
From Algebraic Specifications to
Graph Transformation Rules to

UML and OCL Models

Martin Gogolla and Karsten Hölscher

Abstract. Graph transformation and algebraic specification are well-
established techniques in theoretical and practical computer science and
claim to support software development with fundamental methods in a
formal manner. Equational algebraic specifications can be translated into
a graph transformation system in a systematic way. A graph transforma-
tion system in turn can be analyzed and processed by a number of tools.
This paper studies how to step from equational algebraic specifications
to graph transformation and from there to an operational representation
in various graph transformation tools. We work with USE (UML-based
Specification Environment), AGG (Attributed Graph Grammar system),
and GrGen (Graph rewrite Generator). In particular, we discuss how to
establish a connection between algebraic specifications and UML class
diagrams and OCL constraints.

1 Introduction

Equational algebraic specifications [EM85,EGL89,Wir90] as well as graph gram-
mars and graph transformation [Roz97,EEKR99] are two fields which have been
studied since about thirty years and which share the use of fundamental categor-
ical and algebraic techniques. Both fields claim to support software development
with fundamental methods in a formal manner. In recent years, graph transfor-
mation attracted substantial research effort because of its closeness to model-
driven and model transformation-oriented approaches. For a graph transforma-
tion system, practically applicable tools like AGG [dLT04], FUJABA [BGN+04],
GrGen [GK07], GReAT [BNvBK06], MOFLON [AKRS06] or GROOVE [Ren03]
have been developed and UML tools like USE have been extended to cope with
graph transformation [BG06].
The transformation in our paper basically follows the method for translat-
ing algebraic specifications into graph transformation which has been proposed
in [Löw90] but which has not been realized in a tool (in contrast to the work
presented in this paper). Our work is based on the UML and OCL tool USE
developed in our group since about ten years [GBR05,GBR07] and on the tools
AGG [dLT04] and GrGen [GK07]. This selection of tools was determined by the
fact that the authors have experience and knowhow in the use of these tools.
We are sure that the other mentioned tools and further ones can be used for our
purpose as well.
One main result of the paper is our observation that it is feasible to build
a conceptual bridge between so distant fields like “hard” algebraic specifica-

F. Drewes, A. Habel, B. Hoffmann, D. Plump (Eds.): Manipulation of Graphs, Algebras and Pictures.
Essays Dedicated to Hans-Jörg Kreowski on the Occasion of His 60th Birthday, pp. 149–169, 2009.

150 Martin Gogolla, Karsten Hölscher

tion (AlgSpec) and “soft” popular approaches like the Unified Modeling Lan-
guage (UML). We regard Graph Transformation (GraTra) as the missing link.
GraTra tools provide the possibility of analyzing the underlying model. For ex-
ample, GraTra tools apart from validating the model are able to check the model
consistency or can provide a critical pair analysis of the underlying equations in
the algebraic specification. Thus a central ingredient in the interplay between
AlgSpec and UML is the ability of GraTra to mediate between the other fields
and to broadcast results in both directions. There are some scientists which have
been working in all three fields. Among them is Hans-Jörg Kreowski. According
to DBLP, his earliest contribution in the GraTra field is from 1977 [Kre77], the
earliest one on AlgSpec is from 1978 [EKW78], and the earliest one on UML is
from 2002 [KGKK02].
The structure of the rest of the paper is as follows. Section 2 introduces our
simple running example within the context of equational algebraic specification
and graph transformation. Sections 3, 4 and 5 discuss the realization of this
example in the tools USE, AGG, and GrGen, respectively. The paper is finished
with concluding remarks in Sect. 6.

