An Introduction to Graph Transformation

Dagstuhl Workshop Formal Models of Graph Transformation in
Natural Language Processing

F. Drewes

16 March 2015

‘¢
' z

I
A

XA
#
b
g
r,
7ET

Introduction

=

e
e

VAN

Lyay,

9
&)

Graph Transformation

Graph transformation. . .

started around 1970 in the form of graph grammars,
studies rewrite systems that act on graphs,

ranges from Turing complete models of computation to context-free
graph grammars,

does not provide very successful automata models for graphs
(in the sense of FSA) though there do exist some attempts,

has established strong connections between context-free graph
languages and monadic second-order logic.

Guiding idea behind most of it

Use rules that replace local substructures.
Apply them iteratively.

¢
} z

try
A

R %)
#
Pl
#}

7ET

by
E
P,

About this Introduction

Here, | attempt to given an overview of some of the most important
concepts and facts.

e Certainly heavily biased

e Trys to focus on what | expect to be potentially interesting for
CL/NLP

e Subjective choice, will certainly include & omit the wrong things

Since we are here to learn from each other, please
interrupt, ask, comment, correct, add, jump in, etc.

NN .
¥ }
Pl
#}

TET "

by
E
P,

Structure of the Presentation

@ Introduction

@ General Graph Transformation Systems
© Context-Free Graph Grammars

O Parsing HR Languages

@ Monadic Second-Order Logic

@ Term Graphs

z
A

@ Concluding Remarks o

NN
¥ '
P
)

TET "

7
:,

General Graph Transformation Systems

A,

Z

#
#}
TET "

&
=
»

"

From a Distance

General idea of rule application
Applying a rule L = R to a host graph H

@ locates (a copy of) the left-hand side (lhs) L in H,

® deletes L from H, and
© inserts the right-hand side (rhs)

Obvious question: What does locate/delete/insert mean?

A,

Z

#
#}
TET "

by

9
"

In the Zoo

The locate/delete/insert question can be answered in several ways
=- many possible approaches to graph transformation

e Basically all of them are Turing complete.

e Some add control structures (like programmed graph grammars).

e Here: focus on the “algebraic approach”.

e Comes in two flavors: double-pushout and single-pushout approach.
e There is also a pullback approach, but | won't talk about that one.

Note: Pushouts and pullbacks are notions from category theory that we
do not need to care about.

NN .
¥ }
Pl
#}

TET "

by
E
P,

Getting More Concrete: a Rule

e Left-hand side (lhs) and right-hand side (rhs) intersect in the green
items that form the gluing graph.

e The red part of the lhs (rhs) is to be deleted (inserted, resp.)

e The purpose of the gluing graph is to establish the connection
between old and new parts.

Note: In general, nodes and edges can be labeled.

¢
} z

try
A

R %)
#
Pl
#}

7ET

by
E
P,

Getting More Concrete: Applying the Rule (1)

RN

N X ~—’—“———)7L >0
\ y
‘\)C/ 30—
yields
o oE T Se——0
7

Getting More Concrete: Applying the Rule (1)

<\ .

>0

Getting More Concrete: Applying the Rule (1)

O—>Q _> T T f ——>C
A \ '
/ N
AN A‘/ >
yields
>0
//

Dangling condition: All edges that

are incident with deleted nodes #‘Q:‘—*—W

must be deleted. (Deletion of the AN ')

red part creates no dangling edges.) ~__L SME1
;B
st

TET "

Getting More Concrete: Applying the Rule (2)

O—>Q :> C\ —f ——>C
A \ i
/ AN
AN 3o rd s
yields
02
o——=5Q = g:;—-‘>u
/ \"

Identification condition: Identify no deleted (red) items with other items.

Alternative: Generally require injective occurrences (forbid identification).

OME4
SNE4
ol
7, fad S
Fers

Remark: Formalization as Double vs. Single Pushout

Application of L = R to obtain a derivation step G = H:

Rule: L 2 K C R This diagram exists and is unique if the dangling
+ + 4 and identification conditions are satisfied. (For-
Step: G O D C H mally, the squares are pushouts.)

In the single pushout approach a rule is a partial mapping L — R and
only one square is constructed:

Rule: L — R

1 ! This imposes no dangling or identification condition. In-
stead, deletion gets priority over preservation.
Step: G — H ges P Y P

¢
} z

try
A

R %)
#
Pl
#}

7ET

by
E
P,

Some Words about Parallelism

Rule applications can be made in parallel if they are independent.
Formulated for the double pushout case:

G1
G 4 3\ Vel Parallel independence: The red part exists iff the two
applications overlap in gluing items only.
N A
2
G1
A N Sequential independence: The red part exists iff all

G v %7 G’ items that are both in the rhs of r1 and the lhs of 7o
are gluing items of both.

e These two are equivalent.

e The parallel rule r = r; Wro is applicable iff the two individual vz,
O,
applications are parallel independent, and then G = G’. SER -

T

Context-Free Graph Grammars

A,

Z

#
#}
TET "

&
=
»

"

From a Distance

Idea: A rule should replace an atomic item with a nonterminal label.

