follows.

1. SEMAut (aut) consists of all sequences ((G0, map0), . . . , (Gn, mapn)) of Aut-
states such that ((G0, map0(aut)), . . . , (Gn, mapn(aut))) ∈ SEM ∅(flC (aut)),
and for each aut ′ ∈ Aut − {aut}, map0(aut ′) = · · · = mapn(aut ′).

2. SEMAut (aut1|| · · · ||autk) consists of all ((G0, map0), . . . , (Gn, mapn)) such
that for i = 1, . . . , k,

((G0, map0(aut i)), . . . , (Gn, mapn(aut i))) ∈ SEMMR(auti)(flC (aut i)),

where MR(aut i) = (
⋃

aut∈{aut1,...,autk}−{auti}Rules(aut))∗, and for each
aut ∈ Aut − {aut1, . . . , autk}, map0(aut) = · · · = mapn(aut).

3. SEMAut (c1 + c2) = SEMAut (c1) ∪ SEMAut (c2),
4. SEMAut (c1 ; c2) = SEMAut (c1) ◦ SEMAut (c2), and
5. SEMAut (c∗) = SEMAut (c)∗.

236 Sabine Kuske, Melanie Luderer, Hauke Tönnies

The components of communities are given in the following definition.

Definition 16 (Community). A community is a tuple (Init ,Aut,Cond ,Goal)
where Init ,Goal ∈ X , Aut ⊆ AUT , and Cond ∈ GLC(Aut).

The parallel semantics of a community consists of all state sequences that are
allowed by the global control condition and start with an initial state consisting of
an initial common environment and an initial private state for each autonomous
unit. The state sequences are successful if they reach the overall goal.

Definition 17 (Parallel community semantics). Let

COM = (Init ,Aut ,Cond ,Goal)

be a community. Then the parallel community semantics of COM , denoted by
PAR(COM) consists of all Aut-state sequences s = ((G0, map0), . . . , (Gn, mapn))
such that G0 ∈ SEM (Init), map0(aut) ∈ SEM (Iaut) (for each aut ∈ Aut), and
s ∈ SEMAut (Cond). Moreover, s is successful if Gn ∈ SEM (Goal).

5 An ACO Community for Solving the CVRP

In this section we present the components of the ACO community COM CV RP

for modeling the Capacitated Vehicle Routing Problem (CVRP) introduced in
Section 2. The initial environment specification of COM CV RP specifies the con-
struction graph of the problem; the set of autonomous units consists of the
autonomous units Ant1, . . . ,Antk (k ∈ N), and Evap&Select ; and the global
control condition Cond is equal to (Ant1|| . . . ||Antk||Evap&Select)∗. In our first
approach the overall goal is equal to all.

Roughly speaking, the community COMCV RP works as follows. The ant
units Ant1 . . .Antk model the ants, which in parallel traverse the graph according
to the savings heuristics introduced in Section 2 and the current pheromone
trails, and search for a solution for the CVRP. When all ants have finished
their search, the autonomous unit Evap&Select first carries out evaporation of
the current pheromone trails. After that it selects the w best solutions. Now
each ant which provides one of the best solutions leaves a pheromone trail on
its solution path according to the quality of the solution. All the units act in
parallel. To ensure the described order we use negative application conditions as
well as control conditions.

5.1 The Initial Environment

The underlying structure of the construction graph of the ACO system modeling
the CVRP is a complete graph with some additional information such as initial
pheromone concentration, distances, etc. Therefore the construction graph for
the CVRP can be defined by the graph class expression depicted in Fig. 3. It
uses as initial expression the graph class expression complete introduced in 3.3.

Autonomous Units for Capacitated Vehicle Routing 237

Construction graph
initial: complete
rules:

depot : −→ depot

cust : depot
dem −→

x∈N xdem

init :
−→
d∈R

dist: d

τ : z

η:∞

save: dist:d

dist:d1 dist:d2

η:∞

depot

−→ dist:d

dist:d1 dist:d2

η: d1 + d2 − d

depot

conds: depot ; (cust + init + save)∗

goal: red({init, save, cust})

Fig. 3. The graph class expression Construction graph

Its rule depot selects the depot and has to be applied exactly once. The rule cust
adds a number representing the demand to every customer node, i.e., to every
node apart from the depot. The rule init labels every edge e of the initial graph
with a distance d and it inserts two edges between each two nodes of the graph,
one labeled with the heuristic value ∞ the other with an initial pheromone value
z. The rule save computes the heuristic value of every edge based on the savings
heuristics. The control condition requires that the depot is selected first. The
terminal graph class expression red({init, save, cust}) guarantees that the rules
cust, init, and save are applied as long as possible.

5.2 The Ant Units

In general, every ant builds a solution tour by traversing the common environ-
ment according to the current pheromone trails. It first selects its initial position.
Afterwards, it constructs a solution tour t. Then it puts some pheromone on t
if it is selected to do so. Every ant unit Antj uses the auxiliary units tourj , and
put pheroj . The control condition is equal to initial positionj ; tourj ; put pheroj

where initial position j is the rule depicted in Fig. 4. It puts the ant Antj to the
depot and generates its memory Mj where it stores the current load of the ve-
hicle represented by Antj (load), the capacity of the vehicle (cap), its current

238 Sabine Kuske, Melanie Luderer, Hauke Tönnies

location (sit) and the total length of the tours (len). This information is repre-
sented by edges labeled with the respective labels (load, cap, sit and len), which
are each attached to a node labeled with the corresponding value.

depot

c
id ∅ −→

depot

c
id

Aj

ant

c

depot

0Mj
len

sit
0

k

load

cap

Fig. 4. The rule initial positionj

The unit tour j is given in Fig. 5. The global and private parts of the unit’s
rules are depicted one below the other. With tourj the ant builds a solution tour
depending on probabilities for the next move to a feasible neighbour calculated
from the savings heuristics and the current pheromone trails. It contains the
auxiliary units feasible neighboursj and probj , and the rules move, return and
stop. The control condition requires to apply the unit feasible neighboursj first.
This unit is given is given in Fig. 6. It computes the feasible neighbours for an
ant unit Antj and stores them in the memory of the ant. Feasible neighbours
are customer-nodes that are not yet visited and whose demand still fits into the
vehicle. Every application of the only rule feas adds one feasible neighbour to
the memory. Moreover, it uses the auxiliary unit delete nonfeasible that removes
all neighbours from the memory that are connected via a feas-edge to Mj and
whose demand exceeds the remaining capacity of the vehicle.10 This is necessary
because after adding a feasible customer to a tour, the former feasible neighbours
may not fit into the vehicle anymore. For reasons of space limitations a drawing
of delete nonfeasible is omitted.

The unit probj is given in Fig. 7. It provides some of the values that are
needed by the unit tour j for computing the probability that a feasible neighbour
is chosen for a next move. This is done by summing up the pheromone and the
heuristic values of all feasible neighbours. The rule begin initializes these values
with 0. The rule sum must be applied as long as possible. For not counting a
feasible neighbour several times sum changes each label feas into ok. At the end
the unit relabel all privatej(ok,feas) is applied which undoes this relabeling, i.e.,
it changes all ok -edges into feas-edges. It is very simple and hence not depicted.

With the rule move the ant moves to a feasible neighbour with the probability
depicted under the arrow of the rule move in Fig. 5. Moreover, in the memory
the current load of the vehicle, the path followed so far, and the total length of
the tour are updated. With the rule return the ant returns to the depot if no
feasible neighbour is left and resets its current load to 0. Afterwards it starts
to construct a new subtour. Finally, when all nodes are visited, the rule stop

10 We assume that the demand of each customer fits into one vehicle.

Autonomous Units for Capacitated Vehicle Routing 239

tour j

uses: feasible neighboursj , probj

rules:

move:

global: c
Aj

l
dem

id
dist: d

τ :x

η: y

ant
c

Aj

l
dem

id
dist: d

τ :x

η: y ant
−→

xα·yβ

τα·ηβ

private: Mj s

τ
η

m
load

len

sit

phervis

feas

c

Mj s + d

c

m + l
load

len

sit

return:

global:

c
Aj

id
dist:d

ant

depot

c Aj

id
dist: d ant

depot
−→

private: Mj slen

sit

c

feas

m
load

Mj s + d

c

len

sit

0
load

−→

stop:

Aj

ant

depot

Mj

feas

slen

m
load

−→
depot

Aj

ant

slen

Mj slen

0

load

conds: (feasible neighboursj ; (probj ; move + return))∗ ; feasible neighboursj ; stop

Fig. 5. The auxiliary unit tour j

is applied to reset the current load in the memory of the ant to 0. The rule
stop also it adds the information about the length of the found solution to the
common environment by inserting an edge labeled with len from the ant-node
Aj to a new node labeled with the length of the solution.

The unit put pheroj is depicted in Fig. 8. It works a little different for ants,
who should leave a pheromone trail and those who should not. Both kinds of ants
apply different rules, but the structure of rule applications is the same. In both

240 Sabine Kuske, Melanie Luderer, Hauke Tönnies

feasible neighbours j

uses: delete nonfeasible
rules:

feas:
c

l

id

dem

Aj

dist: d
ant Mj

c

i
m

cap load
−→

m+l≤k

c

l

id

Aj

dist: d
ant

dem

Mj

c

i
m

cap load

feas

conds: delete nonfeasible ; feas!

Fig. 6. The auxiliary unit feasible neighboursj

probj

uses: relabel all privatej

rules:

begin: ∅ Mj −→ ∅

0
0

Mj

phervis

sum:
c
id

Aj

τ :x

η: y

ant Mj

c

τ
η

feas

phervis

−→
c
id

Aj

τ : x

η: y

ant Mj

τ + x

c

pher

η + y

vis

ok

conds: begin ; sum! ; relabel all privatej(ok,feas)

Fig. 7. The auxiliary unit probj

cases the ant traverses the solution path stored in its memory and meanwhile
deletes it. (Because the path stored in the memory is shaped like a blossom with
the depot in the middle, first the ”petals” (subtours) are deleted and finally the
depot.) This behaviour is represented by the rules start a (resp. start b) and
put (resp. delete only) and the subexpression of the control condition ((start a
+ start b) ; (put ! + delete only!))∗. One application of a start -rule followed by
applications of the rule put (resp. delete only) as long as possible traverses one
subtour of the found tour beginning and ending at the depot. The rules delete
the traversed path from the memory (leaving the depot); put additionally leaves
a pheromone trail in the common environment with the value 1/s, where s is
the length of the solution tour. Afterwards the remaining subtours are traversed
until no further subtour is left in the memory. Then the respective stop-rule can
be applied, which deletes the ant Aj from the common environment, the depot
from the memory and resets the length of the traversed path to 0.

Autonomous Units for Capacitated Vehicle Routing 241

put pheroj

rules:

start a:

depot

c
id

Aj

put phero

τ : x

Mj s

a

depot

len

sit

c

−→

depot

c
id

Aj

put phero

τ : x + 1/s

Mj s

a

depot

len

sit
c

start b:
Aj

put phero

Mj

a

depot

sit

c

−→
Aj Mj

a

depot

sit
c

put : c
id

Aj

put phero

τ : x

Mj s

a

depot

len

sit

c

−→ c
id

Aj

put phero

τ : x + 1/s

Mj slen

sit
c

delete
only

:
Aj

put phero

Mj

a

depot

sit

c

−→
Aj Mj

sit
c

stop a:
Aj

put phero

Mj s

a

depot

len

sit
−→ ∅

Mj 0len

stop b:
Aj

put phero

Mj s

a

depot

len

sit
−→ ∅

Mj 0len

conds: ((start a + start b) ; (put ! + delete only !))∗ ; (stop a + stop b)

Fig. 8. The auxiliary unit put pheroj

242 Sabine Kuske, Melanie Luderer, Hauke Tönnies

5.3 The Unit Evap&Select

Evap&Select is given in Fig. 9. It is responsible for the evaporation of old
pheromone trails, for the selection of the w best solutions provided by the ants,
and for marking these w ants with a put phero-label.

Evap&Select
uses: relabel all global
rules:

check :

l1A1
len

.

.

.

Ak lklen

−→
l1A1

len

.

.

.

Ak lklen

select :
liAi

put phero

len

.

.

.

Aj ljlen

−→
lj > li

Ai

put phero

delete: liAi
len −→ Ai

conds: check ; relabel all global(τ : z,τ : (1− ρ) ∗ z) ; selectw ; delete!

Fig. 9. The autonomous unit Evap&Select

With the rule check, which is applied only once, the unit checks whether all
ants have finished their search. This is the case if all ants have written the length
of the found solution into the common environment. With the help of the unit
relabel all global evaporation takes place by multiplying the pheromone value of
every pheromone edge in the common environment with (1−ρ), where ρ ∈ (0, 1]
is a pheromone decay parameter. After that, the rule select is applied w times
(in the control condition this is abbreviated by selectw). The rule select finds
the ant with the best solution, marks it with a label put phero, and deletes the
information about the length of the ant’s solution from the common environment.
Each further application of select finds the next best solution. When the w
best solutions are found, the rule delete is applied as long as possible to delete
the remaining nodes and edges displaying the information about the lengths of
the ants’ solutions. This rank-based approach could be extended by the elitist
strategy (see e.g. [DS04]). In this strategy the best solution so far is memorized
and when pheromone update takes place, this tour gets additional pheromone.

Autonomous Units for Capacitated Vehicle Routing 243

(In our modeling of the CVRP, we do not consider this strategy because of space
limitations.)

Remark. The presented modelization can be used to prove correctness properties
a few of which are informally described here.

– In every transformation sequence of tour j a solution is constructed, i.e., a
set of cycles of the construction graph is traversed by Antj and stored in
its memory such that the depot belongs to every cycle, and every customer
occurs exactly once in exactly one cycle.

– The unit put pheroj deletes the constructed solution from the memory of
Antj and increases the pheromone value of each edge in the solution by 1

s
where s is the length of the solution.

– The unit feasible neighbours stores all nodes in the memory of Antj that are
not visited, yet.

– Each execution of (Ant1|| . . . ||Antk||Evap&Select) models an iteration of the
corresponding ACO-Algorithm, i.e., (1) solution construction, (2) pheromone
update, and (3) evaporation.

6 Conclusion

In this paper, we have modeled an ACO algorithm for the Capacitated Vehicle
Routing Problem as a community of autonomous units. The autonomous behav-
ior of every ant has been modeled as an autonomous unit, and global features
of ACO algorithms such as the construction graph or the order in which so-
lution construction, pheromone update, and evaporation take place have been
modeled with global components of communities such as the initial environment
specification or the global control condition. Since all ACO algorithms basically
work according to the same underlying algorithm, we believe that they all can
be modeled as communities of autonomous units in a natural way.

For solving ACO algorithms in a proper way, we have extended the parallel
working autonomous units of [HKK09] by auxiliary units that allow to encapsu-
late auxiliary tasks in separate units and to manage large rule sets. We also have
added a separate state for every autonomous unit in order to represent memories
of ants. Furthermore, we have defined the syntax and a proactive semantics of a
concrete class of control conditions that is adequate for units running in parallel.
This class consists of regular expressions extended by a parallelism operator and
an operator that prescribes to apply a rule as long as possible. We have given
a construction that flattens the (hierarchical) import structure and the control
conditions of autonomous units so that the parallel semantics of [HKK09] could
be used for the extended units.

The modeling of ACO systems as communities of autonomous units has the
following advantages. (1) The specification of ants as autonomous units provides
the ants with a well-defined operational semantics. (2) The graph transformation
rules of autonomous units allow for a visual specification of ant behavior instead

244 Sabine Kuske, Melanie Luderer, Hauke Tönnies

of string-based pseudo code as it is often used in the literature. (3) The existing
graph transformation systems (cf. e.g. [ERT99,GK08]) facilitate the visual simu-
lation of ant colonies in a straightforward way (see also [Höl08]). (4) The formal
semantics of communities of autonomous units constitutes a basis for proving
correctness results by induction on the length of the transformation sequences or
for examining other characteristics (such as termination) by making use of the
wide theory of rule-based graph transformation (see [Roz97]). (5) Implementing
ACO algorithms with graph transformational systems is useful for verification
purposes, i.e., to check whether the algorithms behave properly for specific cases.

In the future, this and further case studies should be implemented with one
of the existing graph transformation systems so that (1) the emerging behav-
ior of ant colonies can be visually simulated, and (2) ACO algorithms can be
verified. For the implementation purpose we plan to use GrGen [GK08] because
it is one of the fastest and most flexible graph transformation systems. Further
case studies could take into account more advanced elitist strategies as well as
dynamic aspects (see e.g. [ES02,DS04,MGRV05,RDH04,RMLG07]). Another in-
teresting task is to investigate how communities of autonomous units can serve
as a modeling framework for swarm intelligence in general.

References

[CEH+97] Andrea Corradini, Hartmut Ehrig, Reiko Heckel, Michael Löwe, Ugo Mon-
tanari, and Francesca Rossi. Algebraic approaches to graph transformation
part I: Basic concepts and double pushout approach. In Rozenberg [Roz97],
pages 163–245.

[DS04] Marco Dorigo and Thomas Stützle. Ant Colony Optimization. MIT-Press,
2004.

[ERT99] Claudia Ermel, Michael Rudolf, and Gabriele Taentzer. The AGG-
approach: Language and environment. In Hartmut Ehrig, Gregor Engels,
Hans-Jörg Kreowski, and Grzegorz Rozenberg, editors, Handbook of Graph
Grammars and Computing by Graph Transformation, Vol. 2: Applications,
Languages and Tools, pages 551–603. World Scientific, Singapore, 1999.

[ES02] Casper Joost Eyckelhof and Marko Snoek. Ant systems for a dynamic TSP
- ants caught in a traffic jam. In M. Dorigo, G. Caro Di, and M. Sam-
pels, editors, Ant Algorithms - Third International Workshop, ANTS 2002,
volume 2462 of Lecture notes in Computer Science, pages 88–98, 2002.

[GK08] Rubino Geiß and Moritz Kroll. GrGen.NET: A fast, expressive, and gen-
eral purpose graph rewrite tool. In A. Schürr, M. Nagl, and A. Zündorf,
editors, Proc. 3rd Intl. Workshop on Applications of Graph Transformation
with Industrial Relevance (AGTIVE ’07), volume 5088 of Lecture Notes in
Computer Science, pages 568–569, 2008.

[HKK09] Karsten Hölscher, Hans-Jörg Kreowski, and Sabine Kuske. Autonomous
units to model interacting sequential and parallel processes. Fundamenta
Informaticae, 92(3):233–257, 2009.

[Höl08] Karsten Hölscher. Autonomous Units as a Rule-based Concept for the Mod-
eling of Autonomous and Cooperating Processes. Logos Verlag, 2008. PhD
thesis.

Autonomous Units for Capacitated Vehicle Routing 245

[KK07] Hans-Jörg Kreowski and Sabine Kuske. Autonomous units and their seman-
tics - the parallel case. In J.L. Fiadeiro and P.Y. Schobbens, editors, Recent
Trends in Algebraic Development Techniques, 18th International Workshop,
WADT 2006, volume 4408 of Lecture Notes in Computer Science, pages 56–
73, 2007.

[KK08] Hans-Jörg Kreowski and Sabine Kuske. Communities of autonomous units
for pickup and delivery vehicle routing. In Andy Schürr, Manfred Nagl, and
Albert Zündorf, editors, Proc. 3rd Intl. Workshop on Applications of Graph
Transformation with Industrial Relevance (AGTIVE ’07), volume 5088 of
Lecture Notes in Computer Science, pages 281–296, 2008.

[MGRV05] Roberto Montemanni, Luca Maria Gambardella, Andrea Emilio Rizzoli,
and Alberto V.Donati. Ant colony system for a dynamic vehicle routing
problem. Journal of Combinatorial Optimization, 10(4):327–343, 2005.

[RDH04] Marc Reimann, Karl Doerner, and Richard F. Hartl. D-ants: Savings based
ants divide and conquer the vehicle routing problem. Computers & OR,
31(4):563–591, 2004.

[RMLG07] Andrea Emilio Rizzoli, Roberto Montemanni, Enzo Lucibello, and
Luca Maria Gambardella. Ant colony optimization for real-world vehicle
routing problems. Swarm Intelligence, 1(2):135–151, 2007.

[Roz97] Grzegorz Rozenberg, editor. Handbook of Graph Grammars and Computing
by Graph Transformation, Vol. 1: Foundations. World Scientific, Singapore,
1997.

. .

Dr. Sabine Kuske

Fachbereich 3 – Informatik
Universität Bremen
D-28334 Bremen (Germany)
kuske@informatik.uni-bremen.de
http://www.informatik.uni-bremen.de/˜kuske

Sabine Kuske has been a member of Hans-Jörg’s team since November 1991. He
supervised her diploma and doctoral theses. Their common research interests
concern all aspects of graph transformation; in particular, they have been
working together on autonomous units.

. .

Melanie Luderer

Fachbereich 3 – Informatik
Universität Bremen
D-28334 Bremen (Germany)
melu@informatik.uni-bremen.de
http://www.informatik.uni-bremen.de/˜melu

Melanie Luderer is a doctoral student of the International Graduate School for
Dynamics in Logistics since 2006, and Hans-Jörg Kreowski is her supervisor.
He was also the supervisor for her diploma thesis.

. .

246 Sabine Kuske, Melanie Luderer, Hauke Tönnies

. .

Hauke Tönnies

Fachbereich 3 – Informatik
Universität Bremen
D-28334 Bremen (Germany)
hatoe@informatik.uni-bremen.de
http://www.informatik.uni-bremen.de/˜hatoe

Hauke Tönnies is a doctoral student supervised by Hans-Jörg Kreowski since
2008. He is supported by the Collaborative Research Centre 637: Autonomous
Cooperating Logistic Processes.

. .

Computer Scientists . . .

point out interpretation
s and elaborate on observatio

ns,

identify key concepts and provide frameworks,

führen Erkenntnisse zurück und beantworten Fragen,

sketch
concepts and facilita

te experimentations,

present theorems and base proofs on corresp
ondences,

summarize results and investiga
te subclasses,

establish techniques and translate specifications,

specify models and investiga
te structures,

explore potentials and describe aggrega
tions,

model languages and follow rules,

state communities and model systems,

get their mind twisted and explain concepts,

feel influence and bring spirit into concepts,

present approaches and offer flexible features

introduce rule systems and show decidability,

adjust databases and migrate program
s,

gründen Vereine und sorgen
sich vor Militarisi

erung,

and all that in this volume!
1

1 Text generated
from

the beginning paragra
phs of the essays in this Festsch

rift, by

isolati
ng activities and their objects.

(Selecte
d and re-phrased

by Berthold Hoffmann, 2009.)

On Judgements and Propositions

Bernd Mahr?

1 Introduction, Addressed to Hans-Jörg Kreowski

Dear Hans-Jörg! In the seventies and early eighties we have been colleagues in
the ‘Automatentheorie und Formale Sprachen’ group at TU Berlin and shared
many interests. Later we departed into different fields of research and followed
different directions of thought. It is thirty years now that we have completed
our PhD at TU Berlin, and this year is your sixtieth birthday. Since the times
at ATFS we have not met often but have never lost the feeling of friendship and
trust. What we have lost is to know much about each other. I therefore think
that it is natural to ask, “What are you doing?” With the publication of this
birthday volume I have the opportunity to briefly give you an answer and to
honour you with a paper on a question which is presently twisting my mind:
What is the fundament of logic that admits the different views on it?

It may come as a surprise that after all these years of teaching and research
in logic I am unable to answer this question right away, but I must admit that
exercising logic formally attracts the attention to the formal aspects of logic as
a language and of logic as a calculus rather than to the fundamental question
of its origins. It turned out that I could not avoid to answering this question:
I teach a mandatory course to the first semester students, called ‘Informatik
Propädeutikum,’ and I thought it would not suffice to start explaining logic
with the words “assume you have a family of countably infinite sets of variables
and a ...” But I thought it would be more appropriate to explain logic in this
‘Propädeutikum’ by the fundamental conceptions underlying its formalisation.

My hypothetical answer to the above question is that logic is rooted on
conceptions of judgement and proposition. Both have been a matter of dispute
since the beginning of Greek philosophy and are still today under debate. It was
therefore only natural to look at some of their prominent conceptualisations and
to try to gain a better understanding of what is meant by these and what is
their relation. It turned out, however, that this is not easy at all as the notions
of judgement and proposition are deeply involved. They touch on and relate
fundamental questions of language, ontology, psychology, philosophy and math-
ematics, and their meaning is far from being common sense. By some authors
the notion of proposition is even objected to be meaningful at all [vOQ80, pp.
331–401], and the word judgement is taken to express things of the most differ-
ent kind, from the most elementary relation between the human mind and the
world [Kan90], up to what is realised by natural deduction proofs in intuition-

? I thank Andrea Hillenbrand and Sebastian Bab for discussions and for their support.

F. Drewes, A. Habel, B. Hoffmann, D. Plump (Eds.): Manipulation of Graphs, Algebras and Pictures.
Essays Dedicated to Hans-Jörg Kreowski on the Occasion of His 60th Birthday, pp. 247–267, 2009.

248 Bernd Mahr

istic type theory1. On the other hand my study of conceptualisations of what
propositions and judgements may mean gave me interesting insights and shed
some light on the different approaches to logic and to their relationships.

Here I come to the somewhat wider answer to the above question of what
I am doing and why I am interested in the notion of judgement. For several
and partly funny reasons I started, about ten years ago, to study the general
notion of ‘model’ and wrote several articles on this topic2. I found that the key
to resolve the problems in explaining the notion of ‘model’ in its full general-
ity is to transform the question of “what is a model” from ontology to logic
and to ask instead “what justifies a judgement, that something is a model.” A
deeper analysis of this new question led me back to thoughts on the notions of
conception (in German Auffassung) and context I had developed years ago in
a project on cognition and context, which grew out of our machine translation
activities [Mah97]. The new thoughts on these notions of conception and context
resulted in a ‘model of conception.’ This model is an axiomatisation of reflexive
universes of things relativised by their subject dependent context. In a recent
thesis [Wie08] set theoretic realisations of this axiomatisation have been studied
and its consistency has been proven. So here is the other source to what moti-
vates my interest in the notion of judgement: its close relation to the concepts
of context and conception, which, I think, are not only fundamental in an ex-
planation of the general notion of ‘model’ but are also of much wider interest in
computer science and technology. However, to show this, there is much left to
be done.

The following sections do not aim for a proven result but try to provide
insight into some of the conceptualisations of judgement and proposition and
their relationships. Hans-Jörg, I hope you enjoy reading them.

2 The Notions of Judgement and Proposition

By “judgement” one denotes both, the act of judging and the result of this act.3

A judgement, as an act and as the result of this act, is always concerning some-
thing, that which is judged, the judged. A conventional though rather imprecise
definition states that that which is judged is a proposition, and that a proposition
is what is true or false.

The traditional views on judgement date back to the pre-Socratic philoso-
pher Parmenides [Par69], and, among others, to Plato in his Sophistes, and

1 See for example Göran Sundholm: Proofs as Acts and Proofs as Objects: Some ques-
tions for Dag Prawitz, as well as Prawitz’ response to these questions, both in [The98,
pp. 187–216, 283–337].

2 See for example [Mah09].
3 What actually is denoted by “judgement” depends heavily on what is considered

to be an act of judging and what as the result of this act. See for example Göran
Sundholm: Proofs as Acts and Proofs as Objects: Some questions for Dag Prawitz,
as well as Prawitz’ response to these questions, both in [The98].

On Judgements and Propositions 249

predominantly to Aristoteles. Aristoteles developed in his writings4 which were
later collectively called organon (in German Werkzeug), in the sense of a tool
of the mind, the first elaborated and most influential concept of judgement, and
laid therewith the ground for what logic is about. It is common to the traditional
views on judgement that that which is judged is affirmed or denied to exist, and
that ‘being,’ ‘the presence of being there,’ [Tug03] and later also ‘existence,’ make
the grounds for affirmation and denial. Judgements under these views concern
things and matters in reality, and, accordingly, the notion of judgement under
these views is based on reality as a fundament of truth. Despite many exten-
sions and modifications much of the essence of these traditional views, namely
of Aristoteles’ approach to logic, has been maintained through the times until
to the mid 19th century. And it can still be found today in the Tarski style of
semantics, as it is commonly used in the model theoretic semantics of logic.

Major modifications on the traditional views, which finally lead to the for-
mal treatment of logic today, originate from the work of George Boole on the
mathematical theories of logic [Boo58], from the works of Bernhard Bolzano5,
namely in his Wissenschaftslehre and Franz Brentano [Bre08] in his Psy-
chologie vom Empirischen Standpunkte, and from the works of Brentano’s
students Kasimir Twardowski [Twa82], Alexius Meinong [Mei02] and Edmund
Husserl [Hus93], on psychological theories of judgement. Maybe the strongest
influence on modern logic had Gottlob Frege who, with his Begriffsschrift
(1879) [Fre07], laid the ground for a new understanding of quantification and
predication, and developed basic principles of the notion of judgement, which
have been widely adopted in the formal treatment of semantics. Based on Frege’s
work and other sources Alfred North Whitehead and Bertrand Russell wrote
their Principia Mathematica [WR62] and Ludwig Wittgenstein responds in
his Tractatus Logico Philosophicus [Wit73] to Frege and to Russell’s The-
ory of Knowledge [Rus92]. Later, in his Philosophical Investigations [Wit67],
he recalls many of the thoughts he had put forward in the tractatus on the na-
ture of language. The modern debates on the notion of judgement owe much to
the theory of speech acts as it has been developed by John L. Austin [Aus02]
and John R. Searle [Sea08]. In the course of this development the notions of
judgement and proposition became a subject matter in ontology and philoso-
phy rather than in classical formal logic where they are, so to say, banned to
the meta-level of formalisation and only implicitly present in the interpretation
of sentences. Explicit use of the notion of judgement, however, can be found
in Per Martin-Löf’s Intuitionistic Type Theory and in specification frame-
works and formalisms inspired by him, like the calculus of constructions, LF,
Coq or Isabelle. Martin-Löf insists on a formal distinction between propositions
and judgements [ML84]. This distinction he elaborates further in his lectures
On the Meaning of the Logical Constants and the Justifications
of the Logical Laws and in a recent lecture on Assertions, Assertoric

4 These writings include Categoriae, De Interpretatione, Analytica Priora,
Analytica Posteriori, Topica and De Sophistiis Elenchiis.

5 [Bol81], see also [Ber92].

250 Bernd Mahr

Contents and Propositions6. Martin-Löf’s careful considerations also influ-
enced some of the conceptualisations in epsilon-theory (see section 9 below), as
it is being studied by the author and his co-workers.

3 Realistic Conceptions of Proposition and Judgement

At the very beginning of De Interpretatione Aristoteles explains his view on
the relationship between language, mind and reality, which is essential for the
understanding of his conception of judgements: “that what is expressed [logos, in
German Satz, in English sentence] is a symbol of the states of the soul, and that
which is written is a symbol of that which is expressed” [...] “that, of which the
states of the soul are images, are the things.” [TW04, p. 19] What is to observe
here is that the states of the soul, which may be understood as thoughts in the
sense of mental states, mediate between reality on the one side, and sentences
being expressed and written on the other.

In his conception of the notion of judgement Aristoteles takes first of all a
linguistic view, but combines it with a psychological and an ontological perspec-
tive. He describes a judgement as to being a particular type of sentence: “Though
a sentence is meant to denote, not every sentence is a judgement but only one in
which the assertion of truth or falseness is present. It is, however, not present in
every sentence since, for example, a wish is a sentence, but it is neither true nor
false.” [Ari67b, p. 7] Today we would say that he distinguishes different kinds of
sentences, a distinction which in speech act theory is made by the distinction of
illocutionary forces of a proposition. As judgements he singles out propositional
sentences. As the criterion for a sentence to be a judgement he states that the
sentence is grammatically composed of two parts: a subject and a verb. Both
parts have meaning in the sense that they both denote something by convention.
And as the criterion for truth he states that the composition of subject and verb,
the copula “is” or a derived form of it, has to reflect the relation of the things
the subject and the verb denote: “To affirm [katáphasis] is to express something
towards something, and to deny [apóphasis] is to express something away from
something”; and concerning truth and falseness of a judgement made, Aristoteles
writes: “The one, who thinks as being separated what is separated and as being
composed what is composed, thinks true; but he thinks false, whose thoughts are
contrary to the things.” [Ari67c, p. 7] It is to note here that true and false are not
atomic values but qualities of thinking. Other than logicians today Aristoteles
restricts his observations to simple judgements of the subject-predicate form. He
does not consider complex judgements which are composed of sub-judgements.
For the meaning of simple judgements he follows a principal of compositionality,
which postulates that the meaning of composed expressions is the composition

6 See [ML96, 11–60]. His recent thoughts on judgements Martin-Löf presented in the
lecture Assertions, Assertoric Contents and Propositions, which he gave at the work-
shop on Judgements, Assertions, and Propositions - The Logical Semantics and Prag-
matics of Sentences at TU Berlin on January 11, 2008.