2 Running Example

We will study the relationship between equational algebraic specification, graph
transformation, and tool realizations of graph transformation by a very simple
equational algebraic specification for the natural numbers as shown in Fig. 1.
The specification includes the two constructors zero and succ and an opera-
tion plus realizing the addition on natural numbers. Any term incorporating
the operation plus can be reduced by means of the equations to a term using
only the constructors zero and succ, and the different terms built over zero
and succ represent all values for the sort nat.
spec Nat

srts nat

opns zero: -> nat

succ: nat -> nat

plus: nat nat -> nat

vars N, M: nat

eqns plus(zero,N) = N

plus(succ(N),M) = succ(plus(N,M))

Fig. 1. Algebraic Example Specification for Addition on Natural Numbers

In Fig. 2 we have represented the two example equations as two graph trans-
formation rules with left and right side: Each operation symbol and each vari-
able becomes a node and the edges connect operation symbols with their ar-
guments. The first argument of the operation plus is established with edges
labelled PlusNat1 and the second argument with label PlusNat2. Analogously,
the argument of the constructor succ shows the label SuccNat. Although the

From Algebraic Specifications to GT Rules to UML and OCL Models 151

Fig. 2. Naive Representation of Example Equations as a Graph Transformation System

representation seems straight forward, it is too naive for general graph transfor-
mation and must be extended as explained below.
The main problem with the above representation in Fig. 2 lies in the fact that
the context in which the rules are to be applied is not handled properly. For
example, if the first rule is applied in the term succ(plus(zero,zero)), the
context information that in this case plus is a subterm of succ is not preserved
by the rule. In order to preserve this context information additional nodes are
introduced. These nodes embody the context information and explicitly state
the type information for each term. This extended representation of the rules is
pictured in Fig. 3. The context information is held within the NatType nodes.
In both rules it is essential, that the topmost NatType nodes are preserved by
the rules, i.e., the topmost NatType nodes appear in the left and right side
of the rules. Roughly speaking, incoming edges for both rules are handled by
the NatType nodes (1). Outgoing edges for the first rule are handled by node (6)
whereas outgoing edges for the second rule are handled by nodes (6) and (8).

3 USE

The example graph transformation system corresponding to the algebraic speci-
fication is given to USE in textual form. First, the underlying UML class diagram
including classes, inheritance relationships, and associations is stated. The over-
all class diagram is shown in Fig. 4. Currently, our translator from rules to OCL

152 Martin Gogolla, Karsten Hölscher

Fig. 3. Representation of Example Equations as a Graph Transformation System

only supports 0..* multiplicities. Therefore only those multiplicities are stated
in the class diagram, although more restricting multiplicities could be chosen.

In addition to the class diagram, the two rules are stated in textual form in Fig. 5
and are called plusZeroN 2 N and plusSuccNM 2 succPlusNM. These names will
be used for generated UML operations. The rules basically make declarations for
nodes and edges on the left and right hand side of the rule. In the UML class dia-
gram context, nodes correspond to objects and edges to links. Additionally, OCL
conditions could be declared in the left or right hand side, although this feature
is not used in this example. OCL conditions in the left side correspond to rule
preconditions and OCL conditions in the right side to rule postconditions. Left
hand side conditions are called application conditions within the graph transfor-
mation area. A representation of the rules in form of UML object diagrams is
pictured in Fig. 6.
In Fig. 7 the class diagram generated from the rules resp. the operations gener-
ated from the rules are pictured. Each rule induces three operations: The first
operation is responsible for applying the rule and for replacing in the so-called
working graph a matching left-hand side by the rule’s right hand side; the second

From Algebraic Specifications to GT Rules to UML and OCL Models 153

Fig. 4. UML Class Diagram for Terms over Natural Numbers Employed in USE

operation checks the precondition of the rule, and the third operation searches
in the working graph for rule redexes, i.e., locations in the working graph where
the rule can be applied. The parameters of the operations are determined by the
objects (nodes) appearing on the left hand side of the rule.
An example for the reduction of a working graph is given in Fig. 8, basi-
cally as a sequence of working graphs in form of UML object diagrams. The
reduction corresponds to the calculation [(0+1)+(0)]+1 = [(0)+(0)]+1+1 =
0+1+1. The lower part shows the calculation close to a mathematical nota-
tion, the middle part uses the naive term representation, and the upper part
employs the correct detailed representation with nodes representing the types.
The left column represents the term [(0+1)+(0)]+1, the middle column the
term [(0)+(0)]+1+1 and the right column the term 0+1+1. The transition from
the left column to the middle column is basically induced by an operation call
to plusSuccNM 2 succPlusNM corresponding to an application of the second rule
from Fig. 3 and the transition from the middle column to the right column by
an operation call to plusZeroN 2 N corresponding to an application of the first
rule from Fig. 3.
The example calculation is also pictured in Fig. 9 in form of a UML sequence
diagram. The commands and calls in the sequence diagram can be classified into
three parts: The first commands build up the working graph by creating objects
representing the start term [(0+1)+(0)]+1, the second part is the application of
the second rule, and the third part shows the application of the first rule. In the
first part, also the links are introduced, however this is not shown in the sequence
diagram in order to keep the diagram small. Because object-oriented ideas stand
behind USE, every operation call must be directed to an object. Therefore,
exactly one object rc of class RuleCollection is created. The following calls are
directed to this object rc. The operation call in the third part which corresponds

