
Refactoring Object-Oriented Systems

Christoph Schulz, Michael Löwe, and Harald König

Abstract. Refactoring of information systems is hard, for two reasons.
On the one hand, large databases exist which have to be adjusted. On
the other hand, many programs access that data. These programs all
have to be migrated in a consistent manner such that their semantics
does not change. It cannot be relied upon, however, that no running
processes exist during such a migration. Consequently, a refactoring of an
information system needs to take care of the migration of data, programs,
and processes. This paper introduces a model for complete object-oriented
systems, describing the schema level with classes, associations, operations,
and inheritance as well as the instance level with objects, links, methods,
and messages. Methods are expressed by special double-pushout graph
transformations. Homomorphisms are used for the typing of the instance
level as well as for the description of refactorings which specify the
addition, folding, and unfolding of schema elements. Finally, a categorial
framework is presented which allows to derive instance migrations from
schema transformations in such a way that programs and processes to
the old schema are correctly migrated into programs and processes to the
new schema.

1 Introduction

During the engineering and use of information systems, data and software undergo
many modifications. These modifications can be divided into two categories. The
first category contains all modifications that have a direct and externally visible
impact on the functionality of the software or on the information content of
the database. The second category consists of modifications which only prepare
modifications of the first category and which, by themselves, do not lead to
changes in the behaviour of the software or in the meaning of the data under
transformation. Modifications of the second category are called “refactorings” [1].
They provide a major method to quickly adapt software to constantly changing
requirements.

Refactorings are expected to be applied multiple times in different but similar
situations. This is comparable to design patterns in software engineering which
have emerged in the last twenty years [2, 3]. Consequently, a suitably general
specification of a refactoring is necessary. This, however, requires a certain level of
abstraction for the software and the data to be transformed. Such an abstraction
is often called schema or model and describes important structural aspects of
the data and software, which are instances of, or typed in, this schema. Today,
the “object-oriented view of life” dominates the field of software engineering.
Therefore, models are typically object-oriented and try to capture the structure
by grouping similar objects into classes and describing relations between them
by various types of associations.

F. Drewes, A. Habel, B. Hoffmann, D. Plump (Eds.): Manipulation of Graphs, Algebras and Pictures.
Essays Dedicated to Hans-Jörg Kreowski on the Occasion of His 60th Birthday, pp. 321–340, 2009.

322 Christoph Schulz, Michael Löwe, Harald König

Two typical object-oriented refactorings are “Introduce a new superclass”
(Fig. 1) and “Move the origin of an association from a subclass to a superclass”,
as shown in Fig. 2. A combined application of these two refactorings on the
schema in Fig. 3a could be used to prepare the model for an extension by an
additional subclass of Customer, e. g. CorporateCustomer (Fig. 3b and 3c).1

Sub

(a) before

Sub

Super

(b) after

Fig. 1: Refactoring “Introduce a new superclass”

Sub

Super

Target

association

(a) before

Sub

Super

Target
association

(b) after

Fig. 2: Refactoring “Move the origin of an association from a subclass to a
superclass”

It is important to consider the consequences of a refactoring. Obviously, the
more general the structures are which are about to be transformed, the more
instances are likely to be affected. Changing a data schema may not only require
the data typed in this schema to be adjusted, but may also affect the software
which uses the schema structures to access and manipulate the data. Changing a
software model may have no consequences on the data but will probably influence
programs (which can be considered implementations of the software model) and
processes (which are programs under execution). We call the instance changes
that follow from a model refactoring the migration induced by that refactoring.
For the time being, little has been written about how refactoring data models
results in migrations of dependent programs, and even less has been written

1 All class diagrams are specified in the UML [4].

Refactoring Object-Oriented Systems 323

PrivateCustomer Stringname

(a) before refactoring

PrivateCustomer

Customer

String
name

(b) after refactoring

CorporateCustomer PrivateCustomer

Customer

String
name

(c) final aim

Fig. 3: Refactoring an exemplary object-oriented model

about refactoring and induced migration of whole systems, which we define to
consist of data, programs, and processes, all typed in the same schema.2

This paper contributes to this topic by providing a graph-like mathemat-
ical model which allows to specify object-oriented systems as well as schema
refactorings. To describe data together with their schema, graph structures con-
forming to the model are used. Nodes of such graph structures represent classes
(schema) or objects (instance), edges represent associations (schema) or links (in-
stance). Homomorphisms between such graph structures express typings, (parts
of) refactorings, and migrations.

These graph structures can be used to describe software models and pro-
cesses, as well: An operation is simply a special node within the graph structure
representing the schema, and edges originating from an operation constitute
parameters. Analogously, at the instance level, messages and arguments are
special nodes and edges, which are typed in operations and parameters at the
schema level by an appropriate homomorphism. In the mathematical description
of the model, the data and software constructs are separated through the use of
special predicates.

Programs are somewhat different, as they do not specify a single state but
rather a state transition which is performed when the program is executed.
In this paper, programs are considered to consist of a (possibly large) set of
methods, where each method describes a single state transition. Each such
transition speficies how a message of a certain type is processed when all necessary
preconditions are met; examples are assignments, method calls, or evaluation of
expressions. As program states are described by (parts of) graph structures at
the instance level, it follows that state transitions can be adequately specified by
2 See [5] and especially the bibliography contained therein for a general overview on

software refactoring.