On Judgements and Propositions 251

of the meanings of the individual expressions. Leibniz states a similar princi-
ple in his ‘ars characteristica,’ and Frege uses a variant of this principle in his
functional interpretation of sentences.

In Aristoteles’ view there are two qualities of judgements, namely affirmation
and denial, and “every judgement is either a judgement about what there is in
reality, what there is by necessity or what there is by possibility”. Aristoteles
also distinguishes three kinds of judgement: “a judgement [...] is either general,
or particular or undetermined. General means that something applies7 to all
or none, particular means that something applies to a single, or to a single
not, or not to all, and undetermined means that it applies or does not apply
without determination of the general or the particular...” [Ari67a] In modern
logic where propositional sentences have a complex structure, the distinction
between general, particular and undetermined judgements is less relevant or
even meaningless.

4 Formalisation of Categorical Judgements

Today we would rephrase Aristoteles’ view as follows: sentences and their written
forms refer to thoughts created in a mental act, and these thoughts as mental
states are images of existing things. Truth is assigned to thoughts, in the sense
of a mental act, and requires the correspondence between that which is thought
and the things of which the thoughts, in the sense of mental states, are images.
Though thoughts, in Aristoteles’ sense, correspond to what in speech act theory
is called a propositional act, there is also a major difference: Aristoteles does
not think of thoughts in terms of reference and predication in the way we do.
Take as an example the sentence “all men are mortal,” which, according to his
grammatical criterion for judgements and his classification of kinds, is a general
judgement. Aristoteles’ reading of this sentence can be formalised as the type
proposition

(all men) are (mortal)

in which the composition of two things is asserted. This sentence is true if in
the real world mortality (which is the thing whose image is symbolised by the
written expression ‘mortal’) applies to all humans (which is the thing whose
image is symbolized by the written expression ‘all men’). The famous ‘problem
of universals’ in the middle ages was about the question if things as expressed by
the words ‘all men’ and ‘mortal,’ have existence. Since Frege, motivated by the
concept of a mathematical function in arithmetic and higher analysis, proposed
predication as a form of function application which results truth values [Fre75,
pp. 17-39], and since he introduced individual variables for the indication of
individuals in quantification [Fre75, p. 33], today’s conventional reading of the

7 The English word ‘applying’ is used here to translate the Greek word ‘hyparchein.’

252 Bernd Mahr

respective sentence8 can be expressed in the formalisation

∀x.(men(x)→ mortal(x)).

If we write atomic predication in the form of a type proposition, we get

∀x.(x : men→ x : mortal)

This type propositional formalisation shows, on the one hand, a closer similarity
to the Aristotelian view, though the sentence as a whole is not a simple judge-
ment but has a complex structure, and it shows, on the other hand, a closer
similarity to the truth condition for atomic predications in the Tarski style of
model theoretic semantics, which may in a semi-formal way be phrased as

For all h it is true that, if (h ∈ Amen) then (h ∈ Amortal)

where h denotes an unspecified individual in the domain of interpretation, and
Amen and Amortal denote subsets of this domain. It is interesting to note that the
model theoretic truth condition expresses the same idea as the truth condition in
Aristoteles’ view: “the presence of being there.” The only difference is that the
Aristotelian truth condition concerns things in reality while in the Tarski style
of model theoretic semantics the condition is expressed relative to a domain of
interpretation and expresses set theoretic membership. It is also interesting to
note that the (semantic) reading of ∀x. as “for all h which instantiate x, it is
true that” turns the sentence

∀x.(x : men→ x : mortal)

into a symbolisation of a proposition in which an h-indexed family, not of propo-
sitions, but of judgements is expressed.

Following the conventional interpretation, the above sentence is also true in
a world where humans cannot be found, since in this case the premises of the
implication is false. This property indicates that the use of variables in quantifi-
cation resolves the difficulty Parmenides saw in the notion of ‘non-existence’: He
concluded that negation cannot be thought of because “what is not is not, and
can therefore not be” [Par69]. In the modern understanding of ‘non-existence,’
instead, non-existence is the property of the domain of interpretation that the
thing with the property in question cannot be found, i.e. is not there. The ‘log-
ical’ reading [TW04] of a simple judgement as a complex sentence resolves this
difficulty because it reads “existence” as “existence with some property.” But
this conception of existence as ‘being there’ has the consequence that there is
always a universe of things needed to be there, whose entities fall under defined
categories before their existence can be asserted. In conventional logic this is
enforced in the inductive definition of formulas and the set theoretic structures
for the interpretation of formulas. If we read, to use an example of Quine, the
8 See also Russell’s On Denoting from 1905, which in German translation appeared

as [Rus00, pp. 3–22].

On Judgements and Propositions 253

“existence of unicorns” as the “existence of something which unicorns,” the ques-
tion comes up of what the nature of this something is. At the linguistic level of
conventional logic it is a variable and at the semantic level in the Tarski style
interpretation it is possibly any element in the domain of interpretation. But
what is it in a reality that can hardly be well-defined as a set, and can it be
given some ontological status at all?9

5 Brentano’s Notion of Judgement

Early conceptions of judgement and proposition with a particular emphasis
on their roles in science and logic have been studied by Bernhard Bolzano in
his Wissenschaftslehre (1837). They laid the ground for further investiga-
tions by Brentano and his students. A thorough account of these investigations
can be found in the article Austrian Theories of Judgement: Bolzano,
Brentano, Meinong, and Husserl by Robin D. Rollinger [Rol08, 233–261].
Of particular interest here is Brentano’s conception of intentionality. It not only
opened a new perspective on judgements but may also be seen as a major source
of speech act theory. Speech act theory strongly influenced modern conceptions
of linking mental acts and symbolic presentations, and is therefore also funda-
mental in intuitionistic approaches to proposition and judgement.

In Brentano’s Psychology From An Empirical Standpoint (1874), an
act of judging is a case of a mental act. Mental acts contain an object inten-
tionally within itself. What in a judgement is affirmed or denied is the existence
of this object. And so we might say that in Brentano’s conception a proposi-
tion is the existence of the object of a judgement, which may be true or false.
“Every mental phenomenon is characterized by what the Scholastics of the Mid-
dle Ages called the intentional (or mental) inexistence of an object, and what
we might call, though not wholly unambiguously, reference to a content, direc-
tion towards an object (which might not to be understood here as meaning a
thing), or immanent objectivity. Every mental phenomenon includes something
as object within itself, although they do not all do so in the same way. In presen-
tation [in German ‘Vorstellung’] something is presented, in judgement something
is affirmed or denied, in love loved, in hate hated, in desire desired and so on.
This intentional in-existence is characteristic exclusively of mental phenomena.
No physical phenomenon exhibits anything like it. We would, therefore, define
mental phenomena by saying that they are phenomena which contain an object
intentionally within themselves.” [Bre95, pp. 88–89]

Brentano’s conception of intention has strongly influenced modern philoso-
phy, namely logic, ontology, existential philosophy and theories of language and
semantics. He claims that every mental act is a presentation or rests on a pre-
sentation, and that a distinction has to be made between the object presented
and the content of its presentation. But at the same time he is convinced that
there are presentations which, though they have content, have no object, like the
9 I consider this a serious question. A somewhat unsatisfactory answer is given

in [Gro92, pp. 106–119].

254 Bernd Mahr

presentation of a golden mountain or the presentation of a round square. This
belief, however, has the consequence that such things cannot be judged to not
exist. But this appears to be against our intuition as we can think or even have
an imagination of things which, we know, do not exist, and also can judge that
they do not exist. We can think of a round square and even imagine unicorns
and a flat earth, and we daily have the presentation of a user-friendly computer
system. Even further, we seem to need a presentation of something before we can
assert it to not exist. This observation, it turns out, touches at a major problem,
the question of what exactly we mean by a proposition and by a judgement and
how we understand the relation between a judgement and ‘its’ proposition. The
disputes in analytic philosophy literature show that even today this problem has
not yet found a commonly accepted solution.

6 Twardowski’s Theory of Presentations

Kasimir Twardowski, one of Brentano’s students in Vienna, addressed this prob-
lem in his Habilitation thesis On the Content and Object of Presenta-
tions - A Psychological Investigation [Twa77] in 1894. He studied the
concept of presentation (in German Vorstellung) and argues that presentations
imply in what they present to the mind, two different objects rather than one:
the object towards which a presentation is directed (in German Gegenstand),
and the object which is its content (in German Inhalt). Though the focus of
his thesis is on presentations, he also deals with the notion of judgement (in
German Urteil) and sees a “perfect analogy” [Twa77, p. 7] between presenta-
tions and judgements. Both, he states, imply an act, both concern something,
namely what is presented and what is judged, and in both this something which
is presented or judged, is to be subdivided into object and content, the latter of
which he calls the intentional object of the act.

While one and the same object can be presented as well as being judged,
he finds the distinction between presentation and judgement in the intentional
object of the act: “When the object is presented and when it is judged, in both
cases there occurs a third thing, besides the mental act and its object, which
is, as it were, a sign of the object: its mental ‘picture’ when it is presented
and its existence when it is judged.”10 Here the ‘object’ of a judgement is the
object about which the judgement is made, while the ‘subject’ of a judgement is
that what is affirmed or denied, the object’s existence. Twardowski insists that
“presentation and judgement are two separated classes of mental phenomena
without intermediate forms of transition.” [Twa77, p. 6]

The distinction between object and content in what is presented or judged
is most natural, though the question of what exactly an object is still remains
unanswered. In the beginning of his treatise on objects in §7 of his investiga-
tion Twardowski gives a partial answer to it: “According to our view, the object
10 See [Twa77, p. 7]; the conception of ‘existence’ as the content of a judgement is

not obvious. See Grossmann’s criticism on this conception in: Reinhard Grossmann:
Introduction, in [Twa77, pp. VII - IVXXX, here pp. IX - XI].

On Judgements and Propositions 255

of presentations, of judgements, of feelings, as well as of volitions [in German
‘Wollungen’], is something different from the thing as such [in German ‘Ding
an sich’], if we understand by the latter the unknown cause of what affects our
senses. The meaning of the word ‘object’ coincides in this respect with the mean-
ing of the word ‘phenomenon’ or ‘appearance,’ whose cause is either, according to
Berkeley, God, or, according to the extreme idealists, our own mind, or, accord-
ing to the moderate ‘real-idealists’ the respective things as such. What we have
said so far about objects of presentation and what will come to light about them
in the following investigations is claimed to hold no matter which one of the just
mentioned viewpoints one may choose. Every presentation presents something,
no matter whether it exists or not, no matter whether it appears as independent
of us in our own imagination; whatever it may be, it is - insofar as we have a
presentation of it - the object of these acts, in contrast to us and our activity of
conceiving [in German ‘vorstellenden Tätigkeit’].” [Twa77, p. 33]

And at the end of his treatise on objects he writes: “Summarizing what was
said, we can describe the object in the following way. Everything that is presented
through a presentation, that is affirmed or denied through a judgement, that is
desired or detested through an emotion [in German ‘Gemütsthätigkeit’], we can
call an object. Objects are either real or not real; they are either possible or
impossible objects; they exist or do not exist. What is common to them all is that
they are or that they can be the object (not the intentional object!) of mental acts
[in German ‘psychischer Akte’], that their linguistic designation is the name ...,
and that considered as genus [in German ‘Gattung’], they form a summum genus
which finds its usual linguistic expression in the word ‘something’ [in German
‘etwas’]. Everything which is in the widest sense “something” is called “object,”
first of all in regard to a subject, but then also regardless of this relationship.”

An important term in this citation is the word “through.” It assigns the
mental act and its intentional object the role of a mediator: through the act
and content of a presentation an object is presented, and, accordingly, through
the acts of affirmation or denial of existence an object is judged. Every object,
now, existing or not, can be seen to be the object of both, a presentation and
a judgement. Twardowski’s concept of object of a mental act solves the above
mentioned problem of judging non-existing objects to not exist, and Brentano’s
belief in presentations which have no object turns out to be wrong: “The con-
fusion of the proponents of objectless presentations consists in that they mistook
the non-existence of an object for its not being presented.” [Twa77, pp. 20–29,
here p.22] But despite the fact that the general approach to the objects of a
judgement seems to be most reasonable, the ontological status of objects in in-
tentional relations is subject to controversies and not at all free from problems.
It is therefore heavily debated in the literature. Progress has been made with the
invention of ‘states of affairs’ and with the conception that judgements intend
states of affairs rather than objects.11 It seems to me that the invention of states
of affairs has two sources: predications on the one hand, as they have been used
by Frege in his Begriffsschrift for the purpose of formalising arithmetic and

11 See Grossmann’s introduction to Twardowski in [Twa77] and [Gro92].

256 Bernd Mahr

by Peano and Russell who applied and developed formal description techniques
for other parts of mathematics, and “Sachverhalte” on the other, as certain types
of (intentional) objects, studied by Meinong, Husserl and Reinach [Smi89]. This
view is later also found in Wittgenstein’s Tractatus, the first two sentences of
which are: “Die Welt ist alles, was der Fall ist. Die Welt ist die Gesamtheit der
Tatsachen, nicht der Dinge” (“The world is everything that is the case. The
world is the total of what is the case, not of the things”).12

7 Frege’s Conception of Proposition and Judgement

An answer of pragmatic value for the question of what propositions and judge-
ments are and how they are related seems possible only within a prescriptive
deductive or semantic framework13. Conventional formal logic makes no clear
distinction between the two concepts and avoids their conceptualisation at all.
And a dedicated formal theory of propositions and judgements has not yet been
proposed. However, there are considerations which aim at clarification.

In his article “Über Sinn Und Bedeutung” (1892) Gottlob Frege discusses
the meaning of verbal expressions, like names, denotations and sentences, and
draws the well known distinctions between sign (in German Zeichen), sense (in
German Sinn), reference (in German Bedeutung), and presentation (in German
Vorstellung). “A sign is the expression of some sense and it denotes or references
its reference.” [Fre75, p. 46] A comparison of this distinction with Twardowski’s
distinction of names, content and object of a presentation shows many similari-
ties, but also major differences: Frege’s sense is not part of a mental state or act.
It has objectivity. Therefore presentations are not senses and therefore Twar-
dowski’s content is not the same as Frege’s sense, even though they play similar
roles in the designation of an object. And names in Twardowski’s conception do
not designate matters of affairs but objects. In Frege’s conception also sentences
have a sense and a reference, and the sense of a sentence is what he calls a
thought (in German Gedanke). Frege’s concept of thought is what Husserl and
(the early) Wittgenstein call matter of affairs [TW04, p. 17], and what Russell
calls proposition for which he later uses the word assertion.14 If a sign is a sen-
tence, the question is what it references. In Frege’s view, a sentence references
a truth value, i.e. the value true or false. Accordingly, also truth values are ob-
jects (in German Gegenstände). Since in Twardowski’s Habilitation there is no
citation of Frege’s work, we must conclude, that Frege’s work was not known in
Vienna at that time. Frege’s conception of proposition was later adopted in for-
mal logic, though in the hidden form of the recursive definition of interpretation
and validity, which is derived from Frege’s principles of compositionality and

12 See [Wit73, p. 11], English translation by the author.
13 To a certain degree this is done in Martin-Löf’s intuitionistic type theory and for-

malisms following him (see below).
14 See also [ML96, 11–60], where he gives an account on the development of the concepts

of proposition and judgement in the light of his intuitionistic type theory.

On Judgements and Propositions 257

truth functionality. In view of pragmatic language use and meaning, however, it
has been strongly criticised.15

Frege also made an important contribution to the conceptualisation of judge-
ment. What is being affirmed or denied in a judgement is that a proposition is
true or false, or in other words, that a matter of affairs is a fact or not. Frege
thereby frees the concept of judgement from its binding to object-existence. He
also draws a clear distinction between proposition and judgement by saying that
a judgement is not just the affirmation or denial of a proposition, but that the af-
firmation or denial is asserted. In his Begriffsschrift (1879) Frege introduces
a notation for assertions, the vertical stroke, which he later combined with the
horizontal stroke to indicate assigning truth, and the negated horizontal stroke
to indicate falseness. So, for example, the assertion that the earth is flat can
then be expressed as

` flat (earth)

and the assertion that the earth is not flat can be expressed as

` flat (earth)

Here the symbol ` is to be read as “it is not the case that,” and not as
“it is not asserted that” which would be the negation of the assertion. Frege’s
observation that a judgement is more than just the statement of a true or false
proposition, because a statement could also mean an assumption, makes the
distinction between different kinds of judgements, as it was customary in the
traditional views on judgements, meaningless. If we respect this observation, a
judgement is always an affirmation. In type propositional form the above asser-
tions may be written as

` flat (earth) : true

And, accordingly,
` flat (earth) : false

Frege gives an impressive insight into his style of writing and the purpose
and use of formal notations in mathematics in Über die Wissenschaftliche
Berechtigung einer Begriffsschrift (1882). He motivates the notation of
the judgement stroke` with the pragmatic needs in the writing of formal expres-
sions and in the depiction of logical derivations on a sheet of paper. The question
of “how can we write?” becomes prominent and the analysis of “what can we
write down?” leads to the new view on judgements. Frege uses the judgement
stroke in a given context of discourse, the context of a given system of axioms
and rules or of a given model or theory. It is this context which justifies the
assertion of truth.

8 Martin-Löf’s Conception of Judgement and Proposition

In his Intuitionistic Type Theory, Martin-Löf makes the following distinc-
tion between proposition and judgement: “Here the distinction between proposi-
15 See for example [Dum82].

258 Bernd Mahr

tion (Ger. Satz) and assertion or judgement (Ger. Urteil) is essential. What we
combine by means of the logical operations (falsum, implication, and, or, for all,
there is) and hold to be true are propositions. When we hold a proposition to be
true, we make a judgement:

((A : proposition) is true) : judgement

In particular, the premises and the conclusion of a logical inference are judge-
ments. The distinction between proposition and judgement was clear from Frege
to Principia. These notions have later been replaced by the formalistic notions of
formula and theorem (in a formal system), respectively. Contrary to formulas,
propositions are not defined inductively. So to speak, they form an open concept.
In standard textbook presentations of first order logic, we can distinguish three
quite separate steps:

1. Inductive definition of terms and formulas
2. Specification of axioms and rules of inference
3. Semantical interpretation

Formulas and deductions are given meaning only through semantics, which
is usually done following Tarski and assuming set theory.

What we do here is meant to be closer to ordinary mathematical practice.
We will avoid keeping form and meaning (content) apart. Instead we will at the
same time display certain forms of judgement and inference that are used in
mathematical proofs and explain them semantically. Thus we make explicit what
is usually implicitly taken for granted. When one treats logic as any other branch
of mathematics, as in the metamathematical tradition originated by Hilbert, such
judgements and inferences are only partially and formally represented in the so-
called object language, while they are implicitly used, as in any other branch of
mathematics, in the so-called metalanguage.

Our main aim is to build up a system of formal rules representing in the best
possible way informal (mathematical) reasoning.” [ML84, pp. 3–4]

In Martin-Löf’s informal reasoning by means of formal rules judgements are
not viewed from a language perspective, as Aristoteles did and as we still do to-
day, at least in most of the philosophical and formal logic accounts, but are closer
to speech acts in the sense of Austin’s “how to do things with words.” Martin-
Löf’s informal reasoning is to be seen as a performing of acts of judging, which
consist in the writing down of judgements. The writing down of judgements is
justified by the rules of the type system, whose premises are again judgements.
Some rules, however, have no premises. They are axioms. Judgements in Martin-
Löf’s type theory have one of the following written forms: A set, A = B, a ∈ A,
or a = b ∈ A. The last two of these forms correspond closely to the judgements
to be made in Cantor’s criterion for a set to be ‘well-defined,’ which he phrased
in 1882, with the study of powers, when he refined his notion of a set16: “I call

16 The criterion is phrased in a letter by Cantor to Richard Dedekind in 1882; see for
example [Dau79], cited in English from [Dau79, p. 83].

On Judgements and Propositions 259

an aggregate (a collection, a set) of elements which belong to any domain of
concepts [in German Begriffssphäre] well-defined, if it must be regarded as inter-
nally determined on the basis of its definition and in consequence of the logical
principle of the excluded middle. It must also be internally determined whether
any object belonging to the same domain of concepts belongs to the aggregate
in question as an element or not, and whether two objects belonging to the set,
despite formal differences, are equal to one another or not.”

All forms of judgement in Martin-Löf’s type theory propose a natural set
theoretical interpretation. The given system of rules, however, admits also other
readings of these forms. One of these readings corresponds to the well known
concept of ‘propositions as types,’ also known as the Curry-Howard isomorphism,
and reads the judgement a ∈ A as “a is a proof for the proposition A.” This
reading is not only the basis of his system as an intuitionistic theory of types,
but is also consistent with an intuitionistic interpretation of his approach as a
whole: From a meta-level perspective the written forms of judgements symbolise
propositions for which his system lays down what counts as a proof.17 This is
the way how he explains semantically these forms of judgements.

Concerning propositions Martin-Löf writes: “Classically, a proposition is noth-
ing but a truth value, that is, an element of the set of truth values, whose two
elements are the true and the false. Because of the difficulties of justifying the
rules for forming propositions by means of quantification over infinite domains,
when a proposition is understood as a truth value, this explanation is rejected by
the intuitionists and replaced by saying that

A proposition is defined by laying down what counts as a proof of the
proposition,

and that

a proposition is true if it has a proof, that is, if a proof of it can be given.

Thus, intuitionistically, truth is identified with provability, though of course
not (because of Gödel’s incompleteness theorem) with derivability within any
particular formal system.” [ML84, p. 11]

The conventional conception of formal logic leaves these notions of proposi-
tion and judgement out of its consideration. It treats these notions only implicitly
in the recursive definitions of interpretation and avoids their explicit notation.

9 Logics with Propositional Variables

Also classical propositional and predicate logics can be seen as conceptions of
propositions. They provide linguistic means, usually in terms of alphabets and
inductive definitions, to write sentences which through interpretation become
17 The status of a proof in the intuitionistic conception of truth has been a matter of

discussion. See for example [Sun94], as well as Sundholm’s and Prawitz’ debate in
the above mentioned volume 64 in Theoria [The98].

260 Bernd Mahr

either true or false. Sentences in propositional logic are built up from proposi-
tional variables and propositional connectives like ‘and,’ ‘or,’ ‘not,’ and may be
others. The interpretation of propositional sentences is based on a given truth-
assignment which assigns truth-values ‘true’ or ‘false’ to propositional variables
and is defined by an inductively defined evaluation function which assigns truth-
values to propositional sentences. Here the principles of compositionality and
truth functionality are maintained in their purest form. The ‘architecture’ of
(first order) predicate logic is not much different, except that atomic formulas
are not propositional variables but predications and equalities, that variables are
object-variables taking values from a given semantic domain, and that expressive
power and expressiveness are enriched by function symbols for object descrip-
tion, relation symbols for predications and quantifiers ranging over the elements
of the carrier sets of the semantic domain.18 Sentences in these logics are complex
forms, which express, trough their interpretation for a given truth-assignment or
in a given semantic domain, sense, to use Frege’s terminology. They may also be
read as formal statements of a matters of affairs, which induced by their inter-
pretation. But these matters of affairs are never made explicit and only hidden in
the recursive interpretation of sentences. Interpretation only yields truth-values,
and equivalence at the object level can only be expressed in terms of ‘having the
same truth-value,’ rather than ‘stating the same matter of affairs.’ This is, how
classical logic avoids the notions of proposition, and how it treats judgements
only implicitly in its definition of the process of interpretation relative to a given
truth-assignment or semantic domain.

There is a logic to explicitly express truth of propositions, quantification over
propositional variables and propositional equivalence, which has been developed
by Werner Sträter [Str92] and is called ∈T -logic. One of the motivations for its
design was to avoid partial truth predicates and to admit formulations like the
liar paradox

x ≡ x : false

to be treated as contradictions. ∈T -logic grew out of an extensional interpretation
of types19, which reads a type proposition

e : T

as a statement of membership
[[e]] ∈ [[T]]

The type proposition ϕ : true would then be read as a statement of member-
ship with [[ϕ]] denoting a proposition and [[true]] a set of true propositions.
∈T -logic is equipped with propositional constants, variables and connectives,

quantification over propositional variables, truth predicates and propositional
equivalence. Its semantics is defined in the Tarski style, where the semantic
domain is a domain of propositions and the interpretation function ensures the

18 See for example [EMC+01, pp. 221–455].
19 See [MSU90] and [Mah93].

On Judgements and Propositions 261

natural properties of propositional and of first order logic, as far as they apply.
It fulfils the well known Tarski biconditionals in the sense that the sentence

∀x.(x : true↔ x) : true

is universally true. ∈T -logic has an impredicative nature and allows for inten-
sional semantics of its sentences. Extensions of this logic have been defined and
studied by Philipp Zeitz [Zei00], who introduced Parameterization, by Sebas-
tian Bab [Bab07], who extended ∈T -logic by modal operators, and by Steffen
Lewitzka [Lew09], who studied an intuitionistic variant of ∈T -logic.

Also Frege defines in his Begriffsschrift20 a logic with propositional vari-
ables. Frege’s notations admit the reference to objects and to functions over
objects, as well as to functions over functions. They allow for propositional vari-
ables ranging over truth values which are viewed as being objects like any other
object, they admit to write operators which cover the classical propositional con-
nectives, and they include propositional equality and quantification. The expres-
siveness of Frege’s logic is closely related to a certain instance of Parameterized
∈T -logic in the sense of Zeitz. However, there is no perfect analogy. The major
difference is in the use of quantification, and in the style of semantics.

Intuitively, there is good reason to also view classical logics as theories of
propositions, no matter if in these logics propositions form a distinct and well
defined category of entities to be dealt with or not. This is obvious in the case
of logics which admit propositional variables, and it is even more obvious for
∈T -logic and its extensions, which explicitly support propositional quantification
and equivalence, and assume propositions as elements of their semantic domains.
Can the same be said for judgements? Classical logics introduce notations for
judgements at their meta-level, usually in the form of a sign denoting validity of
a sentence under a given interpretation, like for example the validity of ϕ under
the truth-assignment B

B |= ϕ

But they do this in a rather propositional manner, as they also allow to denoting
invalidity.

B 6|= ϕ

They treat judgements as propositions at the meta-level. Otherwise there
is little difference between these signs and Frege’s judgement stroke. Frege’s
notation is based on the assumption of a given model so that there is no need to
indicate the truth assignment or the semantic domain of interpretation. And also
the fact that the judgement stroke is written at the object level of formalisation
is not of much relevance, since it is used at this level not as an operator but
as an indicator and, in addition, only at the outermost position of the two
dimensional expressions. The judgement stroke can be omitted but it cannot be
negated. Negation of the judgement stroke would turn it into a propositional
operator. This, by the way is the reason why the expression ϕ : true in ∈T -logic
cannot reasonably be interpreted as a judgement. The judgement stroke is not
20 See also [Her83, pp. IX–XV].

262 Bernd Mahr

subject to interpretation but is a sign which has a purely pragmatic meaning. It
indicates what is an answer to the question “What can I write?”

10 Summary

To turn to the question of how the notions of judgement and proposition dis-
cussed do relate to each other we try to answer the following questions:

1. Is there a distinction made between assertion and judgement?
2. Is there a distinction made between proposition and judgement?
3. What is that which is expressed by a judgement?
4. How is a judgement justified?

In his Intuitionistic Type Theory Martin-Löf speaks of judgements rather
than assertions, and in his recent lecture on Assertions, Assertoric Con-
tents And Propositions [ML08], he speaks of assertions rather than judge-
ments. Not fully conform to other naming conventions he uses the term assertion
to denote the verbal expression of a judgement, in the form of a spoken or writ-
ten sentence, and with the use of some language or notational convention. But,
as he argues, the interchangeable use of the terms judgement and assertion is
justified since in logic both depend on rules, the focus of his interest, and rules
are the same for both. Following the assumption that assertions are verbal ex-
pressions, judgements may be seen as the mental counterparts of assertions. But
this view can hardly be maintained since also assertions include an act of judg-
ing. Aristoteles avoids this problem by distinguishing between mental states on
the one side, which stand in an image-relation to the things, and judgements
as symbolisations of these states on the other. He assumes, at least implicitly,
that there are two acts: the act of thinking, which, as he says, can be true or
false, in the sense of right or wrong, and the act of symbolising which produces a
sentence or its written symbolisation. Brentano and Twardowski discuss judge-
ments solely at the level of mental acts. Written forms are out of their interest.
In their understanding contents are in the mind while objects are embedded
in an intentional relation. The ontological status of objects, however, remains
somewhat unclear21. They may be real or mental objects, like thoughts, and
may exist or not. Frege’s thoughts, instead, are explicitly thought of as being
independent from some mind, as they have objectivity and can be shared by
several subjects. In ∈T -Logic the distinction between judgement and assertion
is mostly irrelevant, like in most formal logics with a set theoretic Tarski style
of semantics. Sets in a set theoretic universe of interpretation have the same
ontological status as thoughts in the sense of Frege [Gro92, pp. 106–119]. They
are the means by which, through the application of rules of interpretation, sense
and reference, in the sense of Frege, are being determined as elements of the
given universe.

21 See the introduction to [Twa77].

On Judgements and Propositions 263

Not in all the conceptions discussed a distinction between proposition and
judgement is being made. In Aristoteles’ conception there is an act of thinking,
which has all the ingredients of an act of judging, while the forms of sentences,
which are called judgements, may be understood as the grammatical forms of
propositions, and the mental states to which they refer, may be understood as
propositions which can be true or false. In Brentano’s and Twardowski’s con-
ception the concept of proposition cannot clearly be identified since that what
a judgement is about, is an object which is not necessarily something that is to
be true or false, but something that exists or not. Separated from this object
to which the judgement refers, is its presentation on which the judgement relies
and whose content is a mental image. Only the identification of a judgements
object as a matter of affairs [Hus93], rather than an object of some other kind,
shows the analogy between Frege’s sense and the content of the presentation
of the object which is judged to exist or not. Frege’s sense is a thought, if the
object in question represents a matter of affairs. And of a matter of affairs it can
meaningfully be said to exist or not, depending on whether it is a fact or not.
This is what Wittgenstein proposes in his Tractatus Logico Philosophi-
cus [Wit73, p. 11]. In his Intuitionistic Type Theory Martin-Löf draws a
clear distinction between propositions and judgements and gives formal rules
for the formation of judgements. In ∈T -Logic, however, the notion of judgement
remains only implicit, like in other conventional logics. While the elements of
the domain of interpretation are explicitly assumed to be propositions, what-
ever form they have, the notion of judgement, in the sense of Martin-Löf, is in
∈T -Logic only present at the meta-level and not part of the ‘object language.’
It appears that the notion of judgement, other than the notion of proposition,
is not fully semantic in its nature, but has also a substantial pragmatic aspect.
This pragmatic aspect is that what Frege expresses in his judgement stroke and
what speech act theory identified as the illocutionary role or force of an asser-
toric act: the beholding of truth. Despite the truth predicates in ∈T -Logic and
the fact that it obeys the Tarski biconditionals, the beholding of truth is not a
feature of the language but an element of its use and as such a consequence of
the choice of the universe of interpretation. In Martin-Löf’s intuitionistic type
theory this pragmatic aspect is part of the ‘object language,’ which gives it the
pragmatic flavour expressed in the question “What can I write?”