154 Martin Gogolla, Karsten Hölscher

-- plus(zero,N) = N -- plus(succ(N),M) = succ(plus(N,M))

rule plusZeroN_2_N rule plusSuccNM_2_succPlusNM

left N:NatExpr left N:NatExpr

NT:NatType NT:NatType

zero:ZeroExpr M:NatExpr

zeroT:NatType MT:NatType

plus:PlusExpr succ:SuccExpr

plusT:NatType succT:NatType

-- plus:PlusExpr

(NT,N):TypeExpr plusT:NatType

(zeroT,zero):TypeExpr --

(plusT,plus):TypeExpr (NT,N):TypeExpr

-- (MT,M):TypeExpr

(plus,zeroT):PlusNat1 (succT,succ):TypeExpr

(plus,NT):PlusNat2 (plusT,plus):TypeExpr

right N:NatExpr --

-- (succ,NT):SuccNat

plusT:NatType (plus,succT):PlusNat1

-- (plus,MT):PlusNat2

(plusT,N):TypeExpr right N:NatExpr

NT:NatType

M:NatExpr

MT:NatType

succ:SuccExpr

succT:NatType

plus:PlusExpr

plusT:NatType

--

(NT,N):TypeExpr

(MT,M):TypeExpr

(plusT,succ):TypeExpr

(succT,plus):TypeExpr

--

(succ,succT):SuccNat

(plus,NT):PlusNat1

(plus,MT):PlusNat2

Fig. 5. Representation of Example Equations in Textual Form

to the application of first rule eliminates certain objects which corresponds to the
fact that this rule deletes nodes. The redexes for rule application are determined
by calls to the redexes operations.
Finally let us comment on the role of OCL within our approach. In USE, OCL
plays a central role. In our view, OCL is the formal specification language of the
UML and is comparable to other formal specification languages like Z or CASL
although the emphasis is much more on practical usability than on theoretical
underpinning, for example, on proof theory. The representation of graph trans-
formation in USE is achieved by representing a rule as an operation which is
characterized by OCL pre- and postconditions and an operational realization as
a command script. Furthermore, OCL can be employed for analyzing the work-

From Algebraic Specifications to GT Rules to UML and OCL Models 155

Fig. 6. Representation of Example Equations as Object Diagram Pairs

Fig. 7. Class Diagram Induced by the Rules

156 Martin Gogolla, Karsten Hölscher

Fig. 8. Example Calculation as an Object Diagram Filmstrip

ing graph at any stage during its development by querying the underlying UML
object diagram.

From Algebraic Specifications to GT Rules to UML and OCL Models 157

Fig. 9. Example Calculation as a UML Sequence Diagram

4 AGG

In order to animate graph transformation in AGG it is necessary to specify a
graph grammar first. Such a grammar makes declarations for the node and edge
types of the needed graph items. In the case of the sample algebraic specifica-
tion from Fig. 1, a straightforward translation requires a node of type Nat as a
base node for the sort. Additionally, a node of type NatType is needed for the
same reason as explained in Section 2. Now for every operation of the algebraic
specification a corresponding node type being a subtype of Nat is needed. An in-
heritance relation cannot be specified in the AGG grammar, but in a type graph
for the corresponding grammar. For this reason the type graph in Fig. 10 is
created. In AGG this can be done in a graphical editor. The type graph specifies
the nodes PlusExp, SuccExp, and ZeroExp to be subtypes of the node Nat.
Additionally edge types are declared for the arguments of the operations defined
in the algebraic specification. Since the order of these arguments is usually im-