324 Christoph Schulz, Michael Löwe, Harald König

the use of graph structure transformations. This paper chooses the DPO approach
for describing and applying graph structure transformations3. Consequently, a
method is represented by a span of homomorphisms, and applying a method to
a given program state is computed by two pushout diagrams.

Results of category theory are used to compute induced migrations from
schema refactorings. It will be shown, however, that certain restrictions must be
obeyed in order to guarantee reasonable results. Fortunately, these restrictions
are met by the practical examples.

The paper is organized as follows. Section 3 incrementally introduces a
graph structure specification MP with positive Horn formulas which consti-
tutes the foundation of the mathematical description of data and software. The
category Alg(MP) of all MP-systems and MP-homomorphisms, as well as the
(sub-)categories Alg(MP)↓S and Sys(S) with a fixed schema S , represent the
universe of discourse for the following sections. Section 4 explains how methods
are represented as DPO rules and introduces requirements that are necessary
to use DPO graph structure transformations successfully in the categories men-
tioned above. Section 5 addresses the migration of data and processes. Section 6
discusses the migration of programs and contains the main result of this paper,
namely that the migration of methods preserves their semantics for new processes
as well as for old processes reviewed under the transformed schema. Section 7
outlines three main directions for future research.

Due to lack of space, this paper does not contain any proofs. All the proofs
can be found in [7].

2 Related Work

There exist approaches for modelling programs as algebraic graph transformation
rules [8–10]. However, they fail in various ways to be suitable for our purposes. The
approach in [8] does not support inheritance. Furthermore, program execution is
“destructive”, i. e., repetitive control flow constructs as loops cannot be modelled
directly but have to be simulated through recursion, a work-around which is
not necessary in our approach as the control flow structures are not modified by
program execution. The approach presented in [9, 10] does not have a notion of
a schema in which programs and processes are typed. This missing link makes it
hard if not impossible to compute induced migrations for programs and processes
when the data schema is changed. Finally, both approaches consider objects to
be opaque, whereas in our approach, each object is decomposed into parts called
“particles” which reflect the class hierarchy. This rich object structure makes
it possible to type the instance level in a schema without resorting to special
typing morphisms or type graph flattening as proposed in [6, 11, 12]. Finally, our
approach is unique in the respect that it combines a program and process model
with a model for schema transformations and induced migrations.

3 DPO stands for “Double Pushout”; the approach is presented in e. g. [6].

Refactoring Object-Oriented Systems 325

3 Models and Instances

The schema and the instance level of object-oriented systems are modelled by sys-
tems wrt. an extended specification.4 An extended specification Spec = (Σ , H (X))
is an extended signature together with a set of positive Horn formulas H (X) over
a set of variables X . An extended signature Σ = (S , OP , P) consists of a set of
sorts S , a family of operation symbols OP = (OPw ,s)w∈S∗,s∈S , and a family of
predicates P = (Pw)w∈S∗ such that =s ∈ Ps s for each sort s ∈ S . A system A wrt.
an extended signature Σ = (S , OP , P), short Σ -system, consists of a family of
carrier sets (As)s∈S , a family of operations (opA : Aw → As)w∈S∗,s∈S ,op∈OPw,s ,
and a family of relations (pA ⊆ Aw)w∈S∗,p∈Pw

such that =A
s ⊆ As × As is

the diagonal relation for each sort s.5 A system A wrt. an extended specifi-
cation Spec = (Σ , H (X)) is a Σ -system such that all axioms are valid in A.
A Σ -homomorphism h : A → B between two Σ -systems A und B wrt. an ex-
tended signature Σ = (S , OP , P) is a family of mappings (hs : As → Bs)s∈S ,
such that the mappings are compatible with the operations and relations, i. e.,
hs ◦ opA = opB ◦ hw for all operation symbols op : w → s and hw (pA) ⊆ pB

for all predicates p : w where w = s1s2 . . . sn ∈ S∗.6 Each Σ -homomorphism
h : A → B between two Spec-systems A und B wrt. an extended specification
Spec = (Σ , H (X)) is called a Spec-homomorphism.

The (first) model version for classes and associations is just graphs as depicted
in Fig. 4. Nodes correspond to classes and edges correspond to associations. In
Fig. 5a, an exemplary UML schema is presented. The underlying graph for this
schema is shown in Fig. 5b. Figure 5c illustrates the resulting Graph system.

Graph =
sorts

N (nodes)
E (edges)

opns
s : E → N (source node of an edge)
t : E → N (target node of an edge)

Fig. 4: The Graph signature

An instance of a given schema S is represented as a system I wrt. the same
signature, together with a typing homomorphism type : I → S . At the instance
level, nodes represent objects and edges constitute links.

The next model version provides the possibility to model inheritance relations
between classes by an additional binary predicate under : If, in a system S , a

4 See [13] for the special case when signatures consist of only one sort.
5 Given w = s1s2 . . . sn , Aw is an abbreviation for the product set As1×As2×· · ·×Asn .
6 Given w = s1s2 . . . sn , hw (x1, x2, . . . , xn) is an short-hand notation for the term tuple

(hs1(x1), hs2(x2), . . . , hsn (xn)).