One can generally say that that which is expressed in a judgement is the
truth of some form of predication. This is obvious in Aristoteles’ conception and
in his choice of sentences which have the valid form of a judgement, and also,
at least formally, in Frege’s conception of a concept (in German Begriff) as a
function whose application results a truth value. In Brentano’s conception that
which is expressed in a judgement is the existence or non-existence of an ob-
ject, which in Twardowski’s setting is the judgements content. Existence of an
object, however, can only be seen as a form of predication if the object can be
represented as a matter of affairs. The situation in Martin-Löf’s Intuitionis-
tic Type Theory is different. That what is expressed in a judgement is the
provability of a proposition, or, in a different reading, the membership in a set.

264 Bernd Mahr

There is no notion of truth but at the level of judgements in the correctness of
the application of the rules. In what is expressed in a judgement, ∈T -Logic is not
different to conventional formal logics, with the difference that the predications
of truth and falseness differ slightly in their form.

If we ask, what justifies a judgement, major differences can be found. In Aris-
toteles’ naturalistic conception justification comes objectively from the things
and concerns the question of connectedness. Truth applies to thoughts as men-
tal states and depends on a proper correspondence to the reality of things. In
Brentano’s conception justification has an epistemic nature and is obtained ei-
ther from deductions or from inductive proofs. A different view is taken by Frege
who sees the justification of a judgement to rest on necessity, which, according
to him, corresponds to deduction, or empirical intuition. But truth, in its con-
ception, is found through judgements, a conception which gives the judgement
stroke not only a pragmatic aspect but, other than it appeared at first, turns
it at the same time into a constituent of semantics. Despite similarities in the
role of judgements, Frege’s view differs in this respect from the conception of
Martin-Löf, who sees the basis for justification in the system of rules and not in
the beholding of truth. The judgement stroke in his conception is part of prag-
matics and not of semantics. In a Tarski style of semantics, as it is applied in
∈T -Logic and other conventional logics, the justification comes from the choice
of the semantic domain in the interpretation and from the correct application
of the interpretation rules. This is not much different to Frege’s view, since the
choice of the semantic domain of interpretation is also a judgement, and therefore
not fully free from subjective influence - but other than in Frege’s conception, it
avoids, so to say, the responsibility for this choice to be part of the interpretation.
In the view of ∈T -Logic and other conventional logics, truth and the conditions
for the justification of judgements can be said to be defined.

References

[Ari67a] Aristoteles. Analytica Priora, I 27. 43 a 25. In Adolf Trendelenburg, Ele-
mente der Aristotelischen Logik - griechisch und deutsch, p. 11 (translation
by the author). Rowohlt, 1967.

[Ari67b] Aristoteles. De Interpretatione, 4.17 a I. In Adolf Trendelenburg, Elemente
der Aristotelischen Logik - griechisch und deutsch, p. 7 (translation by the
author). Rowohlt, 1967.

[Ari67c] Aristoteles. Metaphysica, IX 10. 1051 b 3. In Adolf Trendelenburg, Elemente
der Aristotelischen Logik - griechisch und deutsch, p. 7 (translation by the
author). Rowohlt, 1967.

[Aus02] John L. Austin. Zur Theorie der Sprechakte (How to do things with Words).
Reclam Stuttgart, 2002.

[Bab07] Sebastian Bab. ∈µ-Logik – Eine Theorie propositionaler Logiken. Shaker
Verlag Aachen, 2007.

[Ber92] Jan Berg. Ontology without Ultrafilters and Possible Worlds - An examina-
tion of Bolzano’s Ontology. Academia Sankt Augustin, 1992.

[Bol81] Bernhard Bolzano. Wissenschaftslehre, Band 1 - 4. Scientia Verlag Aalen,
1981.

On Judgements and Propositions 265

[Boo58] George Boole. Investigation of The Laws of Thought On Which Are Founded
the Mathematical Theories of Logic and Probabilities. Dover New York, 1958.

[Bre95] Franz Brentano. Psychology from an Empirical Standpoint, edited by Linda
L. McAlister. Routledge London, 1995.

[Bre08] Franz Brentano. Psychologie vom Empirischen Standpunkte - Von der Klas-
sifikation psychischer Phänomene. Ontos Verlag Heusenstamm, 2008.

[Dau79] Joseph Warren Dauben. Georg Cantor. His Mathematics and Philosophy of
the Infinite. Princeton University Press, 1979.

[Dum82] Michel Dummett. Wahrheit. Reclam Stuttgart, 1982.
[EMC+01] Harmut Ehrig, Bernd Mahr, Felix Cornelius, Matrin Große-Rhode,

and Philip Zeitz. Mathematisch-strukturelle Grundlagen der Informatik.
Springer Berlin/Heidelberg, 2nd edition, 2001.

[Fre75] Gottlob Frege. Funktion und Begriff. In Günther Patzig, editor, Funktion,
Begriff, Bedeutung. Vandenhoeck und Ruprecht Göttingen, 1975.

[Fre07] Gottlob Frege. Begriffsschrift, eine der arithmetischen nachgebildete
Formelsprache des reinen Denkens. In Begriffsschrift und andere Aufsätze.
Georg Olms Verlag Hildesheim, 2007.

[Gro92] Reinhard Grossmann. The Existence of the World - An Introduction to
Ontology. Routledge London, 1992.

[Her83] Hans Hermes. Zur Begriffschrift und zur Begründung der Arithmetik. In
Gottlob Frege: Nachgelassene Schriften. Meiner Verlag Hamburg, 1983.

[Hus93] Edmund Husserl. Logische Untersuchungen. Max Niemeyer Verlag
Tübingen, 1993.

[Kan90] Immanuel Kant. Kritik der Urteilskraft. Meiner Hamburg, 1990.
[Lew09] Steffen Lewitzka. ∈I : an intuitionistic logic without Fregean Axiom and with

predicates for truth and falsity. to appear, 2009.
[Mah93] Bernd Mahr. Applications of type theory. In Proceedings of the Interna-

tional Joint Conference CAAP/FASE on Theory and Practice of Software
Development, pages 343–355. Springer Verlag, 1993.

[Mah97] Bernd Mahr. Gegenstand und Kontext - Eine Theorie der Auffassung. In
K. Eyferth, B. Mahr, R. Posner, and F. Wysotzki, editors, Prinzipien der
Kontextualisierung. 1997. KIT Report 141, Technische Universität Berlin,
1997.

[Mah09] Bernd Mahr. Die Informatik und die Logik der Modelle. Informatik Spek-
trum, 32(3):228–249, 2009.

[Mei02] Alexius Meinong. Über Annahmen. Johann Ambrosius Barth Leipzig, 1902.
[ML84] Per Martin-Löf. Intuitionistic Type Theory. Bibliopolis Napoli, 1984.
[ML96] Per Martin-Löf. On he meaning of the Logical Constants and the Justifica-

tions of the Logical Laws, Nordic Journal of Philosophical Logic, volume 1,
no. 1. Scandinavian University Press, 1996.

[ML08] Per Martin-Löf. Workshop on Judgements, Assertions, and Propositions -
The Logical Semantics and Pragmatics of Sentences at TU Berlin, January
11, 2008.

[MSU90] Bernd Mahr, Werner Sträter, and Carla Umbach. Fundamentals of a theory
of types and declarations. Forschungsbericht, KIT-Report 82, Technische
Universität Berlin, 1990.

[Par69] Parmenides. Vom Wesen des Seienden - Die Fragmente. Suhrkamp Frank-
furt a. M., 1969.

[Rol08] Robin D. Rollinger. Austrian Phenomenology: Brentano, Husserl, Meinong,
and Others on Mind and Object. Ontos Frankfurt, 2008.

266 Bernd Mahr

[Rus92] Bertrand Russell. Theory of Knowledge - The 1913 Manuscript. Routledge
London, 1992.

[Rus00] Bertrand Russell. Über das Kennzeichnen. In Philosophische und politische
Aufsätze. Reclam Stuttgart, 2000.

[Sea08] John R. Searle. Sprechakte - Ein sprachphilosophischer Essay. Suhrkamp
Frankfurt a. M., 2008.

[Smi89] Barry Smith. Logic and the Sachverhalt. The Monist, 72(1):52–69, Jan.
1989.

[Str92] Werner Sträter. ∈T Eine Logik erster Stufe mit Selbstreferenz und totalem
Wahrheitsprädikat. KIT-Report 98, 1992. Dissertation, Technische Univer-
sität Berlin.

[Sun94] Göran Sundholm. Existence, Proof and Truth-Making: A Perspective on
the Intuitionistic Conception of Truth. Topoi, 13:117–126, 1994.

[The98] Theoria - A Swedish Journal of Philosophy, volume 64, issues 2–3. Wiley
Interscience, 1998.

[Tug03] Ernst Tugendhat. ti kata tinos - Eine Untersuchung zu Struktur und Ur-
sprung Aristotelischer Grundbegriffe. Alber Symposion Freiburg/München,
4th edition, 2003.

[TW04] Ernst Tugendhat and Ursula Wolf. Logisch-semantische Propädeutik.
Reclam Stuttgart, 2004.

[Twa77] Kasimir Twardowski. On the Content and Object of Presentations - A
Psychological Investigation. The Hague: Martinus Nijhoff, 1977. Translated
and introduced by R. Grossmann.

[Twa82] Kasimir Twardowski. Zur Lehre vom Inhalt und Gegenstand der
Vorstellungen - Eine psychologische Untersuchung. Philosophia Verlag
München/Wien, 1982.

[vOQ80] Willard van Orman Quine. Wort und Gegenstand. Reclam Stuttgart, 1980.
[Wie08] Tina Wieczorek. On Foundational Frames for Formal Modelling. Sets, ε-

Sets and a Model of Conception. Dissertation, Technische Universität Berlin,
December 2008.

[Wit67] Ludwig Wittgenstein. Philosophische Untersuchungen (Philosophical Inves-
tigations). Suhrkamp Frankfurt a. M., 1967.

[Wit73] Ludwig Wittgenstein. Tractatus logico-philosophicus. Suhrkamp Frankfurt
a. M., 1973.

[WR62] Alfred North Whitehead and Bertrand Russell. Principia Mathematica.
Cambridge University Press, 1962.

[Zei00] Philip Zeitz. Parametrisierte ∈T -Logik: Eine Theorie der Erweiterung ab-
strakter Logiken um die Konzepte Wahrheit, Referenz und klassische Nega-
tion. Logos Verlag Berlin, 2000. Dissertation, Technische Universität Berlin,
1999.

On Judgements and Propositions 267

. .

Prof. Dr. Bernd Mahr

Institut für Softwaretechnik und Theoretische Informatik
Technische Universität Berlin
D-10587 Berlin (Germany)
mahr@cs.tu-berlin.de
http://flp.cs.tu-berlin.de/ma/mahr.html

Bernd Mahr and Hans-Jörg Kreowski were colleagues when they were research
associates and assistant professors at TU Berlin, sharing many interests. Al-
though they later departed into different fields of research and followed some-
what different directions of thought, Bernd points out in his article that the
feeling of friendship and trust never got lost.

. .

On Teaching Logic and Algebraic Specification

Till Mossakowski

Courses on algebraic specification and logic have been important corner-
stones of teaching theoretical computer science for many years. Moreover, alge-
braic specification and logic are applied in areas like software specification and
verification, but also in ontologies and weak artificial intelligence1, and other ar-
eas. During my studies, I myself was greatly influenced by courses on algebraic
specification and logic. The logic courses mainly provided a very abstract and
dry introduction to the formalities of logic — the motivation for logic needed
to have arisen independently of the course. By contrast, Hans-Jörg Kreowski
always has carefully motivated his courses on algebraic specification (and other
subjects), has brought spirit into concepts by using a graphic and descriptive
style of presentation, and activated students by insisting on letting them answer
questions, discuss points and solve exercises, with room for developing own ideas
(especially within so-called student projects, a specialty of Bremen university).
This teaching greatly influenced my choice of research subject.

Dear Hans-Jörg, I wish you all the best for your 60th birthday, and please
continue your mixture of brilliant research and excellent teaching even though
facing the fact that our university system by far does not encourage and support
the latter to the degree actually needed,2 and also students often are not used
to an activating teaching style.

In this work, I will report on some research and some teaching I have done
in the context of the Common Algebraic Specification Language (Casl [3,4]).
Casl is a common language for algebraic specification that has been initiated
by the IFIP working group 1.3 “Foundations of systems specification” (see also
the report [1]), which was founded and initially lead by Hans-Jörg Kreowski.

1 First-Order Logic

Basically, I regularly teach a course about logic that is quite popular (attended by
roughly 100 students) and a course on more specialised subjects usually attended
only by smaller groups of students.

1.1 Language, Proof and Logic

For teaching first-order logic, I use the book “Language, proof and logic” [2],
abbreviated LPL. The most striking feature of LPL is the use of software tools

1Here, weak AI is used for systems that solve tasks in specialised domains using
heuristics or learning, as opposed to strong AI, which aims at passing the Turing test.

2As a curiosity: I tried to buy a book about university didactic in the university’s
book shop — they had no such book directly available, only books about school
didactic.

F. Drewes, A. Habel, B. Hoffmann, D. Plump (Eds.): Manipulation of Graphs, Algebras and Pictures.
Essays Dedicated to Hans-Jörg Kreowski on the Occasion of His 60th Birthday, pp. 269–286, 2009.

270 Till Mossakowski

Fig. 1: Evaluating first-order sentences with the program Tarski’s world.

supporting the students with their own exercises and experiments in logic. This
goes as far that a server in Stanford can automatically evaluate some of the
students’ exercises and give detailed feedback, such that students can revise
their solutions. This allows a far better activation of students than with lectures
alone — in an ex-cathedra lecture with 100 students, only a small portion of
them can actually participate.

However, the usefulness of the software tools should also not be overesti-
mated: it is still very important to have handwritten exercises that are corrected
by the teacher, as well as explanations of the students and discussions within
the lecture.

In my view, the most important insight of LPL is the following: the notion
of first-order structure (or model) is an advanced topic!1 (The same holds for
notion of algebra used in algebraic specification.) Instead, LPL largely uses a

1It is only treated in part III of the book. Part I is about propositional logic, part
II about first-order logic, and part III about advanced topics.

On Teaching Logic and Algebraic Specification 271

Fig. 2: Sample proof with the program Fitch.

fixed interpretation of first-order logic in a blocks world (see Fig. 1 showing a
screenshot of the program Tarski’s world).

Of course, with using a fixed domain of interpretation (carrier set) and fixed
interpretation of predicates, one loses much of the “loose specification” approach
used in both algebraic specification and logic. However, the essential gain over
the traditional approach is that a fixed interpretation is much easier to grasp.
Indeed, a useful didactic will proceed from the concrete to the abstract (and
not vice versa), and the abstractness of the concept of (carrier) set (and of
function and relation) is often underestimated — even if illustrated with useful
example carrier sets from computer science like lists, strings or trees.1 Moreover,
fixing the carrier set and interpretation of predicates is not as harmful as it
looks: in a blocks world, it is still possible to obtain some degree of looseness
by using different configurations of the blocks. Students can then inspect the
effect of different configurations on the evaluation of sentences, and use a game,
a so-called Henkin-Hintikka game, to understand the evaluation in more detail.
Some looseness of course is also essential to understand the concept of logical

1Let me further illustrate this point with some anecdotes about the concept of
function. Vladimiro Sassone told me that he taught a course on recursive functions.
After several weeks, he spent one lecture on students’ questions. The first question
was: “what is a function?”. Michael Kohlhase regularly poses this question in his oral
exams, and in spite of him announcing this question, only about 60% of students
know the answer.

272 Till Mossakowski

consequence — another concept that is surprisingly difficult to grasp for many
students. The most difficult part to understand is that logical consequence does
not imply the truth of the premises — it also holds in cases where the premises
are always false.

Fig. 3: Sample proof with Hets and SPASS.

Here, the interplay of Tarski’s world with Fitch greatly helps: Fitch is a
program that can be used for the construction of a natural deduction proof, in
case that a logical consequence actually holds, see Fig. 2. In the other cases,
Tarski’s world can be used to construct countermodels.

LPL offers a great deal of motivation and explanation of the natural deduc-
tion calculus (and Fitch) in terms of common natural language arguments. It
must be noted though that students more often have difficulties with Fitch than
with Tarski’s world. The reason seems to be again the level of abstraction: while
Tarski’s world is about a blocks world that is still close to everyday’s experience,

On Teaching Logic and Algebraic Specification 273

Fitch is about proofs that follow certain rules which are quite common in math-
ematical arguments, but not in everyday’s experience. Moreover, students often
have difficulties with finding suitable rules to apply in a given situation, or with
the development of a proof strategy. Therefore, the development of proof strate-
gies is explicitly discussed in the lecture and supported with numerous exercises.
However, I think that this still does not suffice. An interactive dialogue suggest-
ing different strategies or heuristics might help to stimulate more experiments
also for those students that do not grasp natural deduction so quickly.

1.2 Hets and State-of-the-Art Provers

This also brings me to another point: the relation of Fitch to state-of-the-art
automated and interactive theorem provers. Some students are motivated to
conduct larger proofs, but Fitch is not suited for this, since it is not possible
to prove lemmas and theorems for later re-use. Here, I use Casl and the Het-
erogeneous Tool Set Hets [8,7], which offers the connection to a selection of
resolution provers (SPASS, Vampire) and tableau provers (Isabelle), as well as
to SAT solvers (zChaff, minisat) — all tools that are used in current research.
However, these tools of course do not offer the special proof rule provided by
Fitch that can be used to derive facts that are specific to the blocks world (this
rule is called “AnaCon”). Actually, the rule AnaCon can be simulated with a
suitable first-order axiomatisation of the blocks world in Casl. Then proofs can
be conducted e.g. with the automated resolution prover SPASS [10]. A drawback
is that the output format of resolution proofs is still rather cryptic, since the
problem is first translated to clause form. A translation from resolution proofs
to natural deduction (using tools like Tramp [5] or Metis [6]) could help here,
but one should be careful not to provide an automatic tool that completely
discourages students to build their own natural deduction proofs.

2 Structured Specification

While research in algebraic specification started with the application of meth-
ods from universal algebra and equational logic to the specification of abstract
data types, later the algebraic nature was found more in the powerful constructs
that are used to build larger specifications from smaller ones in a modular way.
One such construct is the restriction to so-called initial and free models, a quite
central but complex notion in the area of algebraic specification. While teaching
this notion, I developed the idea to use propositional logic (instead of equa-
tional or first-order logic) to illustrate constructs for structuring specification.
The advantage is that the logic is so simple that one can really concentrate on
the structuring. Moreover, it is possible to display individual models: they are
just rows in a truth table. Using this approach, the following subsections explain
logical consequence, conservative extensions, and initial/free specifications. The
development will be a bit more technical than above, and also will rely on math-
ematical notation. However, it will be intensively illustrated with results from
Hets.

274 Till Mossakowski

2.1 Logical Consequence

Logical consequence is the central notion of logic (and is also important for
algebraic specification): what follows from what? As indicated above, logical
consequence is a notion that is difficult to grasp for many students. Hence, with
Hets, we provide an easy truth table approach for illustrating this notion.

Definition 1 (Signature). A propositional signature Σ is a set (of proposi-
tional symbols, or variables).

Definition 2 (Sentence). Given a propositional signature Σ, a propositional
sentence over Σ is one produced by the following grammar

φ ::= p | ⊥ | > | ¬φ | φ ∧ φ | φ ∨ φ | φ→ φ | φ↔ φ

with p ∈ Σ. Sen(Σ) is the set of all Σ-sentences

Definition 3 (Model). Given a propositional signature Σ, a Σ-model (or Σ-
valuation) is a function in Σ → {T, F}. Mod(Σ) is the set of all Σ-models.

A Σ-model M can be extended to

M# : Sen(Σ)→ {T, F}

using truth tables.

Definition 4. φ holds in M (or M satisfies φ), written M |=Σ φ iff

M#(φ) = T

Definition 5 (Logical consequence). Given Γ ⊆ Sen(Σ) and φ ∈ Sen(Σ), φ
is a logical consequence of Γ (written as Γ |= φ), if for all M ∈ Mod(Σ)

M |= Γ implies M |= φ.

Example 6. An argument in natural language is tested for validity by translating
it into propositional logic.

John plays tennis, if it’s
a sunny weekend day.

If John plays tennis, then
Mary goes shopping.

It is Saturday.
It is sunny.
Mary goes shopping

sunny ∧ weekend → tennis
tennis → shopping
saturday
sunny
saturday → weekend
shopping

The set of premises has the sentence shopping as a logical consequence

On Teaching Logic and Algebraic Specification 275

 logic Propositional

 spec Weekend =
 props tennis, shop, sunny, sat, we
 . sunny /\ we => tennis %(SWT)%
 . tennis => shop %(TSh)%
 . sat %(sat)%
 . sat => we %(satW)%
 . sunny %(sun)%
 . shop %(shop)% %implied
 end �

Listing 1: A simple logical consequence

 Legend:
 M = model of the premises
 + = OK, model fulfills conclusion
 - = not OK, counterexample for logical consequence
 o = OK, premises are not fulfilled, hence conclusion is irrelevant

 || sat | shop | sunny | tennis | we || SWT | TSh | sat | satW | sun || shop
 ===++=====+======+=======+========+====++=====+=====+=====+======+=====++=====
 o || F | F | F | F | F || T | T | F | T | F || F
 o || F | F | F | F | T || T | T | F | T | F || F
 o || F | F | F | T | F || T | F | F | T | F || F
 o || F | F | F | T | T || T | F | F | T | F || F
 o || F | F | T | F | F || T | T | F | T | T || F
 o || F | F | T | F | T || F | T | F | T | T || F
 o || F | F | T | T | F || T | F | F | T | T || F
 o || F | F | T | T | T || T | F | F | T | T || F
 o || F | T | F | F | F || T | T | F | T | F || T
 o || F | T | F | F | T || T | T | F | T | F || T
 o || F | T | F | T | F || T | T | F | T | F || T
 o || F | T | F | T | T || T | T | F | T | F || T
 o || F | T | T | F | F || T | T | F | T | T || T
 o || F | T | T | F | T || F | T | F | T | T || T
 o || F | T | T | T | F || T | T | F | T | T || T
 o || F | T | T | T | T || T | T | F | T | T || T
 o || T | F | F | F | F || T | T | T | F | F || F
 o || T | F | F | F | T || T | T | T | T | F || F
 o || T | F | F | T | F || T | F | T | F | F || F
 o || T | F | F | T | T || T | F | T | T | F || F
 o || T | F | T | F | F || T | T | T | F | T || F
 o || T | F | T | F | T || F | T | T | T | T || F
 o || T | F | T | T | F || T | F | T | F | T || F
 o || T | F | T | T | T || T | F | T | T | T || F
 o || T | T | F | F | F || T | T | T | F | F || T
 o || T | T | F | F | T || T | T | T | T | F || T
 o || T | T | F | T | F || T | T | T | F | F || T
 o || T | T | F | T | T || T | T | T | T | F || T
 o || T | T | T | F | F || T | T | T | F | T || T
 o || T | T | T | F | T || F | T | T | T | T || T
 o || T | T | T | T | F || T | T | T | F | T || T
 M+ || T | T | T | T | T || T | T | T | T | T || T �

Listing 2: Truth table for the logical consequence from Listing 1

276 Till Mossakowski

Note that the formalisation contains an axiom saturday → weekend
not present in the informal version. This axiom represents implicit background
knowledge. The Hets input syntax for this example is shown in Listing 1.

With Hets, we can now construct the following truth table as shown in
Listing 2. The truth table is divided into three parts, using ||. The first part
consists of the signature: all propositional letters are listed. Below the signature,
you find all possible models, one per row. The second part consists of the theory
(the axioms, also playing the role of premises of the argument): for each axiom,
its truth value is listed. Only rows containing T for every axiom are models of
the theory (indicated by an M). Finally, the third part contains the proof goal, or
conclusion of the argument. The conclusion needs to be true for each row that
is a model.

A simple non-example of a logical consequence (actually, we omitted the fact
that saturday is a weekend day) is shown in Listing 3.

 spec Weekend2 =
 props tennis, shop, sunny, sat, we
 . sunny /\ we => tennis %(SWT)%
 . tennis => shop %(TSh)%
 . sat %(sat)%
 . sunny %(sun)%
 . shop %(shop)% %implied
 end �

Listing 3: Example of a non-consequence

2.2 Conservative Extensions

A theory is satisfiable, if it has a model.1 Satisfiability of theories is quite impor-
tant for an axiomatic or loose approach to specification: it is easy to introduce
unintentional inconsistencies, and an inconsistent (unsatisfiable) specification
cannot be realised, hence it does not successfully model an aspect of reality.2

Satisfiability of large theories is hard to show. Actually, there are large first-
order theories like the SUMO ontology for which satisfiability is an open question
— indeed there is a prize set up for proving consistency of SUMO [9]. A modular
way to satisfiability is opened up by conservative extensions: in a sense, these
transport satisfiability.

1In some logics like equational logic, each theory is trivially satisfiable. In these
cases, satisfiability should be replaced with satisfiability by a non-trivial model,
where the latter is a model that falsifies at least one sentence.

2This is different for paraconsistent logics, which however will not be considered
here.

On Teaching Logic and Algebraic Specification 277

 Legend:
 M = model of the premises
 + = OK, model fulfills conclusion
 - = not OK, counterexample for logical consequence
 o = OK, premises are not fulfilled, hence conclusion is irrelevant

 || sat | shop | sunny | tennis | we || SWT | TSh | sat | sun || shop
 ===++=====+======+=======+========+====++=====+=====+=====+=====++=====
 o || F | F | F | F | F || T | T | F | F || F
 o || F | F | F | F | T || T | T | F | F || F
 o || F | F | F | T | F || T | F | F | F || F
 o || F | F | F | T | T || T | F | F | F || F
 o || F | F | T | F | F || T | T | F | T || F
 o || F | F | T | F | T || F | T | F | T || F
 o || F | F | T | T | F || T | F | F | T || F
 o || F | F | T | T | T || T | F | F | T || F
 o || F | T | F | F | F || T | T | F | F || T
 o || F | T | F | F | T || T | T | F | F || T
 o || F | T | F | T | F || T | T | F | F || T
 o || F | T | F | T | T || T | T | F | F || T
 o || F | T | T | F | F || T | T | F | T || T
 o || F | T | T | F | T || F | T | F | T || T
 o || F | T | T | T | F || T | T | F | T || T
 o || F | T | T | T | T || T | T | F | T || T
 o || T | F | F | F | F || T | T | T | F || F
 o || T | F | F | F | T || T | T | T | F || F
 o || T | F | F | T | F || T | F | T | F || F
 o || T | F | F | T | T || T | F | T | F || F
 M- || T | F | T | F | F || T | T | T | T || F
 o || T | F | T | F | T || F | T | T | T || F
 o || T | F | T | T | F || T | F | T | T || F
 o || T | F | T | T | T || T | F | T | T || F
 o || T | T | F | F | F || T | T | T | F || T
 o || T | T | F | F | T || T | T | T | F || T
 o || T | T | F | T | F || T | T | T | F || T
 o || T | T | F | T | T || T | T | T | F || T
 M+ || T | T | T | F | F || T | T | T | T || T
 o || T | T | T | F | T || F | T | T | T || T
 M+ || T | T | T | T | F || T | T | T | T || T
 M+ || T | T | T | T | T || T | T | T | T || T �

Listing 4: Truth table for the non-consequence from Listing 3

 spec Sp =
 Σ1
 Γ1
 then
 Σ∆
 Γ∆
 end �

 spec Animals =
 props bird, penguin
 . penguin => bird
 then
 prop can_fly
 . penguin => not can_fly
 end �

Listing 5: Theory extensions in Casl.

278 Till Mossakowski

 logic Propositional

 spec Animal =
 props bird, penguin, living
 . penguin => bird %(pb)%
 . bird => living %(bl)%
 then %cons
 prop animal
 . bird => animal %(ba)%
 . animal => living %(al)%
 end �

 spec Penguin =
 props bird, penguin
 . penguin => bird %(pb)%
 then
 prop can_fly
 . bird => can_fly %(bc)%
 . penguin => not can_fly %(pnc)%
 end �

Listing 6: Example of a conservative and a non-conservative extension in CASL

To illustrate the concept, consider the specification in Listing 6. Indeed, to
formally underpin this, we introduce some notions that will be central for struc-
tured specification:

Definition 7. Given two signatures Σ1, Σ2 a signature morphism is a function
σ : Σ1 → Σ2 (note that signatures are sets).

Sentences can be translated along signature morphisms:

Definition 8. A signature morphism σ : Σ1 → Σ2 induces a sentence transla-
tion σ : Sen(Σ1)→ Sen(Σ2), defined inductively by

– σ(⊥) = ⊥
– σ(>) = >
– σ(φ1 ∧ φ2) = σ(φ1) ∧ σ(φ2)
– etc.

Models are translated against signature morphisms. The intuition is that the
translated model M |σ works as follows: interpret a symbol by first translating
it along the signature morphism σ and then look up the interpretation in the
original model M .

Definition 9. A signature morphism σ : Σ1 → Σ2 induces a model reduction
|σ: Mod(Σ2) → Mod(Σ1). Given M ∈ Mod(Σ2) i.e. M : Σ → {T, F}, then
M |σ∈ Mod(Σ1) is defined as M |σ(φ) := M(σ(φ)) i.e. M |σ= M ◦ σ

Sentence and model translation interact well with each other:

On Teaching Logic and Algebraic Specification 279

Theorem 10 (Satisfaction condition). Given a signature morphism σ : Σ1 →
Σ2, M2 ∈ Mod(Σ2) and φ1 ∈ Sen(Σ1), then:

M2 |=Σ2 σ(φ1) iff M2|σ|=Σ1 φ1

(“truth is invariant under change of notation.“)

Definition 11. A theory morphism (Σ1, Γ1) → (Σ2, Γ2) is a signature mor-
phism σ : Σ1 → Σ2 such that for M2 ∈ Mod(Σ2, Γ2) we have M2|σ∈ Mod(Σ1, Γ1)

Extensions (written in Casl with the keyword then; cf. Listing 5) always lead
to a theory morphism (by definition). The semantics of the Casl specification
is the theory morphism σ : (Σ1, Γ1) → (Σ2, Γ2), where Σ2 = Σ1 ∪ Σ∆ and
Γ2 = Γ1 ∪ Γ∆, such that σ : Σ1 → Σ2 is the inclusion.

We are now ready to define conservative extensions:

Definition 12. A theory morphism σ : T1 → T2 is model-theoretically-conservative,
if any M1 ∈ Mod(T1) has a σ-expansion to a T2-model, that is, a model

M2 ∈ Mod(T2) with M2|σ= M1.

We can now evaluate which of the extensions shown in Listing 6 are con-
servative. Actually, the first extension is conservative. In the truth table output
by Hets (see Listing 7), we can see that each model (marked with an M in the
leftmost column) has an expansion (marked with an M in the column right to
the middle).

By contrast, the second extension is not conservative: the last model fails to
have an expansion, see Listing 8.

The central theorem that allows us to transport satisfiability is the following:

Theorem 13. If T1
σ1−→ T2

σ2−→ . . .
σn−1−−−→ Tn are model-theoretically conserva-

tive, and T1 is satisfiable, then Tn is satisfiable.

2.3 Initial and Free Specifications

Freeness and cofreeness constraints are a powerful mechanism at the level of
structured specifications. They work for any logic. Propositional logic is a good
starting point for learning about freeness and cofreeness, since things are much
less complicated here when compared with other logics.

Consider the following two somewhat circular statements:

Harry: John tells the truth.
John: If Mary is right, then Harry does not tell the truth.

