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Graph Transformation

Graph transformation. . .

started around 1970 in the form of graph grammars,
studies rewrite systems that act on graphs,

ranges from Turing complete models of computation to context-free
graph grammars,

does not provide very successful automata models for graphs
(in the sense of FSA) though there do exist some attempts,

has established strong connections between context-free graph
languages and monadic second-order logic.

Guiding idea behind most of it

Use rules that replace local substructures.
Apply them iteratively.
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About this Introduction

Here, | attempt to given an overview of some of the most important
concepts and facts.

e Certainly heavily biased

e Trys to focus on what | expect to be potentially interesting for
CL/NLP

e Subjective choice, will certainly include & omit the wrong things

Since we are here to learn from each other, please
interrupt, ask, comment, correct, add, jump in, etc.
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Structure of the Presentation

@ Introduction

@ General Graph Transformation Systems
© Context-Free Graph Grammars

O Parsing HR Languages

@ Monadic Second-Order Logic

@ Term Graphs
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General Graph Transformation Systems
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From a Distance

General idea of rule application
Applying a rule L = R to a host graph H

@ locates (a copy of) the left-hand side (lhs) L in H,

® deletes L from H, and
© inserts the right-hand side (rhs)

Obvious question: What does locate/delete/insert mean?
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In the Zoo

The locate/delete/insert question can be answered in several ways
=- many possible approaches to graph transformation

e Basically all of them are Turing complete.

e Some add control structures (like programmed graph grammars).

e Here: focus on the “algebraic approach”.

e Comes in two flavors: double-pushout and single-pushout approach.
e There is also a pullback approach, but | won't talk about that one.

Note: Pushouts and pullbacks are notions from category theory that we
do not need to care about.
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Getting More Concrete: a Rule

e Left-hand side (lhs) and right-hand side (rhs) intersect in the green
items that form the gluing graph.

e The red part of the lhs (rhs) is to be deleted (inserted, resp.)

e The purpose of the gluing graph is to establish the connection
between old and new parts.

Note: In general, nodes and edges can be labeled.
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Getting More Concrete: Applying the Rule (1)
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Getting More Concrete: Applying the Rule (1)
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Getting More Concrete: Applying the Rule (1)
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Dangling condition: All edges that

are incident with deleted nodes #‘Q:‘—*—W

must be deleted. (Deletion of the AN ')

red part creates no dangling edges.) ~__L SME1
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Getting More Concrete: Applying the Rule (2)
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Identification condition: Identify no deleted (red) items with other items.

Alternative: Generally require injective occurrences (forbid identification).
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Remark: Formalization as Double vs. Single Pushout

Application of L = R to obtain a derivation step G = H:

Rule: L 2 K C R This diagram exists and is unique if the dangling
+ + 4 and identification conditions are satisfied. (For-
Step: G O D C H mally, the squares are pushouts.)

In the single pushout approach a rule is a partial mapping L — R and
only one square is constructed:

Rule: L — R

1 ! This imposes no dangling or identification condition. In-
stead, deletion gets priority over preservation.
Step: G — H ges P Y P
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Some Words about Parallelism

Rule applications can be made in parallel if they are independent.
Formulated for the double pushout case:

G1
G 4 3\ Vel Parallel independence: The red part exists iff the two
applications overlap in gluing items only.
N A
2
G1
A N Sequential independence: The red part exists iff all

G v %7 G’ items that are both in the rhs of r1 and the lhs of 7o
are gluing items of both.

e These two are equivalent.

e The parallel rule r = r; Wro is applicable iff the two individual vz,
O,
applications are parallel independent, and then G = G’. SER -
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Context-Free Graph Grammars
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From a Distance

Idea: A rule should replace an atomic item with a nonterminal label.

Derivation: Start from an axiom (e.g., a single nonterminal item). Apply
rules until no nonterminal is left.

Have your choice
An atomic item can be a node or an edge.

= two different types of grammars based on
e node replacement and

e edge replacement, resp.

NN .
¥ }
Pl
#}

TET "

by
E
P,



Node/Vertex Replacement (VR)

e Rules replace nodes labeled with nonterminals
= the left-hand side of a rule is a nonterminal label.

e Problem: we need to specify how the right-hand side shall be
connected to the host graph.

e Replacement steps:
@ remove the lhs node with its incident edges,
® add the rhs disjointly, and
© use the connection instructions to connect it to former
neighbors of the replaced node.
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VR by Example
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VR by Example
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Remarks

Context-freeness requires confluence.

Confluence may be violated if there are adjacent nonterminals.
The boundary condition guarantees confluence but is stronger.
Non-confluence gives PSPACE-complete languages.

Confluence ensures containment of the languages in NP.
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Hyperedge Replacement (HR)

Rules replace directed hyperedges labeled with nonterminals
= the left-hand side of a rule is a nonterminal label.

A hyperedge of rank k . 7
connects a sequence of k£ nodes: SN/
Al

=

In the right-hand side a sequence of k£ nodes called sources is
distinguished.

Replacement steps:

@ remove a hyperedge e whose label is that of the lhs,
® add the rhs disjointly, and
© fuse the ith incident node of e with the ith source.

Note: We use hyperedges instead of edges in order to be able to ~ <M&y,
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HR by Example
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Context-Freeness of HR
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(G="Hiff H=G[G1/e1,...,Gp/e)] with G(e;) =" G, n= ), n;)

Paths connecting “inside” and “outside” must pass attached nodes.

Treewidth of language is bounded.

