
An Introduction to Graph Transformation

Dagstuhl Workshop Formal Models of Graph Transformation in
Natural Language Processing

F. Drewes

16 March 2015

Introduction

Graph Transformation

Graph transformation. . .

• started around 1970 in the form of graph grammars,

• studies rewrite systems that act on graphs,

• ranges from Turing complete models of computation to context-free
graph grammars,

• does not provide very successful automata models for graphs
(in the sense of FSA) though there do exist some attempts,

• has established strong connections between context-free graph
languages and monadic second-order logic.

Guiding idea behind most of it

Use rules that replace local substructures.
Apply them iteratively.

About this Introduction

Here, I attempt to given an overview of some of the most important
concepts and facts.

• Certainly heavily biased

• Trys to focus on what I expect to be potentially interesting for
CL/NLP

• Subjective choice, will certainly include & omit the wrong things

Since we are here to learn from each other, please
interrupt, ask, comment, correct, add, jump in, etc.

Structure of the Presentation

1 Introduction

2 General Graph Transformation Systems

3 Context-Free Graph Grammars

4 Parsing HR Languages

5 Monadic Second-Order Logic

6 Term Graphs

7 Concluding Remarks

General Graph Transformation Systems

From a Distance

General idea of rule application

Applying a rule L⇒ R to a host graph H

1 locates (a copy of) the left-hand side (lhs) L in H,

2 deletes L from H, and

3 inserts the right-hand side (rhs) R.

Obvious question: What does locate/delete/insert mean?

In the Zoo

The locate/delete/insert question can be answered in several ways
⇒ many possible approaches to graph transformation

• Basically all of them are Turing complete.

• Some add control structures (like programmed graph grammars).

• Here: focus on the “algebraic approach”.

• Comes in two flavors: double-pushout and single-pushout approach.

• There is also a pullback approach, but I won’t talk about that one.

Note: Pushouts and pullbacks are notions from category theory that we
do not need to care about.

Getting More Concrete: a Rule

• Left-hand side (lhs) and right-hand side (rhs) intersect in the green
items that form the gluing graph.

• The red part of the lhs (rhs) is to be deleted (inserted, resp.)

• The purpose of the gluing graph is to establish the connection
between old and new parts.

Note: In general, nodes and edges can be labeled.

Getting More Concrete: Applying the Rule (1)

yields

Getting More Concrete: Applying the Rule (1)

yields

Getting More Concrete: Applying the Rule (1)

yields

Dangling condition: All edges that
are incident with deleted nodes
must be deleted. (Deletion of the
red part creates no dangling edges.)

Getting More Concrete: Applying the Rule (2)

yields

Identification condition: Identify no deleted (red) items with other items.

Alternative: Generally require injective occurrences (forbid identification).

Remark: Formalization as Double vs. Single Pushout

Application of L⇒ R to obtain a derivation step G⇒ H:

Rule: L ⊇ K ⊆ R
↓ ↓ ↓

Step: G ⊇ D ⊆ H

This diagram exists and is unique if the dangling
and identification conditions are satisfied. (For-
mally, the squares are pushouts.)

In the single pushout approach a rule is a partial mapping L→ R and
only one square is constructed:

Rule: L −→ R
↓ ↓

Step: G −→ H

This imposes no dangling or identification condition. In-
stead, deletion gets priority over preservation.

Some Words about Parallelism

Rule applications can be made in parallel if they are independent.
Formulated for the double pushout case:

G1

=⇒r1
=⇒
r
2

G G′
=⇒
r
2 =⇒r1G2

Parallel independence: The red part exists iff the two
applications overlap in gluing items only.

G1

=⇒r1
=⇒
r
2

G G′
=⇒
r
2 =⇒r1G2

Sequential independence: The red part exists iff all
items that are both in the rhs of r1 and the lhs of r2
are gluing items of both.

• These two are equivalent.

