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Abstract. We devise a learning algorithm for deterministically rec-
ognizable tree series where the weights are taken from a commutative
group. For this, we use an adaptation of the minimal adequate teacher
model that was originally introduced by Angluin. The algorithm runs
in polynomial time and constructs the unique minimal deterministic
bottom-up finite state weighted tree automaton that recognizes the
tree series in question.
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1 Introduction

In this paper, we propose a learning algorithm for deterministically recogniz-
able tree series. In traditional language learning, the aim is to derive an explicit
formal description of an unknown language U ⊆ T ∗ from examples or similar
information. An algorithm accomplishing this task for a given class C of lan-
guages is called a learner for C. The theory of language learning was initiated
by the seminal paper of Gold [Gol67] on language identification in the limit.
Gold considered two sources of information, leading to the notions of learning
from text and learning from an informant. In the first case, the learner re-
ceives an exhaustive stream of positive examples; in the second, both positive
and negative examples are provided. The learner responds with a guess (an
automaton, say) each time it receives a new piece of information. The language
U is learned in the limit if all but a finite number of the guessed automata are
equal and recognize U . Gold showed that, in this model, all recursively enu-
merable languages can be learned from an informant, but not even all regular
languages can be learned from text.

Later, an alternative type of learning called query learning was proposed by
Angluin [Ang87, Ang88, Ang04]. In this setting, the learner can actively query
an oracle, called the teacher. One type of query learning is MAT learning
[Ang87]. It assumes the existence of a minimally adequate teacher (MAT)
who can answer two types of queries: membership and equivalence queries. A
membership query asks whether a certain string is an element of U , and the
teacher faithfully answers this question.
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An equivalence query asks whether a proposed automaton correctly de-
scribes U . The teacher either accepts the automaton or returns a counterex-
ample, i.e., a string which is in the symmetric difference between U and the
language accepted by the proposed automaton.

An advantage of MAT learning over identification in the limit is that there
exists a natural termination criterion. For the case where U is regular, it is
shown in [Ang87] that the minimal deterministic finite automaton recognizing U
can be learned in polynomial time in the MAT model. Several other researchers
adopted the model; see, e.g., [BR87, Ish90, SY93, Yok94, FR95, Fer02].

The learner proposed in [Ang87] was extended to (skeletal) regular tree
languages by Sakakibara [Sak90], which was recently improved by Drewes and
Högberg [DH06b]. The advantage of the learner studied in [DH06b] is that
it never examines or creates dead states, thus learning the minimal partial
deterministic automaton recognizing U (see also [DH06a]). In the present paper,
we show that a similar approach can be used to learn recognizable tree series.
To our knowledge, this is the first time the questions of learning recognizable
tree series is addressed.

The theory of recognizable tree series extends the theory of recognizable
formal power series [Eil74, SS78, Wec78, BR88, KS86, Kui97] from strings to
trees; a (formal) tree series is a mapping U : TΣ → S where TΣ is the set of
trees over the ranked alphabet Σ and S is the carrier set of a semiring S =
(S,⊕,�, 0, 1). For the recognition of tree series, a suitable type of automaton
is obtained from an ordinary tree automaton [GS84, GS97] by providing every
transition with a weight being an element of S. Then, roughly speaking, given
an input tree t ∈ TΣ, an automaton A may have several runs on t; the weight
of a run is the product (taking �) of the weights of the transitions which are
applied in this run. Finally, the weight of accepting t by S is the sum (taking
⊕) of the weights of all the runs on t. The resulting mapping A : TΣ → S is the
tree series recognized by A.