280 Till Mossakowski

 Legend:
 M = model of the axioms
 + = OK, has expansion
 - = not OK, has no expansion, hence conservativity fails
 o = OK, not a model of the axioms, hence no expansion needed

 || bird | living | penguin || pb | bl || || animal || ba | al
 ===++======+========+=========++======+======++===++========++========+=======
 M+ || F | F | F || T | T || M || F || T | T
 || | | || | || || T || T | F
 ---++------+--------+---------++------+------++---++--------++--------+-------
 o || F | F | T || F | T || || || |
 ---++------+--------+---------++------+------++---++--------++--------+-------
 M+ || F | T | F || T | T || M || F || T | T
 || | | || | || M || T || T | T
 ---++------+--------+---------++------+------++---++--------++--------+-------
 o || F | T | T || F | T || || || |
 ---++------+--------+---------++------+------++---++--------++--------+-------
 o || T | F | F || T | F || || || |
 ---++------+--------+---------++------+------++---++--------++--------+-------
 o || T | F | T || T | F || || || |
 ---++------+--------+---------++------+------++---++--------++--------+-------
 M+ || T | T | F || T | T || || F || F | T
 || | | || | || M || T || T | T
 ---++------+--------+---------++------+------++---++--------++--------+-------
 M+ || T | T | T || T | T || || F || F | T
 || | | || | || M || T || T | T �

Listing 7: Truth table for a conservative extension from Listing 6

 Legend:
 M = model of the axioms
 + = OK, has expansion
 - = not OK, has no expansion, hence conservativity fails
 o = OK, not a model of the axioms, hence no expansion needed

 || bird | penguin || pb || || can_fly || bc | pnc
 ===++======+=========++======++===++=========++========+=====
 M+ || F | F || T || M || F || T | T
 || | || || M || T || T | T
 ---++------+---------++------++---++---------++--------+-----
 o || F | T || F || || || |
 ---++------+---------++------++---++---------++--------+-----
 M+ || T | F || T || || F || F | T
 || | || || M || T || T | T
 ---++------+---------++------++---++---------++--------+-----
 M- || T | T || T || || F || F | T
 || | || || || T || T | F �

Listing 8: Truth table for a non-conservative extension from Listing 6

On Teaching Logic and Algebraic Specification 281

 spec Liar0 =
 prop mary
 props harry, john
 . harry => john %(whenjohn)%
 . john => (mary => not harry) %(whenharry)%
 then %implies
 . harry %(harry)%
 . john %(john)%
 . mary %(mary)%
 . not harry %(notharry)%
 . not john %(notjohn)%
 . not mary %(notmary)%
 end �

Listing 9: A circular set of statements

 Legend:
 M = model of the premises
 + = OK, model fulfills conclusion
 - = not OK, counterexample for logical consequence
 o = OK, premises are not fulfilled, hence conclusion is irrelevant

 || harry | john | mary || whenjohn | whenharry || harry
 ===++=======+======+======++==========+===========++======
 M- || F | F | F || T | T || F
 M- || F | F | T || T | T || F
 M- || F | T | F || T | T || F
 M- || F | T | T || T | T || F
 o || T | F | F || F | T || T
 o || T | F | T || F | T || T
 M+ || T | T | F || T | T || T
 o || T | T | T || T | F || T �

Listing 10: Truth table for the circular statements from Listing 9

Let us formalise these statements and look at the logical consequences. We
introduce three propositions telling us whether Harry, John, resp. Mary tell the
truth.

Actually, when calling Hets with the truth table prover, the first goal cannot
be proved, see Listing 10.

The other goals cannot be proved either. So this theory cannot decide the
truth of the propositional letters, and it leaves open whether Harry, John or
Mary tell the truth or lie, and indeed, we have five possible cases (indicated
by the five models, i.e. those rows marked with M in Listing 10). A semantics
that admits many possible interpretations and only constrains them by logical
formulas is called open world semantics.

By contrast, a closed world semantics assumes some default, e.g. any propo-
sitional letter whose truth value cannot be determined is assumed to be false.
Indeed, free or initial semantics imposes this kind of constraints. As a prerequi-
site, we need to define a partial order on propositional models:

282 Till Mossakowski

Definition 14. Given a propositional signature Σ and two Σ-models M1 and
M2, then M1 ≤M2 if M1(p) = T implies M2(p) = T for all p ∈ Σ.

Then, a free (or initial) specification, written free{SP}, selects the least
model of a specification:

Mod(free{SP}) = {M ∈ Mod(SP) |M least model in Mod(SP)}

Note that a least model need not exist; in this case, the model class is empty,
hence the free specification inconsistent. Coming back to our example, have a
look at Listing 11. With the Hets truth table prover, we now get the truth table
in Listing 12. That is, Harry, John and Mary all are lying! Actually, we are not
forced by the specification to think that they tell the truth, so by minimality of
the initial model, the propositional letters are all assigned false.

 spec Liar1 =
 free {
 prop mary
 props harry, john
 . harry => john %(whenjohn)%
 . john => (mary => not harry) %(whenharry)%
 }
 then %implies
 . not harry %(notharry)%
 . not john %(notjohn)%
 . not mary %(notmary)%
 end �

Listing 11: Closed world assumption, specified as a free extension

 || harry | john | mary || notharry | notjohn | free || notmary
 ===++=======+======+======++==========+=========+======++========
 M+ || F | F | F || T | T | T || T
 o || F | F | T || T | T | F || F
 o || F | T | F || T | F | F || T
 o || F | T | T || T | F | F || F
 o || T | F | F || F | T | F || T
 o || T | F | T || F | T | F || F
 o || T | T | F || F | F | F || T
 o || T | T | T || F | F | F || F �

Listing 12: Truth table for the specification of Listing 11

Of course, the assumption that propositional letters are false by default is
somewhat arbitrary. We could have taken the opposite assumption. Indeed, this
exactly is what final (or cofree) specifications do, see Listing 13. However, no

On Teaching Logic and Algebraic Specification 283

greatest model exists in this case, hence the cofree specification is inconsistent,
as shown in Listing 14.

Mod(cofree{SP}) = {M ∈ Mod(SP) |M greatest model in Mod(SP)}

 spec Liar2 =
 cofree {
 prop mary
 props harry, john
 . harry => john %(whenjohn)%
 . john => (mary => not harry) %(whenharry)%
 }
 then %implies
 . false %(false)%
 end �

Listing 13: Closed world assumption, specified as a cofree extension

 || harry | john | mary || whenjohn | whenharry | cofree || false
 ===++=======+======+======++==========+===========+========++======
 o || F | F | F || T | T | F || F
 o || F | F | T || T | T | F || F
 o || F | T | F || T | T | F || F
 o || F | T | T || T | T | F || F
 o || T | F | F || F | T | F || F
 o || T | F | T || F | T | F || F
 o || T | T | F || T | T | F || F
 o || T | T | T || T | F | F || F �

Listing 14: Truth table for the specification of Listing 13

We can also mix the open and closed world assumptions. Assume that we
want to be unspecific about Mary, but use closed world assumption for Harry
and John, see Listing 15.

The semantics is as follows:

Mod(SP1 then free{SP2}) =
{M ∈ Mod(SP1 then SP2) |

M is the least model in {M ′ ∈ Mod(SP1 then SP2) | M |σ= M ′|σ} }
and as a result, we obtain that both Harry and John lie (independently of

what Marry concerns!), see Listing 16.
The dual concept is cofreeness with mixed open and closed world semantics,

see Listing 17. Also the semantics is obtained by dualising:

284 Till Mossakowski

 spec Liar3 =
 prop mary
 then
 free {
 props harry, john
 . harry => john %(whenjohn)%
 . john => (mary => not harry) %(whenharry)%
 }
 then %implies
 . not harry %(harry)%
 . not john %(john)%
 end �

Listing 15: Mixed open world and closed world semantics using free

 || harry | john | mary || whenjohn | whenharry | free || harry
 ===++=======+======+======++==========+===========+======++======
 M+ || F | F | F || T | T | T || T
 M+ || F | F | T || T | T | T || T
 o || F | T | F || T | T | F || T
 o || F | T | T || T | T | F || T
 o || T | F | F || F | T | F || F
 o || T | F | T || F | T | F || F
 o || T | T | F || T | T | F || F
 o || T | T | T || T | F | F || F �

Listing 16: Truth table for the specification of Listing 15

 spec Liar4 =
 prop mary
 then
 cofree {
 props harry, john
 . harry => john %(whenjohn)%
 . john => (mary => not harry) %(whenharry)%
 }
 then %implies
 . harry \/ mary %(harrymary)%
 . john %(john)%
 end �

Listing 17: Mixed open world and closed world semantics using cofree

On Teaching Logic and Algebraic Specification 285

Mod(SP1 then cofree{SP2}) =
{M ∈ Mod(SP1 then SP2) |

M is the greatest model in {M ′ ∈ Mod(SP1 then SP2) | M |σ= M ′|σ} }
The result in the example is that John tells the truth, and at least either of

Harry and Mary as well, see Listing 18.

 || harry | john | mary || whenjohn | whenharry | cofree || harrymary
 ===++=======+======+======++==========+===========+========++==========
 o || F | F | F || T | T | F || F
 o || F | F | T || T | T | F || T
 o || F | T | F || T | T | F || F
 M+ || F | T | T || T | T | T || T
 o || T | F | F || F | T | F || T
 o || T | F | T || F | T | F || T
 M+ || T | T | F || T | T | T || T
 o || T | T | T || T | F | F || T �

Listing 18: Truth table for the specification of Listing 17

3 Conclusion

The overall picture is as follows: typically, I start with a course on first-order
logic as described in Sect. 1, followed by a more special course on structuring
and institutions, following Sect. 2. The second course starts with propositional
logic, which keeps the examples simple, and then proceeds to description logics
(used for ontologies and semantic web) and finally again to first-order logic.

Teaching algebraic specification and logic can really be fun, and there is
much room for developing better ideas and tools supporting this. Feedback and
improvements are welcome!

References

1. E. Astesiano, H.-J. Kreowski, and B. Krieg-Brückner. Algebraic Foundations of
Systems Specification. Springer, 1999.

2. J. Barwise and J. Etchemendy. Language, proof and logic. CSLI publications, 2002.
3. Michel Bidoit and Peter D. Mosses. Casl User Manual, volume 2900 of LNCS

(IFIP Series). Springer, 2004. With chapters by T. Mossakowski, D. Sannella, and
A. Tarlecki.

4. CoFI (The Common Framework Initiative). Casl Reference Manual, volume 2960
of LNCS (IFIP Series). Springer, 2004.

5. Andreas Meier. System description: TRAMP: Transformation of machine-found
proofs into ND-proofs at the assertion level. In David A. McAllester, editor, Auto-
mated Deduction - CADE-17, 17th International Conference on Automated Deduc-
tion, Pittsburgh, PA, USA, June 17-20, 2000, Proceedings, volume 1831 of Lecture
Notes in Computer Science, pages 460–464. Springer, 2000.

286 Till Mossakowski

6. Jia Meng, Claire Quigley, and Lawrence C. Paulson. Automation for interactive
proof: First prototype. Information and Computation, 204(10):1575–1596, 2006.

7. T. Mossakowski. Heterogeneous specification and the heterogeneous tool set. Ha-
bilitation thesis, University of Bremen, 2005.

8. Till Mossakowski, Christian Maeder, and Klaus Lüttich. The Heterogeneous Tool
Set. In Orna Grumberg and Michael Huth, editors, TACAS 2007, volume 4424
of Lecture Notes in Computer Science, pages 519–522. Springer-Verlag Heidelberg,
2007.

9. Adam Pease, Geoff Sutcliffe, Nick Siegel, and Steven Trac. The annual SUMO
reasoning prizes at CASC. In Boris Konev, Renate A. Schmidt, and Stephan
Schulz, editors, Proceedings of the First International Workshop on Practical As-
pects of Automated Reasoning, Sydney, Australia, August 10-11, 2008, volume 373
of CEUR Workshop Proceedings. CEUR-WS.org, 2008.

10. C. Weidenbach, U. Brahm, T. Hillenbrand, E. Keen, C. Theobalt, and D. Topic.
SPASS version 2.0. In Andrei Voronkov, editor, Automated Deduction – CADE-18,
LNCS 2392, pages 275–279. Springer-Verlag, 2002.

. .

Dr. Till Mossakowski

DFKI GmbH Bremen
Safe & Secure Cognitive Systems
Enrique-Schmidt-Str. 5
D-28359 Bremen (Germany)
Till.Mossakowski@dfki.de
http://www.dfki.de/sks/till

During his studies, Till Mossakowski took several courses in Theoretical Com-
puter Science held by Hans-Jörg Kreowski. Moreover, he was a member of
his group from 1993 to 1998. Hans-Jörg also supervised Till’s diploma and
doctoral theses, and was an examiner of his habilitation thesis.

. .

1

2

a a a a a

bbbbb

c c c c

c

FIRST⊖

LINK⊖LINK⊖

· · ·
· · ·
· · · LAST

Algebraic Model Checking

Peter Padawitz

Abstract. Several more or less algebraic approaches to model checking
are presented and compared with each other with respect to their range
of applications and their degree of automation. All of them have been
implemented and tested in our Haskell-based formal-reasoning system
Expander2. Besides realizing and integrating state-of-the art proof and
computation rules the system admits rarely restricted specifications of
the models to be checked in terms of rewrite rules and functional-logic
programs. It also offers flexible features for visualizing and even ani-
mating models and computations. Indeed, this paper does not present
purely theoretical work. Due to the increasing abstraction potential of
programming languages like Haskell the boundaries between developing
a formal system and implementing it or making it ‘user-friendly’ as well
as between systems developed in different communities become more and
more obsolete. The individual topics discussed in the paper reflect this
observation.

1 Introduction

Model checking means proving properties of labelled or unlabelled transition
systems (TRS). Modal, temporal or dynamic logics have been developed to for-
malize the properties and provide methods for proving them (see e.g. [4, 13, 26]).
In contrast to classical predicate logic, modal logics hide the relations (here: the
transition systems) they are talking about. Translations of the latter into the
former are well-known (see e.g. [1, 18]), but did not affect very much the di-
rection of research in model checking. With the invention of coalgebraic logics
(see e.g. [14, 25, 15, 8, 2]) the direction of translation is reversed: these logics
generalize the ‘relation-hiding’ concept of modal logics from merely unstructured
states and transitions to arbitrary destructor-based types and thus open up al-
ternatives to classical predicate-logic-based data type verification. Moreover, the
use of coalgebraic concepts reveals the intrinsic algebraic flavor of modal logics
(usually called its global semantics): their formulas denote relations; the logical
operators (including fixpoint operators!) are functions building relations from
relations. The underlying data are either states (elements of a destructor-based
type) or paths (which also form a destructor-based type).

We have investigated and implemented in our proof assistant Expander2 [20,
21, 22] four approaches to model checking. The first one may be called purely
algebraic because proving a formula boils down to its complete evaluation. In
the second one, formulas are proved by solving sets of regular equations rep-
resented by data flow graphs. The third technique uses simplification rules and
must accompany the first one if, for instance, the underlying type has infinitely

F. Drewes, A. Habel, B. Hoffmann, D. Plump (Eds.): Manipulation of Graphs, Algebras and Pictures.
Essays Dedicated to Hans-Jörg Kreowski on the Occasion of His 60th Birthday, pp. 287–303, 2009.

288 Peter Padawitz

many elements (such as the set of paths of a TRS). The fourth method applies
co/Horn logic, extends the others by powerful inference rules (mainly parallel
co/resolution and incremental co/induction) and thus imposes the fewest restric-
tions on the formulas to be proved. On the other hand, this technique requires
more manual control of the proof process than the others.

For lack of space the present paper skips the data flow approach. The other
methods are illustrated mainly with a couple of axiomatic specifications of small
Kripke structures and the verification of properties given by path formulas.
All model representations and proof records given here were generated by Ex-
pander2. To a great extent, Expander2 specifications follow the syntax of the
functional programming language Haskell (see haskell.org) with which we as-
sume a little familiarity. We also use Haskell for some definitions that involve
data structures like lists or trees. Neither a purely set-theoretical notation nor
an - unfortunately still prevailing - imperative syntax can cope with the elegance
and adequacy of Haskell.

Although it is long ago, the extremely inspiring work with Hans-Jörg Kreowski
(and my supervisors Hartmut Ehrig and Dirk Siefkes) at the computer science
department of the Technical University of Berlin, lasting from 1974 to 1983, have
influenced the direction of my research over the entire subsequent 25 years. We
worked in three areas: automata theory, graph grammars and algebraic software
specification. In all of them, constructions and methods from universal algebra
played the key rôle. My additional work on Horn logic and rewrite systems was
also led by the algebraic viewpoint. Last not least, graph grammar concepts left
their mark on the treatment of term graphs in Expander2.

2 Kripke structures in Expander2

Since we want to use the same techniques for several variants of transition sys-
tems and modal logics, the following definitions take into account deterministic
and nondeterministic, labelled and unlabelled systems as well as state and path
formulas:

A Kripke structure K = (St,At, Lab,→, val, valL) consists of a set St of
states, a set At of atoms, a set Lab of labels (actions, input, output, etc.),
a transition relation → ⊆ St × St or → ⊆ St × Lab × St and state
valuations val ⊆ At × St and valL ⊆ At × Lab × St. If Lab is nonempty, →
denotes ∪{lab→ | lab ∈ Lab}.
Let s ∈ St, lab ∈ Lab and sts ∪ sts′ ⊆ St. sucs(s) = {s′ ∈ St | s → s′} and
sucsL(s, lab) = {s′ ∈ St | s lab−→ s′} denote the sets of all (direct) successors of s
resp. all successors of s after input/execution of lab.

path(K) = {p ∈ StN | ∀ i ∈ N : pi → pi+1 ∨ (sucs(pi) = ∅ ∧ pi = pi+1)}

Algebraic Model Checking 289

denotes the set of paths of K. Given a function f : St→ P(St),

imgsShares(sts)(f)(sts′) = {s ∈ sts | f(s) ∩ sts′ 6= ∅},
imgsSubset(sts)(f)(sts′) = {s ∈ sts | f(s) ⊆ sts′}

denote the sets of states s ∈ sts such that at least one resp. all f -images of s
are in sts′. Expander2 admits the specification of Kripke structures in terms of
rewrite rules (axioms for ->) as in the following example. It is small and not very
practical, but involves a couple of frequently used functional or logical operators.

-- TRANS
constructs: less SAT -- constructors
defuncts: inits states atoms drawSF -- defined functions
fovars: n x y -- first-order variables
axioms: inits == [0] &

atoms == map(less)[0..10] &
(n < 6 & n ‘mod‘ 2 = 0 ==> n -> n<+>n+1) &
(n < 6 & n ‘mod‘ 2 =/= 0 ==> n -> n+1) &
6 -> branch$[1,3,5]++[7..10]++[4,2] &
7 -> 14 &
less(x) -> branch$filter(rel(y,y<x))$states &
drawSF == wtree$fun(SAT(x),rframe$text$x,

x,x)

After the specification has been entered and the button build Kripke model has
been pushed, Expander2 constructs the set states of states, the transition re-
lation and the state valuation of the model from the axioms for the binary
predicate ->. For instance, states is the set of terms that are reachable from
inits via the transitive closure of ->. & and | denote conjunction resp. dis-
junction. Equational axioms involving == are used as simplification rules (see
below). <+> and branch are constructors for building sets of successor states.
The apply-operator $ and the list functions map, ++ and filter are interpreted
as in Haskell. fun and rel are the λ-abstraction operators for functions resp.
relations. For instance, fun(p,t,q,u) denotes the function that, when applied
to v, yields the corresponding instance of t resp. u if v matches p resp. q.

wtree(f)(t) turns each node n of the term t into a graphical widget by applying
f to the term representation (!) of n. In the drawSF axiom of TRANS, nodes
matching SAT(x) are framed by a rectangle, others are (re-)turned into their
string representation. The result of simplifying wtree(f)(t) is interpreted by
the painter module of Expander2 (see, e.g., Fig. 3). Another graphical interpreter
of Expander2 turns binary or ternary relations into matrices:

290 Peter Padawitz

Fig. 1. The term (graph) representing the transition relation of TRANS and its
interpretation by the matrix interpreter of Expander2

The solver module of Expander2 always produces or transforms term graphs like
the one on the left-hand side of Fig. 1. Basically, term graphs are trees, but they
may involve additional edges (those with tips). The solver module computes
further term representations of a binary or ternary relation: a list of pairs resp.
triples and a conjunction of regular equations (see Fig. 2).

Fig. 2. A list of pairs and a conjunction of regular equations representing the
transition relation of TRANS

3 Modal logic and algebra

Let Var be a set of variables denoting sets of states or paths (sequences of
states). The words generated from sf resp. pf by the following context-free
rules are called state formulas resp. path formulas: Let at ∈ At, lab ∈ Lab

Algebraic Model Checking 291

and x ∈ Var .

sf → at | true | false | ¬sf | sf ∨ sf | sf ∧ sf | sf ⇒ sf
(1) sf → EX sf | AX sf | 〈lab〉sf | [lab]sf
(2) sf → x | µx.sf | νx.sf

sf → EF sf | AF sf | EG sf | AG sf | sf EU sf | sf AU sf
pf → at | true | false | ¬pf | pf ∨ pf | pf ∧ pf | pf ⇒ pf

(3) pf → next pf | 〈lab〉pf | [lab]pf
(4) pf → x | µx pf | νx pf

pf → F pf | G pf | pf U pf

Some of the above operators are subsumed by others. This is intended because
we favor natural deduction where the user is allowed to formalize conjectures as
adequately as possible. The reduction to a minimal set of operators should be
left to the model checker. Ours will turn all formulas into equivalent ones that
consist of propositional, next-step ((1) resp. (3)) and fixpoint operators ((2) resp.
(4)).

Like every context-free grammar the above one defines an algebraic signature
Σ = (PS, S,OP) with a set PS of primitive sorts (here: at, lab and x), a set
S of further sorts, one for each nonterminal of the grammar, and a set OP of
operators, one for each rule of the grammar: a rule A→ w becomes an operator
of type v → A where v is the product of the nonterminals of w. In the above
case, Σ-terms represent formulas, and proving the latter means evaluating the
former with respect to a suitable interpretation of Σ, i.e. a Σ-algebra, say A.

Each sort s ∈ PS ∪ S is interpreted by a ‘carrier’ set sA and each operator
f by a function fA whose domain and range comply with the interpretation
of the sorts involved in the type of f . The nature of primitive sorts is to have
the same interpretation in every Σ-algebra A. Hence at, lab and x are always
interpreted as the given sets At, Lab and Var of atoms, labels and variables,
respectively. The interpretation of sf and pf reflects what is often called the a
global semantics of modal logic:

sfA = (Var → P(St))→ P(St)
pfA = (Var → P(path(K)))→ P(path(K))

In Σ, each atom at becomes a constant of sort sf and also a constant of sort
pf . Both fixpoint operators (µ and ν) have the types Var × sf → sf and
Var × pf → pf . Analoguous binding operators occur in other term languages
as well, e.g., the abstraction and least-fixpoint operators λ resp. µ for building
higher-order functions or the quantification operators ∀ and ∃ that come with
an algebraic view on predicate logic.

Fixpoint operators are the main model builders. Be it single objects (including
functions of arbitrary order), types (sets of objects) or relations (predicates) of
arbitrary arity, whatever cannot be constructed by simply combining given ob-
jects (resp. sets) conjunctive- or disjunctively, is defined as a solution of a system
of regular equations between variables on the left- and terms/formulas on the

292 Peter Padawitz

right-hand side, i.e. as a fixpoint of the function induced by the equations. From
the classical theory of recursive functions via the semantics of logic programming
languages up to domain theory and universal co/algebra, fixpoints provide the
link between description, computation and proof in all these approaches.

The existence of a fixpoint requires the monotonicity of the functions used in
the equations to be solved. Its stepwise constructability requires the stronger
property of (upward or downward) continuity. In the case of a modal formula
ϕ, monotonicity is ensured if each free occurrence of x ∈ Var in ϕ has positive
polarity, i.e. the number of negations on the path from the binder of x (µ or
ν) to the occurrence is even. Continuity is guaranteed if, in addition to the
monotonicity requirement, the transition relation is image finite, i.e. for all s ∈ St
and lab ∈ Lab, sucs(s) resp. sucsL(lab)(s) is finite. Hence, if St is finite, the
global semantics of a modal formula is stepwise computable if all free variable
occurrences in ϕ have positive polarity.

Given a Kripke structure K, the above interpretations of sf and pf extend
to a Σ-algebra, called the modal algebra over K: Let s ∈ St, lab ∈ Lab,
ϕ,ψ ∈ sfA ∪ pfA, b : Var → P(St) and c : Var → P(path(K)).

atA(b) =def val(at)
atA(c) =def {p ∈ path(K) | p0 ∈ val(at)}
trueA(b) =def St

falseA(b) =def ∅
¬A(ϕ)(b) =def St \ ϕ(b)
(ϕ ∨A ψ)(b) =def ϕ(b) ∪ ψ(b)
(ϕ ∧A ψ)(b) =def ϕ(b) ∩ ψ(b)
ϕ⇒A ψ =def ¬A(ϕ) ∨A ψ
EXA(ϕ) =def imgsShares(St)(sucs) ◦ ϕ
AXA(ϕ) =def imgsSubset(St)(sucs) ◦ ϕ
〈lab〉A(ϕ) =def imgsShares(St)(sucsL(lab)) ◦ ϕ
[lab]A(ϕ) =def imgsSubset(St)(sucsL(lab)) ◦ ϕ
xA(b) =def b(x)
nextA(ϕ)(c) =def {p ∈ path(K) | λi.pi+1 ∈ ϕ(c)}
(µx)A(ϕ)(b) =def up(ϕ(λy.b[y/x]))(∅)
(νx)A(ϕ)(b) =def down(ϕ(λy.b[y/x]))(St)

f [a/x] denotes an update of (the valuation or substitution) f : f [a/x](x) = a and
for all y 6= a, f [a/x](y) = f(y).

The synonymous operators on path formulas are interpreted analogously: just
replace the state valuation b by the path valuation c. The functions up and down
are defined (in Haskell) as follows:
up, down :: Eq a => ([a] -> [a]) -> [a] -> [a]
up f = g where g s = if all (‘elem‘ s) fs then s else g fs

where fs = f s
down f = g where g s = if all (‘elem‘ fs) s then s else g fs

where fs = f s

Algebraic Model Checking 293

They transform a finite set by repeatedly applying f until it does not change
any more. If applied to s = ∅ resp. s = St and provided that St is finite, the
iteration terminates and—by Kleene’s fixpoint theorem—return the least resp.
greatest solution of the equation x = ϕ in P(St).

All operators of Σ that are not interpreted directly in the modal algebra over
K can be reduced to fixpoints:

EF (ϕ) = µx(ϕ ∨ EX(x)) finally
AF (ϕ) = µx(ϕ ∨ (EX(true) ∧AX(x)))
EG(ϕ) = νx(ϕ ∧ (AX(false) ∨ EX(x))) generally
AG(ϕ) = νx(ϕ ∧AX(x))
ϕ EU ψ = µx(ψ ∨ (ϕ ∧ EX(x))) until
ϕ AU ψ = µx(ψ ∨ (ϕ ∧AX(x)))
F (ϕ) = µx(ϕ ∨ next(x)) finally
G(ϕ) = νx(ϕ ∧ next(x)) generally
ϕ U ψ = µx(ψ ∨ (ϕ ∧ next(x))) until

Provided that the Kripke structure K has only finitely many states, each state
formula ϕ can be completely evaluated in the modal algebra over K. For this
purpose Expander2 derives K from a specification like TRANS and thus makes
the following simplification rules applicable to state formulas ϕ resp. state sets
sts:

State formula evaluation

ϕ(s)
True

s ∈ ϕA ϕ(s)
False

s ∈ St \ ϕA sols(ϕ)
ϕA

(1)

embed(sts)
transition graph with each state s ∈ sts replaced by SAT (s)

(2)

Fig. 3. The result of applying (1), (2) and the function drawSF of TRANS to
solsEFatom$less$4

294 Peter Padawitz

4 Model checking by simplification

A path formula like ∀ pa : ϕ(pa) quantifies over the infinite set of paths of the un-
derlying Kripke structure K and thus cannot be proved by simply evaluating it in
the modal algebra over K: the implementation of the fixpoint operators µ and ν
with the functions upWith and downWith will not terminate. However, as fixpoint
operators are ubiquitous in model design, so are the key proof rules induction,
coinduction and expansion for properties of a fixpoint, say a = (a1, . . . , an). If
a solves the equation (x1, . . . , xn) = t(x1, . . . , xn), expanding a term or formula
ϕ means replacing all occurrences of a (or components thereof) in ϕ by (the
corresponding projections on) t(a). Expansion is sound for all solutions of the
equation, induction and coinduction only for the least resp. greatest one.

Expansion Let op be a fixpoint operator, u = (t1, . . . , tn) and 1 ≤ i ≤ n.

op x1 . . . xn.t

t[πi(op x1 . . . xn.t)/xi | 1 ≤ i ≤ n]
πi(op x1 . . . xn.u)

ti[πj(op x1 . . . xn.u)/xj | 1 ≤ j ≤ n]

πi, 1 ≤ i ≤ n, denotes the projection of an n-tuple on its i-th component. In the
case of unary fixpoints (like the modal operators µ and ν), projections do not
occur and we only need the first rule. In general, non-unary fixpoints arise from
mutually recursive definitions of several functions or relations.

For reducing the danger of non-termination Expander2 applies expansion rules
only to formulas that lack redices for other simplification rules. The simplifier
traverses a formula tree depthfirst (leftmost-outermost) or breadthfirst (parallel-
outermost) when searching for the next rule redex. The strategy of parallel-
outermost simplification that postpones expansion steps as far as possible is a
fixpoint strategy, i.e. terminates whenever any strategy terminates [16]. This
suggests why the evaluation of path formulas in the modal algebra may not
terminate: evaluation in an algebra always proceeds bottom-up and thus follows
an innermost strategy!

Expansion rules are applied to the fixpoint itself (or a component thereof). The
redices of induction and coinduction, however, are implications with the fixpoint
as its premise resp. conclusion:

Induction and coinduction

µx1 . . . xn.ϕ⇒ ψ

ϕ[πi(ψ)/xi | 1 ≤ i ≤ n]⇒ ψ
⇑ ψ ⇒ νx1 . . . xn.ϕ

ψ ⇒ ϕ[πi(ψ)/xi | 1 ≤ i ≤ n]
⇑

The arrow ⇑ indicates that the succedent of the rule, i.e., the formula below the
horizontal line, implies the antecedent, but not necessarily vice versa. Anyhow,
we write the conclusion of the implication above the line because the rule syntax
should reflect the order in which the rules are applied in a proof.

Hence it may happen that induction or coinduction is applicable to a valid
formula, but the rule succedent does not hold true. Then the co/induction hy-
pothesis, which is given by ψ, was too weak (resp. too strong). ψ must then

Algebraic Model Checking 295

be generalized, i.e. extended to some δ by adding a factor (resp. summand). It
follows from the incompleteness of second-order logic that the candidates for δ
cannot be enumerated. The following rule shows the boundaries within which δ
must be searched for:

Second-order induction and coinduction

µx1 . . . xn.ϕ⇒ ψ

∃δ : ϕ[πi(δ)/xi | 1 ≤ i ≤ n]⇒ δ ⇒ ψ
m ψ ⇒ νx1 . . . xn.ϕ

∃δ : ψ ⇒ δ ⇒ ϕ[πi(δ)/xi | 1 ≤ i ≤ n]
m

The soundness of (first-order) co/induction is easy to show: µx1 . . . xn.ϕ and
νx1 . . . xn.ϕ denote solutions of the equation (x1, . . . , xn) = ϕ in the modal
algebra A (see section 3). Since the operators of ϕA are monotone, the fixpoint
theorem of Knaster and Tarski tells us that the least resp. greatest solution of
(x1, . . . , xn) = ϕ in A is the least resp. greatest tuple B = (B1, . . . , Bn) of sets
such that (1) ϕ[Bi/xi | 1 ≤ i ≤ n]A ⊆ B or (2) B ⊆ ϕ[Bi/xi | 1 ≤ i ≤ n]A,
respectively. Since ⇒ is interpreted in A by set inclusion, the conclusion of the
co/induction rule is valid iff (1)/(2) with Bi replaced by πi(ψ)A holds true.
Consequently, the rule antecedent follows from the minimality resp. maximality
of B with respect to (1)/(2).