Derivation: Start from an axiom (e.g., a single nonterminal item). Apply
rules until no nonterminal is left.

Have your choice
An atomic item can be a node or an edge.

= two different types of grammars based on
e node replacement and

e edge replacement, resp.

NN .
¥ }
Pl
#}

TET "

by
E
P,

Node/Vertex Replacement (VR)

e Rules replace nodes labeled with nonterminals
= the left-hand side of a rule is a nonterminal label.

e Problem: we need to specify how the right-hand side shall be
connected to the host graph.

e Replacement steps:
@ remove the lhs node with its incident edges,
® add the rhs disjointly, and
© use the connection instructions to connect it to former
neighbors of the replaced node.

NN .
¥ }
Pl
#}

TET "

by
E
P,

VR by Example

.1a,
L

hul;.s
Mwm
o.a,,

,,.??kf, FANN

VR by Example

i ,K
-/
RN v.l,,

Remarks

Context-freeness requires confluence.

Confluence may be violated if there are adjacent nonterminals.
The boundary condition guarantees confluence but is stronger.
Non-confluence gives PSPACE-complete languages.

Confluence ensures containment of the languages in NP.

NN .
¥ }
Pl
#}

TET "

by
E
P,

Hyperedge Replacement (HR)

Rules replace directed hyperedges labeled with nonterminals
= the left-hand side of a rule is a nonterminal label.

A hyperedge of rank k . 7
connects a sequence of k£ nodes: SN/
Al

=

In the right-hand side a sequence of k£ nodes called sources is
distinguished.

Replacement steps:

@ remove a hyperedge e whose label is that of the lhs,
® add the rhs disjointly, and
© fuse the ith incident node of e with the ith source.

Note: We use hyperedges instead of edges in order to be able to ~ <M&y,

P N

“control” more than two nodes. % XR% E,

LE RS’\

HR by Example

vw&x

]
M e E

ctz

HR by Example

Lyay,

VAN

Context-Freeness of HR

>’/
o\ ¥ y
N R

(G="Hiff H=G[G1/e1,...,Gp/e)] with G(e;) =" G, n=), n;)

Paths connecting “inside” and “outside” must pass attached nodes.

Treewidth of language is bounded.

. OME4
e Special case of node replacement (more or less). O -~
. 7 blld ~
e Chomsky normal-form puts languages into NP. Pppes

String Generation by HR

Look at this:

A 2 3 y

1 2 1 2 3 4 ° —se
g ‘Q> r's ° e .? P—H—-) O*Z-)O © o > T)U 5
A \1(3 4 /—\ = -

A

0

-\ g R e ¢ o e e /‘/o——c—a- TR $ETOTY 000

I

= o &’HHC’_ PO S0—5 63 0—>0—>0
L S R

e Same power as DTWT, MCFG, etc.

ME
e Work on Early-style parsing algorithms for string-generating 504;
. EEt] «
HR grammars was done by Fischer et al. s

HR and VR Graph Operations

Old idea by Mezei, Wright (1967)

Context-free generation = regular tree grammar + evaluation of trees
in some algebra (i.e., view a symbol of rank k as a k-ary operation).

HR
Objects: graphs with partial injective
source label mapping src: V — LAB

VR

Objects: graphs with partial port label
mapping port: V — LAB

Operations (many

variants possible)

binary composition / (take disjoint
union & fuse sources with same label)

binary disjoint union & (put two graphs
next to each other)

edge creation add,_,, (add all edges
from a-ports to b-ports)

unary relabeling rel, (relabel all
sources according to partial injective
p: LAB — LAB)

unary relabeling rel, (relabel all ports
according to p: LAB — LAB)

=
=
&

=4
Z
g N

&
=
»

Parsing HR Languages

A,

Z

#
#}
TET "

&
=
»

"

NP-Completeness of linear VR and HR Languages

Two similar independent “historical” proofs. Flexible because of
simplicity.

Language 1 (Aalbersberg, Ehrenfeucht, Rozenberg 1986):

e——O———¢ &—o—0 6—0—p——@ —O—P—=~0
—o O —t—e—o ¢—o—e #—y = 8
Grammar:
1 e o ®
o~4 %—’.\ ._-’G?‘ N
S Tm oA @) A
e—4 5-———@ 2 e L L e
NP-complete by reduction of 3-PARTITION OMEg

NP-Completeness of VR and HR Languages

Language 2 (Lange, Welzl 1987):

wax;n% 9—)S—>o [CS O

USRI [o
4) p (‘sz .. e 0/’] 'S-\—riwsB
e g°.
AN
Lk
| e
Blovme ?09\—(01\ -—'1“'_& o

NP-complete by reduction of HAMILTONIAN PATH.

Component u#u is interpreted as a (mirrored) incidence list of a
node v. (‘1" in position ¢ means ith edge is incident with v.) -~

Polynomial Parsing of HR Languages

CFG-parsing by dynamic programming (CKY) is polynomial because
a string has O(n?) substrings. But a graph has O(2") subgraphs.