326 Christoph Schulz, Michael Löwe, Harald König

Man

Woman

Date

wife

husband

wedding date

wedding date

(a) UML schema

•n1

e2

��

e3

$$JJJJJJJJJ

•n3

•n2

e1

JJ

e4

::ttttttttt

(b) Representing
graph

•n1

◦e3
sccGGG

t##GGG

◦e1

s
��444444

t

DD

◦e2

s

OO

t

��

•n3

◦e4 t

;;www

s
{{www

•n2

(c) Representing algebra

Fig. 5: A system for the Graph signature

class A is “under” a class B, i. e., if it is a subclass of B, then the relation
underS contains the pair (A, B). The specification MP1 is shown in Fig. 6.7

As inheritance is hierarchical and, therefore, a partial order, it is reasonable to
formulate corresponding requirements for the under relation.

MP1 = Graph +
prds

under : N N (subnode of)
axms

inheritance

x ∈ N : under(x , x) (reflexivity)

x , y ∈ N : under(x , y) ∧ under(y , x)⇒ x = y (antisymmetry)

x , y , z ∈ N : under(x , y) ∧ under(y , z)⇒ under(x , z) (transitivity)

Fig. 6: The MP1 specification including the predicate under

While the use of the predicate under is quite natural at the schema level,
the question arises how it is to be interpreted at the instance level. Typically,
objects are seen as monolithic entities even if they are mapped to multiple types
in the class hierarchy. In this paper, we follow a different approach and consider
objects to consist of a set of interconnected parts called particles. Each particle
is represented by a node and is typed in a specific class in the schema. The
advantage of this approach is that the structure of an object is made visible and

7 The “MP” stands for “Model Part” and describes the fact that systems for this model
represent only a part (schema or instance) of the whole object-oriented system.

Refactoring Object-Oriented Systems 327

resembles the object’s type hierarchy at the schema level allowing proper typing
of links.8 Figure 7 shows an exemplary instance level for the schema in Fig. 3b.9

c:PrivateCustomer

c:Customer

n:String
:name

Fig. 7: Objects represented by particles

The model currently allows an object to contain more than one particle for
the same type. This is typically forbidden by object-oriented languages.10 In
order to implement this requirement, we want to specify something like that:

x , y ∈ N : rel(x , y) ∧ type(x) = type(y)⇒ x = y (unique particles)(1)

Here, another predicate rel has been used which shall be fulfilled when two
particles belong to the same object and, therefore, are related. Obviously, this
predicate describes an equivalence relation as it is reflexive, symmetric, and
transitive. Furthermore, the equivalence comprises the under relation, because
each two particles connected by the under relation belong to the same object
and, consequently, are part of the rel relation.11 The resulting specification MP2

is shown in Fig. 8.12

Another issue currently not resolved is association multiplicity: In our model,
all associations are many-to-many, because the number of links at the instance
level is not restricted in any way. However, many-to-one associations are often
necessary in object-oriented schemas to allow at most one linked target object
for any given association and source object. To achieve this, a formula like the
following one is necessary which disallows the existence of two links which are
instances of the same association and start at the same particle:13

8 For the purpose of typing, simple homomorphisms are sufficient; there is no need to
introduce homomorphisms “up to inheritance”.

9 We do not use a different notation for schema inheritance and the relationship
between particles because it can be easily deduced from the context which relation is
meant.

10 An exception to this rule is the programming language C++ which explicitly allows
this behaviour [14].

11 Note, however, that the rel relation might not be generated by the under relation.
That means that there may exist related particles that do not belong to the same
object. However, this is avoided in all practical examples.

12 Note that reflexivity of the rel relation need not be specified by an axiom as it
is a consequence from the combination of the first inheritance axiom and the last
component axiom.

13 Note that this axiom disallows multi-valued associations completely. This is desired,
however, as only single-valued associations can be dereferenced at the instance level

328 Christoph Schulz, Michael Löwe, Harald König

MP2 = MP1 +
prds

rel : N N (related to)
axms

components

x , y ∈ N : rel(x , y)⇒ rel(y , x) (symmetry)

x , y , z ∈ N : rel(x , y) ∧ rel(y , z)⇒ rel(x , z) (transitivity)

x , y ∈ N : under(x , y)⇒ rel(x , y) (components)

Fig. 8: The MP2 specification including the predicate rel

x , y ∈ E : source(x) = source(y) ∧ type(x) = type(y)⇒ x = y (at most one)
(2)

The axioms (1) and (2) are called typing axioms.
The last issue is the integration of software constructs, namely operations,

parameters, messages, arguments, and methods. In order to model operations and
messages, the specification MP2 is extended by a unary predicate called software
which distinguishes between class nodes and operation nodes in schemas and
between object nodes and message nodes in instances. The distinction between
association edges and parameter edges on the one hand and between link edges
and argument edges on the other hand is deduced from the context: If an edge
starts at a class/object it is considered an association/link, otherwise it constitutes
a parameter/argument. The resulting specification is shown in Fig. 9.14

An example of an operation is displayed in Fig. 10a, a message for this
operation is shown in Fig. 10b. The modelling of methods builds upon the
mapping of messages and arguments into the model and is described in the next
section.

We use the following notation: Alg(MP) denotes the category of all MP-
systems and MP-homomorphisms. The arrow category Alg(MP)2 consists of all
typed instances which do not necessarily fulfil the typing axioms. The full sub-
category Sys ⊆ Alg(MP)2 restricts the arrow category to those typed instances
conforming to these axioms. Given a fixed schema system S , the slice category
Alg(MP)↓S expresses the category of all typed instances for the system S , and
the category Sys(S) denotes the full subcategory of Alg(MP)↓S whose objects
fulfil the typing axioms.15

in a well-defined way. Multi-valued associations need further information (e. g. an
index) when accessing links, which does not fit well in our graph structure model.