Since co/induction is part of the simplifier of Expander2, the system takes care
of not destroying co/induction redices. For instance, the following simplification
rules are applied only to formulas that are not such redices:

Implication splitting Suppose that ϕ and ψ are simplified.

ϕ ⇒ ψ1 ∧ . . . ∧ ψn

ϕ⇒ ψ1 ∧ . . . ∧ ϕ⇒ ψn
m ϕ1 ∨ . . . ∨ ϕn ⇒ ψ

ϕ1 ⇒ ψ ∧ . . . ∧ ϕn ⇒ ψ
m

The above statements on (the necessity of) generalizations should convince the
reader that the co/inductive provability of the premise of a splitting rule does
not imply the co/inductive provability of its conclusion! On the other hand, if
implication splitting does not interfere with co/induction, it should be applied
because, as a hidden distribution of ∧ over ∨, it is a step towards a disjunctive
normal form. More crucial than Boolean simplifications is the simplifier’s han-
dling of quantified variables. Here the aim is to move quantifiers such that most
of them occur in existentially quantified conjunctions of equations or, dually, uni-
versally quantified disjunctions of inequations. Such subformulas are then treated
separately by term replacement, atom splitting and atom removal, which often
reduces the number of variables or even eliminates all of them.

At first, the simplifier of Expander2 treats a formula as a term to be evaluated
bottom-up by applying interpretations of the involved operators in a suitable
algebra, say B. In contrast to the modal algebra, B is a term algebra, i.e. it
consists of formulas, but usually smaller ones than the original equivalent ones.
For instance, an existential quantifier is (1) merged with directly following ones,
(2) distributed over a subsequent implication or disjunction and (3) restricted
to those variables that have free occurrences in the quantified formula.

296 Peter Padawitz

If a formula has been evaluated in this way, the simplifier applies rules (including
the ones presented in this and the previous section) only to outermost redices as
described above. Since path formulas cannot be evaluated in the modal algebra,
we specify temporal operators in terms of further simplification rules that will
be used in proofs together with expansion and co/induction.

-- LTLS
preds: P Q true false hatom not \/ /\ ‘then‘ F G ‘U‘

-- predicates
constructs: blink -- the stream 010101...
fovars: at s -- first-order variables
hovars: X P Q -- higher-order variables
axioms:

(true$s <==> True)
& (false$s <==> False)
& (hatom(at)$s <==> at -> head$s)
& (not(P)$s <==> Not(P$s))
& ((P\/Q)$s <==> (P$s | Q$s))
& ((P/\Q)$s <==> (P$s & Q$s))
& ((P‘then‘Q)$s <==> (P$s ==> Q$s))
& (F$P <==> MU X.(P\/X.tail)) -- finally
& (G$P <==> NU X.(P/\X.tail)) -- generally
& ((P‘U‘Q) <==> MU X.(Q\/(P/\X.tail))) -- until
& head$blink == 0
& tail$blink == 1:blink -- coalgebraic specification of blink

Except for the fixpoint operators, the axioms directly implement the interpre-
tation of temporal operators in the modal algebra. State operators could be
axiomatized analogously. However, this is not needed if the underlying Kripke
structure is finite. The formula hatom(at)$s checks whether the head of the
path s satisfies at ∈ At (see section 2). The functions head and tail are defined
as in Haskell. They provide the destructors of the data type of paths and are
used here for specifying the stream 010101... A point in terms denotes function
composition. The conjecture

s = blink | s = 1:blink ==> G(F$(=0).head)$s (1)

says that the streams blink and 1:blink are fair insofar as they contain in-
finitely many zeros. By the G-axiom of LTLS, (1) simplifies to:

s = blink | s = 1:blink ==> NU X.(F((=0).head)/\X.tail)$s (2)

(2) is an instance of the antecendent of coinduction (see above). Applying the
rule yields:

All s:(s = blink | s = 1:blink ==>
(F((=0).head)/\(rel(s,s=blink|s=1:blink).tail))$s) (3)

47 further simplification steps including three expansion steps turn (3) into True.
The entire proof goes through automatically.

The second sample proof is based on a model of a microwave controller [4]:

Algebraic Model Checking 297

-- MICROS
specs: LTLS -- imported specifications
constructs: start close heat error SAT
defuncts: inits states atoms drawK
fovars: ats
axioms:
inits == [1] & atoms == [start,close,heat,error] &
1 -> branch[2,3] & 2 -> 5 & 3 -> branch[1,6] &
4 -> branch[1,3,4] & 5 -> branch[2,3] & 6 -> 7 & 7 -> 4
& start -> branch[2,5,6,7]
& close -> branch[3,4,5,6,7]
& heat -> branch[4,7]
& error -> branch[2,5]
& drawK == wtree$fun(x‘sat‘ats,rframe$matrix[x,satisfies(ats)],

x,x)

The Kripke model that Expander2 derives from MICROS and the function drawK

The conjecture

G(hatom$error)$s ==> G(not$hatom$heat)$s (1)

says that a path consisting of error states never contains heat states. By the
G-axiom of LTLS, (1) simplifies to:

NU X.(hatom(error)/\X.tail)$s ==>
NU X.(not(hatom$heat)/\X.tail)$s (2)

Applying the coinduction rule yields:

298 Peter Padawitz

All pa:(NU X.(hatom(error)/\X.tail)$s ==>
(not(hatom$heat)/\
(rel(s,NU X.(hatom(error)/\X.tail)$s).tail))$s) (3)

41 further simplification steps lead (3) to True. Three expansion steps are
needed, and the entire proof goes through automatically.

5 Model checking by co/resolution and co/induction

Both evaluation and simplification regard modal formulas as representations of
data, namely (tuples of) sets. This is the actual reason for the algebraic flavor of
modal logics: their operators denote functions that generate or transform data.
Fixpoint operators are no exception. They map the left-hand sides of regular
equations to the equations’ solutions (see section 3). First-order predicate logic
as well as logic programming follow a different view. Their formulas do not denote
data, but propositions or statements about data. Set membership takes us from
the (sets-as-)data view to the propositional one, set comprehension back from
the propositional to the data view. So where is the difference? It comes with the
fixpoint property that cannot be expressed within first-order logic. Instead, we
axiomatize co/predicates in terms of (generalized) co/Horn clauses and fix their
interpretation as the least resp. greatest relations (on a given data model) that
satisfy the axioms. Details of this approach and its connection with relational
and functional programming can be found in [18, 19].

For checking Kripke structures with co/Horn logic we replace the modal algebra
of section 3 and the specification LTLS of section 4 by the following one:

-- LTL
preds: P Q true false hatom not \/ /\ ‘then‘ F ‘U‘
copreds: G -- copredicates
fovars: s
hovars: P Q
axioms:

(F(P)$s <=== P$s | F(P)$tail$s) -- finally
& (G(P)$s ===> P$s & G(P)$tail$s) -- generally
& ((P‘U‘Q)$s <=== Q$s | P$s & (P‘U‘Q)$tail$s) -- until

In addition, the propositional operators are specified in the same way as in LTLS
in terms of simplification rules. The modal operators, however, now have co/Horn
axioms. The direction of the implication arrow (<=== or ===>) indicates whether
the axiom is called a Horn or a co-Horn clause and the relational expression on
its left-hand side a predicate or a copredicate and thus interpreted as the least or
greatest relation satisfying the axiom(s). When applied in a logical derivation,
a co/Horn clause is always applied from left to right. Besides premise and/or
conclusion a clause may contain a guard that confines redices to formulas that
unify with the left-hand side (premise resp. conclusion) and satisfy the guard
(see the co/resolution rules given below).

Algebraic Model Checking 299

An expansion step is replaced by the simultaneous application of all axioms with
the same relational expression on the left-hand side:

Parallel resolution upon the predicate p

p(t)∨k
i=1 ∃Zi : (ϕiσi ∧ x = xσi)

m

where γ1 ⇒ (p(t1) ⇐= ϕ1), . . . , γn ⇒ (p(tn) ⇐= ϕn) are the (Horn) axioms for
p (with guards γ1, . . . , γn).

Parallel coresolution upon the copredicate p

p(t)∧k
i=1 ∀Zi : (x = xσi ⇒ ϕiσi)

m

where γ1 ⇒ (p(t1) =⇒ ϕ1), . . . , γn ⇒ (p(tn) =⇒ ϕn) are the (co-Horn) axioms
for p (with guards γ1, . . . , γn).

In both rules, x is a vector of ‘new’ variables, for all 1 ≤ i ≤ k, tσi = tiσi,
γiσi ` True and Zi = var(ti, ϕi), and for all k < i ≤ n, t is not unifiable with ti.

As in section 4, co/induction can only be applied to implications with a predicate
(the first-order analog of a variable bound by µ) in the premise or a copredicate
(the first-order analog of a variable bound by ν) in the conclusion. In contrast to
co/induction as a simplification rule, we may now start a proof with the original
conjecture and generalize it later—when simplification rules are no longer appli-
cable and generalization candidates have emerged from preceding proof steps.
Restricted to the proof of bisimilarities (relations describing behavioral equality),
this incremental procedure is also known as circular coinduction [7, 11].

Incremental induction upon the predicate p

p(x) ⇒ ψ(x)∧
p(t)⇐ϕ∈AXp

(ϕ[p′/p]⇒ ψ(t))
⇑ p′(x) ⇒ δ(x)∧

p(t)⇐ϕ∈AXp
(ϕ[p′/p]⇒ δ(t))

⇑ p 6∈ ψ ∪ δ

AXp denotes the set of axioms for p. When the first rule is applied, p′ is stored
as a new copredicate with the axiom p′(x) ⇒ ψ(x). When the second rule is
applied, the axiom p′(x)⇒ δ(x) is added.

Incremental coinduction upon the copredicate p

ψ(x) ⇒ p(x)∧
p(t)⇒ϕ∈AXp

(ψ(t)⇒ ϕ[p′/p])
⇑ δ(x) ⇒ p′(x)∧

p(t)⇒ϕ∈AXp
(δ(t)⇒ ϕ[p′/p])

⇑ p 6∈ ψ ∪ δ

When the first rule is applied, p′ is stored as a new predicate with the axiom(s)
p′(x)⇐ ψ(x) and, if p is behavioral equality, Horn clauses that establish p′ as an
equivalence relation. When the second rule is applied, the axiom p′(x) ⇐ δ(x)
is added.

Co/resolution and co/induction complement each other in the way axioms work
together with conjectures in proofs. Roughly said, co/resolution applies axioms

300 Peter Padawitz

to conjectures and the proof proceeds with the modified conjectures. Conversely,
co/induction applies conjectures to axioms and establishes the modified axioms
as new conjectures.

The generalization of the above rules to several co/predicates (the first-order
analog of a fixpoint formula with several bound variables) is straightforward.

In contrast to section 4, incremental coinduction allows us to start a proof that
the stream blink is fair with the conjecture

ψ = G(F$(=0).head)$blink

and derive the factor δ = G(F$(=0).head)$1:blink of the generalized conjecture
ψ∧δ within the proof of ψ. Indeed, applying incremental coinduction to ψ yields
the new conjecture

All P s:(P = F((=0).head) & s = blink ===>
P(s) & G0(P)$tail$s) (1)

G0 is the predicate p′ created during rule application (see above). Its axiom is:

G0(z0)$z1 <=== z0 = F((=0) . head) & z1 = blink (ax1)

Six simplification steps transform (1) into:

F((=0).head)$blink & G0(F((=0).head))$(1:blink) (2)

Parallel resolution upon F and subsequent simplification steps remove the first
factor of (2). The second factor is a redex for the second rule of incremental
coinduction. Hence (2) is turned into:

All P s:(P = F((=0).head) & s = 1:blink ===>
P(s) & G0(P)$tail(s)) (3)

and a further axiom for G0 is created:

G0(z2)$z3 <=== z2 = F((=0) . head) & z3 = 1:blink (ax2)

Five simplification steps transform (3) into:

F((=0).head)$(1:blink) & G0(F((=0).head))$blink (4)

Three resolution and subsequent simplification steps turn (4) into True.

The conjecture

G(hatom$error)$s ==> G(not$hatom$heat)$s (1)

(see MICROS in section 4) can also be proved by incremental coinduction and
co/resolution. The coinduction rule adds

G0(z0)$s <=== G(hatom$error)$s & z0 = not$hatom$heat

to the set of axioms. Subsequent coresolution and simplification steps automat-
ically lead to:

All s:(G(hatom$error)$s ==> G0(not$hatom$heat)$tail$s) (2)

Algebraic Model Checking 301

(2) admits both coresolution upon G and resolution upon G0. The first step
would lead the proof into a cycle because the only axiom for G (see LTL) is
recursive (G occurs on both sides of the axiom). The axiom for G0, however, is
non-recursive—as axioms introduced by co/induction steps always are. Hence
we choose the resolution step and obtain after simplification:

All s:(G(hatom$error)$s ==> G(hatom$error)$tail$s) (3)

Coresolution upon G and subsequent simplification turn (3) into True.

6 Conclusion

We have presented three approaches to the verification of Kripke structures
based on a labelled or unlabelled transition system (also called Kripke frame) or
a mixture thereof. The first method consists in evaluating modal formulas in an
algebra of sets of states or paths. For state formulas, the evaluation procedure is
part of the simplification component of Expander2. Since fixpoint computations
are involved, model checking by evaluation is restricted to models with a finite
set of states.

The second technique uses simplification rules, which extend the modal algebra
of the first approach by expansion, induction and coinduction. This allows us to
prove also path formulas and to verify Kripke models with infinitely many states.
We have described and illustrated a strategy of applying expansion, co/induction
and other simplification rules that is complete: it terminates whenever any other
strategy would also terminate.

The third approach is based on our previous work [17, 18] on co/Horn logic where
co/Horn clauses axiomatize least resp. greatest relational fixpoints and paral-
lel co/resolution provides the counterpart of expansion in pure simplification
proofs. Co/induction as used in the second approach is replaced by incremental
co/induction, a proof rule that admits the automatic—and often inevitable—
generalization of the respective conjecture. Incremental co/induction was in-
spired by the method of circular coinduction [7, 11] that, however, is tailored to
the proof of equations.

The first method may be compared with other model checkers, which also hide
all logical inference involved from the user by turning both the Kripke structure
and the formula to be proved into some efficiently processible internal repre-
sentation and then running a deterministic algorithm that checks the formula
in a single visible step. The second and the third method work on both the
Kripke structure’s internal representation—if there any—and its specification
given by rewrite rules (Horn clause axioms for ->) and thus admit the treatment
of infinite-state systems. The formula to be proved, however, is processed in its
original form. With the second method, the proof goes through automatically—
provided that co/inductive subconjectures appear as suitable implications and

302 Peter Padawitz

generalizations are not needed (see section 4). Similar co/induction rules were
implemented in Isabelle [6, 24], but their use needs manual control. PVS [10, 12]
and CLAM [5] also admit coinduction, but—like circular coinduction (see sec-
tion 5)—only for proving bisimilarities. Manual control is needed for our third
method, but this is offset by more general co/induction redices and the possibil-
ity to generalize co/inductive conjectures during proof construction.

If proof assistants for Kripke structures were put on a line, starting from the
most efficient to the most powerful ones, model checkers would occupy one end
and established theorem provers the other. Our methods distribute over the
whole line and their integration in Expander2 shows that model checking and
(modal-)theorem proving can be performed simultaneously.

More and greater examples can be found in [23] and the Examples directory of
Expander2. We are also about to integrate inductive techniques such as those for
reasoning about systems communicating between a varying number of processes
[3, 4]. Last not least, the blink example should indicate the actual goal of our
research on model checking, namely to adapt its techniques to the more general
ones used for proving properties of co/algebraic data types.

References

[1] J. van Benthem, J. Bergstra, Logic of Transition Systems, J. Logic, Language
and Information 3 (1995) 247-283

[2] C. Cirstea, A. Kurz, D. Pattinson, L. Schröder, Y. Venema, Modal Logics are
Coalgebraic, The Computer Journal, to appear

[3] E.M. Clarke, O. Grumberg, S. Jha, Verification of Parameterized Networks, ACM
TOPLAS 19 (1997) 726-750

[4] E.M. Clarke, O. Grumberg, D.A. Peled, Model Checking, The MIT Press 1999
[5] L.A. Dennis, A. Bundy, I. Green, Making a productive use of failure to generate

witnesses for coinduction from divergent proof attempts, Annals of Mathematics
and Artificial Intelligence 29, Springer (2000) 99-138

[6] J. Frost, A Case Study of Co-induction in Isabelle, Report, Computer Labora-
tory, University of Cambridge 1995

[7] J. Goguen, K. Lin, G. Rosu, Conditional Circular Coinductive Rewriting with
Case Analysis, Proc. WADT’02, Springer LNCS 2755 (2003) 216-232

[8] H. P. Gumm, Universal Coalgebras and their Logics, AJSE-Mathematics, to ap-
pear

[9] J. Goguen, G. Malcolm, A Hidden Agenda, Theoretical Computer Science 245
(2000) 55-101

[10] H. Gottliebsen, Co-inductive Proofs for Streams in PVS, Report, Queen Mary,
University of London 2007

[11] D. Hausmann, T. Mossakowski, L. Schröder, Iterative Circular Coinduction for
CoCasl in Isabelle/HOL, Proc. FASE’05, Springer LNCS 3442 (2005) 341-356

[12] U. Hensel, B. Jacobs, Coalgebraic Theories of Sequences in PVS, J. Logic and
Computation 9 (1999) 463-500

[13] M. Huth, M. Ryan, Logic in Computer Science: Modelling and Reasoning about
Systems, 2nd Ed. Cambridge University Press 2004

Algebraic Model Checking 303

[14] B. Jacobs, J. Rutten, A Tutorial on (Co)Algebras and (Co)Induction, EATCS
Bulletin 62 (1997) 222-259

[15] A. Kurz, Specifying Coalgebras with Modal Logic, Theoretical Computer Science
260 (2001) 119-138

[16] Z. Manna, Mathematical Theory of Computation, McGraw-Hill 1974
[17] P. Padawitz, Proof in Flat Specifications, in: Algebraic Foundations of Systems

Specification, IFIP State-of-the-Art Report, Springer (1999) 321-384
[18] P. Padawitz, Swinging Types = Functions + Relations + Transition Systems,

Theoretical Computer Science 243 (2000) 93-165
[19] P. Padawitz, Dialgebraic Specification and Modeling, draft, fldit-www.cs.tu-

dortmund.de/∼peter/Dialg.pdf
[20] P. Padawitz, Expander2: A Formal Methods Presenter and Animator, fldit-

www.cs.tu-dortmund.de/∼peter/Expander2.html
[21] P. Padawitz, Expander2: Towards a Workbench for Interactive Formal Reason-

ing, in: Formal Methods in Software and Systems Modeling: Essays Dedicated
to Hartmut Ehrig, Springer LNCS 3393 (2005) 236-258

[22] P. Padawitz, Expander2: Program verification between interaction and automa-
tion, Proc. 15th Workshop on Functional and (Constraint) Logic Programming,
Elsevier ENTCS 177 (2007) 35-57

[23] P. Padawitz, Algebraic Model Checking and more, slides in German, fldit-
www.cs.tu-dortmund.de/∼peter/Haskellprogs/CTL.pdf

[24] L. C. Paulson, Mechanizing Coinduction and Corecursion in Higher-Order Logic,
J. Logic and Computation 7 (1997) 175-204

[25] J. Rutten, Universal Coalgebra: A Theory of Systems, Theoretical Computer
Science 249 (2000) 3-80

[26] C. Stirling, Modal and Temporal Logics, in: Handbook of Logic in Computer
Science, Clarendon Press (1992) 477-563

. .

Prof. Dr. Peter Padawitz

Fakultät für Informatik
Technische Universtität Dortmund
D-44221 Dortmund (Germany)

From 1976 to 1982, Peter Padawitz was a colleague of Hans-Jörg Kreowski
at TU Berlin. Due to their common interest in algebraic specification, they
are coauthors of several publications and continued to meet at various occa-
sions, e.g., the meetings of the ifip Working Group 1.3 (Foundations of System
Specification) and the WADT conferences.

. .

FIB

SUC

SUC

⊇ SUC

SUC

⊆

+

SUCFIB

SUC FIBSUC

+

FIB FIB

SUC

SUC

0

⇒
C

+

FIB

SUC

SUC

0

⇒
E

+

+

FIB

SUC FIB

0

Checking Graph-Transformation Systems

for Confluence⋆

(Extended Abstract)

Detlef Plump

Abstract. In general, it is undecidable whether a terminating graph-
transformation system is confluent or not. We introduce the class of cov-
erable hypergraph-transformation systems and show that confluence is
decidable for coverable systems that are terminating. Intuitively, a sys-
tem is coverable if its typing allows to extend each critical pair with
a non-deletable context that uniquely identifies the persistent nodes
of the pair. The class of coverable systems includes all hypergraph-
transformation systems in which hyperedges can connect arbitrary se-
quences of nodes, and all graph-transformation systems with a sufficient
number of unused edge labels.

1 Introduction

Confluent sets of graph-transformation rules can be executed without back-
tracking since all terminating derivations produce the same result for a given
input graph. Applications of confluence include the efficient recognition of graph
classes by graph reduction [1, 5, 3], the parsing of languages defined by graph
grammars [7, 15], and the deterministic input/output behaviour of programs in
graph-transformation languages such as AGG [16], FUJABA [11], GrGen [8] or
GP [14].

In the settings of string and term rewriting, confluence is decidable for ter-
minating systems [6, 2, 4]: one computes all critical pairs t ← s → u of rewrite
steps and checks whether t and u are joinable in that they reduce to a common
string resp. term. In contrast, confluence is undecidable in general for terminating
graph-transformation systems [13]. The problem is, in brief, that the joinability
of all critical pairs need not imply confluence of a system. To guarantee conflu-
ence, one has to impose extra conditions on the joining derivations, leading to
the notion of a strongly joinable critical pair. However, strong joinability of all
critical pairs is not a necessary condition for confluence and hence, in general,
cannot be used to decide confluence.

In this paper, we introduce coverable hypergraph-transformation systems and
show that confluence is decidable for coverable systems that are terminating.
Intuitively, a system is coverable if its typing allows to extend each critical pair
with a non-deletable context—a cover—that uniquely identifies the persistent
nodes of the pair. We give a decision procedure for confluence that processes
each extended critical pair Γ̂ : Û1 ⇐ Ŝ ⇒ Û2 by reducing Û1 and Û2 to normal

⋆ Dedicated to Hans-Jörg Kreowski on the occasion of his 60th birthday.

F. Drewes, A. Habel, B. Hoffmann, D. Plump (Eds.): Manipulation of Graphs, Algebras and Pictures.
Essays Dedicated to Hans-Jörg Kreowski on the Occasion of His 60th Birthday, pp. 305–320, 2009.

306 Detlef Plump

forms X1 and X2, and checking whether X1 and X2 are isomorphic. If this is
the case, then the critical pair underlying Γ̂ is strongly joinable; otherwise, a
counterexample to confluence has been found.

Roughly speaking, a cover for a critical pair can be constructed if the sig-
nature of the hypergraph-transformation system under consideration contains
(hyper-)edge labels that do not occur in rules and that can be used to connect
the persistent nodes of the critical pair by edges. Such a cover cannot be deleted
by rules. Moreover, there must be a unique surjective morphism from the cover
to each of its images under a graph morphism. We give different conditions
under which covers can be constructed and show, in particular, that the class
of coverable systems includes all hypergraph-transformation systems in which
hyperedges can connect arbitrary sequences of nodes.

The rest of this paper is organised as follows. The next section recalls some
terminology for binary relations and defines hypergraphs and their morphisms.
Section 3 reviews the double-pushout approach to (hyper-)graph transformation
in a setting where rules are matched injectively and can have non-injective right-
hand morphisms. We define confluence of hypergraph-transformation systems
and recall the fact that confluence is undecidable for terminating systems. In
Section 4 we review the role of critical pairs in establishing confluence. Section
5 introduces covers for critical pairs and coverable systems, discusses our main
result and the associated decision procedure for confluence, and presents special
cases where confluence is decidable. In Section 6, we conclude and discuss a topic
for future work.

2 Preliminaries

We recall some terminology for binary relations (consistent with [2, 4]) and define
hypergraphs and their morphisms.

2.1 Relations

Let→ be a binary relation on a set A. The inverse relation of→ is denoted by←.
We write →+ for the transitive closure of → and →∗ for the transitive-reflexive
closure of →. Two elements a, b ∈ A have a common reduct if a →∗ c ←∗ b for
some c. If a→∗ c and there is no d such that c→ d, then d is a normal form of
a.

The relation → is (1) terminating if there is no infinite sequence a1 → a2 →
a3 → . . . , (2) confluent if for all a, b and c with b←∗ a→∗ c, elements b and c
have a common reduct (see Figure 1(a)), (3) locally confluent if for all a, b and
c with b← a→ c, elements b and c have a common reduct (see Figure 1(b)).

By the following well-known result, local confluence and confluence are equiv-
alent in the presence of termination.

Lemma 1 (Newman’s Lemma [10]). A terminating relation is confluent if
and only if it is locally confluent.

Checking Graph-Transformation Systems for Confluence 307

•

• •

∗ ∗

•

∗ ∗

•

• •

•

∗ ∗

(a) confluence (b) local confluence

Fig. 1. Confluence properties

2.2 Hypergraphs

We deal with directed, labelled hypergraphs and use a simple type system where
the label of a hyperedge restricts the number of incident nodes and their labels.
A signature Σ = 〈ΣV, ΣE, Type〉 consists of a set ΣV of node labels, a set ΣE of
hyperedge labels and a mapping Type assigning to each l ∈ ΣE a set Type(l) ⊆
Σ∗

V. Unless stated otherwise, we denote by Σ an arbitrary but fixed signature
over which all hypergraphs are labelled.

A hypergraph over Σ is a system G = 〈VG, EG, markG, labG, attG〉 consisting
of two finite sets VG and EG of nodes (or vertices) and hyperedges, two labelling
functions markG : VG → ΣV and labG : EG → ΣE, and an attachment function
attG : EG → V∗G such that mark∗G(attG(e)) ∈ Type(labG(e)) for each hyper-
edge e. (The extension f∗ : A∗ → B∗ of a function f : A → B maps the empty
string to itself and a1 . . . an to f(a1) . . . f(an).) We write H(Σ) for the set of all
hypergraphs over Σ.

In pictures, nodes and hyperedges are drawn as circles and boxes, respec-
tively, with labels inside. Lines represent the attachment of hyperedges to nodes,
where numbers specify the left-to-right order in the attachment string. For ex-
ample, Figure 2 shows a hypergraph with four nodes (all labelled with •) and
three hyperedges (labelled with B and S).

S

1

2

1

B
2 3

S

1

2

Fig. 2. A hypergraph

308 Detlef Plump

A hypergraph G is a graph if each hyperedge e is an ordinary edge, that is,
if attG(e) has length two. Ordinary edges may be drawn as arrows with labels
written next to them.

Given hypergraphs G and H , a hypergraph morphism (or morphism for short)
f : G → H consists of two functions fV : VG → VH and fE : EG → EH that
preserve labels and attachment to nodes, that is, markH ◦ fV = markG, labH ◦
fE = labG and attH ◦ fE = f∗V ◦ attG. A morphism incl : G→ H is an inclusion
if inclV(v) = v and inclE(e) = e for all v ∈ VG and e ∈ EG. In this case G is
a subhypergraph of H which is denoted by G ⊆ H . Every morphism f : G→ H
induces a subhypergraph of H , denoted by f(G), which has nodes fV(VG) and
hyperedges fE(EG). Morphism f is injective (surjective) if fV and fE are injective
(surjective). If f is surjective, then H is an image of G. If f is both injective
and surjective, then it is an isomorphism. In this case G and H are isomorphic,
which is denoted by G ∼= H .

The composition of two morphisms f : G → H and g : H → M is the mor-
phism g ◦ f : G→M consisting of the composed functions gV ◦ fV and gE ◦ fE.
The composition is also written as G → H → M if f and g are clear from the
context.

A partial hypergraph morphism f : G→ H is a hypergraph morphism S → H
such that S ⊆ G. Here S is the domain of definition of f , denoted by Dom(f).

3 Graph Transformation

We briefly review the double-pushout approach to graph transformation. In our
setting, rules are matched injectively and can have non-injective right-hand mor-
phisms. (See [9] for a comparison with other variants of the double-pushout
approach.)

3.1 Rules and derivations

A rule r : 〈L← K → R〉 consists of two hypergraph morphisms with a common
domain, where K → L is an inclusion. The hypergraphs L and R are the left- and
right-hand side of r, and K is the interface. The rule is injective if the morphism
K → R is injective.

Let G and H be hypergraphs, r : 〈L ← K → R〉 a rule and f : L → G an
injective morphism. Then G directly derives H by r and f , denoted by G⇒r,f H ,
if there exist two pushouts of the following form:

L K R

G D H

f (1)

Given a set of rules R, we write G⇒R H to express that there exist r ∈ R and
a morphism f such that G⇒r,f H .

Checking Graph-Transformation Systems for Confluence 309

We refer to [13] for the definition and construction of hypergraph pushouts.
Intuitively, the left pushout corresponds to the construction of D from G by
removing the items in L −K, and the right pushout to the construction of H
from D by merging items according to K → R and adding the items in R that
are not in the image of K.

A double-pushout as in diagram (1) is called a direct derivation from G to H
and may be denoted by G⇒r,f H or just by G⇒r H or G⇒ H . A derivation
from G to H is a sequence of direct derivations G = G0 ⇒ . . . ⇒ Gn = H ,
n ≥ 0, and may be denoted by G⇒∗ H .

Given a rule r : 〈L ← K → R〉, an injective morphism f : L → G satisfies
the dangling condition if no hyperedge in EG − fE(EL) is incident to a node in
fV(VL − VK). It can be shown that, given r and f , a direct derivation as in
diagram (1) exists if and only if f satisfies the dangling condition [9].

With every derivation ∆ : G0 ⇒∗ Gn a partial hypergraph morphism can be
associated that tracks the items of G0 through the derivation: this morphism is
undefined for all items in G0 that are removed by ∆ at some stage, and maps
all other items to the corresponding items in Gn.

Definition 1 (Track morphism). Given a direct derivation G ⇒ H as in
diagram (1), the track morphism trG⇒H : G → H is the partial hypergraph
morphism defined by

trG⇒H(x) =
{

c′(c−1(x)) if x ∈ c(D),
undefined otherwise.

Here c : D → G and c′ : D → H are the morphisms in the lower row of (1) and
c−1 : c(D)→ D maps each item c(x) to x.

The track morphism of a derivation ∆ : G0 ⇒∗ Gn is defined by tr∆ = idG0

if n = 0 and tr∆ = trG1⇒∗Gn ◦ trG0⇒G1 otherwise, where idG0 is the identity
morphism on G0.

Definition 2 (Hypergraph-transformation system). A hypergraph-trans-
formation system 〈Σ,R〉 consists of a signature Σ and a set R of rules over Σ.
The system is injective if all rules in R are injective. It is a graph-transformation
system if for each label l in ΣE, all strings in Type(l) are of length two.

As graph-transformation systems are special hypergraph-transformation sys-
tems, results for the latter also apply to the former. In particular, Theorem 2,
Theorem 3 and Corollary 1 below hold for graph-transformation systems, too.

Example 1. Figure 3 shows hypergraph-transformation rules for reducing control-
flow graphs (see also [13]). The associated signature contains a single node label
• and two hyperedge labels which are graphically represented by hyperedges
formed as squares and rhombs. Instead of using numbers to represent the at-
tachment function, we use an arrow to point to the second attachment node of
a square and define the order among the links of a rhomb to be “top-left-right”.
The rules are shown in a shorthand notation where only the left- and right-hand

310 Detlef Plump

sides are depicted, the interface and the morphisms are implicitly given by the
node names x,y,z. This example will be continued as Example 2, where it is
shown that the system is confluent. ⊓⊔

seq:

x

y

⇒
y

x

while: y

x

⇒
y

x

dec1:

y

x

⇒
y

x

dec2:
y

z

x

⇒
y z

x

Fig. 3. Hypergraph-transformation system for flow-graph reduction

3.2 Independence and confluence

Two direct derivations H1 ⇐r1 G ⇒r2 H2 do not interfere with each other
if, roughly speaking, the intersection of the left-hand sides of r1 and r2 in G
consists of common interface items. If one of the rules is not injective, however,
an additional injectivity condition is needed. For i = 1, 2, let ri denote a rule
〈Li ← Ki → Ri〉.
Definition 3 (Independence). Direct derivations H1 ⇐r1 G ⇒r2 H2 as in
Figure 4 are independent if there are morphisms L1 → D2 and L2 → D1 such
that the following holds:

Commutativity: L1 → D2 → G = L1 → G and L2 → D1 → G = L2 → G.
Injectivity: L1 → D2 → H2 and L2 → D1 → H1 are injective.