Sometimes it helps that
we only need to consider

= Connected + bounded degree yields P (Rozenberg, Welzl 1986).
e More general: Lautemann (1990) requires logarithmic k-separability.

Chiang et al. (2013) show the bound O((39n)“*!), where w is the
treewidth of the rules (requires connectedness!)

Note 1: Chiang et al. (2013): replace d by k-separability?
Note 2: Forgotten concept by Lautemann: componentwise derivations.ME
-\) 4-

P N
Note 3: Polynomial algorithms are non-uniform (fixed grammar). 7 & =
,

Fers

Monadic Second-Order Logic

A,

Z

#
#}
TET "

&
=
»

"

MSO on Graphs

Viewing a graph G as a logical structure:

Nodes (and edges?) are elements of the domain dom(G).

If only nodes are in the universe, graphs are simple.

Predicates for source labels etc (src,(x) = true if x is a-source)

Predicates for incidence or adjacency (edg¢(z,y) = true if (x,y) is
an edge with label f, or s(e,z) = true if x is the source of e and
t(e,y) = true if y is the target of e).

Formulas are built as usual, including quantification Vz, Jz, VX, 34X
over singletons z € dom(G) and sets X C dom(G).

Note: “monadic” means that there is no quantification over relations.

Counting MSO is a useful generalization containing cardinality
predicates card](X) = [X| = p (mod g). -~

R %)
) -
ar s

7ET "

by
E
P,

Connections between MSO and Context-Freeness

We have to use the “right” relational structures (e.g., HR needs
quantification over edges whereas VR uses simple graphs).

A (counting) MSO sentence ¢ defines the graph language
{G1GEo}

Context-freeness is not equivalent to definability (counterexample:
a™b™ viewed as string graphs). However, the following hold:

e {G € L(G) | G [= ¢} is effectively context-free.
o Consequently, it is decidable whether all/infinitely many/finitely
many/no graphs of a context-free graph language satisfy ¢.

Generalization: The image of a context-free graph language under a
CMSO transduction is effectively context-free.

inefficient, but they provide a good starting point. A

=N ... B
7z B =
> &

LE RS’\

Most MSO-based constructions/algorithms are J OME4

Term Graphs

=

Lyay,

9
ol

ol ~

cUunS

Graphs Representing Trees

(Hyper)graphs can represent trees with shared subtrees
=- we can implement term rewriting by graph transformation.

I‘l:\ e Example:

/“\ . symbols +, fib, s, 0 (arities 2, 1, 1, 0)
term fib(s(0) + 0) + s(fib(s(0),0))

e Unfolding removes sharing by copying
shared subtrees.

L
iy 0
/H— f““ e Conversely, collapsing equal subtrees
_

T . creates a compact representation.
5

)

S|
R
#

Pl
#}
r,
7ET

Example: Term Rewriting by Graph Transformation

'fT o—n “
0

e

(s(s(x))) = fib(x) + fib(s(x))

k\pﬁ/
ol e[S
5 1

F el

=]

SN—
@

SN—

SNENs

0

olv B e

=
¢

0)7

fib(0) — 0,

.Ldy
.

Mw;.s

=2
o

VAN

\.+A..w
01_1 !5\;03?@
——
a0

/o

\./sls/.l,

a+\oﬂ\/
(e
_ DVS —a O

o+//”MM\\

o

I
ot

eN—BN—8UN—8 O

. —

<

Q0

) . — e
e —en—eN—=

Collapsing and Garbage

Collapsing nodes that represent identical subtrees increases efficiency
(but removes degrees of freedom):

Another phenomenon observed in this term graph is garbage.

NN .
¥ }
Pl
#}

TET "

by
E
P,

Concluding Remarks

A,

Z

#
#}
TET "

&
=
»

"

Many Things have been Left Out

Among the many things left out are:

e rules with application conditions
e structuring principles such as transformation units

e graph programs

graphs with attributes

generalizations of graph transformation

‘¢
} z

try
A

R %)
#
Pl
#}

7ET

7
:,

Systems Implementing Graph Transformation

AGG: transform graphs with attributes, based on single-pushout
approach, TU Berlin (G. Taentzer). Development stopped?
GrGen.NET: fast implementation using single-pushout approach,
Univ. Karlsruhe (R. GeiB et al.). Latest release from 2014.

GP: implements graph programs, University of York (D. Plump
et al.). Ongoing development (I think).

GMTE: implements several approaches to graph transformation,
LAAS-CNRS (Houda Khlif et al.). Ongoing development.

GROOVE: system for model transformation based on gra tra,
intended for verification, University of Twente (A. Rensink et al.).

Bolinas: graph processing package implementing (synchronous)
HR grammars, USC/ISI (D. Bauer et al.). Ongoing.

NN .
¥ }
Pl
#}

TET "

by
E
P,

	Introduction
	General Graph Transformation Systems
	Context-Free Graph Grammars
	Parsing HR Languages
	Monadic Second-Order Logic
	Term Graphs
	Concluding Remarks