Recognizable tree series have been introduced in [BR82] (over fields as
weight domain) and generalized in [Boz99, Kui98] (by replacing fields by semir-
ings). Since then the theory of recognizable tree series has been developed
along the lines of the boolean, i.e., unweighted case. For instance, it has been
proved that recognizable tree series over semirings (sometimes with additional
restrictions) are equivalent to: least solutions of finite polynomial systems
[Kui98, ÉK03], rational tree series [Boz99, Kui98, Pec03b, Pec03a, DPV05],
and tree series definable by weighted (restricted) monadic second-order logic
[DV05]. Some more results about recognizable tree series can be found in:
[BR82, Bor04a] on pumping lemmata and decidability results; [Sei90, Boz91]
on deciding the equivalence of two effectively given recognizable tree series over
a field; [Sei94, BFGM05] on deciding the boundedness of values which may
occur for a weighted tree automaton over partially ordered semirings; [Boz99]
(also cf. Lemma 4.1.13 von [Bor04a]) on the equivalence of the run seman-
tics and the inital algebra semantics. (The present paper will be based on the
latter.) For a survey article on recognizable tree series we refer the reader to
[ÉK03].

In order to be able to learn a recognizable tree series U , we use an appro-
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priate adaptation of the MAT model in which membership queries are replaced
by coefficient queries: given a tree t ∈ TΣ, the teacher returns the coefficient
of t, i.e., the value (U, t).1 Naturally, an equivalence query now asks whether
a proposed automaton A recognizes U , and a counterexample is a tree t ∈ TΣ

such that (A, t) 6= (U, t).
The learners given in [Ang87, Sak90, DH06b, DH06a] are all based on the

Myhill-Nerode theorems for regular string languages (cf. e.g. [Yu97]) and for
recognizable tree languages [FV89, Koz92]. The basic idea of the learning algo-
rithms is to extract, from the counterexamples, trees that represent the equiva-
lence classes of TΣ induced by U , and to use these representatives as the states
of the automata proposed by the learner. Here, we exploit the Myhill-Nerode
theorem for recognizable tree series in a similar manner; this theorem has been
proved in [Bor03, Bor04b] for recognizable tree series over commutative semi-
fields. Interestingly, the fact that the learner in [DH06b, DH06a] avoids dead
states turns out to be an essential property for this approach to work. Intu-
itively, a dead state corresponds to subtrees having the weight zero; without
avoiding them, the learner would attempt to divide by zero when constructing a
proposed automaton. As a result, we obtain a learner that learns a recognizable
tree series in polynomial time. To be precise, we consider only the so-called de-
terministically aa-recognizable tree series, i.e., tree series which are accepted by
deterministic automata in which every state is final (all accepting). Since the
considered automata are deterministic, we do not need the semiring addition;
hence, instead of commutative semifields (needed for the Myhill-Nerode theo-
rem in the nondeterministic case) we use commutative groups as domains of
the weights. Finally, we note that it is an open problem whether the restriction
‘aa’ can be dropped.

The paper is structured as follows. The next section recalls some basic
notions and notation. Section 3 contains the definition of deterministic bottom-
up finite state weighted tree automata and discusses their basic properties to
the extent necessary for the remainder of the paper. Section 4 presents the
learner and discusses an example. Finally, Section 5 proves the correctness of
the algorithm and discusses its complexity.

2 Preliminaries

Throughout the paper, Z denotes the set of all integers; N and N+ denote the
sets {0, 1, 2, . . .} and {1, 2, . . .}, respectively.

If ∼ ⊆ T × T is an equivalence relation over a set T (i.e., ∼ is reflexive,
symmetric, and transitive), and t is an element of T , then the equivalence class
of t is [t]∼ = {s ∈ T | s ∼ t}.

1As usual when dealing with formal power series, we denote the value of U at t by (U, t)
rather than by U(t).
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2.1 Partial functions

Let A,B be two sets and f ⊆ A × B. If for every x ∈ A there is at most one
y ∈ B such that (x, y) ∈ f , then f is a partial function and it is denoted by
f : A (→ B; rather than (x, y) ∈ f we write as usual f(x) = y. We let

df (f) = {x ∈ A | there is a y ∈ B such that f(x) = y} and
rg(f) = {y ∈ B | there is an x ∈ A such that f(x) = y}.

We say that f(x) is defined if x ∈ df (f); otherwise, f(x) is undefined. Note
that writing f(x) = y implies in particular that f(x) is defined. By convention,
every expression containing an undefined subexpression yields itself an unde-
fined value. If e, e′ are two expressions involving partial functions and we want
to express that they are either both defined and equal or are both undefined,
then we use the notation e

.= e′.