If r1 and r2 are injective, the direct derivations of Figure 4 are indepen-
dent if and only if the intersection of the two left-hand sides coincides with the
intersection of the two interfaces.

Lemma 2 (Independence for injective rules). Let r1 and r2 be injective
rules. Then direct derivations H1 ⇐r1, g1 G ⇒r2, g2 H2 are independent if and
only if g1(L1) ∩ g2(L2) ⊆ g1(K1) ∩ g2(K2).

Checking Graph-Transformation Systems for Confluence 311

R1 K1 L1 L2 K2 R2

H1 D1 GG D2 H2

Fig. 4. Independent direct derivations

To define confluence, we consider hypergraph transformation “up to isomor-
phism”, that is, the transformation of isomorphism classes of hypergraphs. Given
a hypergraph G, we denote by [G] the isomorphism class {G′ | G′ ∼= G}.
Definition 4 (Transformation modulo isomorphism). Given a hypergraph-
transformation system 〈Σ,R〉, the relation⇒R,∼= on isomorphism classes of hy-
pergraphs over Σ is defined by: [G]⇒R,∼= [H] if there are hypergraphs G′ and H ′

such that G ∼= G′ ⇒R H ′ ∼= H . We refer to ⇒R,∼= as hypergraph-transformation
modulo isomorphism.

By pushout properties, we have [G] ⇒R,∼= [H] if and only if G ⇒R H . But
[G] ⇒∗

R,∼= [H] need not imply G ⇒∗
R H since G and H may be distinct in the

case [G] = [H]. As a consequence, confluence of⇒R,∼= need not imply confluence
of ⇒R.

Definition 5 (Confluence of 〈Σ,R〉). A hypergraph-transformation system
〈Σ,R〉 is confluent (locally confluent) if the relation ⇒R,∼= is confluent (locally
confluent).

By the following lemma, confluence and local confluence of ⇒R,∼= are only
slightly more general than the corresonding properties of⇒R: joining derivations
need not meet in a common graph but in isomorphic graphs.

Lemma 3 ([13]). Let 〈Σ,R〉 be a hypergraph-transformation system.

(1) 〈Σ,R〉 is confluent if and only if for all G, G1, G2 ∈ H(Σ), G1 ⇐∗
R G ⇒∗

R
G2 implies that there are H1, H2 ∈ H(Σ) such that G1 ⇒∗

R H1
∼= H2 ⇐∗

R
G2.

(2) 〈Σ,R〉 is locally confluent if and only if for all G, G1, G2 ∈ H(Σ), G1 ⇐R
G ⇒R G2 implies that there are H1, H2 ∈ H(Σ) such that G1 ⇒∗

R H1
∼=

H2 ⇐∗
R G2.

A system 〈Σ,R〉 is terminating if ⇒R,∼= is terminating. Since [G]⇒R,∼= [H]
if and only if G⇒R H , we have that 〈Σ,R〉 is terminating if and only if ⇒R is
terminating. The following result follows directly from Newman’s Lemma.

Lemma 4. A terminating hypergraph-transformation system is confluent if and
only if it is locally confluent.

312 Detlef Plump

In general, confluence is undecidable even for terminating graph-transformation
systems. The precise result is as follows.

Theorem 1 ([13]). The following problem is undecidable in general:

Instance: An injective and terminating graph-transformation system 〈Σ,R〉 such
that ΣV is a singleton and ΣE and R are finite.
Question: Is 〈Σ,R〉 confluent?

Note that since graph-transformation systems are special hypergraph-trans-
formation systems, the result also applies to the latter.

4 Critical Pairs

Critical pairs consist of direct derivations of minimal size that are not indepen-
dent. We recall their definition from [12, 13].

Definition 6 (Critical pair). Let ri : 〈Li ← Ki → Ri〉 be rules, for i = 1, 2.
A pair of direct derivations U1 ⇐r1,g1 S ⇒r2,g2 U2 is a critical pair if

(1) S = g1(L1) ∪ g2(L2) and
(2) the steps are not independent.

Moreover, we require g1 6= g2 in case r1 = r2.

Two critical pairs U1 ⇐r1,g1 S ⇒r2,g2 U2 and U ′1 ⇐r1,g′1 S′ ⇒r2,g′2 U ′2 are
isomorphic if there is an isomorphism f : S → S′ such that for i = 1, 2, g′i = f◦gi.
In the sequel, we equate isomorphic critical pairs so that condition (1) guarantees
that a finite set of rules has only a finite number of critical pairs.

Given a critical pair Γ : U1 ⇐ S ⇒ U2, let PersistΓ be the subhypergraph of
S consisting of all nodes v such that both trS⇒U1(v) and trS⇒U2(v) are defined.

Definition 7 (Joinability). Let 〈Σ,R〉 be a hypergraph-transformation sys-
tem. A critical pair Γ : U1 ⇐ S ⇒ U2 is joinable if there are derivations
Ui ⇒∗

R Xi, for i = 1, 2, and an isomorphism f : X1 → X2. Moreover, Γ is
strongly joinable if, in addition, for each node v in PersistΓ ,

(1) trS⇒U1⇒∗X1(v) and trS⇒U2⇒∗X2(v) are defined and
(2) fV(trS⇒U1⇒∗X1(v)) = trS⇒U2⇒∗X2(v).

In [13] it is shown that a hypergraph-transformation system is locally con-
fluent if all its critical pairs are strongly joinable. Combining this result with
Newman’s Lemma yields a sufficient condition for the confluence of terminating
systems.

Theorem 2 ([13]). A terminating hypergraph-transformation system is conflu-
ent if all its critical pairs are strongly joinable.

Example 2. The hypergraph-transformation system of Figure 3 is terminating
since each of the rules reduces the size of a hypergraph it is applied to. Figure
5 shows that all critical pairs of the system are strongly joinable. (We indicate
track morphisms by node names.) Thus, by Theorem 2, the system of Figure 3
is confluent. ⊓⊔

Checking Graph-Transformation Systems for Confluence 313

w

y

z

⇐
seq

w

x

y

z

⇒
seq

w

x

z

x

z
⇐
seq

x

y

z

⇒
seq

x

y

w

y

z

⇐
while

⇒
seq

x y

w

z

⇒
dec2

⇐
whi

le

x z

w

z

w

Fig. 5. The critical pairs of the system of Figure 3

314 Detlef Plump

5 Coverable Systems

In general, by Theorem 1, confluence of a terminating hypergraph-transformation
system 〈Σ,R〉 cannot be decided by checking whether all critical pairs are
strongly joinable. For, suppose we encounter a critical pair U1 ⇐ S ⇒ U2 that
is joinable but not strongly joinable, that is, there are hypergraphs X1 and X2

such that U1 ⇒∗
R X1

∼= X2 ⇐∗
R U2 but no isomorphism X1 → X2 is compatible

with the track morphisms trS⇒Ui⇒∗Xi . Then, assuming that all other critical
pairs are joinable, 〈Σ,R〉 may or may not be confluent. This is demonstrated
by the following example.

Example 3. Consider the graph-transformation system 〈Σ,R〉 consisting of sin-
gletons ΣV and ΣE, and the following rules:

r1 :
x y

⇒
x y

r2 :
x

⇒
x

r3 :
x y

⇒
x y

This system is terminating as every rule application reduces the number of edges.
It is also confluent since whenever H1 ⇐∗

R G ⇒∗
R H2, there are derivations

H1 ⇒∗
R H ′

1
∼= H ′

2 ⇐∗
R H2 where H ′

1 and H ′
2 consist of |VG| nodes and either

no edges (if G is loop-free) or one loop and no other edges. However, despite
confluence, the critical pair

x y
⇐
r1 x y

⇒
r1 x y

is not strongly joinable because the outer graphs are normal forms1 and the iso-
morphism between them is not compatible with the track morphisms as required
by condition (2) of Definition 7.

Thus, we cannot report non-confluence if we encounter a joinable critical pair
that is not strongly joinable. On the other hand, joinability of all critical pairs
does not guarantee confluence. Suppose, for instance, that we add an edge label
a to ΣE. Then all critical pairs are still joinable but confluence breaks down, as

1 A graph G is a normal form with respect to a system 〈Σ,R〉 if there is no graph H
such that G ⇒R H .

Checking Graph-Transformation Systems for Confluence 315

witnessed by the following counterexample:

a
⇐
r1 a

⇒
r1 a

⊓⊔

This example also shows that signature extensions need not preserve conflu-
ence. In particular, hyperedge labels that do not occur in rules turn out to be
crucial for ensuring that local confluence implies strong joinability of all critical
pairs.

Given a hyperedge e in a hypergraph G, the pair 〈labG(e), mark∗G(attG(e))〉
is the profile of e. If R is a set of hypergraph-transformation rules, we write
Prof(R) for the set of all hyperedge profiles occurring in R and Mark(R) for the
set of all node labels occurring in R.

Definition 8 (GR and G⊖). Let 〈Σ,R〉 be a hypergraph-transformation sys-
tem and G ∈ H(Σ). We define subhypergraphs GR and G⊖ as follows:

(1) GR consists of all hyperedges with profile in Prof(R) and all nodes with
label in Mark(R).

(2) G⊖ consists of all hyperedges in EG − EGR , all attachment nodes of these
hyperedges, and all nodes in VG −VGR .

It follows that G = GR∪G⊖, where GR and G⊖ may share some attachment
nodes of edges in G⊖. These shared nodes cannot be removed by any rule in R,
by the dangling condition for direct derivations.

Definition 9 (Cover). Given a critical pair Γ of a hypergraph-transformation
system 〈Σ,R〉, a cover for Γ is a hypergraph C ∈ H(Σ) such that

(1) PersistΓ ⊆ C,
(2) C⊖ = C, and
(3) for every image C̃ of C, there is a unique surjective morphism C → C̃.

Remarks.

1. By condition (2), the profiles of the hyperedges in C are distinct from those
in Prof(R). Also, since all node labels in PersistΓ belong to Mark(R), (1)
and (2) imply that each node in PersistΓ is incident to some hyperedge in
C.

2. Intuitively, C uniquely identifies the nodes in PersistΓ in that for every image
C̃ of C, each node in PersistΓ corresponds to a unique node in C̃. Moreover,
the rules in R can affect C at most by merging some nodes in PersistΓ .

3. By condition (3), C does not possess nontrivial automorphisms. That is, the
identity idC : C → C is the only isomorphism on C.

316 Detlef Plump

Example 4. Consider a critical pair Γ : U1 ⇐ S ⇒ U2.

1. If PersistΓ = ∅, then the empty hypergraph is a cover for Γ .
2. Let PersistΓ consist of a single node v with label m. If there is some l ∈

ΣE such that m ∈ Type(l) and 〈l, m〉 6∈ Prof(R), then the hypergraph C
consisting of v and an hyperedge e with labC(e) = l and attC(e) = v is a
cover for Γ . Alternatively, if mm ∈ Type(l) and 〈l, mm〉 6∈ Prof(R), then
the graph C consisting of v and an edge e with labC(e) = l and attC(e) = vv
is a cover for Γ .

3. Let PersistΓ consist of nodes v1, . . . , vn with n ≥ 2 and markS(vi) = mi,
for i = 1, . . . , n. If there is l ∈ ΣE such that m1 . . .mn ∈ Type(l) and
〈l, m1 . . . mn〉 6∈ Prof(R), then C consisting of v1, . . . , vn and an hyperedge
e with labC(e) = l and attC(e) = v1 . . . vn is a cover for Γ . Alternatively,
suppose that there are distinct labels l1, . . . , ln−1 ∈ ΣE such that for i =
1, . . . , n− 1, mimi+1 ∈ Type(li) and 〈li, mimi+1〉 6∈ Prof(R). Then a graph
cover C for Γ is given by v1, . . . , vn and edges e1, . . . , en−1 where for i =
1, . . . , n− 1, labC(ei) = li and attC(ei) = vivi+1. (For instance, the critical
pair discussed in Example 3 can be covered in this way after the edge label
a with Type(a) = {••} has been added to ΣE.) ⊓⊔
Figure 6 shows the alternative covers of Example 4.3 for a critical pair with n

persistent nodes. Note that l1, . . . , ln−1 need to be distinct as otherwise condition
(3) of Definition 9 may be violated.

l
1

m1

. . .

. . .

n

mn m1 m2
l1 l2 . . .

ln−1
mn

Fig. 6. Alternative covers for a critical pair with n persistent nodes

Definition 10 (Coverable system). A hypergraph-transformation system is
coverable if for each of its critical pairs there exists a cover.

Our main result is that for coverable systems, local confluence is equivalent
to the strong joinability of all critical pairs.

Theorem 3. A coverable hypergraph-transformation system is locally confluent
if and only if all its critical pairs are strongly joinable.

Theorem 2 establishes the “if”-direction of this result. We outline the proof
for the converse, which is based on extending critical pairs with their covers.
Consider a critical pair Γ : U1 ⇐ S ⇒ U2 and a cover C for Γ such that S ∩C =
PersistΓ . Then there are extended direct derivations Û1 ⇐ Ŝ ⇒ Û2, where
Ŝ = S ∪ C. By local confluence, there are hypergraphs X1 and X2 such that

Checking Graph-Transformation Systems for Confluence 317

Û1 ⇒∗ X1
∼= X2 ⇐∗ Û2. The derivations Ŝ ⇒ Ûi ⇒∗ Xi, i = 1, 2, preserve

the nodes in PersistΓ because the latter are incident to edges in C . Hence,
after taking the cover C off, one obtains restricted derivations S ⇒ Ui ⇒∗ Xi,
i = 1, 2, that satisfy condition (1) of Definition 7. Moreover, one can show that
X1 = XR

1
∼= XR

2 = X2. Restricting the morphisms trbS⇒bUi⇒∗Xi
, i = 1, 2, to Ŝ⊖

and X⊖
i yields surjective morphisms ti : Ŝ⊖ → X⊖

i . Also, given an isomorphism
f : X1 → X2, its restriction f⊖ : X⊖

1 → X⊖
2 is an isomorphism. Hence both

f⊖ ◦ t1 : Ŝ⊖ → X⊖
2 and t2 : Ŝ⊖ → X⊖

2 are surjective morphisms. Since Ŝ⊖ = C,
condition (3) of Definition 9 implies f ◦ t1 = t2. It then follows that condition
(2) of Definition 7 is satisfied. Thus Γ is strongly joinable.

Assumption. For the rest of this section, we consider hypergraph-transformation
systems 〈Σ,R〉 in which ΣV, ΣE and R are finite.

As a consequence of Theorem 3, confluence of terminating coverable systems
is equivalent to the strong joinability of all critical pairs. This allows to decide
confluence by testing for the latter property.

Corollary 1. Confluence is decidable for coverable hypergraph-transformation
systems that are terminating.

Given a terminating and coverable system, Algorithm 1 checks whether all
critical pairs are strongly joinable by extending critical pairs with covers and
then testing for simple joinability of all “covered pairs”. By the proof of Theo-
rem 3, joinability of a covered pair implies strong joinability of the underlying
critical pair. Given a covered pair Γ̂ : Û1 ⇐ Ŝ ⇒ Û2, one nondeterministically
computes a normal form Xi of Ûi, for i = 1, 2, and checks whether X1 and X2

are isomorphic. If they are, then the critical pair Γ underlying Γ̂ is strongly
joinable, otherwise a counterexample to confluence has been found.

Algorithm 1 Decision procedure for confluence
Input: a terminating and coverable hypergraph-transformation system 〈Σ,R〉 and its

set of critical pairs CP
for all Γ : U1 ⇐r1,g1 S ⇒r2,g2 U2 in CP do
{let C be a cover for Γ such that S ∩ C = PersistΓ }bS := S ∪ C
{for i = 1, 2, let bgi be the extension of gi to bS}
for i = 1 to 2 do

construct a derivation bS ⇒ri,bgi
bUi ⇒∗

R Xi such that Xi is a normal form
end for
if X1 6∼= X2 then

return “non-confluent”
end if

end for
return “confluent”

318 Detlef Plump

Example 5. Consider again the hypergraph-transformation system of Example
1. Suppose that its typing allows a rhomb hyperedge to have two attachment
nodes, besides the version with three attachment nodes used in the rules. Then
each critical pair of this system can be covered and Algorithm 1 determines that
the system is confluent. For example, Figure 7 shows the extended version of the
bottom critical pair of Figure 5 and its joining derivations.

The graph-transformation system of Example 3, on the other hand, is not
coverable. It becomes coverable after the edge label a has been added to the sig-
nature, when Algorithm 1 determines that the resulting system is non-confluent.

⊓⊔

w

y

z

1

2

⇐
while

⇒
seq

x y

1

2

w

z

⇒
dec2

⇐
whi

le

x z

1

2

w

z

w
1

2

Fig. 7. An extended critical pair of the system of Figure 3

Particular classes of hypergraph- and graph-transformation systems for which
confluence is decidable can be obtained by specialising Corollary 1 with the
conditions given in Example 4.3 or with similar conditions. For instance, in
the case of graph transformation, another sufficient condition for terminating
systems is that for each critical pair Γ with persistent nodes v1, . . . , vn, there are
distinct labels l1, . . . , ln ∈ ΣE such that for i = 1, . . . , n, markS(vi)markS(vi) ∈
Type(li) and 〈li, markS(vi)markS(vi)〉 6∈ Prof(R). In this case a cover can be
constructed by attaching to v1, . . . , vn loops labelled with l1, . . . , ln.

In the case of hypergraph transformation, a sufficient condition for the decid-
ability of confluence (of terminating systems) can be given purely in terms of the
signature Σ. We call a signature Σ universal if for each l ∈ ΣE, Type(l) = Σ∗

V.

Corollary 2. Confluence is decidable for terminating hypergraph-transformation
systems with universal signatures.

For, if hyperedges can have arbitrary sequences of attachment nodes, we can
cover critical pairs with hyperedges that have longer attachment sequences than
any hyperedges in rules by using repeated nodes in the attachment.

Checking Graph-Transformation Systems for Confluence 319

6 Conclusion

Confluence is an undecidable property of terminating graph- and hypergraph-
transformation systems. We have identified coverable systems as a subclass that
comes with a decision procedure for confluence. The class is nontrivial and prop-
erly includes all hypergraph-transformation systems with universal signatures.

A topic for future work is to extend Algorithm 1 such that it decides conflu-
ence for certain non-coverable systems. The idea is to add to the signature of an
input system a hyperedge label whose typing allows to cover all critical pairs.
One then runs the algorithm as before: if all extended pairs are joinable, one
can conclude that the underlying critical pairs are strongly joinable and hence
that the system is confluent. However, if a non-joinable extended pair is encoun-
tered whose underlying critical pair is joinable, then the procedure has to give
up because the input system may or may not be confluent.

References

1. Stefan Arnborg, Bruno Courcelle, Andrzej Proskurowski, and Detlef Seese. An
algebraic theory of graph reduction. Journal of the ACM, 40(5):1134–1164, 1993.

2. Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cambridge
University Press, 1998.

3. Adam Bakewell, Detlef Plump, and Colin Runciman. Specifying pointer structures
by graph reduction. In Applications of Graph Transformations With Industrial
Relevance (AGTIVE 2003), Revised Selected and Invited Papers, volume 3062 of
Lecture Notes in Computer Science, pages 30–44. Springer-Verlag, 2004.

4. Marc Bezem, Jan Willem Klop, and Roel de Vrijer, editors. Term Rewriting Sys-
tems. Cambridge University Press, 2003.

5. Hans L. Bodlaender and Babette van Antwerpen-de Fluiter. Reduction algorithms
for graphs of small treewidth. Information and Computation, 167(2):86–119, 2001.

6. Ronald V. Book and Friedrich Otto. String-Rewriting Systems. Texts and Mono-
graphs in Computer Science. Springer-Verlag, 1993.

7. Rodney Farrow, Ken Kennedy, and Linda Zucconi. Graph grammars and global
program data flow analysis. In Proc. 17th Annual Symposium on Foundations of
Computer Science, pages 42–56. IEEE, 1976.

8. Rubino Geiß, Gernot Veit Batz, Daniel Grund, Sebastian Hack, and Adam M.
Szalkowski. GrGen: A fast SPO-based graph rewriting tool. In Proc. International
Conference on Graph Transformation (ICGT 2006), volume 4178 of Lecture Notes
in Computer Science, pages 383–397. Springer-Verlag, 2006.

9. Annegret Habel, Jürgen Müller, and Detlef Plump. Double-pushout graph trans-
formation revisited. Mathematical Structures in Computer Science, 11(5):637–688,
2001.

10. M.H.A. Newman. On theories with a combinatorial definition of “equivalence”.
Annals of Mathematics, 43(2):223–243, 1942.

11. Ulrich Nickel, Jörg Niere, and Albert Zündorf. The FUJABA environment. In
Proc. International Conference on Software Engineering (ICSE 2000), pages 742–
745. ACM Press, 2000.

320 Detlef Plump

12. Detlef Plump. Hypergraph rewriting: Critical pairs and undecidability of conflu-
ence. In Ronan Sleep, Rinus Plasmeijer, and Marko van Eekelen, editors, Term
Graph Rewriting: Theory and Practice, chapter 15, pages 201–213. John Wiley,
1993.

13. Detlef Plump. Confluence of graph transformation revisited. In Aart Middeldorp,
Vincent van Oostrom, Femke van Raamsdonk, and Roel de Vrijer, editors, Pro-
cesses, Terms and Cycles: Steps on the Road to Infinity: Essays Dedicated to Jan
Willem Klop on the Occasion of His 60th Birthday, volume 3838 of Lecture Notes
in Computer Science, pages 280–308. Springer-Verlag, 2005.

14. Detlef Plump. The graph programming language GP. In Algebraic Informatics,
Third International Conference (CAI 2009), Revised Selected and Invited Papers,
volume 5725 of Lecture Notes in Computer Science. Springer-Verlag, 2009. To
appear.

15. Jan Rekers and Andy Schürr. Defining and parsing visual languages with layered
graph grammars. Journal of Visual Languages and Computing, 8(1):27–55, 1997.

16. Gabriele Taentzer. AGG: A graph transformation environment for modeling and
validation of software. In Applications of Graph Transformations With Industrial
Relevance (AGTIVE 2003), Revised Selected and Invited Papers, volume 3062 of
Lecture Notes in Computer Science, pages 446–453. Springer-Verlag, 2004.

. .

Dr. Detlef Plump

Department of Computer Science
The University of York
York YO10 5DD (United Kingdom)
det@cs.york.ac.uk
http://www.cs.york.ac.uk/˜det

Detlef Plump did his diploma thesis on jungle evaluation with Hans-Jörg Kre-
owski in 1986. He was a member of his group from 1991 to 2000. As a research
associate, he worked in the DFG-funded project Jungle Rewriting. Supervised
by Hans-Jörg Kreowski, he received his doctoral degree in 1993. He obtained
habilitation in 1999, and moved to the University of York in 2000.

. .

1

2

C =⇒

1

2

D

=⇒

1

2

D

D =⇒

1

2

D

D

D

=⇒∗

1

2

D

D

D

...

D
. . .

=⇒∗

1

2

d

d

d

...

d

c
c

c

c

. . .

Refactoring Object-Oriented Systems

Christoph Schulz, Michael Löwe, and Harald König

Abstract. Refactoring of information systems is hard, for two reasons.
On the one hand, large databases exist which have to be adjusted. On
the other hand, many programs access that data. These programs all
have to be migrated in a consistent manner such that their semantics
does not change. It cannot be relied upon, however, that no running
processes exist during such a migration. Consequently, a refactoring of an
information system needs to take care of the migration of data, programs,
and processes. This paper introduces a model for complete object-oriented
systems, describing the schema level with classes, associations, operations,
and inheritance as well as the instance level with objects, links, methods,
and messages. Methods are expressed by special double-pushout graph
transformations. Homomorphisms are used for the typing of the instance
level as well as for the description of refactorings which specify the
addition, folding, and unfolding of schema elements. Finally, a categorial
framework is presented which allows to derive instance migrations from
schema transformations in such a way that programs and processes to
the old schema are correctly migrated into programs and processes to the
new schema.

1 Introduction

During the engineering and use of information systems, data and software undergo
many modifications. These modifications can be divided into two categories. The
first category contains all modifications that have a direct and externally visible
impact on the functionality of the software or on the information content of
the database. The second category consists of modifications which only prepare
modifications of the first category and which, by themselves, do not lead to
changes in the behaviour of the software or in the meaning of the data under
transformation. Modifications of the second category are called “refactorings” [1].
They provide a major method to quickly adapt software to constantly changing
requirements.

Refactorings are expected to be applied multiple times in different but similar
situations. This is comparable to design patterns in software engineering which
have emerged in the last twenty years [2, 3]. Consequently, a suitably general
specification of a refactoring is necessary. This, however, requires a certain level of
abstraction for the software and the data to be transformed. Such an abstraction
is often called schema or model and describes important structural aspects of
the data and software, which are instances of, or typed in, this schema. Today,
the “object-oriented view of life” dominates the field of software engineering.
Therefore, models are typically object-oriented and try to capture the structure
by grouping similar objects into classes and describing relations between them
by various types of associations.

F. Drewes, A. Habel, B. Hoffmann, D. Plump (Eds.): Manipulation of Graphs, Algebras and Pictures.
Essays Dedicated to Hans-Jörg Kreowski on the Occasion of His 60th Birthday, pp. 321–340, 2009.

322 Christoph Schulz, Michael Löwe, Harald König

Two typical object-oriented refactorings are “Introduce a new superclass”
(Fig. 1) and “Move the origin of an association from a subclass to a superclass”,
as shown in Fig. 2. A combined application of these two refactorings on the
schema in Fig. 3a could be used to prepare the model for an extension by an
additional subclass of Customer, e. g. CorporateCustomer (Fig. 3b and 3c).1

Sub

(a) before

Sub

Super

(b) after

Fig. 1: Refactoring “Introduce a new superclass”

Sub

Super

Target

association

(a) before

Sub

Super

Target
association

(b) after

Fig. 2: Refactoring “Move the origin of an association from a subclass to a
superclass”

It is important to consider the consequences of a refactoring. Obviously, the
more general the structures are which are about to be transformed, the more
instances are likely to be affected. Changing a data schema may not only require
the data typed in this schema to be adjusted, but may also affect the software
which uses the schema structures to access and manipulate the data. Changing a
software model may have no consequences on the data but will probably influence
programs (which can be considered implementations of the software model) and
processes (which are programs under execution). We call the instance changes
that follow from a model refactoring the migration induced by that refactoring.
For the time being, little has been written about how refactoring data models
results in migrations of dependent programs, and even less has been written

1 All class diagrams are specified in the UML [4].

Refactoring Object-Oriented Systems 323

PrivateCustomer Stringname

(a) before refactoring

PrivateCustomer

Customer

String
name

(b) after refactoring

CorporateCustomer PrivateCustomer

Customer

String
name

(c) final aim

Fig. 3: Refactoring an exemplary object-oriented model

about refactoring and induced migration of whole systems, which we define to
consist of data, programs, and processes, all typed in the same schema.2

This paper contributes to this topic by providing a graph-like mathemat-
ical model which allows to specify object-oriented systems as well as schema
refactorings. To describe data together with their schema, graph structures con-
forming to the model are used. Nodes of such graph structures represent classes
(schema) or objects (instance), edges represent associations (schema) or links (in-
stance). Homomorphisms between such graph structures express typings, (parts
of) refactorings, and migrations.

These graph structures can be used to describe software models and pro-
cesses, as well: An operation is simply a special node within the graph structure
representing the schema, and edges originating from an operation constitute
parameters. Analogously, at the instance level, messages and arguments are
special nodes and edges, which are typed in operations and parameters at the
schema level by an appropriate homomorphism. In the mathematical description
of the model, the data and software constructs are separated through the use of
special predicates.

Programs are somewhat different, as they do not specify a single state but
rather a state transition which is performed when the program is executed.
In this paper, programs are considered to consist of a (possibly large) set of
methods, where each method describes a single state transition. Each such
transition speficies how a message of a certain type is processed when all necessary
preconditions are met; examples are assignments, method calls, or evaluation of
expressions. As program states are described by (parts of) graph structures at
the instance level, it follows that state transitions can be adequately specified by
2 See [5] and especially the bibliography contained therein for a general overview on

software refactoring.

324 Christoph Schulz, Michael Löwe, Harald König

the use of graph structure transformations. This paper chooses the DPO approach
for describing and applying graph structure transformations3. Consequently, a
method is represented by a span of homomorphisms, and applying a method to
a given program state is computed by two pushout diagrams.

Results of category theory are used to compute induced migrations from
schema refactorings. It will be shown, however, that certain restrictions must be
obeyed in order to guarantee reasonable results. Fortunately, these restrictions
are met by the practical examples.

The paper is organized as follows. Section 3 incrementally introduces a
graph structure specification MP with positive Horn formulas which consti-
tutes the foundation of the mathematical description of data and software. The
category Alg(MP) of all MP-systems and MP-homomorphisms, as well as the
(sub-)categories Alg(MP)↓S and Sys(S) with a fixed schema S , represent the
universe of discourse for the following sections. Section 4 explains how methods
are represented as DPO rules and introduces requirements that are necessary
to use DPO graph structure transformations successfully in the categories men-
tioned above. Section 5 addresses the migration of data and processes. Section 6
discusses the migration of programs and contains the main result of this paper,
namely that the migration of methods preserves their semantics for new processes
as well as for old processes reviewed under the transformed schema. Section 7
outlines three main directions for future research.

Due to lack of space, this paper does not contain any proofs. All the proofs
can be found in [7].

2 Related Work

There exist approaches for modelling programs as algebraic graph transformation
rules [8–10]. However, they fail in various ways to be suitable for our purposes. The
approach in [8] does not support inheritance. Furthermore, program execution is
“destructive”, i. e., repetitive control flow constructs as loops cannot be modelled
directly but have to be simulated through recursion, a work-around which is
not necessary in our approach as the control flow structures are not modified by
program execution. The approach presented in [9, 10] does not have a notion of
a schema in which programs and processes are typed. This missing link makes it
hard if not impossible to compute induced migrations for programs and processes
when the data schema is changed. Finally, both approaches consider objects to
be opaque, whereas in our approach, each object is decomposed into parts called
“particles” which reflect the class hierarchy. This rich object structure makes
it possible to type the instance level in a schema without resorting to special
typing morphisms or type graph flattening as proposed in [6, 11, 12]. Finally, our
approach is unique in the respect that it combines a program and process model
with a model for schema transformations and induced migrations.

3 DPO stands for “Double Pushout”; the approach is presented in e. g. [6].

Refactoring Object-Oriented Systems 325

3 Models and Instances

The schema and the instance level of object-oriented systems are modelled by sys-
tems wrt. an extended specification.4 An extended specification Spec = (Σ ,H (X))
is an extended signature together with a set of positive Horn formulas H (X) over
a set of variables X . An extended signature Σ = (S ,OP ,P) consists of a set of
sorts S , a family of operation symbols OP = (OPw ,s)w∈S∗,s∈S , and a family of
predicates P = (Pw)w∈S∗ such that =s ∈ Ps s for each sort s ∈ S . A system A wrt.
an extended signature Σ = (S ,OP ,P), short Σ -system, consists of a family of
carrier sets (As)s∈S , a family of operations (opA : Aw → As)w∈S∗,s∈S ,op∈OPw,s ,
and a family of relations (pA ⊆ Aw)w∈S∗,p∈Pw

such that =A
s ⊆ As × As is

the diagonal relation for each sort s.5 A system A wrt. an extended specifi-
cation Spec = (Σ ,H (X)) is a Σ -system such that all axioms are valid in A.
A Σ -homomorphism h : A → B between two Σ -systems A und B wrt. an ex-
tended signature Σ = (S ,OP ,P) is a family of mappings (hs : As → Bs)s∈S ,
such that the mappings are compatible with the operations and relations, i. e.,
hs ◦ opA = opB ◦ hw for all operation symbols op : w → s and hw (pA) ⊆ pB

for all predicates p : w where w = s1s2 . . . sn ∈ S∗.6 Each Σ -homomorphism
h : A → B between two Spec-systems A und B wrt. an extended specification
Spec = (Σ ,H (X)) is called a Spec-homomorphism.