158 Martin Gogolla, Karsten Hölscher

Fig. 10. Type Graph for Terms over Natural Numbers Employed in AGG

portant, a digit is appended to the type names. So the additional edge types are
Succ1, Plus1, and Plus2.
Having specified a suitable graph grammar, it is now possible to create a host
graph for the transformation, which can also be done in a graphical editor. Fig. 11
shows the host graph for the sample term succ(plus(succ(zero),zero)). The
recipe for creating a host graph of a given equation is to read the equation from
left to right and add the corresponding nodes and edges in that order. For every
node that represents a sort it is additionally necessary to add a corresponding
node for the context.
The sample term in Fig. 11 starts with succ, so a node of type SuccExp is added.
This node is connected to a newly created context node NatType using an edge
of type Nat. Since a Nat node is always attached to a NatType context node in
this way, it is hence refered to as a Nat node pair.
The next operation occurring in the term is plus, so a PlusExp node pair is
inserted into the graph. Since this node pair is an argument to the previous
succ operation, an edge of type Succ1 is added which connects the SuccExp
node with the NatType node belonging to the new PlusExp node. The remainder
of the equation can be treated in an analogous way.
Now that we have specified a host graph, the actual graph transformation rules
can be derived. The specification contains two equations. These equations can
be translated into a graph transformation rule in an analogous way as the trans-
lation above. The left-hand side of the equation is translated to a graph which
becomes the left-hand side of the rule. Similarly the right-hand side of the equa-
tion becomes the right-hand side of the rule. The rule creation is finished by
the specification of those elements that have to be preserved when the rule is
actually applied.
Consider the first equation plus(zero,N)=N of the specification. The left-hand
side of this equation, i.e., plus(zero,N) has to be translated into a graph first.
As previously explained, this is accomplished by reading the expression from
left to right and inserting corresponding elements into the graph. The expression
starts with plus, so a new PlusExp node pair is inserted into the graph. The first
argument of the operation plus is zero, so a new ZeroExp node pair is added to

From Algebraic Specifications to GT Rules to UML and OCL Models 159

Fig. 11. AGG Graph Representation of succ(plus(succ(zero),zero))

the graph. Additionally the PlusExp node is connected to the NatType node of
the ZeroExp node pair with an edge of type Plus1. The second argument of plus
in the equation is N, so a new Nat node pair is created. The NatType node of this
pair is connected to the PlusExp node with an edge of type Plus2. Since N is
not further specified, the concrete subtype is not known. For this reason a node
of the supertype Nat is used.
The right-hand side of the equation is N. So the graph for the right-hand side of
the new rule contains only a Nat node pair.
In AGG a rule can also be created in a graphical editor. Fig. 12 shows a screen-
shot of the rule corresponding to the equation plus(zero,N)=N.
The graph to the left of the vertical bar is the left-hand side of the rule while
the graph to its right is the right-hand side. The items that have to be preserved
are represented by identical numbers in graph elements of the left-hand and the
right-hand side. In this case, only the NatType node indicated by 1: and the Nat
node indicated by 2: are specified as elements that have to be preserved when
the rule is applied. Since the equation specifies that plus and zero do not occur

160 Martin Gogolla, Karsten Hölscher

Fig. 12. AGG Rule Representing the Equation plus(zero,N)=N

in the right-hand side, the graph transformation rule specifies to delete the corre-
sponding nodes. It may be an intuitive approach to simply keep the N:Nat node
pair when the rule is applied, but this may yield a wrong result. If the NatType
node of the PlusExp node pair is connected to another node, e.g., to a SuccExp
node via a Succ1 edge (representing an expression like succ(plus(...)), then
this connection would be deleted together with the respective NatType node. For
this reason, the NatType node of the Nat node pair representing the first term
in the equation expression always has to be preserved. The additional context
following N is preserved anyway, since the Nat node representing N is preserved
and with it all its connections.
So the rule creation works as stated above bearing in mind that the the topmost
(in the sense of no incoming edges) NatType of the left-hand side has to be
preserved.