14 The model allows parameters to point to operations; this is reasonable as it enables
to model basic statements like if-then-else as operations.

15 Obviously, Sys(S) is also a subcategory of Sys.

Refactoring Object-Oriented Systems 329

MP =
sorts

N (nodes)
E (edges)

opns
s : E → N (source node of an edge)
t : E → N (target node of an edge)

prds
under : N N (subnode of)
rel : N N (related to)
software : N (software part vs. data part)

axms
inheritance

x ∈ N : under(x , x) (reflexivity)(3)

x , y ∈ N : under(x , y) ∧ under(y , x)⇒ x = y (antisymmetry)(4)

x , y , z ∈ N : under(x , y) ∧ under(y , z)⇒ under(x , z) (transitivity)(5)

components

x , y ∈ N : rel(x , y)⇒ rel(y , x) (symmetry)(6)

x , y , z ∈ N : rel(x , y) ∧ rel(y , z)⇒ rel(x , z) (transitivity)(7)

x , y ∈ N : under(x , y)⇒ rel(x , y) (components)(8)

Fig. 9: The complete MP specification

Customer String

getName

name
this result

(a) Operation with parameters

c:Customer n:String

1:getName

:name
:this :result

(b) Message with arguments

Fig. 10: Software constructs

330 Christoph Schulz, Michael Löwe, Harald König

Furthermore, there exists a functor F : Alg(MP)2 → Sys which transforms
any typed instance by factoring through the congruence generated by the axioms
such that the resulting typed instance fulfils the typing axioms. This functor is
an epireflector because of the freeness property of the factorisation. This functor
never changes the schema:

Lemma 3.1 ([7, Lemma 13.13]). Let D ::= I
typeI−−−→ S be a typed instance,

and let FOb(D) be the typed instance I ′
typeI ′−−−−→ S ′. Then S ∼= S ′ holds. ut

From this lemma, it follows that the functor F can be restricted to a
slice category for some fixed schema S , resulting in a family of epireflectors
FS : Alg(MP)↓S → Sys(S) for each possible schema S .

Summarising our results so far, an object-oriented schema is modelled as
an MP-system S . An instance of this schema consists of an MP-system I and
a typing MP-homomorphism type : I → S such that I

type−−−→ S is an object of
the category Sys(S). Every schema instance type : I → S in Alg(MP)↓S can be
uniquely transformed into an object of the category Sys(S) by the epireflector
FS .

4 Methods

A method is part of a program and specifies how the program reacts on a message
for a certain operation. It constitutes an implementation of an operation. Here,
the set of operations consists not only of “user-defined” operations but also of
operations for evaluating expressions and for representing statements.16 In other
words, for each construct which influences the behaviour of a process, there exists
a corresponding operation. A program is then a collection of methods such that
all operations for which messages exist are implemented.

Each method is implemented by a single DPO rule [6] which is properly
typed in the schema S . A typed DPO rule is a span L l←− K r−→ R together
with the typings L

typeL−−−→ S , K
typeK−−−→ S , and R

typeR−−−→ S , where L, K , R,
and S are Graph systems and l and r are Graph homomorphisms such that
typeL ◦ l = typeK = typeR ◦ r . The left part of the rule describes the required
process state necessary for executing this method and contains at least a message
typed in the operation this method implements. The remainder of the rule consists
of the gluing part and the right part and specifies how this state is changed by
method execution. Generally, the gluing part is the common subgraph of both
the left and the right part of the rule.17

In order to be able to determine which message is ready to be processed,
a special “marker” object called processor is used. A message referenced by a
processor through a special current link is called active. Methods are formulated

16 For example, the addition of two integer values or the if-then-else statement are both
represented by suitable operations.

17 This means that both morphisms of the DPO rule are injective.

Refactoring Object-Oriented Systems 331

such that their left part requires an active message. Additionally, each method
moves the processor object to the next message according to the flow of control.
This next message is determined by a special argument called next.18 Multiple
processor objects can be used to model multi-threaded processing. Figure 11
displays the DPO rule for a method changing the target of a link.19

OpBase

setBirthday

Processor

DateCustomer this date

current
next

birthday

(a) Schema

c:Cust. d1:Date

d2:Date

p:Proc.

1:setB.

2:...

:next

:date

:this

:current

:birthday

(b) Left part

c:Cust. d1:Date

d2:Date

p:Proc.

1:setB.

2:...

:next

:date

:this

(c) Gluing part

c:Cust. d1:Date

d2:Date

p:Proc.

1:setB.

2:...

:next

:date

:this

:current

:birthday

(d) Right part

Fig. 11: Example method “Change target of birthday link”

A method is executed by applying the underlying DPO rule along a match to
the graph structure describing the instance world, i. e., objects, links, messages,
and arguments. According to the DPO model, in the first step a pushout comple-
ment has to be computed to complete the left side. In the second step, the right
side is built by a pushout. However we cannot do this in our category Sys(S) as
neither do pushout complements exist nor are pushouts along monomorphisms
van-Kampen squares [6] in all cases. Therefore, we perform DPO transformations
which are typed in a schema S in the slice category Alg(MP*)↓S , where MP* is
the signature obtained by removing all axioms from MP, and provide sufficient
conditions that guarantee the fulfilment of the axioms after transformation. These
conditions are necessary as not all DPO transformations yield typed instances

18 Only very few messages do not have a next argument. This includes the end message
which terminates process execution and the if-then-else message which contains a
then and a else argument instead.