The (first) model version for classes and associations is just graphs as depicted
in Fig. 4. Nodes correspond to classes and edges correspond to associations. In
Fig. 5a, an exemplary UML schema is presented. The underlying graph for this
schema is shown in Fig. 5b. Figure 5c illustrates the resulting Graph system.

Graph =
sorts

N (nodes)
E (edges)

opns
s : E → N (source node of an edge)
t : E → N (target node of an edge)

Fig. 4: The Graph signature

An instance of a given schema S is represented as a system I wrt. the same
signature, together with a typing homomorphism type : I → S . At the instance
level, nodes represent objects and edges constitute links.

The next model version provides the possibility to model inheritance relations
between classes by an additional binary predicate under : If, in a system S , a

4 See [13] for the special case when signatures consist of only one sort.
5 Given w = s1s2 . . . sn , Aw is an abbreviation for the product set As1×As2×· · ·×Asn .
6 Given w = s1s2 . . . sn , hw (x1, x2, . . . , xn) is an short-hand notation for the term tuple

(hs1(x1), hs2(x2), . . . , hsn (xn)).

326 Christoph Schulz, Michael Löwe, Harald König

Man

Woman

Date

wife

husband

wedding date

wedding date

(a) UML schema

•n1

e2

��

e3

$$JJJJJJJJJ

•n3

•n2

e1

JJ

e4

::ttttttttt

(b) Representing
graph

•n1

◦e3
sccGGG

t##GGG

◦e1

s
��444444

t

DD

◦e2

s

OO

t

��

•n3

◦e4 t

;;www

s
{{www

•n2

(c) Representing algebra

Fig. 5: A system for the Graph signature

class A is “under” a class B, i. e., if it is a subclass of B, then the relation
underS contains the pair (A,B). The specification MP1 is shown in Fig. 6.7

As inheritance is hierarchical and, therefore, a partial order, it is reasonable to
formulate corresponding requirements for the under relation.

MP1 = Graph +
prds

under : N N (subnode of)
axms

inheritance

x ∈ N : under(x , x) (reflexivity)

x , y ∈ N : under(x , y) ∧ under(y , x)⇒ x = y (antisymmetry)

x , y , z ∈ N : under(x , y) ∧ under(y , z)⇒ under(x , z) (transitivity)

Fig. 6: The MP1 specification including the predicate under

While the use of the predicate under is quite natural at the schema level,
the question arises how it is to be interpreted at the instance level. Typically,
objects are seen as monolithic entities even if they are mapped to multiple types
in the class hierarchy. In this paper, we follow a different approach and consider
objects to consist of a set of interconnected parts called particles. Each particle
is represented by a node and is typed in a specific class in the schema. The
advantage of this approach is that the structure of an object is made visible and

7 The “MP” stands for “Model Part” and describes the fact that systems for this model
represent only a part (schema or instance) of the whole object-oriented system.

Refactoring Object-Oriented Systems 327

resembles the object’s type hierarchy at the schema level allowing proper typing
of links.8 Figure 7 shows an exemplary instance level for the schema in Fig. 3b.9

c:PrivateCustomer

c:Customer

n:String
:name

Fig. 7: Objects represented by particles

The model currently allows an object to contain more than one particle for
the same type. This is typically forbidden by object-oriented languages.10 In
order to implement this requirement, we want to specify something like that:

x , y ∈ N : rel(x , y) ∧ type(x) = type(y)⇒ x = y (unique particles)(1)

Here, another predicate rel has been used which shall be fulfilled when two
particles belong to the same object and, therefore, are related. Obviously, this
predicate describes an equivalence relation as it is reflexive, symmetric, and
transitive. Furthermore, the equivalence comprises the under relation, because
each two particles connected by the under relation belong to the same object
and, consequently, are part of the rel relation.11 The resulting specification MP2

is shown in Fig. 8.12

Another issue currently not resolved is association multiplicity: In our model,
all associations are many-to-many, because the number of links at the instance
level is not restricted in any way. However, many-to-one associations are often
necessary in object-oriented schemas to allow at most one linked target object
for any given association and source object. To achieve this, a formula like the
following one is necessary which disallows the existence of two links which are
instances of the same association and start at the same particle:13

8 For the purpose of typing, simple homomorphisms are sufficient; there is no need to
introduce homomorphisms “up to inheritance”.

9 We do not use a different notation for schema inheritance and the relationship
between particles because it can be easily deduced from the context which relation is
meant.

10 An exception to this rule is the programming language C++ which explicitly allows
this behaviour [14].

11 Note, however, that the rel relation might not be generated by the under relation.
That means that there may exist related particles that do not belong to the same
object. However, this is avoided in all practical examples.

12 Note that reflexivity of the rel relation need not be specified by an axiom as it
is a consequence from the combination of the first inheritance axiom and the last
component axiom.

13 Note that this axiom disallows multi-valued associations completely. This is desired,
however, as only single-valued associations can be dereferenced at the instance level

328 Christoph Schulz, Michael Löwe, Harald König

MP2 = MP1 +
prds

rel : N N (related to)
axms

components

x , y ∈ N : rel(x , y)⇒ rel(y , x) (symmetry)

x , y , z ∈ N : rel(x , y) ∧ rel(y , z)⇒ rel(x , z) (transitivity)

x , y ∈ N : under(x , y)⇒ rel(x , y) (components)

Fig. 8: The MP2 specification including the predicate rel

x , y ∈ E : source(x) = source(y) ∧ type(x) = type(y)⇒ x = y (at most one)
(2)

The axioms (1) and (2) are called typing axioms.
The last issue is the integration of software constructs, namely operations,

parameters, messages, arguments, and methods. In order to model operations and
messages, the specification MP2 is extended by a unary predicate called software
which distinguishes between class nodes and operation nodes in schemas and
between object nodes and message nodes in instances. The distinction between
association edges and parameter edges on the one hand and between link edges
and argument edges on the other hand is deduced from the context: If an edge
starts at a class/object it is considered an association/link, otherwise it constitutes
a parameter/argument. The resulting specification is shown in Fig. 9.14

An example of an operation is displayed in Fig. 10a, a message for this
operation is shown in Fig. 10b. The modelling of methods builds upon the
mapping of messages and arguments into the model and is described in the next
section.

We use the following notation: Alg(MP) denotes the category of all MP-
systems and MP-homomorphisms. The arrow category Alg(MP)2 consists of all
typed instances which do not necessarily fulfil the typing axioms. The full sub-
category Sys ⊆ Alg(MP)2 restricts the arrow category to those typed instances
conforming to these axioms. Given a fixed schema system S , the slice category
Alg(MP)↓S expresses the category of all typed instances for the system S , and
the category Sys(S) denotes the full subcategory of Alg(MP)↓S whose objects
fulfil the typing axioms.15

in a well-defined way. Multi-valued associations need further information (e. g. an
index) when accessing links, which does not fit well in our graph structure model.

14 The model allows parameters to point to operations; this is reasonable as it enables
to model basic statements like if-then-else as operations.

15 Obviously, Sys(S) is also a subcategory of Sys.

Refactoring Object-Oriented Systems 329

MP =
sorts

N (nodes)
E (edges)

opns
s : E → N (source node of an edge)
t : E → N (target node of an edge)

prds
under : N N (subnode of)
rel : N N (related to)
software : N (software part vs. data part)

axms
inheritance

x ∈ N : under(x , x) (reflexivity)(3)

x , y ∈ N : under(x , y) ∧ under(y , x)⇒ x = y (antisymmetry)(4)

x , y , z ∈ N : under(x , y) ∧ under(y , z)⇒ under(x , z) (transitivity)(5)

components

x , y ∈ N : rel(x , y)⇒ rel(y , x) (symmetry)(6)

x , y , z ∈ N : rel(x , y) ∧ rel(y , z)⇒ rel(x , z) (transitivity)(7)

x , y ∈ N : under(x , y)⇒ rel(x , y) (components)(8)

Fig. 9: The complete MP specification

Customer String

getName

name
this result

(a) Operation with parameters

c:Customer n:String

1:getName

:name
:this :result

(b) Message with arguments

Fig. 10: Software constructs

330 Christoph Schulz, Michael Löwe, Harald König

Furthermore, there exists a functor F : Alg(MP)2 → Sys which transforms
any typed instance by factoring through the congruence generated by the axioms
such that the resulting typed instance fulfils the typing axioms. This functor is
an epireflector because of the freeness property of the factorisation. This functor
never changes the schema:

Lemma 3.1 ([7, Lemma 13.13]). Let D ::= I
typeI−−−→ S be a typed instance,

and let FOb(D) be the typed instance I ′
typeI ′−−−−→ S ′. Then S ∼= S ′ holds. ut

From this lemma, it follows that the functor F can be restricted to a
slice category for some fixed schema S , resulting in a family of epireflectors
FS : Alg(MP)↓S → Sys(S) for each possible schema S .

Summarising our results so far, an object-oriented schema is modelled as
an MP-system S . An instance of this schema consists of an MP-system I and
a typing MP-homomorphism type : I → S such that I

type−−−→ S is an object of
the category Sys(S). Every schema instance type : I → S in Alg(MP)↓S can be
uniquely transformed into an object of the category Sys(S) by the epireflector
FS .

4 Methods

A method is part of a program and specifies how the program reacts on a message
for a certain operation. It constitutes an implementation of an operation. Here,
the set of operations consists not only of “user-defined” operations but also of
operations for evaluating expressions and for representing statements.16 In other
words, for each construct which influences the behaviour of a process, there exists
a corresponding operation. A program is then a collection of methods such that
all operations for which messages exist are implemented.

Each method is implemented by a single DPO rule [6] which is properly
typed in the schema S . A typed DPO rule is a span L l←− K r−→ R together
with the typings L

typeL−−−→ S , K
typeK−−−→ S , and R

typeR−−−→ S , where L, K , R,
and S are Graph systems and l and r are Graph homomorphisms such that
typeL ◦ l = typeK = typeR ◦ r . The left part of the rule describes the required
process state necessary for executing this method and contains at least a message
typed in the operation this method implements. The remainder of the rule consists
of the gluing part and the right part and specifies how this state is changed by
method execution. Generally, the gluing part is the common subgraph of both
the left and the right part of the rule.17

In order to be able to determine which message is ready to be processed,
a special “marker” object called processor is used. A message referenced by a
processor through a special current link is called active. Methods are formulated

16 For example, the addition of two integer values or the if-then-else statement are both
represented by suitable operations.

17 This means that both morphisms of the DPO rule are injective.

Refactoring Object-Oriented Systems 331

such that their left part requires an active message. Additionally, each method
moves the processor object to the next message according to the flow of control.
This next message is determined by a special argument called next.18 Multiple
processor objects can be used to model multi-threaded processing. Figure 11
displays the DPO rule for a method changing the target of a link.19

OpBase

setBirthday

Processor

DateCustomer this date

current
next

birthday

(a) Schema

c:Cust. d1:Date

d2:Date

p:Proc.

1:setB.

2:...

:next

:date

:this

:current

:birthday

(b) Left part

c:Cust. d1:Date

d2:Date

p:Proc.

1:setB.

2:...

:next

:date

:this

(c) Gluing part

c:Cust. d1:Date

d2:Date

p:Proc.

1:setB.

2:...

:next

:date

:this

:current

:birthday

(d) Right part

Fig. 11: Example method “Change target of birthday link”

A method is executed by applying the underlying DPO rule along a match to
the graph structure describing the instance world, i. e., objects, links, messages,
and arguments. According to the DPO model, in the first step a pushout comple-
ment has to be computed to complete the left side. In the second step, the right
side is built by a pushout. However we cannot do this in our category Sys(S) as
neither do pushout complements exist nor are pushouts along monomorphisms
van-Kampen squares [6] in all cases. Therefore, we perform DPO transformations
which are typed in a schema S in the slice category Alg(MP*)↓S , where MP* is
the signature obtained by removing all axioms from MP, and provide sufficient
conditions that guarantee the fulfilment of the axioms after transformation. These
conditions are necessary as not all DPO transformations yield typed instances

18 Only very few messages do not have a next argument. This includes the end message
which terminates process execution and the if-then-else message which contains a
then and a else argument instead.

19 The example shows that operations and messages can also be specialised and possess
a particle structure (the particle structure of the messages is not displayed for clarity).
This is used to allow processor objects to point to any message.

332 Christoph Schulz, Michael Löwe, Harald König

which fulfil all the axioms. The following figures demonstrate two such counter
examples: adding a link violates axiom (2) (Fig. 12), and eliminating inheritance
violates axiom (5) (Fig. 13). In the figures, the element-wise mapping of the
homomorphisms is indicated by equally named nodes and edges, and frames are
used to group the elements belonging to a single graph.

A
x // B

(a) Schema

1:A
_ _ _ _ _ _�
�

�
�

_ _ _ _ _ _2:B 1:A
_ _ _ _ _ _�
�

�
�

_ _ _ _ _ _2:B 1:A
_ _ _ _ _ _�
�

�
�

_ _ _ _ _ _
3:x // 2:B

loo r //

(b) Rule

1:A
_ _ _ _ _ _ _�
�

�
�_ _ _ _ _ _ _2:B 1:A

_ _ _ _ _ _ _�
�

�
�_ _ _ _ _ _ _2:B 1:A

_ _ _ _ _ _ _�
�

�
�_ _ _ _ _ _ _

3:x // 2:B

1:A
_ _ _ _ _ _ _�
�
�
�

�
�
�
�_ _ _ _ _ _ _

5:x &&LLLLLL 2:B 1:A
_ _ _ _ _ _ _�
�
�
�

�
�
�
�_ _ _ _ _ _ _

5:x &&LLLLLL 2:B 1:A
_ _ _ _ _ _ _�
�
�
�

�
�
�
�_ _ _ _ _ _ _

3:x //

5:x &&LLLLLL 2:B

4:B 4:B 4:B

loo r //

foo g //

m

��

k

��

n

��

(c) Induced transformation

Fig. 12: Adding a link violates axiom (2) on page 328

In order to rule out situations as depicted in Fig. 12 we need DPO rules that
pull back edges. Such rules only add an edge at the right side if no other edge
exists which starts at the same node.

Definition 4.1 (DPO rules pulling back edges). Let Σ = (S ,OP ,P) be an
extended signature, and let L l←− K r−→ R be a DPO rule. Then the DPO rule
pulls back edges if for each edge eR ∈ RE there is a node k ∈ KN and an edge
eL ∈ LE , such that the equations

sourceL(eL) = lN (k)

sourceR(eR) = rN (k)
typeL,E (eL) = typeR,E (eR)

hold.

In order to rule out situations as depicted in Fig. 13, we restrict DPO
rules to completing homomorphisms which “pull back” relations. Completing

Refactoring Object-Oriented Systems 333

A
� ,2

� �&
B

� ,2C

(a) Schema

1:A
_ _ _ _ _ _�
�

�
�

_ _ _ _ _ _
� ,23:C 1:A

_ _ _ _ _ _�
�

�
�

_ _ _ _ _ _3:C 1:A
_ _ _ _ _ _�
�

�
�

_ _ _ _ _ _3:C
loo r //

(b) Rule

1:A
_ _ _ _ _ _ _ _�
�

�
�_ _ _ _ _ _ _ _

� ,23:C 1:A
_ _ _ _ _ _ _ _�
�

�
�_ _ _ _ _ _ _ _3:C 1:A

_ _ _ _ _ _ _ _�
�

�
�_ _ _ _ _ _ _ _3:C

1:A
_ _ _ _ _ _ _ _�
�
�
�

�
�
�
�_ _ _ _ _ _ _ _

� ,2

� �&
DDDD 3:C 1:A

_ _ _ _ _ _ _ _�
�
�
�

�
�
�
�_ _ _ _ _ _ _ _

� �&
DDDD 3:C 1:A

_ _ _ _ _ _ _ _�
�
�
�

�
�
�
�_ _ _ _ _ _ _ _

� �&
DDDD 3:C

2:B

: 8B
zzzz

2:B

: 8B
zzzz

2:B

: 8B
zzzz

loo r //

foo g //

m

��

k

��

n

��

(c) Induced transformation

Fig. 13: Eliminating inheritance violates axiom (5) on page 329

homomorphisms are an extension to strictly full homomorphisms:20 While a
strictly full homomorphism h only “pulls back” a relation if all related elements
are known to be in the range of h, a completing homomorphism h “pulls back”
relations even if only a part of the related elements is known to be reached.

Definition 4.2 (Completing homomorphism). Let Σ = (S ,OP ,P) be an
extended signature, let h : A→ B be a Σ-homomorphism between the Σ-systems
A and B, and let p ∈ Pw be a predicate over a sort word w ∈ S∗. Then h is
completing on p if for every non-empty sort word w ′ resulting from eliminating
arbitrary sorts from w and for each two tuples x ∈ Bw and x ′ ∈ Aw ′ the
implication

hw ′(x ′) = 〈x 〉w ′ ∧ x ∈ pB ⇒ ∃y ∈ Aw : 〈y〉w ′ = x ′ ∧ hw (y) = x ∧ y ∈ pA

holds, where the notation 〈x 〉w ′ stands for the projection of the tuple x onto the
elements of the sorts in w ′. h is completing if h is completing on all predicates.

Now we are able to define valid DPO rules:

Definition 4.3 (Valid rule). A DPO rule L l←− K r−→ R is valid iff it pulls
back edges and l and r are completing homomorphisms.

These restrictions do not have much impact on the expressiveness of methods.
The first restriction requiring completing homomorphisms disallows changing the
inner structure of objects by adding or removing particles. However, this is an
unusual way of dealing with objects at runtime at best. The second restriction

20 A homomorphism h : A→ B is strictly full if hw (x) ∈ pB ⇒ x ∈ pA for all x ∈ Aw

and all predicates p ∈ Pw .

334 Christoph Schulz, Michael Löwe, Harald König

allows to add a link on the right side of a rule only if a similar link has previously
been removed on the left side of the same rule. This is unproblematic if it can be
ensured that there always exists a link for each (object, association) pair, which,
for example, can initially point to a “null” object to indicate an uninitialised
link.21

Now we can state the main theorem of this section:

Theorem 4.4 (Transformation preserves axioms [7, Theorem 14.29]).

Let S be an MP-system. Let L l←− K r−→ R be a valid rule in Sys(S), G a Sys(S)-
object, and m : L → G a match in Sys(S), such that the rule is applicable

according to the DPO model. Let G
f←− D

g−→ H be the resulting transformation
after applying the rule in Alg(MP*)↓S. Then D and H fulfil all axioms and are,
therefore, Sys(S)-objects. ut

5 Model Transformation and Data Migration

So far we can describe object-oriented systems, consisting of typed data, programs,
and processes. In this section we introduce schema transformations that can
be uniquely extended to migrations of corresponding data and proceseses (the
migration of programs is handled in the next section).22

Definition 5.1 (Transformation, Refactoring). A transformation t : S S∗
S ′ in the category Alg(MP) is a span S l t←− S∗ r t

−→ S ′. Such a transformation is
called a refactoring iff l t is surjective.

A general transformation allows reduction and unfolding as well as extension
and folding through the use of non-surjective homomorphisms (reduction and
extension) and non-injective homomorphisms (unfolding and folding) on the left
and right side of the span, respectively. Refactorings are special transformations
which are constrained to surjective homomorphisms on the left side of the span.
This constraint comes from the fact that refactorings are not allowed to delete
schema objects because such a deletion almost always causes information (data,
programs and/or processes) at the instance level to be lost, which does not meet
the intuitive requirement that a refactoring preserve information. In the following
we use the term schema transformation if the span consists of schema objects,
and migration if the span consists of typed instances.

Given a typed instance I
typeI−−−→ S and a schema transformation t : S S∗ S ′,

the migration is performed as follows:

(1) P l t , the pullback functor along l t , is applied to I
typeI−−−→ S , resulting in the

typed instance I ∗
typeI∗−−−−→ S∗. This part of the transformation is responsible

21 [7] shows in full detail how this can be done.
22 See [15–17] for precursor material on data migration induced by schema transforma-

tions.

Refactoring Object-Oriented Systems 335

for unfolding instance elements if l t is not injective, and for deleting elements
if l t is not surjective.

(2) Fr t

, the composition functor along r t , is applied to I ∗
typeI∗−−−−→ S∗, resulting

in the typed instance I ∗
r t◦typeI∗−−−−−−→ S ′. This part of the transformation is used

to retype instance elements and to add new types without any instances.

(3) I ∗
r t◦typeI∗−−−−−−→ S ′ may violate the typing axioms. Therefore, the epireflector

FS ′ into the subcategory Sys(S ′) is applied to it, resulting in the typed

instance I ′
typeI ′−−−−→ S ′ (the schema is left unchanged due to Lemma 3.1). This

part of the transformation is responsible for identifying instance elements
due to retyping.

These three steps are visualised in Fig. 14.

S

P.B.

S∗
ltoo r t

// S ′

I

typeI

OO

I ∗

typeI∗

OO

l′t
oo

idI∗
// I ∗

r t◦typeI∗
>>}}}}}}}}

[]≡
// I ′

typeI ′

OO

Fig. 14: Schema transformation and instance migration

The composition of the three functors results in the migration functor defined
below:

Definition 5.2 (Migration functor). Let t : S S∗ S ′ be a transformation. The
migration functor Mt : Sys(S)→ Sys(S ′) is then defined as:

Mt ::= FS ′ ◦ Fr t ◦ P l t ,

where the functor P l t : Alg(MP)↓S → Alg(MP)↓S∗ is the pullback functor along
l t , the functor Fr t

: Alg(MP)↓S∗ → Alg(MP)↓S ′ is the composition functor
along r t , and the functor FS ′ : Alg(MP)↓S ′ → Sys(S ′) is the epireflector into
the subcategory Sys(S ′).

Note that due to Lemma 3.1, the migration functor results in an instance
that is correctly typed in the target schema S ′.

The example in Fig. 15 shows a transformation which moves the origin of an
association one level upwards the inheritance hierarchy and the induced migration
of an exemplary instance. On the left side the class B is unfolded, yielding the
two classes B and X in the middle, and the origin of the association is moved
to the temporary class X. On the right side the class X is folded with the
class A, such that the association starts at the class A after the transformation.
The modification of objects and links by the induced migration is performed
analogously. Note that the unfolding on the left is due to the pullback construction,
and the folding on the right side is due to the epireflector which takes care that
axiom (1) is satisfied.

336 Christoph Schulz, Michael Löwe, Harald König

B

XX

AA

BC

A

B

CX

A

B

C

(a) Schema transformation

1:B

1:X1:X

1:A1:A

1:B2:C

1:A

1:B

2:C1:X

1:A

1:B

2:C

(b) Induced migration

Fig. 15: Moving the origin of an association upwards the inheritance hierachy

6 Method Migration

The migration of methods is performed in the same way as the migration of data
and processes. But as methods are valid DPO rules according to Def. 4.3, it has
to be ensured that their properties are preserved by a migration. Additionally,
methods already executed which are represented by two pushout diagrams shall
be transformed so that the resulting diagrams are again pushouts. This ensures
that processes that have already been executed are compatible to the new schema
after migration. However, this does not hold for arbitrary transformations. In
Fig. 16, two classes B and C of a schema S are merged, resulting in the class BC
in the schema S ′. At the instance level, the right pushout of a method adding a
link is presented. The migrated diagram is a pushout in the subcategory Sys(S ′)
of all typed instances conforming to the typing axioms, but not a pushout in
the category Alg(MP*)↓S ′ in which the migration is computed. This can be
deduced from the elemental properties of pushouts (see e. g. [6]).

In order to migrate DPO rules and DPO diagrams properly we need to restrict
the allowed transformations. We can show that if transformations are disallowed
to fold associations on the right side, DPO rules can be migrated correctly in all
cases. This results in the following definition of a proper transformation:

Refactoring Object-Oriented Systems 337

A // &&
B C

(a) Schema S

A // BC

(b) Schema S ′

:A
_ _ _ _ _�
�

�
�_ _ _ _ _ :A

_ _ _ _ _�
�

�
�_ _ _ _ _

// :B

_ _ _ _ _�

�

�

�

�

�_ _ _ _ _

_ _ _ _ _�

�

�

�

�

�_ _ _ _ _

:B

:A // :C :A

88rrrr // :C

r //

k

��
n

���
��
��

g //

(c) Right side of an applied DPO
rule before the migration

:A
_ _ _ _ _ _�
�

�
�_ _ _ _ _ _ :A

_ _ _ _ _ _�
�

�
�_ _ _ _ _ _

// :BC

:A
_ _ _ _ _ _�
�

�
�_ _ _ _ _ _

// :BC :A
_ _ _ _ _ _�
�

�
�_ _ _ _ _ _

// :BC

r //

k

��

n

��
g //

(d) Right side of an applied DPO rule
after the migration

Fig. 16: Pushout in Alg(MP*)↓S is not preserved by a migration

Definition 6.1 (Proper transformation). A transformation S l t←− S∗ r t

−→ S ′

in Alg(MP) is proper if r t is injective on associations, i. e., if r t
E (x) = r t

E (y)⇒
x = y holds for all x , y ∈ S∗E .

The correct migration of valid DPO rules is guaranteed by the following
proposition:

Proposition 6.2 (Migration preserves valid DPO rules [7, Proposition

15.23]). Given a proper transformation t : S S∗ S ′, let

(I 1 typeI1−−−−→ S) l←− (I 2 typeI2−−−−→ S) r−→ (I 3 typeI3−−−−→ S)

be a valid DPO rule. Then

Mt(I 1 typeI1−−−−→ S)
Mt (l)←−−−−Mt(I 2 typeI2−−−−→ S)

Mt (r)−−−−→Mt(I 3 typeI3−−−−→ S)

is a valid DPO rule as well. ut
The migration of DPO diagrams is ensured by the following proposition:

Proposition 6.3 (Migration preserves pushouts [7, Proposition 15.35]).

Let t : S S∗ S ′ =̂ S l t←− S∗ r t

−→ S ′ be a proper transformation and (L
typeL−−−→ S) l←−

(K
typeK−−−→ S) r−→ (R

typeR−−−→ S) be a valid DPO rule. Let

(D
typeD−−−→ S)

g−→ (H
typeH−−−→ S) n←− (R

typeR−−−→ S)

be a pushout of

(D
typeD−−−→ S) k←− (K

typeK−−−→ S) r−→ (R
typeR−−−→ S)

338 Christoph Schulz, Michael Löwe, Harald König

in Alg(MP∗)↓S, where all typed instances are in Sys(S). Then

Mt(D
typeD−−−→ S)

Mt (g)−−−−→Mt(H
typeH−−−→ S)

Mt (n)←−−−−Mt(R
typeR−−−→ S)

is a pushout of

Mt(D
typeD−−−→ S)

Mt (k)←−−−−Mt(K
typeK−−−→ S)

Mt (r)−−−−→Mt(R
typeR−−−→ S)

in Alg(MP∗)↓S ′, where all typed instances are in Sys(S ′). ut
Both propositions can be combined, yielding the following theorem:

Theorem 6.4 (Correctness of the migration of programs [7, Theorem

15.36]). Let t : S S∗ S ′ be a proper transformation. Then the migration func-
tor Mt transfers the validity of non-applied methods (DPO rules) and applied
methods (DPO transformations) from the category Alg(MP)↓S into the category
Alg(MP)↓S ′.
Proof. Direct consequence of Proposition 6.2 and Proposition 6.3. ut

7 Outlook

With the framework presented above, a major step towards migration of complete
object-oriented systems is proposed. Certainly, the framework is not universal
as it is subject to some (reasonable) constraints. Migrations are considered to
be instances of transformations. The innovative part of the theory described
consists of the automatic transformation of a migration source, computing the
target with the help of a functor on slice categories. This functor is composed
of three factors: Generally, the pullback functor P l t is right-adjoint where the
second factor—the composition functor Fr t

—is its left-adjoint. But the third
factor—the construction FS into the subcategory Sys(S)—yields an adjunction
as well. Thus, the whole migration enjoys well-understood universal properties
which can further be pursued into three different directions.

The first direction for future research will be the development of tools that
support migration induced by refactoring rules. If transformation rules can be
captured ergonomically in an appropriate application, migrations can automat-
ically and uniquely (by adjointness) be computed. Thus, content migration of
databases is possible as well as migration of running processes in a software
system. These tools should discover potential for composition, as well: Bigger
refactorings should be decomposable into elementary changes, atomic steps must
be proved to combine to more comprehensive procedures. This is another facet
for future research.

Theorem 6.4 states that dynamical semantics is preserved by refactorings
where semantics is based on valid DPO rules. Hence the second direction is to
find a comparable correctness criterion for data. This must include a formal speci-
fication of “information” to distinguish between semantics-preserving refactorings
and information-distorting transformations.

Refactoring Object-Oriented Systems 339

The third direction consists of abstracting away from pure graph structures. It
has to be investigated to what extent the results can be generalised to elementary
topoi or even to adhesive categories [6, 18]. An approach can be found in [15]
which covers data migration only. Hence, an extension to method migration is
desirable.

References

[1] Fowler, M.: Refactoring: Improving the Design of Existing Code. Addison-
Wesley (1999)

[2] Fowler, M.: Patterns of Enterprise Application Architecture. Addison-Wesley
(2002)

[3] Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns. Addison-
Wesley Professional (1995)

[4] Fowler, M., Scott, K.: UML Distilled: A Brief Guide to the Standard Object
Modeling Language. Addison-Wesley (2003)

[5] Mens, T., Tourwé, T.: A survey of software refactoring. IEEE Transactions
On Software Engineering 30(2) (2004) 126–139

[6] Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic
Graph Transformation. Springer (2006)

[7] Schulz, C.: Refactoring objektorientierter Systeme. Forschungsberichte der
FHDW Hannover 2 (2009)

[8] Corradini, A., Dotti, F.L., Foss, L., Ribeiro, L.: Translating java code to
graph transformation systems. In: ICGT. (2004) 383–398

[9] Kastenberg, H., Kleppe, A.G., Rensink, A.: Defining object-oriented exe-
cution semantics using graph transformations. In Gorrieri, R., Wehrheim,
H., eds.: Proceedings of the 8th IFIP International Conference on Formal
Methods for Open-Object Based Distributed Systems, Bologna, Italy. Vol-
ume 4037 of Lecture Notes in Computer Science., London, Springer Verlag
(June 2006) 186–201

[10] Kastenberg, H., Kleppe, A.G., Rensink, A.: Engineering object-oriented
semantics using graph transformations. Technical Report CTIT Technical
Report 06-12, University of Twente (2006)

[11] Bardohl, R., Ehrig, H., de Lara, J., Runge, O., Taentzer, G., Weinhold, I.:
Node type inheritance concept for typed graph transformation. Technical
Report Technical Report 2003-19, Technical University, Berlin (2003)

[12] de Lara, J., Bardohl, R., Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.:
Attributed graph transformation with node type inheritance. Theoretical
Computer Science 376(3) (2007) 139–163

[13] Mal’cev, A.I.: Algebraic systems. Springer (1973)
[14] International Organization for Standardization: ISO/IEC 14882:2003: Pro-

gramming languages – C++, Genf, Schweiz. (2003)
[15] König, H., Löwe, M., Schulz, C.: Functor semantics for refactoring-induced

data migration. Forschungsberichte der FHDW Hannover 1 (2007)
[16] Löwe, M., König, H., Schulz, C., Peters, M.: Refactoring information systems

– a formal framework. In: Proceedings WMSCI 2006. Volume 1. (2006) 75–80

340 Christoph Schulz, Michael Löwe, Harald König

[17] Löwe, M., König, H., Schulz, C., Peters, M.: Refactoring information systems
– handling partial composition. In: Electronic Communications of the EASST.
Volume 3. (2006)

[18] Goldblatt, R.: Topoi: The Categorical Analysis of Logic. Dover Publications
(1984)

. .