Fig. 13. AGG Rule Representing the Equation plus(succ(N),M)=succ(plus(N,M))

Fig. 13 pictures the AGG rule that corresponds to the second equation
plus(succ(N),M) = succ(plus(N,M)) of the specification. It has been created
analogously to the first rule.

From Algebraic Specifications to GT Rules to UML and OCL Models 161

Fig. 14. Transformed Graph After Applying the First Rule in AGG

Considering the host graph from Fig. 11 the first rule cannot be applied. This
holds, since the first argument of plus would have to be zero for the rule to
be applicable. The second rule can be applied in exactly one fashion and in the
same way as one would apply the second equation. It yields the transformed
graph in Fig. 14. The figure shows a screenshot of the actual transformation in
AGG which can directly be observed in the GUI version of the tool.
The second rule is not applicable to the transformed graph. This holds, since the
rule expects a succ as first argument of plus. But in the expression represented
by the graph, the first argument of the only plus is zero. For this reason the
first graph transformation rule is applicable, yielding the transformed graph
depicted in Fig. 15. It represents the term succ(succ(zero)), which is the
expected result.

5 GrGen

In GrGen the specification of the underlying graph model as well as the graph
transformation rules is given in textual form. Since GrGen supports subtypes for
nodes and edges as well as subtype matching in rule application, the algebraic

162 Martin Gogolla, Karsten Hölscher

Fig. 15. Transformed Graph After Applying the Second Rule in AGG

specification can be translated in a straight-forward way. The graph model can be
derived from a specification in the following way. For every sort there is a node
type with the same name and a context node type. Then for every operation
that yields a certain sort, there is a node type which extends the node type
representing the sort. For every argument of an operation there is an edge type
with a type name consisting of the operation name and a successive number
to indicate the order of the arguments. Therefore, in the case of the running
example specification from Fig. 1, the GrGen graph model description can be
stated textually as follows.

node class NatType;

node class Nat;

node class Zero extends Nat;

node class Succ extends Nat;

node class Plus extends Nat;

edge class nat;

edge class succ1;

edge class plus1;

edge class plus2;

This model can also be pictured as a UML class diagram as shown in Fig. 16.
In addition to the simple, but sufficient model we have used here, GrGen would
also allow to declare the edges to possess more specific types.

From Algebraic Specifications to GT Rules to UML and OCL Models 163

Fig. 16. UML Class Diagram for Terms over Natural Numbers Employed in GrGen

In GrGen a graph transformation rule consists of a pattern part and a replace
part. The pattern part represents the left-hand side of the rule, while the
replace part corresponds to the right-hand side. The graph items that have
to be preserved are indicated by using the same identifiers for nodes and edges
in both parts.
In order to specify the left-hand side of the rule for plus(zero,N) a node pair
consisting of the corresponding Nat node connected to its context NatType node
is inserted for every Nat expression. Then connecting edges are specified for the
operation arguments, which can be directly derived from the specification. The
right-hand side is specified analogously. Similarly to the AGG specification the
topmost NatType node of the left-hand side has to be mapped to the topmost
NatType node of the right-hand side in order to preserve a possible context. So
the first rule looks like this:

rule plusZeroN {

plus:Plus -:nat-> plusType:NatType;

zero:Zero -:nat-> zeroType:NatType;

n:Nat -:nat-> nType:NatType;

plus -:plus1-> zeroType;

plus -:plus2-> nType;

replace {

n -:nat-> plusType;

}

}

Analogously the second rule looks like this:

164 Martin Gogolla, Karsten Hölscher

rule plusSuccNM {

plus:Plus -:nat-> plusType:NatType;

suc:Succ -:nat-> sucType:NatType;

n:Nat -:nat-> nType:NatType;

m:Nat -:nat-> mType:NatType;

plus -:plus1-> sucType;

plus -:plus2-> mType;

suc -:succ1-> nType;

replace {

suc -:nat-> plusType;

suc -:succ1-> newPlusType:NatType;

plus -:nat-> newPlusType;

plus -:plus1-> newNType:NatType;

n -:nat-> newNType;

plus -:plus2-> newMType:NatType;

m -:nat-> newMType;