2.2 Trees

A ranked alphabet is a finite set of symbols Σ =
⋃

k∈N Σ(k) which is partitioned
into pairwise disjoint subsets Σ(k). The symbols in Σ(k) are said to have rank
k; this we will also be indicated by writing f (k) for some f ∈ Σ(k). If Σ =⋃

k∈N Σ(k) and ∆ =
⋃

k∈N ∆(k) are two ranked alphabets, then Σ ∪ ∆ is the
ranked alphabet

⋃
k∈N

(
Σ(k) ∪∆(k)

)
. We write Σ∩∆ = ∅, if for every k ∈ N we

have Σ(k) ∩∆(k) = ∅.
The set TΣ of trees over Σ is the smallest set T ⊆ Σ∗ such that f t1 · · · tk ∈ T

whenever f ∈ Σ(k) and t1, . . . , tk ∈ T . For the sake of better readability we write
f [t1, . . . , tk] instead of f t1 · · · tk, unless k = 0. For a set T of trees (over an
arbitrary ranked alphabet), Σ(T ) denotes the set {f [t1, . . . , tk] | k ≥ 0, f ∈
Σ(k), t1, . . . , tk ∈ T}.

We will frequently decompose a tree into a so-called context and a subtree.
For this purpose, we reserve the symbol � of rank zero that does not occur in
Σ. A tree c ∈ TΣ∪{�} in which � occurs exactly once (as a leaf) is called a
context (over Σ). The set of all contexts over Σ is denoted by CΣ. Given a
context c and a tree s, we denote by c[[s]] the tree which is obtained from c by
replacing � by s.

In the rest of this paper Σ denotes an arbitrary ranked alphabet.

2.3 Monoids

A (multiplicative) monoid is an algebraic structure (G,�, 1) with an operation
� and a constant 1 such that � is associative and 1 is the unit element of �.
A monoid has an absorbing element 0 ∈ G if for every x ∈ G the equalities
x � 0 = 0 � x = 0 hold. Such a monoid is denoted by (G,�, 0, 1). A monoid
with absorbing 0 is a group if for every x ∈ G \ {0} there is a unique y ∈ G
such that x � y = y � x = 1; this element is called the inverse of x and it is
denoted by x−1. A monoid (resp. group) is commutative if for every x, y ∈ G
the equality x� y = y � x holds.
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We note that every group G is zero-divisor free, i.e., for every x, y ∈ G: if
x� y = 0, then x = 0 or y = 0.

Throughout the rest of this paper G denotes an arbitrary commutative group
(G,�, 0, 1). Our algorithms will frequently have to operate on elements of G.
Therefore, we assume that the elements of G can be represented effectively and
that, with the input x, y ∈ G, both x� y and x−1 are computable.

3 Formal tree series and weighted tree automata

We now define the types of formal tree series and weighted tree automata that
will be considered in the remainder of this paper. Since we restrict ourselves to
the deterministic case, it suffices to consider tree series with coefficients taken
from the commutative group G rather than from a semiring.

3.1 Formal tree series

Let Σ be a ranked alphabet. A (formal) tree series (over TΣ and the commuta-
tive group G) is a mapping U : TΣ → G. For every t ∈ TΣ, the element U(t) ∈ G
is called the coefficient of t and it is also denoted by (U, t). The support of U is
defined as the set supp(U) = {t ∈ TΣ | (U, t) 6= 0}. The tree series U is subtree
closed if for every t ∈ TΣ the fact that t ∈ supp(U) implies that s ∈ supp(U)
for every subtree s of t. The set of all tree series over TΣ and G is denoted by
G〈〈TΣ〉〉.

3.2 Finite state weighted tree automata

A deterministic zero-free bottom-up finite state weighted tree automaton (for
short: wta) over Σ and G is a tuple A = (Q, δ, λ, F ) such that

• Q is a ranked alphabet (of states) with Q = Q(0) and Q ∩ Σ = ∅,

• δ = (δk | k ≥ 0) is a family of partial mappings δk : Σ(k) × Qk (→ Q
(transition mappings),

• λ = (λk | k ≥ 0) is a family of partial mappings λk : Σ(k)×Qk (→ G\{0}
(coefficient mappings) that satisfy df (δk) = df (λk), and

• F ⊆ Q (final states).