• The parallel rule r = r1] r2 is applicable iff the two individual
applications are parallel independent, and then G⇒

r
G′.

Context-Free Graph Grammars

From a Distance

Idea: A rule should replace an atomic item with a nonterminal label.

Derivation: Start from an axiom (e.g., a single nonterminal item). Apply
rules until no nonterminal is left.

Have your choice

An atomic item can be a node or an edge.

⇒ two different types of grammars based on

• node replacement and

• edge replacement, resp.

Node/Vertex Replacement (VR)

• Rules replace nodes labeled with nonterminals
⇒ the left-hand side of a rule is a nonterminal label.

• Problem: we need to specify how the right-hand side shall be
connected to the host graph.

• Replacement steps:

1 remove the lhs node with its incident edges,
2 add the rhs disjointly, and
3 use the connection instructions to connect it to former

neighbors of the replaced node.

VR by Example

⇒ ⇒ ⇒ ⇒ ⇒ ⇒

⇒∗

VR by Example

⇒ ⇒ ⇒ ⇒ ⇒ ⇒

⇒∗

Remarks

• Context-freeness requires confluence.

• Confluence may be violated if there are adjacent nonterminals.

• The boundary condition guarantees confluence but is stronger.

• Non-confluence gives PSPACE-complete languages.

• Confluence ensures containment of the languages in NP.

Hyperedge Replacement (HR)

• Rules replace directed hyperedges labeled with nonterminals
⇒ the left-hand side of a rule is a nonterminal label.

• A hyperedge of rank k
connects a sequence of k nodes:

• In the right-hand side a sequence of k nodes called sources is
distinguished.

• Replacement steps:

1 remove a hyperedge e whose label is that of the lhs,
2 add the rhs disjointly, and
3 fuse the ith incident node of e with the ith source.

Note: We use hyperedges instead of edges in order to be able to
“control” more than two nodes.

HR by Example

HR by Example

Context-Freeness of HR

(G⇒n H iff H = G[G1/e1, . . . , Gn/el] with G(ei)⇒ni Gi, n =
∑

i ni)

• Paths connecting “inside” and “outside” must pass attached nodes.

• Treewidth of language is bounded.

• Special case of node replacement (more or less).

• Chomsky normal-form puts languages into NP.

String Generation by HR

Look at this:

• Same power as DTWT, MCFG, etc.

• Work on Early-style parsing algorithms for string-generating
HR grammars was done by Fischer et al.

HR and VR Graph Operations

Old idea by Mezei, Wright (1967)

Context-free generation = regular tree grammar + evaluation of trees
in some algebra (i.e., view a symbol of rank k as a k-ary operation).

HR VR
Objects: graphs with partial injective
source label mapping src : V → LAB

Objects: graphs with partial port label
mapping port : V → LAB

Operations (many variants possible)

binary composition // (take disjoint
union & fuse sources with same label)

binary disjoint union ⊕ (put two graphs
next to each other)

edge creation adda→b (add all edges
from a-ports to b-ports)

unary relabeling relρ (relabel all
sources according to partial injective
ρ : LAB → LAB)

unary relabeling relρ (relabel all ports
according to ρ : LAB → LAB)

Parsing HR Languages

NP-Completeness of linear VR and HR Languages

Two similar independent “historical” proofs. Flexible because of
simplicity.

Language 1 (Aalbersberg, Ehrenfeucht, Rozenberg 1986):

Grammar:

NP-complete by reduction of 3-PARTITION

NP-Completeness of VR and HR Languages

Language 2 (Lange, Welzl 1987):

NP-complete by reduction of HAMILTONIAN PATH.

Component u#u is interpreted as a (mirrored) incidence list of a
node v. (‘1’ in position i means ith edge is incident with v.)

Polynomial Parsing of HR Languages

• CFG-parsing by dynamic programming (CKY) is polynomial because
a string has O(n2) substrings. But a graph has O(2n) subgraphs.