}

}

The actual graph transformation is executed in GrGen’s grshell. Within grshell,
a graph transformation specification can be loaded and a graph can be created
manually or by a script. Testing the above specification using an initial graph rep-
resenting the sample term succ(plus(succ(zero),zero)) yields the expected
result. Initially only the rule plusSuccNM and after that only the rule plusSuccNM
is applicable. For debuging purposes, GrGen is shipped with yComp, a graph
visualization tool that draws the current host graph handled in GrGen. Fig. 17
shows a screenshot of the graph after the two rule applications. As expected it
is the graph representation of the term succ(succ(zero)).

6 Conclusion

This paper has explained how algebraic specification in their basic form as con-
ditional equations can be represented as a graph transformation system and how
the result can be validated, animated, and executed in various graph transfor-
mation tools. These graph transformation tools offer the possibility of analyzing
the underlying model (although we have not demonstrated this feature). We
have considered the equational specification as a rewriting system which works
in one direction only. The work shows that classical software specification tech-
niques still have a close connection to modern object-oriented techniques like
UML. The translation may also be seen as an example for a conceptual model
transformation from one computer science field (Algebraic Specification) into
another one (UML and OCL). Another aspect of the current work was to show
and compare the graph models in the different tools by formally fixed UML class
diagrams. These different graph models underpin the flexibility of current graph
transformation tools.

From Algebraic Specifications to GT Rules to UML and OCL Models 165

Fig. 17. Final Graph in GrGen Drawn with yComp

Future work might concentrate on the question how to utilize the strengths
and analysis features of the different tools in order to give feedback to sys-
tem developers. Apart from the considered tools, other tools like FUJABA,
MOFLON, GReAT, GROOVE, VIATRA, or VMTS might be taken into consid-
eration. The equations might also be treated as rules in both directions. We think
that for courses on formal software development the translation which we have
proposed gives insight into connections between the different computer science
fields, namely algebraic specification, graph transformation, and model-driven
development.

References

[AKRS06] C. Amelunxen, A. Königs, T. Rötschke, A. Schürr. MOFLON: A Standard-
Compliant Metamodeling Framework with Graph Transformations. In A.
Rensink, J. Warmer, editors, Proc. 2nd Eur. Conf. Model Driven Architec-
ture (ECMDA’2006), 361–375. LNCS 4066, Springer, Berlin, 2006.

[BG06] F. Büttner and M. Gogolla. Realizing Graph Transformations by Pre- and
Postconditions and Command Sequences. In A. Corradini, H. Ehrig, U.
Montanari, L. Ribeiro, and G. Rozenberg, editors, Proc. 3rd Int. Conf.
Graph Transformations (ICGT’2006), 398-412. LNCS 4178, Springer,
Berlin, 2006.

[BGN+04] S. Burmester, H. Giese, J. Niere, M. Tichy, J.P. Wadsack, R. Wagner,
L. Wendehals, and A. Zündorf. Tool Integration at the Meta-Model Level:
The FUJABA Approach. STTT, 6(3):203-218, 2004.

[BNvBK06] D. Balasubramanian, A. Narayanan, C.P. van Buskirk, and G. Karsai.
The Graph Rewriting and Transformation Language: GReAT. ECEASST,
1, 2006.

166 Martin Gogolla, Karsten Hölscher

[dLT04] J. de Lara and G. Taentzer. Automated Model Transformation and Its
Validation Using AToM 3 and AGG. In A.F. Blackwell, K. Marriott, and
A. Shimojima, editors, Diagrams, LNCS 2980, 182-198. Springer, 2004.

[EEKR99] H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg, editors. Handbook
of Graph Grammars and Computing by Graph Transformation, Vol. 2:
Applications, Languages and Tools. World Scientific, Singapore, 1999.

[EGL89] H.-D. Ehrich, M. Gogolla, U.W. Lipeck. Algebraische Spezifikation abstrak-
ter Datentypen. Teubner, Stuttgart, 1989.