An all accepting wta (for short: aa-wta) is a wta such that every state is also
a final state. In this case we drop the F from the specification of the automaton
and just write A = (Q, δ, λ).

Next we define the partial mappings δ̃ : TΣ∪Q (→ Q and λ̃ : TΣ∪Q (→ G
simultaneously by induction, as follows:

• for every q ∈ Q, δ̃(q) = q and λ̃(q) = 1, and

• for every tree t = f [t1, . . . , tk] ∈ Σ(TΣ∪Q),

δ̃(t) .= δk(f, δ̃(t1), . . . , δ̃(tk))

5



and
λ̃(t) .= λk(f, δ̃(t1), . . . , δ̃(tk))�

⊙k
i=1 λ̃(ti).

Note that, for t = f [t1, . . . , tk] ∈ Σ(TΣ∪Q), the values δ̃(t) and λ̃(t) are
undefined if at least one of the δ̃(ti) is undefined or if δ̃(t1) = q1, . . . , δ̃(tk) = qk

but (f, q1, . . . , qk) /∈ df (δk). Clearly, df (δ̃) = df (λ̃) and 0 /∈ rg(λ̃). In order to
reduce notational complexity, we will drop the tilde from δ̃ and λ̃ in the sequel
and just write δ and λ, respectively.

The tree series recognized by A is the tree series A : TΣ → G such that for
every t ∈ TΣ:

(A, t) =

{
λ(t) if t ∈ df (δ) and δ(t) ∈ F ,
0 otherwise.

A tree series U ∈ G〈〈TΣ〉〉 is deterministically recognizable (resp. determin-
istically aa-recognizable) if there is a wta A (resp. aa-wta A) such that U = A.

Observation 3.1 Let A be an aa-wta. Then A is subtree closed.

Example 3.2 Let Σ = {f (1), a(0)}. Moreover, consider the group (Q, ·, 0, 1).
Now consider the formal tree series U ∈ G〈〈TΣ〉〉 such that (U, a) = 0 and
(U, fn[a]) = 1 for every n ≥ 1 (where fn[a] abbreviates f [· · · f [a] · · · ] with n
occurrences of f).

This formal tree series can be accepted by the wta A = (Q, δ, λ, F ) with
Q = {q, p}, F = {q}, and δ0(a) = p, λ0(a) = 1, δ1(f, p) = δ1(f, q) = q, and
λ1(f, p) = λ1(f, q) = 1. Thus, for every n ≥ 0, we have that λ(fn[a]) = 1.
However, (A, a) = 0, because p 6∈ F . Moreover, (A, fn[a]) = 1 for every n ≥ 1.
Thus, A = U .

Due to Observation 3.1, U cannot be recognized by an aa-wta.

Example 3.3 Let Σ = {f (2), a(0), b(0)} and consider the group (Z∞,+,∞, 0),
where Z∞ = Z∪{∞} and + is extended to Z∞ as usual. Clearly, ∞ is absorbing
with respect to +, and 0 is the unit element of +.

Now we consider the following formal tree series U ∈ G〈〈TΣ〉〉. A subtree
s of a tree t ∈ TΣ is called an a-subtree if every leaf of s is labeled by a. Let
maxa(t) be the set of all maximal a-subtrees of t. Then, for every t ∈ TΣ, we
define

(U, t) =
∑

s∈maxa(t)

size(s)

where size(s) is the number of positions (or: nodes) of s. Thus, for instance,
(U, f [f [a, a], f [a, b]]) = 4.

This formal tree series U is deterministically aa-recognizable. To show this,
let A = (Q, δ, λ) be the wta such that

• Q = {c, p} where c and p stand for ‘count’ and ‘propagate’, respectively,
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• δ0(a) = c, λ0(a) = 1, and δ0(b) = p, λ0(b) = 0, and

δ2(f, q1, q2) =

{
c if q1 = q2 = c

p otherwise

λ2(f, q1, q2) =

{
1 if q1 = q2 = c

0 otherwise.