19 The example shows that operations and messages can also be specialised and possess
a particle structure (the particle structure of the messages is not displayed for clarity).
This is used to allow processor objects to point to any message.

332 Christoph Schulz, Michael Löwe, Harald König

which fulfil all the axioms. The following figures demonstrate two such counter
examples: adding a link violates axiom (2) (Fig. 12), and eliminating inheritance
violates axiom (5) (Fig. 13). In the figures, the element-wise mapping of the
homomorphisms is indicated by equally named nodes and edges, and frames are
used to group the elements belonging to a single graph.

A
x // B

(a) Schema

1:A
_ _ _ _ _ _�
�

�
�

_ _ _ _ _ _2:B 1:A
_ _ _ _ _ _�
�

�
�

_ _ _ _ _ _2:B 1:A
_ _ _ _ _ _�
�

�
�

_ _ _ _ _ _
3:x // 2:B

loo r //

(b) Rule

1:A
_ _ _ _ _ _ _�
�

�
�_ _ _ _ _ _ _2:B 1:A

_ _ _ _ _ _ _�
�

�
�_ _ _ _ _ _ _2:B 1:A

_ _ _ _ _ _ _�
�

�
�_ _ _ _ _ _ _

3:x // 2:B

1:A
_ _ _ _ _ _ _�
�
�
�

�
�
�
�_ _ _ _ _ _ _

5:x &&LLLLLL 2:B 1:A
_ _ _ _ _ _ _�
�
�
�

�
�
�
�_ _ _ _ _ _ _

5:x &&LLLLLL 2:B 1:A
_ _ _ _ _ _ _�
�
�
�

�
�
�
�_ _ _ _ _ _ _

3:x //

5:x &&LLLLLL 2:B

4:B 4:B 4:B

loo r //

foo g //

m

��

k

��

n

��

(c) Induced transformation

Fig. 12: Adding a link violates axiom (2) on page 328

In order to rule out situations as depicted in Fig. 12 we need DPO rules that
pull back edges. Such rules only add an edge at the right side if no other edge
exists which starts at the same node.

Definition 4.1 (DPO rules pulling back edges). Let Σ = (S , OP , P) be an
extended signature, and let L l←− K r−→ R be a DPO rule. Then the DPO rule
pulls back edges if for each edge eR ∈ RE there is a node k ∈ KN and an edge
eL ∈ LE , such that the equations

sourceL(eL) = lN (k)

sourceR(eR) = rN (k)
typeL,E (eL) = typeR,E (eR)

hold.

In order to rule out situations as depicted in Fig. 13, we restrict DPO
rules to completing homomorphisms which “pull back” relations. Completing

Refactoring Object-Oriented Systems 333

A
� ,2

� �&
B

� ,2C

(a) Schema

1:A
_ _ _ _ _ _�
�

�
�

_ _ _ _ _ _
� ,23:C 1:A

_ _ _ _ _ _�
�

�
�

_ _ _ _ _ _3:C 1:A
_ _ _ _ _ _�
�

�
�

_ _ _ _ _ _3:C
loo r //

(b) Rule

1:A
_ _ _ _ _ _ _ _�
�

�
�_ _ _ _ _ _ _ _

� ,23:C 1:A
_ _ _ _ _ _ _ _�
�

�
�_ _ _ _ _ _ _ _3:C 1:A

_ _ _ _ _ _ _ _�
�

�
�_ _ _ _ _ _ _ _3:C

1:A
_ _ _ _ _ _ _ _�
�
�
�

�
�
�
�_ _ _ _ _ _ _ _

� ,2

� �&
DDDD 3:C 1:A

_ _ _ _ _ _ _ _�
�
�
�

�
�
�
�_ _ _ _ _ _ _ _

� �&
DDDD 3:C 1:A

_ _ _ _ _ _ _ _�
�
�
�

�
�
�
�_ _ _ _ _ _ _ _

� �&
DDDD 3:C

2:B

: 8B
zzzz

2:B

: 8B
zzzz

2:B

: 8B
zzzz

loo r //

foo g //

m

��

k

��

n

��

(c) Induced transformation

Fig. 13: Eliminating inheritance violates axiom (5) on page 329

homomorphisms are an extension to strictly full homomorphisms:20 While a
strictly full homomorphism h only “pulls back” a relation if all related elements
are known to be in the range of h, a completing homomorphism h “pulls back”
relations even if only a part of the related elements is known to be reached.

Definition 4.2 (Completing homomorphism). Let Σ = (S , OP , P) be an
extended signature, let h : A→ B be a Σ-homomorphism between the Σ-systems
A and B, and let p ∈ Pw be a predicate over a sort word w ∈ S∗. Then h is
completing on p if for every non-empty sort word w ′ resulting from eliminating
arbitrary sorts from w and for each two tuples x ∈ Bw and x ′ ∈ Aw ′ the
implication

hw ′(x ′) = 〈x 〉w ′ ∧ x ∈ pB ⇒ ∃y ∈ Aw : 〈y〉w ′ = x ′ ∧ hw (y) = x ∧ y ∈ pA

holds, where the notation 〈x 〉w ′ stands for the projection of the tuple x onto the
elements of the sorts in w ′. h is completing if h is completing on all predicates.