Christoph Schulz

Fachhochschule für die Wirtschaft Hannover
Freundallee 15
D-30173 Hannover (Germany)
christoph.schulz@fhdw.de

. .

Prof. Dr. Michael Löwe

Fachhochschule für die Wirtschaft Hannover
Freundallee 15
D-30173 Hannover (Germany)
michael.loewe@fhdw.de

Hans-Jörg Kreowski supervised Michael Löwe’s diploma thesis at TU Berlin in
1981, and was the external examiner of his doctoral thesis in 1990.

. .

Prof. Dr. Harald König

Fachhochschule für die Wirtschaft Hannover
Freundallee 15
D-30173 Hannover (Germany)
harald.koenig@fhdw.de

. .

Das Forum InformatikerInnen für Frieden
und gesellschaftliche Verantwortung (FIfF) e.V.

– Impressionen aus 25 Jahren –

Ralf E. Streibl

”
Was mich als Informatiker besonders betroffen macht, ist die

Tatsache, dass fast alle Pläne für eine verstärkte Überwachung
aller Bürgerinnen und Bürger und für die Einschränkung der
Grundrechte auf Informations- und Kommunikationstechnik auf-
bauen und ohne diese so gar nicht denkbar wären. Technik ins-
gesamt und gerade auch die I&K-Technik schaffen wichtige Vor-
aussetzungen für eine gedeihliche gesellschaftliche Entwicklung.
Das wird aber ins Gegenteil verkehrt, wenn die Technik gegen
die Menschen gerichtet und damit Misstrauen gegen Technik ge-
weckt wird“ (Kreowski 2007, Seite 11).

Am 2. Juni 1984 wurde das Forum Informatiker für Frieden und gesellschaftli-
che Verantwortung in Bonn als Verein gegründet. (Seit 1988 lautet der Name
Forum InformatikerInnen für Frieden und gesellschaftliche Verantwortung. Ab-
bildung 1 zeigt das FIfF-Logo.) Anlass war die Sorge über die zunehmende Ver-
flechtung von Informationstechnik und Rüstung und die damit einhergehende
Militarisierung des Fachgebietes. Vorangegangen war bereits im Sommer 1983
eine Initiative Informatiker warnen vor dem programmierten Atomkrieg. Ferner
existierten dezentral fachbezogene Friedensinitiativen, beispielsweise – ebenfalls
seit 1983 – die Friedensinitiative am Fachbereich Mathematik und Informatik
der Universität Bremen. Als Vorbild für die Gründung des FIfF diente die ame-
rikanische Vereinigung Computer Professionals for Social Responibility (CPSR).
Joseph Weizenbaum und Alan Borning waren als Vertreter von CPSR bei der
Gründungsversammlung des FIfF mit dabei.

”
Der Name des Vereins verweist einerseits auf Gründungsanlass und ak-

tuellen Arbeitsschwerpunkt und macht andererseits deutlich, dass seine
Mitglieder kritische Analysen nicht auf militärische Anwendungen der
Informatik beschränken wollen. Dass der Informatiker bereit ist, seiner
gesellschaftlichen Verantwortung gerecht zu werden, muss sich gerade
auch in Bereichen wie Automatisierung und Datenschutz zeigen“
(Löhr 1984, Seite 18).

Abb. 1. Das FIfF-Logo in seiner aktuellen Form

F. Drewes, A. Habel, B. Hoffmann, D. Plump (Eds.): Manipulation of Graphs, Algebras and Pictures.
Essays Dedicated to Hans-Jörg Kreowski on the Occasion of His 60th Birthday, pp. 341–352, 2009.

342 Ralf E. Streibl

Die Bundesrepublik Deutschland war 1983/84 stark gekennzeichnet von den
Massenprotesten gegen den NATO-Doppelbeschluss, der die Stationierung ato-
mar bestückter Mittelstreckenraketen und Cruise Missiles in Deutschland bein-
haltete. Dagegen protestierten – mit Höhepunkten im heißen Herbst der Frie-
densbewegung 1983 – Millionen von Bundesbürgern mit Unterschriftenlisten,
Großdemonstrationen, Blockadeaktionen, Menschenketten und vielen anderen
Aktionen. Gleichzeitig verkündete der damalige US-Präsident Ronald Reagan
seine Pläne einer Strategic Defense Initiative (SDI) für eine weltraumgestützte
Raketenabwehr.

In der Folge dieser Entwicklungen entstanden eine Reihe berufsständischer
Friedensinitiativen, darunter:

– 1982: IPPNW Deutschland – Internationale Ärzte für die Verhütung des
Atomkrieges, Ärzte in sozialer Verantwortung (der internationale Verband
IPPNW wurde bereits 1980 gegründet)

– 1982: Pädagoginnen und Pädagogen für den Frieden (PPF) (bereits 1981
gab es als Vorläufer Pädagogen gegen den Rüstungswahnsinn)

– 1982: Forum Friedenspsychologie (zunächst unter dem Namen: Friedensini-
tiative Psychologie – Psychosoziale Berufe)

– 1983: NaturwissenschaftlerInnen-Initiative Verantwortung für Frieden und
Zukunftsfähigkeit (beim Kongress Anfang Juli 1983 in Mainz protestierten
mehr als 3000 Naturwissenschaftlerinnen und Naturwissenschaftler aus dem
In- und Ausland gegen Atomrüstung)

– 1984: Forum InformatikerInnen für Frieden und gesellschaftliche Verantwor-
tung (FIfF)

– 1984: KulturwissenschaftlerInnen-Initiative für Frieden und Abrüstung
– 1984: Arbeitskreis Historische Friedensforschung
– 1989: Juristinnen und Juristen gegen atomare, biologische und chemische

Waffen (Deutsche Sektion der IALANA: International Association of La-
wyers Against Nuclear Arms)

1983 erschien auf Initiative des Bund demokratischer Wissenschaftler und
Wissenschaftlerinnen das erste Heft des Informationsdienst Wissenschaft
und Frieden, dessen Herausgeberschaft ab 1985 von RepräsentantInnen ver-
schiedener berufsständischer Friedensorganisationen übernommen wurde und die
seit 1992 als interdisziplinäre Fachzeitschrift Wissenschaft und Frieden vier-
mal im Jahr erscheint. (Siehe Abbildung 2.) Zu den Mitherausgebern gehören vie-
le berufsständische Friedensorganisationen – darunter natürlich auch das FIfF.

Ein weiterer Aspekt, der – insbesondere für die kritische Informatik – mit
dieser Zeit verbunden ist, ist der Widerstand gegen die für das Jahr 1983 geplan-
te Volkszählung, die aufgrund der Beschwerden beim Bundesverfassungsgericht
zunächst ausgesetzt und dann mit dem sogenannten Volkszählungsurteil vom
15. Dezember 1983 ganz untersagt wurde. In seinem Urteil formulierte das Ver-
fassungsgericht ein Grundrecht auf informationelle Selbstbestimmung, basierend
auf Artikel 1 des Grundgesetzes (Schutz der Menschenwürde), welches seither zu
einer wesentlichen Grundlage aller Datenschutz- und Überwachungsdiskussionen
wurde (vgl. Büllesbach & Garstka 2005; Steinmüller 2007). Es mag als eine Ironie

FIfF – Impressionen aus 25 Jahren 343

Abb. 2. Wissenschaft und Frieden – vom Informationsdienst zur interdisziplinären
friedenswissenschaftlichen Fachzeitschrift

der Literaturgeschichte angesehen werden, dass George Orwell für seine bekannte
Dystopie just dieses Jahr als Titel wählte, indem er die Ziffern des Entstehungs-
jahres 1948 vertauschte.

Dieses also in mehrfacher Hinsicht gesellschaftlich brisante Klima im Vorfeld
der Gründung des FIfF wird auch bei einer Betrachtung von Titelbildern des Ma-
gazins Der Spiegel aus dem Jahr 1983 offenkundig: Vier Titelbilder bezogen
sich auf die Volkszählung sowie Überwachungthemen, fünf auf die Raketensta-
tionierung in Westdeutschland und den Widerstand der Friedensbewegung (vgl.
Abbildung 3).

Im ersten FIfF-Rundbrief, erschienen im August 1984 (Abbildung 4), schrieb
Hans-Jörg Kreowski unter der Überschrift Aufbruch zu einer anderen Informatik
über die Vereinsgründung:

”
Zweck des Forums ist dabei, die Verwendung von Computer- und In-

formationstechnik in der Rüstung und bei der Kriegsvorbereitung und
-führung in Gegenwert und Zukunft zu untersuchen, zu kritisieren, öf-
fentlich zu machen und Alternativen aufzuzeigen. Außerdem sollen re-
gionale Gruppen, Initiativen und Einzelpersonen mit ähnlichen Zielen
unterstützt werden. Perspektivisch jedoch wird die gesellschaftliche Ver-
antwortung der Informatiker umfassender in das Wirken des Forums
einbezogen werden. Vor allem soll dem Computer als Instrument der
Arbeitsplatzvernichtung und der staatlichen Kontrolle gebührend Auf-
merksamkeit gewidmet werden“ (Kreowski 1984).

344 Ralf E. Streibl

Abb. 3. Die Themenkomplexe Überwachung und Frieden im Spiegel von Titelbildern
des Jahres 1983: Der Orwell-Staat (Nr. 1), Raketenwahlkampf (Nr. 5), Volkszählung
(Nr. 13), Bonn ausgezählt (Nr. 16), Die Pershing kommt (Nr. 24), Totale Überwachung.
Der neue Personalausweis (Nr. 32), Heißer Herbst (Nr. 35), Aufstand gegen Raketen:
Ziviler Ungehorsam (Nr. 42), Nachrüstung – Das schwere Erbe des Helmut Schmidt
(Nr. 46)

FIfF – Impressionen aus 25 Jahren 345

Abb. 4. Der erste Rundbrief des FIfF (August 1984)

346 Ralf E. Streibl

Die im Namen des FIfF vorkommenden Begriffe Frieden und Verantwortung
können als zwei eng verbundene Aspekte professionellen Handelns betrachtet
werden. Ute Bernhardt, Helga Genrich und Ingo Ruhmann machten dies in ihrem
Beitrag Der Prozess Verantwortung deutlich, erschienen in dem von Hans-Jörg
Kreowski herausgegebenen Informatik-Fachbericht Nr. 309. Dieser Band enthält
Beiträge zur Erinnerung an Reinhold Franck, Bremer Hochschullehrer und FIfF-
Vorsitzender von 1987 bis 1990.

”
Die Frage nach der Verantwortung von InformatikerInnen ist also keine

Frage nach dem Ob, sondern nach dem Wie. (. . .) Dieser Prozess Ver-
antwortung umfasst die eigenverantwortliche – Erkenntnis und Interesse
vereinende – Selbstreflexion über Ziele und Interessen eigenen Tuns, die
Beteiligung an der oder Offenheit für die Entwicklung einer angemesse-
nen Theorie der Informatik und das Sich-Verantworten vor der Gesell-
schaft in einem offenen, von Tabus befreiten Diskurs. Das FIfF, dessen
Vorsitzender Reinhold Franck bis zu seinem Tode war, wurde gegründet
als ein offenes Forum für InformatikerInnen, um eine Möglichkeit für
einen solchen Diskurs zu bieten. Frieden und gesellschaftliche Verant-
wortung im Namen des FIfF stehen nicht nebeneinander, sondern sind
in einem Zusammenhang zu sehen. Zusammen sind sie Handlungsper-
spektive für tägliche Praxis im Forschungs- und Entwicklungsbereich.
(. . .) Eine friedliche Informatik kann sich erst dann entwickeln, wenn
von InformatikerInnen ganz bewusst fachliche und gesellschaftliche Ver-
antwortung übernommen wird.“ (Bernhardt, Genrich, Ruhmann 1992).

Das FIfF setzt sich für eine Technikgestaltung ein, welche die Menschenwürde
achtet und dazu beiträgt, die Demokratie und die Grundrechte weiterzuentwi-
ckeln. Es arbeitet für eine Informationstechnik, die Menschen in den Mittelpunkt
stellt. Das FIfF versteht sich als Forum für eine kritische und lebendige Ausein-
andersetzung – offen für alle, die daran mitwirken wollen. Über seine Publikatio-
nen, Vorträge und Tagungen, Stellungnahmen und Presseerklärungen informiert
das FIfF und regt an, Positionen zu beziehen. Zur Professionalisierung der FIfF-
Arbeit wurde Anfang 1987 in Bonn das FIfF-Büro gegründet und blieb dort bis
Ende 1998 ansässig. Danach übersiedelte die Geschäftsstelle für zwei Jahre nach
Medemstade-Ihlienworth. Anfang 2001 zog das FIfF-Büro dann nach Bremen,
wo es seither in der Villa Ichon angesiedelt ist, einem Friedens- und Kulturhaus
am Goetheplatz 4 (Abbildung 5).

Ein wesentliches Medium des FIfF ist die Quartalszeitschrift FIfF-Kommu-
nikation (Abbildung 6). Zwischen 1984 und 1987 verschickte das FIfF zunächst
einen Rundbrief im Din-A5-Format, zusammengestellt von einem Team aus Kai-
serslautern. Dieser wurde ab 1988 von der FIfF-Kommunikation abgelöst, da-
mals betreut von einer Redaktion in München. Ab 1995 übernahm dann für
einige Zeit ein schwerpunktmäßig in Paderborn angesiedeltes Team diese Ar-
beit. Inzwischen hat sich seit mehreren Jahren eine verteilte Redaktionsarbeit
etabliert: Zu jedem Heft gibt es eine wechselnde Schwerpunktredaktion, die sich
um die Zusammenstellung von Beiträgen zum zentralen Heftthema kümmert.

FIfF – Impressionen aus 25 Jahren 347

Abb. 5. Die Villa Ichon in Bremen: Das FIfF-Büro befindet sich rechts im ersten Stock.

Abb. 6. Die FIfF-Kommunikation im Wandel

348 Ralf E. Streibl

Diese kooperiert mit der Hauptredaktion, die den allgemeinen Teil organisiert,
die Schwerpunktredaktionen unterstützt und die Gesamtplanung und -abläufe
koordiniert. Beide Redaktionen sind heute nicht mehr an einen Ort gebunden.

Neben der FIfF-Kommunikation veröffentlicht das FIfF immer wieder Bü-
cher und Broschüren, teilweise in Kooperation mit anderen Verlagen. Jüngstes
Beispiel ist der von Hans-Jörg Kreowski (2008) herausgegebene Band Informatik
und Gesellschaft. Verflechtungen und Perspektiven.

Die Auswirkungen von Informatik bzw. Informations- und Kommunikations-
technik sind heute mehr denn je in vielfältigen Gesellschaftsbereichen wirksam
und sind natürlich auch nicht auf einen nationalen Raum beschränkt. Das FIfF
kooperiert daher bei seiner Arbeit mit vielen Organisationen, Initiativen und
Vereinigungen, die sich in Deutschland, Europa und darüber hinaus mit der-
artigen Fragen auseinandersetzen. Diese im einzelnen hier vorzustellen würde
den Rahmen dieses Beitrages sprengen. Es sei hier auf das Heft 2/2009 der
FIfF-Kommunikation (Kritische Informatik) verwiesen, welches diesbezüglich
einen guten Überblick bietet.

Neben vielen anderen Aktivitäten kommt den Jahrestagungen des FIfF eine
große Bedeutung zu – sie bilden ein Forum, wo sich Mitglieder und Interes-
sierte in Vorträgen und Arbeitsgruppen zu aktuellen Themen informieren und
miteinander diskutieren. Vom 13. bis 15. November 2009 wird die 25. FIfF-
Jahrestagung hoffentlich wieder eine große Zahl von Interessierten anziehen. Es
ist dann das vierte Mal (vgl. Abbildung 7), dass solch eine Tagung in Bremen
stattfindet – jeweils vorbereitet von Organisations- und Programmkomitees, an
denen Hans-Jörg Kreowski wesentlichen Anteil hatte (er hat darüber hinaus aber
auch bei der Vorbereitung mehrerer Jahrestagungen an anderen Orten mitge-
wirkt).

1994 bot die erste Jahrestagung in Bremen Gelegenheit, Rückschau auf 10
Jahre FIfF zu halten.

”
Wir wollten Partei ergreifen für die Menschen, für Ge-

rechtigkeit, für Entwicklung – Partei gegen blinden, technikfixierten Fortschritts-
glauben“, erklärte damals die frühere FIfF-Vorsitzende Helga Genrich. Das FIfF
hat sich von Beginn an gleichermaßen an die Öffentlichkeit und die Fachkollegen
als Adressaten gewandt. In der Informatik – so wurde auf der Tagung konstatiert
– sei inzwischen die Beschäftigung mit den gesellschaftlichen Auswirkungen Teil
der Disziplin geworden. So gab es Mitte der 1990er Jahre einige Universitäten
an denen ”Informatik und Gesellschaft“ in das Studium integriert und teilwei-
se auch durch Hochschullehrer/innen vertreten war. Die Arbeit des FIfF habe
– so das Resümee der Tagung – hier durchaus Früchte getragen. Gleichzeitig
wurde der Blick in die Zukunft gerichtet: Mit neuen Konzepten und Entwick-
lungen im Bereich der Informationstechnik müssten auch aufs neue kritische
Fragen gestellt und Tabus aufgebrochen werden.

”
FIfF soll politisch weiterhin

die Wächterrolle spielen, die es immer gespielt hat“, ermunterte Wolfgang Coy
als Sprecher des Fachbereichs 8 der Gesellschaft für Informatik die Zuhörer in
seinem Grußwort. Viele Beiträge dieser Tagung wurden anschließend in einem
Sammelband veröffentlicht (Kreowski et al. 1995).

FIfF – Impressionen aus 25 Jahren 349

Abb. 7. Die FIfF-Jahrestagungen in Bremen: 1984 plus 10: Realität und Utopien der
Informatik (10. FIfF-Jahrestagung 1994, Universität Bremen, Plakat: Ralf E. Streibl);
2001 – Odyssee im Cyberspace (17. FIfF-Jahrestagung 2001, Universität Bremen, Pla-
kat: Frank Drewes und Ralf E. Streibl); alles hören, alles sehen, alles machen . . . dank
Informatik (22. FIfF-Jahrestagung 2006, Hochschule Bremen, Plakat: Caro von Totth);
Verantwortung 2.0 (25. FIfF-Jahrestagung 2009, Universität Bremen, Plakat: Caro von
Totth)

350 Ralf E. Streibl

Abb. 8. Hans-Jörg Kreowski
”
fiffig“ öffentlich, u.a. in Zusammenhang mit einer Vor-

tragsreihe und Ausstellung zu 20 Jahren FIfF in der Villa Ichon, bei einem Audio-
Interview

”
für eine bessere Welt“ sowie als Redner bei der Großdemonstration

”
Freiheit

statt Angst“ am 11.10.2008 in Berlin.

Die Jahrestagung 2001 fand vom 28. bis 30.9.2001 unter dem Eindruck der
Terroranschläge vom 11. September statt. Viele Redner/innen nahmen direkt
darauf Bezug und das Tagungsprogramm wurde kurzfristig um einen Beitrag
eines Völkerrechtlers ergänzt. Eine vorher geplante Diskussionsrunde erhielt mit
Blick auf den anstehenden War against Terror kurzfristig ein neues Motto: In-
formatik und Krieg: Das Ende der Machbarkeiten. Sie wurde live von der Ta-
gung in Radio Bremen 2 übertragen, Teilnehmer waren Ralf Bendrath, Wolfgang
Coy, Hans-Jörg Kreowski, David L. Parnas und Nazir Peroz, die Moderation
übernahm Wolfgang Hagen, Programmleiter bei Radio Bremen. In einem von
der Mitgliederversammlung auf der Tagung beschlossenen Appell für Frieden

FIfF – Impressionen aus 25 Jahren 351

und Freiheit wurde – wie sich bereits kurz danach zeigte absolut zu Recht –
vor indirekten Folgen gewarnt:

”
Das FIfF ist ebenso besorgt, dass die Terror-

anschläge als Vorwand dienen werden, die Grund- und Freiheitsrechte einzu-
schränken, insbesondere auch das Recht auf informationelle Selbstbestimmung
zu beschneiden, den Datenschutz auszuhöhlen, die ausländischen – vor allem die
islamischen – Mitbürgerinnen und Mitbürger unter Generalverdacht zu stellen
und die Überwachung aller zu forcieren.“

Die Jahrestagung 2006 wollte im Informatikjahr 2006 ein kleines Gegenge-
wicht zu den Danksagungen an die Informatik bilden und einige leisere Töne
im verbreiteten Jubel anschlagen. Es ging einmal mehr darum, zur Vorsicht zu
mahnen und den Diskurs auch über problematische Entwicklungen einzufordern.
Der Tagungstitel alles hören, alles sehen, alles machen – dank Informatik nahm
daher mit einem Augenzwinkern das Motto des Wissenschaftsjahres auf. Zum
Auftakt der Tagung diskutierten im Haus der Wissenschaft Günter Dueck und
Hans-Jörg Kreowski, moderiert von Andreas Spillner.

Nachdem die Jahrestagung 2008 in Aachen sich hauptsächlich um aktuel-
le Bezüge von Informatik zu Krieg und Frieden drehte, liegt es 2009 für die
Tagung zum 25-jährigen Bestehen des FIfF nahe, den Fokus explizit auf die
gesellschaftliche Verantwortung zu legen. Die Tagung beginnt erneut mit einer
Auftaktveranstaltung im Haus der Wissenschaft: Unter dem Titel Netz aktiv dis-
kutieren Lars Reppesgaard und Hendrik Speck über Google, soziale Netzwerke,
Datenschutz und neue Nutzungsformen der Informationstechnik. Im weiteren
Verlauf der Tagung wird der scheidende Vorsitzende Hans-Jörg Kreowski einen
Hauptvortrag halten – als Rückschau und Positionsbestimmung des FIfF.

Hans-Jörg Kreowski hat das FIfF von Anfang bis heute inhaltlich, organisa-
torisch, finanziell und strukturell intensiv unterstützt, längst nicht nur während
seiner Zeiten im Vorstand (1993 bis 1997, sowie seit 2003 als Vorsitzender). Es
wäre unmöglich, all seine Aktivitäten aufzuzählen zu wollen – im vorstehenden
Artikel klingt nur ein Bruchteil davon an. So bleibt an dieser Stelle nur eines zu
sagen: Danke, Hans-Jörg!

Bemerkung. Ein Grußwort des stellv. FIfF-Vorsitzenden Stefan Hügel findet
sich auf Seite 29 dieser Festschrift.

Literatur

Bernhardt, U.; Genrich, H.; Ruhmann, I. (1992). Der Prozess Verantwortung. In
H.-J. Kreowski (Hrsg.): Informatik zwischen Wissenschaft und Gesellschaft.
Zur Erinnerung an Reinhold Franck. Informatik-Fachberichte Nr. 309. Ber-
lin: Springer, Seite 242–254.

Büllesbach, A.; Garstka, H.-J. (2005). Computerrecht – Meilensteine auf dem
Weg zu einer datenschutzgerechten Gesellschaft. In Computer und Recht,
21(10), Seite 720–724.

Kreowski, H.-J. (1984). Aufbruch zu einer anderen Informatik. In Rundbrief
1/1984 des FIfF, Seite 14ff.

352 Ralf E. Streibl

Kreowski, H.-J.; Risse, T.; Spillner, A.; Streibl, R.E.; Vosseberg, K. (Hrsg.)
(1995). Realität und Utopien der Informatik. Münster: agenda.

Kreowski, H.-J. (2007). Demokratie sichern und entfalten. In Wider den Zeit-
geist. Sonderbeilage zur FIfF-Kommunikation 3/2007,

Kreowski, H.-J. (Hrsg.) (2008). Informatik und Gesellschaft. Verflechtungen und
Perspektiven. Reihe: Kritische Informatik, Bd. 4. Münster: Lit.

Löhr, K.-P. (1984). Zur Entstehung des FIfF. In Rundbrief 1/1984 des FIfF,
Seite 17ff.

Steinmüller, W. (2007). Das informationelle Selbstbestimmungsrecht. Wie es
entstand und was man daraus lernen kann. In FIfF-Kommunikation, 24(3),
Seite 15–19.

. .

Ralf E. Streibl

Studienzentrum Informatik
Universität Bremen
Postfach 330 440
D-28334 Bremen (Germany)
res@informatik.uni-bremen.de

Ralf E. Streibl studied Psychology and Computer Science at the University
of Erlangen. At present he works at the University of Bremen as a lecturer
(mainly in the field of informatics and society) as well as in the student advisory
service. Having been a FIfF member since the annual meeting 1988 in Hamburg
(by the way: Hans-Jörg Kreowski had a panel discussion there, so there was
the first short encounter), he joined the FIfF Regionalgruppe Bremen when
starting to work at the University of Bremen in 1993. Hans-Jörg Kreowski
decided to leave the board of FIfF in 1997. Ralf became his successor and
stayed until 2003, when Hans-Jörg returned to the board as its chairman.
Since many years Ralf is furthermore active in the editorial staff of the FIfF-
Kommunikation.

. .

Forum InformatikerInnen für Frieden und
gesellschaftliche Verantwortung (FIfF) e.V.

- Geschäftsstelle -
Goetheplatz 4
D-28203 Bremen (Germany)
fiff@fiff.de
www.fiff.de

. .

Author Index

Baldan, Paolo 39
Biermann, Enrico 59
Busatto, Giorgio 25

Corradini, Andrea 39
Coy, Wolfgang 77
Czernik, Sofie 27

Drewes, Frank 83

Ehrenfeucht, Andrzej 99
Ehrig, Hartmut 109
Ermel, Claudia 59
Ewert, Sigrid 135

Gadducci, Fabio 39
Gogolla, Martin 149

Hölscher, Karsten 149
Hügel, Stefan 29
Habel, Annegret 109
Hoffmann, Berthold 171

Janssens, Dirk 191

König, Harald 321
Klempien-Hinrichs, Renate 205
Knirsch, Peter 25

Kuske, Sabine 223

Löhr, Klaus-Peter 21
Löwe, Michael 321
Lambers, Leen 109
Luderer, Melanie 223

Mahr, Bernd 247
Montanari, Ugo 39
Mossakowski, Till 269

Padawitz, Peter 287
Plump, Detlef 305

Rozenberg, Grzegorz 99

Schürr, Andy 31
Schulz, Christoph 321
Schwabe, Nils 33
Spillner, Andreas 35
Streibl, Ralf E. 341

Tönnies, Hauke 223
Taentzer, Gabriele 59
Totth, Caroline von 205

Vosseberg, Karin 35

353

Sources of Illustrations

Note: Numbers in square brackets refer to publications of Hans-Jörg Kreowski listed
at the beginning of the Festschrift. The following additional references are used.

[Dre06] Frank Drewes: Grammatical Picture Generation. A Tree-Based Approach.
Texts in Theoretical Computer Science. An EATCS Series. Springer (2006).

[DKH00] Frank Drewes, Renate Klempien-Hinrichs: Picking Knots from Trees.
The Syntactic Structure of Celtic Knotwork. In M. Anderson, P. Cheng,
V. Haarslev, Proc. Diagrams 2000, Lecture Notes in Artificial Intelligence
1889:89–104 (2000).

Unless otherwise mentioned, all syntactic pictures have been generated by Frank Drewes
using Treebag, and all collages of photographs on the front pages of colour sheets have
been arranged by Caro von Totth, August 2009.

Front cover: Designed by Caro von Totth, August 2009. The raven makes a sound that
may be spelled gra gra, which is an abbreviation for graph grammars. This observation
led Annegret Habel and Hans-Jörg Kreowski to design the raven logotype for the
4th International Workshop on Graph Grammars and Their Application to Computer
Science in Bremen in March 1990. Since then, it has frequently occurred in the context
of graph transformation, e.g., on the Proceedings of the International Conference on
Graph Transformation in 2002, 2006, and 2008 (LNCS volumes 2505, 4178, and 5214).

First page: The photograph of Hans-Jörg Kreowski appears courtesy of Dorle Kreowski,
2009.

Hans-Jörg’s scientific family tree on page 1: Illustration made by Caro von Totth, 2009.

Sheet preceding page 19, front page: A collage reminding of the title Manipulation
von Graphmanipulationen of Hans-Jörg’s doctoral thesis. In itself, the collage is a
manipulation of [Dre06, Example 4.4.4].
Back page: The Butterfly Lemma of Hans-Jörg’s doctoral thesis, pp. 19 and 20, scanned
by Caro von Totth and combined into a single image by Frank Drewes, August 2009.

Sheet preceding page 37, front page: A statue at Rolduc monastery, Kerkrade, location
of the first Agtive conference 1999. Photo taken by Fred M.A. Somers, Rembrandt van
Rijnstraat 41, NL-6464 BK Kerkrade, 2009. Arrangement by Caro von Totth, 2009.

Karin Nacken, Mr. Somer’s wife (who persuaded her husband to take these photos for
us), explains the symbolism of this statue as follows: “In the old days, the students of
the seminary at Rolduc (symbolized by the raven) looked down at the students of the
gymnasium (symbolized by the pig); the pose of the pig expresses the students’s wish to
become members of the seminary, which was unthinkable in those times. Fortunately,
this is no longer the case nowadays.”
Back page: The context-freeness lemma for hyperedge-replacement graph grammars,
an illustration taken from [92].

Sheet preceding page 59, back page: Poem recorded by Berthold Hoffmann, 2008.

Sheet preceding page 77, back page: A collage generated by a grammar proving that
connectedness is undecidable for linear context-free collage languages, from [29].

355

356 Sources of Illustrations

Sheet preceding page 83, back page: A collage inspired by M.C. Escher’s print Square
Limit, generated by an ET0L collage grammar that is developed in [Dre06, Exam-
ple 3.3.4].

Sheet preceding page 99, back page: The Devil’s Staircase, one of Hans-Jörg’s favourite
examples in courses on syntactic picture generation. Coloured version as discussed in
[Dre06, Example 7.2.7].

Sheet preceding page 109, back page: Hyperedge replacement, a picture taken from [92]
illustrating the parallel replacement of four hyperedges.

Sheet preceding page 135, back page: A collage grammar at work, an example used in
[29] and created by Frank Drewes using Nils Schwabe’s system Collage-One.

Sheet preceding page 149, back page: Generating an NP-complete hyperedge-replacement
graph language, from [29].

Sheet preceding page 171, back page: Poem recorded by Berthold Hoffmann, September
2007.

Sheet preceding page 191, back page: Generating anbncn in a context-free manner by
hyperedge replacement, an illustration taken from [92].

Sheet preceding page 205, back page: A celtic knot generated by a collage grammar
presented in [DKH00], using a slightly improved version from [Dre06, Section 3.5.2].

Sheet preceding page 223, back page: Productions for generating control-flow graphs by
means of hyperedge replacement, from [92].

Sheet preceding page 247, front page: Collage generated by Nils Schwabe (1997) using
Collage-Two. It appeared on the cover of the 1996 Progress Report of Hans-Jörg’s
research group.
Back page: Poem by Berthold Hoffmann, August 2009.

Sheet preceding page 269, back page: The dragon curve, another prime example often
used by Hans-Jörg in courses on syntactic picture generation, coloured version from
[Dre06, Exercise 7.1.2].

Sheet preceding page 287, front page: Image created by Caro von Totth, 2009.
Back page: A visualization of the pumping lemma for hyperedge replacement graph
grammars, as applied to the string graph that represents anbncn, from [92]

Sheet preceding page 305, back page: Term-graph rewrite rule and rewrite steps (col-
lapsing followed by evaluation) for the Fibonacci function, from [25].

Sheet preceding page 321, back page: Generating control-flow graphs by hyperedge re-
placement, from [92].

Sheet preceding page 341, back page: A collage inspired by M.C. Escher’s woodcut Path
of Life I, generated by a linear context-free collage grammar; this is the solution of
[Dre06, Excercise 7.1.4].

o ei e o a aoaio ye (the lost characters)