[EKW78] H. Ehrig, H.-J. Kreowski, H. Weber. Algebraic Specification Schemes for
Data Base Systems. In S. Bing Yao, editor, Proc. 4th Int. Conf. Very Large
Data Bases, IEEE, 427-440, 1978.

[EM85] H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification. Springer,
Berlin, Germany, 1985.

[GBR05] M. Gogolla, J. Bohling, and M. Richters. Validating UML and OCL Models
in USE by Automatic Snapshot Generation. Journal on Software and
System Modeling, 4(4):386-398, 2005.

[GBR07] M. Gogolla, F. Büttner, and M. Richters. USE: A UML-Based Specifi-
cation Environment for Validating UML and OCL. Science of Computer
Programming, 69:27-34, 2007.

[GK07] R. Geiß and M. Kroll. GrGen.Net: A Fast, Expressive, and General Pur-
pose Graph Rewrite Tool. In A. Schürr, M. Nagl, and A. Zündorf, editors,
AGTIVE, LNCS 5088, 568-569. Springer, 2007.

[Kre77] H.-J. Kreowski. Transformations of Derivation Sequences in Graph Gram-
mars. In M.Karpinski, editor, Proc. 1st Int. Conf. Fundamentals of Com-
putation Theory, Springer, LNCS 56, 275-286, 1977.

[KGKK02] S. Kuske and M. Gogolla and R. Kollmann and H.-J. Kreowski. An In-
tegrated Semantics for UML Class, Object and State Diagrams Based on
Graph Transformation. In M.J. Butler, L. Petre, K. Sere, editors, Proc.
3rd Int. Conf. Integrated Formal Methods, Springer, LNCS 2335, 11-28,
2002.

[Löw90] M. Löwe. Implementing Algebraic Specifications by Graph Transforma-
tion Systems. Elektronische Informationsverarbeitung und Kybernetik,
26 (11/12):615-641, 1990.

[Ren03] A. Rensink. The GROOVE Simulator: A Tool for State Space Generation.
In J.L. Pfaltz, M. Nagl, and B. Böhlen, editors, AGTIVE, LNCS 3062,
479-485. Springer, 2003.

[Roz97] G. Rozenberg, editor. Handbook on Graph Grammars and Computing by
Graph Transformation, Vol. 1: Foundations. World Scientific, Singapore,
1997.

[Wir90] M. Wirsing. Algebraic specification. In J. van Leeuwen, editor, Handbook
of Theoretical Computer Science. North-Holland, 1990.

From Algebraic Specifications to GT Rules to UML and OCL Models 167

Appendix: USE Protocol for the Example Calculation

--

use> open alg2ocl.use

--

use> !create n1:ZeroExpr

use> !create n1T:NatType

use> !insert (n1T,n1) into TypeExpr

use> !create n2:SuccExpr

use> !create n2T:NatType

use> !insert (n2T,n2) into TypeExpr

use> !insert (n2,n1T) into SuccNat

use> !create n3:ZeroExpr

use> !create n3T:NatType

use> !insert (n3T,n3) into TypeExpr

use> !create n4:PlusExpr

use> !create n4T:NatType

use> !insert (n4T,n4) into TypeExpr

use> !insert (n4,n2T) into PlusNat1

use> !insert (n4,n3T) into PlusNat2

use> !create n5:SuccExpr

use> !create n5T:NatType

use> !insert (n5T,n5) into TypeExpr

use> !insert (n5,n4T) into SuccNat

--

use> !create rc:RuleCollection

use> ?rc.plusZeroN_2_N_redexes()

Set{}: Set(Sequence(OclAny))

use> ?rc.plusSuccNM_2_succPlusNM_redexes()

Set{Sequence{@n1,@n1T,@n3,@n3T,@n2,@n2T,@n4,@n4T}}:

Set(Sequence(OclAny))

--

use> read plusSuccNM_2_succPlusNM_find_redex.cmd

-- the following commands are executed by reading the command file

CMD> !let _redex = rc.plusSuccNM_2_succPlusNM_redexes()->any(true)

CMD> !let _N = _redex->at(1)

CMD> !let _NT = _redex->at(2)

CMD> !let _M = _redex->at(3)