Now we are able to define valid DPO rules:

Definition 4.3 (Valid rule). A DPO rule L l←− K r−→ R is valid iff it pulls
back edges and l and r are completing homomorphisms.

These restrictions do not have much impact on the expressiveness of methods.
The first restriction requiring completing homomorphisms disallows changing the
inner structure of objects by adding or removing particles. However, this is an
unusual way of dealing with objects at runtime at best. The second restriction

20 A homomorphism h : A→ B is strictly full if hw (x) ∈ pB ⇒ x ∈ pA for all x ∈ Aw

and all predicates p ∈ Pw .

334 Christoph Schulz, Michael Löwe, Harald König

allows to add a link on the right side of a rule only if a similar link has previously
been removed on the left side of the same rule. This is unproblematic if it can be
ensured that there always exists a link for each (object, association) pair, which,
for example, can initially point to a “null” object to indicate an uninitialised
link.21

Now we can state the main theorem of this section:

Theorem 4.4 (Transformation preserves axioms [7, Theorem 14.29]).

Let S be an MP-system. Let L l←− K r−→ R be a valid rule in Sys(S), G a Sys(S)-
object, and m : L → G a match in Sys(S), such that the rule is applicable

according to the DPO model. Let G
f←− D

g−→ H be the resulting transformation
after applying the rule in Alg(MP*)↓S. Then D and H fulfil all axioms and are,
therefore, Sys(S)-objects. ut

5 Model Transformation and Data Migration

So far we can describe object-oriented systems, consisting of typed data, programs,
and processes. In this section we introduce schema transformations that can
be uniquely extended to migrations of corresponding data and proceseses (the
migration of programs is handled in the next section).22

Definition 5.1 (Transformation, Refactoring). A transformation t : S S∗

S ′ in the category Alg(MP) is a span S l t←− S∗ r t

−→ S ′. Such a transformation is
called a refactoring iff l t is surjective.

A general transformation allows reduction and unfolding as well as extension
and folding through the use of non-surjective homomorphisms (reduction and
extension) and non-injective homomorphisms (unfolding and folding) on the left
and right side of the span, respectively. Refactorings are special transformations
which are constrained to surjective homomorphisms on the left side of the span.
This constraint comes from the fact that refactorings are not allowed to delete
schema objects because such a deletion almost always causes information (data,
programs and/or processes) at the instance level to be lost, which does not meet
the intuitive requirement that a refactoring preserve information. In the following
we use the term schema transformation if the span consists of schema objects,
and migration if the span consists of typed instances.

Given a typed instance I
typeI−−−→ S and a schema transformation t : S S∗

 S ′,
the migration is performed as follows:

(1) P l t , the pullback functor along l t , is applied to I
typeI−−−→ S , resulting in the

typed instance I ∗
typeI∗−−−−→ S∗. This part of the transformation is responsible

21 [7] shows in full detail how this can be done.
22 See [15–17] for precursor material on data migration induced by schema transforma-

tions.

Refactoring Object-Oriented Systems 335

for unfolding instance elements if l t is not injective, and for deleting elements
if l t is not surjective.

(2) Fr t

, the composition functor along r t , is applied to I ∗
typeI∗−−−−→ S∗, resulting

in the typed instance I ∗
r t◦typeI∗−−−−−−→ S ′. This part of the transformation is used

to retype instance elements and to add new types without any instances.

(3) I ∗
r t◦typeI∗−−−−−−→ S ′ may violate the typing axioms. Therefore, the epireflector

FS ′ into the subcategory Sys(S ′) is applied to it, resulting in the typed

instance I ′
typeI ′−−−−→ S ′ (the schema is left unchanged due to Lemma 3.1). This

part of the transformation is responsible for identifying instance elements
due to retyping.

These three steps are visualised in Fig. 14.

S

P.B.

S∗
ltoo r t

// S ′

I

typeI

OO

I ∗

typeI∗

OO

l′t
oo

idI∗
// I ∗

r t◦typeI∗
>>}}}}}}}}

[]≡
// I ′

typeI ′

OO

Fig. 14: Schema transformation and instance migration

The composition of the three functors results in the migration functor defined
below:

Definition 5.2 (Migration functor). Let t : S S∗

 S ′ be a transformation. The
migration functor Mt : Sys(S)→ Sys(S ′) is then defined as:

Mt ::= FS ′ ◦ Fr t

◦ P l t ,

where the functor P l t : Alg(MP)↓S → Alg(MP)↓S∗ is the pullback functor along
l t , the functor Fr t

: Alg(MP)↓S∗ → Alg(MP)↓S ′ is the composition functor
along r t , and the functor FS ′ : Alg(MP)↓S ′ → Sys(S ′) is the epireflector into
the subcategory Sys(S ′).

Note that due to Lemma 3.1, the migration functor results in an instance
that is correctly typed in the target schema S ′.

The example in Fig. 15 shows a transformation which moves the origin of an
association one level upwards the inheritance hierarchy and the induced migration
of an exemplary instance. On the left side the class B is unfolded, yielding the
two classes B and X in the middle, and the origin of the association is moved
to the temporary class X. On the right side the class X is folded with the
class A, such that the association starts at the class A after the transformation.
The modification of objects and links by the induced migration is performed
analogously. Note that the unfolding on the left is due to the pullback construction,
and the folding on the right side is due to the epireflector which takes care that
axiom (1) is satisfied.