• Sometimes it helps that
we only need to consider

⇒ Connected + bounded degree yields P (Rozenberg, Welzl 1986).

• More general: Lautemann (1990) requires logarithmic k-separability.

• Chiang et al. (2013) show the bound O((3dn)w+1), where w is the
treewidth of the rules (requires connectedness!)

Note 1: Chiang et al. (2013): replace d by k-separability?

Note 2: Forgotten concept by Lautemann: componentwise derivations.

Note 3: Polynomial algorithms are non-uniform (fixed grammar).

Monadic Second-Order Logic

MSO on Graphs

Viewing a graph G as a logical structure:

• Nodes (and edges?) are elements of the domain dom(G).

• If only nodes are in the universe, graphs are simple.

• Predicates for source labels etc (srca(x) = true if x is a-source)

• Predicates for incidence or adjacency (edgf (x, y) = true if (x, y) is
an edge with label f , or s(e, x) = true if x is the source of e and
t(e, y) = true if y is the target of e).

Formulas are built as usual, including quantification ∀x, ∃x, ∀X, ∃X
over singletons x ∈ dom(G) and sets X ⊆ dom(G).

Note: “monadic” means that there is no quantification over relations.

Counting MSO is a useful generalization containing cardinality
predicates cardq

p(X) ≡ |X| = p (mod q).

Connections between MSO and Context-Freeness

• We have to use the “right” relational structures (e.g., HR needs
quantification over edges whereas VR uses simple graphs).

• A (counting) MSO sentence φ defines the graph language
{G | G |= φ}.

• Context-freeness is not equivalent to definability (counterexample:
anbn viewed as string graphs). However, the following hold:

• {G ∈ L(G) | G |= φ} is effectively context-free.
• Consequently, it is decidable whether all/infinitely many/finitely

many/no graphs of a context-free graph language satisfy φ.

• Generalization: The image of a context-free graph language under a
CMSO transduction is effectively context-free.

Most MSO-based constructions/algorithms are
inefficient, but they provide a good starting point.

Term Graphs

Graphs Representing Trees

(Hyper)graphs can represent trees with shared subtrees
⇒ we can implement term rewriting by graph transformation.

• Example:
symbols +, fib, s, 0 (arities 2, 1, 1, 0)
term fib(s(0) + 0) + s(fib(s(0), 0))

• Unfolding removes sharing by copying
shared subtrees.

• Conversely, collapsing equal subtrees
creates a compact representation.

Example: Term Rewriting by Graph Transformation

fib(0)→ 0, fib(s(0))→ s(0), fib(s(s(x)))→ fib(x) + fib(s(x))

Collapsing and Garbage

Collapsing nodes that represent identical subtrees increases efficiency
(but removes degrees of freedom):

Another phenomenon observed in this term graph is garbage.

Concluding Remarks

Many Things have been Left Out

Among the many things left out are:

• rules with application conditions

• structuring principles such as transformation units

• graph programs

• graphs with attributes

• generalizations of graph transformation

• . . .

Systems Implementing Graph Transformation

• AGG: transform graphs with attributes, based on single-pushout
approach, TU Berlin (G. Taentzer). Development stopped?

• GrGen.NET: fast implementation using single-pushout approach,
Univ. Karlsruhe (R. Geiß et al.). Latest release from 2014.

• GP: implements graph programs, University of York (D. Plump
et al.). Ongoing development (I think).

• GMTE: implements several approaches to graph transformation,
LAAS-CNRS (Houda Khlif et al.). Ongoing development.

• GROOVE: system for model transformation based on gra tra,
intended for verification, University of Twente (A. Rensink et al.).

• Bolinas: graph processing package implementing (synchronous)
HR grammars, USC/ISI (D. Bauer et al.). Ongoing.

	Introduction
	General Graph Transformation Systems
	Context-Free Graph Grammars
	Parsing HR Languages
	Monadic Second-Order Logic
	Term Graphs
	Concluding Remarks