CMD> !let _MT = _redex->at(4)

CMD> !let _succ = _redex->at(5)

CMD> !let _succT = _redex->at(6)

CMD> !let _plus = _redex->at(7)

168 Martin Gogolla, Karsten Hölscher

CMD> !let _plusT = _redex->at(8)

CMD> !openter rc plusSuccNM_2_succPlusNM

(_N,_NT,_M,_MT,_succ,_succT,_plus,_plusT)

precondition ‘plusSuccNM_2_succPlusNM_pre’ is true

CMD> !insert(_plusT,_succ) into TypeExpr

CMD> !insert(_succT,_plus) into TypeExpr

CMD> !insert(_succ,_succT) into SuccNat

CMD> !insert(_plus,_NT) into PlusNat1

CMD> !delete(_succT,_succ) from TypeExpr

CMD> !delete(_plusT,_plus) from TypeExpr

CMD> !delete(_succ,_NT) from SuccNat

CMD> !delete(_plus,_succT) from PlusNat1

CMD> !opexit

postcondition ‘plusSuccNM_2_succPlusNM_post’ is true

--

use> ?rc.plusZeroN_2_N_redexes()

Set{Sequence{@n3,@n3T,@n1,@n1T,@n4,@n2T}}: Set(Sequence(OclAny))

use> ?rc.plusSuccNM_2_succPlusNM_redexes()

Set{}: Set(Sequence(OclAny))

--

use> read plusZeroN_2_N_find_redex.cmd

-- the following commands are executed by reading the command file

CMD> !let _redex = rc.plusZeroN_2_N_redexes()->any(true)

CMD> !let _N = _redex->at(1)

CMD> !let _NT = _redex->at(2)

CMD> !let _zero = _redex->at(3)

CMD> !let _zeroT = _redex->at(4)

CMD> !let _plus = _redex->at(5)

CMD> !let _plusT = _redex->at(6)

CMD> !openter rc plusZeroN_2_N(_N,_NT,_zero,_zeroT,_plus,_plusT)

precondition ‘plusZeroN_2_N_pre’ is true

CMD> !insert(_plusT,_N) into TypeExpr

CMD> !delete(_NT,_N) from TypeExpr

CMD> !delete(_zeroT,_zero) from TypeExpr

CMD> !delete(_plusT,_plus) from TypeExpr

CMD> !delete(_plus,_zeroT) from PlusNat1

CMD> !delete(_plus,_NT) from PlusNat2

CMD> !destroy _NT

CMD> !destroy _zero

CMD> !destroy _zeroT

CMD> !destroy _plus

CMD> !opexit

postcondition ‘plusZeroN_2_N_post’ is true

--

From Algebraic Specifications to GT Rules to UML and OCL Models 169

. .

Prof. Dr. Martin Gogolla

Fachbereich 3 – Informatik
Universität Bremen
D-28334 Bremen (Germany)
gogolla@informatik.uni-bremen.de
http://www.db.informatik.uni-bremen.de

Being a professor for Computer Science at the University of Bremen, Martin
Gogolla has been a colleague of Hans-Jörg Kreowski since 1994. They first met
in 1982 the 1st Workshop on Abstract Data Types, and have collaborated in
both international (e.g., Compass) and national projects (e.g., Uml-Aid).

. .

Dr. Karsten Hölscher

Fachbereich 3 – Informatik
Universität Bremen
D-28334 Bremen (Germany)
hoelsch@informatik.uni-bremen.de

Karsten Hölscher studied Computer Science at the University of Bremen. He
was introduced to Theoretical Computer Science by Hans-Jörg Kreowski and
Frank Drewes, who, during that time, was an assistant professor in Hans-
Jörg’s team. Karsten graduated in 2003 under Hans-Jörg’s supervision and
became a doctoral student in his group, working as a research associate from
2003 to 2008. Karsten received his doctoral degree in September 2008 under
Hans-Jörg’s supervision. After a short intermezzo in software industry, Karsten
returned to the University of Bremen, switching sides to a more practical
field. He now works as a research associate in the Software Engineering Group
headed by Rainer Koschke.

. .