. OME4
e Special case of node replacement (more or less). O -~
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e Chomsky normal-form puts languages into NP. Pppes



String Generation by HR

Look at this:
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e Same power as DTWT, MCFG, etc.
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HR and VR Graph Operations

Old idea by Mezei, Wright (1967)

Context-free generation = regular tree grammar + evaluation of trees
in some algebra (i.e., view a symbol of rank k as a k-ary operation).

HR
Objects: graphs with partial injective
source label mapping src: V — LAB

VR

Objects: graphs with partial port label
mapping port: V — LAB

Operations (many

variants possible)

binary composition / (take disjoint
union & fuse sources with same label)

binary disjoint union & (put two graphs
next to each other)

edge creation add,_,, (add all edges
from a-ports to b-ports)

unary relabeling rel, (relabel all
sources according to partial injective
p: LAB — LAB)

unary relabeling rel, (relabel all ports
according to p: LAB — LAB)

=
=
&

=4
Z
g N

&
=
»



Parsing HR Languages
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NP-Completeness of linear VR and HR Languages

Two similar independent “historical” proofs. Flexible because of
simplicity.

Language 1 (Aalbersberg, Ehrenfeucht, Rozenberg 1986):

e——O———¢ &—o—0 6—0—p——@ —O—P—=~0
—o O —t—e—o ¢—o—e #—y = 8
Grammar:
1 e o ®
o~4 %—’.\ ._-’G?‘ N
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e—4 5-———@ 2 e L L e
NP-complete by reduction of 3-PARTITION OMEg



NP-Completeness of VR and HR Languages

Language 2 (Lange, Welzl 1987):
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NP-complete by reduction of HAMILTONIAN PATH.

Component u#u is interpreted as a (mirrored) incidence list of a
node v. (‘1" in position ¢ means ith edge is incident with v.) -~



Polynomial Parsing of HR Languages

CFG-parsing by dynamic programming (CKY) is polynomial because
a string has O(n?) substrings. But a graph has O(2") subgraphs.

Sometimes it helps that
we only need to consider

= Connected + bounded degree yields P (Rozenberg, Welzl 1986).
e More general: Lautemann (1990) requires logarithmic k-separability.

Chiang et al. (2013) show the bound O((39n)“*!), where w is the
treewidth of the rules (requires connectedness!)

Note 1: Chiang et al. (2013): replace d by k-separability?
Note 2: Forgotten concept by Lautemann: componentwise derivations.ME
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Monadic Second-Order Logic
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MSO on Graphs

Viewing a graph G as a logical structure:

Nodes (and edges?) are elements of the domain dom(G).

If only nodes are in the universe, graphs are simple.

Predicates for source labels etc (src,(x) = true if x is a-source)

Predicates for incidence or adjacency (edg¢(z,y) = true if (x,y) is
an edge with label f, or s(e,z) = true if x is the source of e and
t(e,y) = true if y is the target of e).

Formulas are built as usual, including quantification Vz, Jz, VX, 34X
over singletons z € dom(G) and sets X C dom(G).

Note: “monadic” means that there is no quantification over relations.

Counting MSO is a useful generalization containing cardinality
predicates card](X) = [X| = p (mod g). -~
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Connections between MSO and Context-Freeness

We have to use the “right” relational structures (e.g., HR needs
quantification over edges whereas VR uses simple graphs).

A (counting) MSO sentence ¢ defines the graph language
{G1GEo}

Context-freeness is not equivalent to definability (counterexample:
a™b™ viewed as string graphs). However, the following hold:

e {G € L(G) | G [= ¢} is effectively context-free.
o Consequently, it is decidable whether all/infinitely many/finitely
many/no graphs of a context-free graph language satisfy ¢.

Generalization: The image of a context-free graph language under a
CMSO transduction is effectively context-free.

inefficient, but they provide a good starting point. A
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Term Graphs
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Graphs Representing Trees

(Hyper)graphs can represent trees with shared subtrees
=- we can implement term rewriting by graph transformation.

I‘l:\ e Example:

/“\ . symbols +, fib, s, 0 (arities 2, 1, 1, 0)
term fib(s(0) + 0) + s(fib(s(0),0))

e Unfolding removes sharing by copying
shared subtrees.

L
iy 0
/H— f““ e Conversely, collapsing equal subtrees
_

T . creates a compact representation.
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Example: Term Rewriting by Graph Transformation
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(s(s(x))) = fib(x) + fib(s(x))
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Collapsing and Garbage

Collapsing nodes that represent identical subtrees increases efficiency
(but removes degrees of freedom):

Another phenomenon observed in this term graph is garbage.
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Concluding Remarks
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Many Things have been Left Out

Among the many things left out are:

e rules with application conditions
e structuring principles such as transformation units

e graph programs

graphs with attributes

generalizations of graph transformation
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Systems Implementing Graph Transformation

AGG: transform graphs with attributes, based on single-pushout
approach, TU Berlin (G. Taentzer). Development stopped?
GrGen.NET: fast implementation using single-pushout approach,
Univ. Karlsruhe (R. GeiB et al.). Latest release from 2014.

GP: implements graph programs, University of York (D. Plump
et al.). Ongoing development (I think).

GMTE: implements several approaches to graph transformation,
LAAS-CNRS (Houda Khlif et al.). Ongoing development.

GROOVE: system for model transformation based on gra tra,
intended for verification, University of Twente (A. Rensink et al.).

Bolinas: graph processing package implementing (synchronous)
HR grammars, USC/ISI (D. Bauer et al.). Ongoing.

NN .
¥ }
Pl
#}

TET "

by
E
P,



	Introduction
	General Graph Transformation Systems
	Context-Free Graph Grammars
	Parsing HR Languages
	Monadic Second-Order Logic
	Term Graphs
	Concluding Remarks