336 Christoph Schulz, Michael Löwe, Harald König

B

XX

AA

BC

A

B

CX

A

B

C

(a) Schema transformation

1:B

1:X1:X

1:A1:A

1:B2:C

1:A

1:B

2:C1:X

1:A

1:B

2:C

(b) Induced migration

Fig. 15: Moving the origin of an association upwards the inheritance hierachy

6 Method Migration

The migration of methods is performed in the same way as the migration of data
and processes. But as methods are valid DPO rules according to Def. 4.3, it has
to be ensured that their properties are preserved by a migration. Additionally,
methods already executed which are represented by two pushout diagrams shall
be transformed so that the resulting diagrams are again pushouts. This ensures
that processes that have already been executed are compatible to the new schema
after migration. However, this does not hold for arbitrary transformations. In
Fig. 16, two classes B and C of a schema S are merged, resulting in the class BC
in the schema S ′. At the instance level, the right pushout of a method adding a
link is presented. The migrated diagram is a pushout in the subcategory Sys(S ′)
of all typed instances conforming to the typing axioms, but not a pushout in
the category Alg(MP*)↓S ′ in which the migration is computed. This can be
deduced from the elemental properties of pushouts (see e. g. [6]).

In order to migrate DPO rules and DPO diagrams properly we need to restrict
the allowed transformations. We can show that if transformations are disallowed
to fold associations on the right side, DPO rules can be migrated correctly in all
cases. This results in the following definition of a proper transformation:

Refactoring Object-Oriented Systems 337

A // &&
B C

(a) Schema S

A // BC

(b) Schema S ′

:A
_ _ _ _ _�
�

�
�_ _ _ _ _ :A

_ _ _ _ _�
�

�
�_ _ _ _ _

// :B

_ _ _ _ _�

�

�

�

�

�_ _ _ _ _

_ _ _ _ _�

�

�

�

�

�_ _ _ _ _

:B

:A // :C :A

88rrrr // :C

r //

k

��
n

���
��
��

g //

(c) Right side of an applied DPO
rule before the migration

:A
_ _ _ _ _ _�
�

�
�_ _ _ _ _ _ :A

_ _ _ _ _ _�
�

�
�_ _ _ _ _ _

// :BC

:A
_ _ _ _ _ _�
�

�
�_ _ _ _ _ _

// :BC :A
_ _ _ _ _ _�
�

�
�_ _ _ _ _ _

// :BC

r //

k

��

n

��
g //

(d) Right side of an applied DPO rule
after the migration

Fig. 16: Pushout in Alg(MP*)↓S is not preserved by a migration

Definition 6.1 (Proper transformation). A transformation S l t←− S∗ r t

−→ S ′

in Alg(MP) is proper if r t is injective on associations, i. e., if r t
E (x) = r t

E (y)⇒
x = y holds for all x , y ∈ S∗E .

The correct migration of valid DPO rules is guaranteed by the following
proposition:

Proposition 6.2 (Migration preserves valid DPO rules [7, Proposition

15.23]). Given a proper transformation t : S S∗

 S ′, let

(I 1 typeI1−−−−→ S) l←− (I 2 typeI2−−−−→ S) r−→ (I 3 typeI3−−−−→ S)

be a valid DPO rule. Then

Mt(I 1 typeI1−−−−→ S)
Mt (l)←−−−−Mt(I 2 typeI2−−−−→ S)

Mt (r)−−−−→Mt(I 3 typeI3−−−−→ S)

is a valid DPO rule as well. ut

The migration of DPO diagrams is ensured by the following proposition:

Proposition 6.3 (Migration preserves pushouts [7, Proposition 15.35]).

Let t : S S∗

 S ′ =̂ S l t←− S∗ r t

−→ S ′ be a proper transformation and (L
typeL−−−→ S) l←−

(K
typeK−−−→ S) r−→ (R

typeR−−−→ S) be a valid DPO rule. Let

(D
typeD−−−→ S)

g−→ (H
typeH−−−→ S) n←− (R

typeR−−−→ S)

be a pushout of

(D
typeD−−−→ S) k←− (K

typeK−−−→ S) r−→ (R
typeR−−−→ S)

338 Christoph Schulz, Michael Löwe, Harald König

in Alg(MP∗)↓S, where all typed instances are in Sys(S). Then

Mt(D
typeD−−−→ S)

Mt (g)−−−−→Mt(H
typeH−−−→ S)

Mt (n)←−−−−Mt(R
typeR−−−→ S)

is a pushout of

Mt(D
typeD−−−→ S)

Mt (k)←−−−−Mt(K
typeK−−−→ S)

Mt (r)−−−−→Mt(R
typeR−−−→ S)

in Alg(MP∗)↓S ′, where all typed instances are in Sys(S ′). ut

Both propositions can be combined, yielding the following theorem:

Theorem 6.4 (Correctness of the migration of programs [7, Theorem

15.36]). Let t : S S∗

 S ′ be a proper transformation. Then the migration func-
tor Mt transfers the validity of non-applied methods (DPO rules) and applied
methods (DPO transformations) from the category Alg(MP)↓S into the category
Alg(MP)↓S ′.

Proof. Direct consequence of Proposition 6.2 and Proposition 6.3. ut

7 Outlook

With the framework presented above, a major step towards migration of complete
object-oriented systems is proposed. Certainly, the framework is not universal
as it is subject to some (reasonable) constraints. Migrations are considered to
be instances of transformations. The innovative part of the theory described
consists of the automatic transformation of a migration source, computing the
target with the help of a functor on slice categories. This functor is composed
of three factors: Generally, the pullback functor P l t is right-adjoint where the
second factor—the composition functor Fr t

—is its left-adjoint. But the third
factor—the construction FS into the subcategory Sys(S)—yields an adjunction
as well. Thus, the whole migration enjoys well-understood universal properties
which can further be pursued into three different directions.

The first direction for future research will be the development of tools that
support migration induced by refactoring rules. If transformation rules can be
captured ergonomically in an appropriate application, migrations can automat-
ically and uniquely (by adjointness) be computed. Thus, content migration of
databases is possible as well as migration of running processes in a software
system. These tools should discover potential for composition, as well: Bigger
refactorings should be decomposable into elementary changes, atomic steps must
be proved to combine to more comprehensive procedures. This is another facet
for future research.

Theorem 6.4 states that dynamical semantics is preserved by refactorings
where semantics is based on valid DPO rules. Hence the second direction is to
find a comparable correctness criterion for data. This must include a formal speci-
fication of “information” to distinguish between semantics-preserving refactorings
and information-distorting transformations.

Refactoring Object-Oriented Systems 339

The third direction consists of abstracting away from pure graph structures. It
has to be investigated to what extent the results can be generalised to elementary
topoi or even to adhesive categories [6, 18]. An approach can be found in [15]
which covers data migration only. Hence, an extension to method migration is
desirable.

References

[1] Fowler, M.: Refactoring: Improving the Design of Existing Code. Addison-
Wesley (1999)

[2] Fowler, M.: Patterns of Enterprise Application Architecture. Addison-Wesley
(2002)

[3] Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns. Addison-
Wesley Professional (1995)

[4] Fowler, M., Scott, K.: UML Distilled: A Brief Guide to the Standard Object
Modeling Language. Addison-Wesley (2003)

[5] Mens, T., Tourwé, T.: A survey of software refactoring. IEEE Transactions
On Software Engineering 30(2) (2004) 126–139

[6] Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic
Graph Transformation. Springer (2006)

[7] Schulz, C.: Refactoring objektorientierter Systeme. Forschungsberichte der
FHDW Hannover 2 (2009)

[8] Corradini, A., Dotti, F.L., Foss, L., Ribeiro, L.: Translating java code to
graph transformation systems. In: ICGT. (2004) 383–398

[9] Kastenberg, H., Kleppe, A.G., Rensink, A.: Defining object-oriented exe-
cution semantics using graph transformations. In Gorrieri, R., Wehrheim,
H., eds.: Proceedings of the 8th IFIP International Conference on Formal
Methods for Open-Object Based Distributed Systems, Bologna, Italy. Vol-
ume 4037 of Lecture Notes in Computer Science., London, Springer Verlag
(June 2006) 186–201

[10] Kastenberg, H., Kleppe, A.G., Rensink, A.: Engineering object-oriented
semantics using graph transformations. Technical Report CTIT Technical
Report 06-12, University of Twente (2006)

[11] Bardohl, R., Ehrig, H., de Lara, J., Runge, O., Taentzer, G., Weinhold, I.:
Node type inheritance concept for typed graph transformation. Technical
Report Technical Report 2003-19, Technical University, Berlin (2003)

[12] de Lara, J., Bardohl, R., Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.:
Attributed graph transformation with node type inheritance. Theoretical
Computer Science 376(3) (2007) 139–163

[13] Mal’cev, A.I.: Algebraic systems. Springer (1973)
[14] International Organization for Standardization: ISO/IEC 14882:2003: Pro-

gramming languages – C++, Genf, Schweiz. (2003)
[15] König, H., Löwe, M., Schulz, C.: Functor semantics for refactoring-induced

data migration. Forschungsberichte der FHDW Hannover 1 (2007)
[16] Löwe, M., König, H., Schulz, C., Peters, M.: Refactoring information systems

– a formal framework. In: Proceedings WMSCI 2006. Volume 1. (2006) 75–80

340 Christoph Schulz, Michael Löwe, Harald König

[17] Löwe, M., König, H., Schulz, C., Peters, M.: Refactoring information systems
– handling partial composition. In: Electronic Communications of the EASST.
Volume 3. (2006)

[18] Goldblatt, R.: Topoi: The Categorical Analysis of Logic. Dover Publications
(1984)

. .

Christoph Schulz

Fachhochschule für die Wirtschaft Hannover
Freundallee 15
D-30173 Hannover (Germany)
christoph.schulz@fhdw.de

. .

Prof. Dr. Michael Löwe

Fachhochschule für die Wirtschaft Hannover
Freundallee 15
D-30173 Hannover (Germany)
michael.loewe@fhdw.de

Hans-Jörg Kreowski supervised Michael Löwe’s diploma thesis at TU Berlin in
1981, and was the external examiner of his doctoral thesis in 1990.

. .

Prof. Dr. Harald König

Fachhochschule für die Wirtschaft Hannover
Freundallee 15
D-30173 Hannover (Germany)
harald.koenig@fhdw.de

. .

	Introduction
	Related Work
	Models and Instances
	Methods
	Model Transformation and Data Migration
	Method Migration
	Outlook