It should be rather obvious that U = A. �

Lemma 3.4 For every wta A = (Q, δ, λ, F ), every context c ∈ CΣ, and every
tree t ∈ TΣ,

δ(c[[t]]) .= δ(c[[δ(t)]]) and λ(c[[t]]) .= λ(c[[δ(t)]])� λ(t).

Proof. The equality δ(c[[t]]) .= δ(c[[δ(t)]]) is well known from the theory of
ordinary deterministic bottom-up finite tree automata, and it follows by a
straightforward structural induction on c. The proof of the equality λ(c[[t]]) .=
λ(c[[δ(t)]]) � λ(t) is similar, using the fact that the group G is assumed to be
commutative, and it is therefore left out. �

We note that our notion of wta is closely related to the deterministic
bottom-up weighted tree automata with final states (fs-wta, for short) defined
in [Bor04b, Definition 4.1.9]; see also [BV03, Bor03]. In particular, these models
are equally powerful. (Readers who are unfamiliar with fs-wta should skip the
rest of this paragraph.) Let M = (Q,Σ, F, G, µ) be an fs-wta with final state
set F (where µ = (µk | k ≥ 0) and µk : Σ(k) → GQk×Q) and A = (Q, δ, λ, F ) be
a wta over Σ and G. Then we say that M and A are related if for every k ≥ 0,
f ∈ Σ(k), q, q1, . . . , qk ∈ Q, the following properties hold:

• δk(f, q1, . . . , qk) is undefined if and only if µk(f)q1,...,qk,q = 0 for all q ∈ Q,

• if µk(f)(q1,...,qk),q 6= 0, then δk(f, q1, . . . , qk) = q and λk(f, q1, . . . , qk) =
µk(f)(q1,...,qk),q, and

• if (f, q1, . . . , qk) ∈ df(δk), then µk(f)(q1,...,qk),q = λk(f, q1, . . . , qk) where
q = δk(f, q1, . . . , qk).

It can easily be proved that M and A compute the same tree series if they are
related. Moreover, for every wta A there is an fs-wta M with final states such
that M and A are related, and vice versa, for every fs-wta M with final states
there is a wta A such that M and A are related. Thus, as claimed above, wta
and fs-wta are equally powerful models.

In this paper we will only deal with aa-wta, i.e., with deterministic all
accepting bottom-up finite state weighted tree automata. Note that this is a
relatively weak restriction since every (deterministic) wta A can be split into
an aa-wta Aaa and an ordinary bottom-up finite tree automaton B such that,
for all t ∈ TΣ,

(A, t) =

{
(Aaa, t) if t ∈ L(B),
0 otherwise,

where L(B) denotes the tree language recognized by B.
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3.3 Minimal deterministic wta

In this section we will construct, for a given deterministically aa-recognizable
tree series U ∈ G〈〈TΣ〉〉, an aa-wta AU such that U = AU and AU is mini-
mal with respect to the number of states of all the aa-wta which recognize U .
More or less, we follow the lines of Section 5 of [Bor03] (and Section 7.1 of
[Bor04b]), where deterministic bottom-up weighted tree automata with final
weights over commutative semifields were considered. (Such automata do not
only distinguish states to be final, but additionally produce a weight or cost in
such final states.) However, due to determinism, the addition of the semifield
is not needed; thus we choose a commutative (multiplicative) group with an
absorbing 0 for our development. Moreover, our approach differs from the one
of [Bor03] in the sense that we deal with all accepting tree automata, whereas
in [Bor03] final states can be distinguished. If final states can be distinguished,
then one can get rid of final weights (cf. Lemma 6.1.4 of [Bor04b]); however,
this construction does not preserve the property of being all accepting. Thus, in
order to have a clear and self-contained presentation, we show all the adapted
lemmata and their proofs (but always refer to related lemmata of [Bor03] and
[Bor04b]).

Let U ∈ G〈〈TΣ〉〉 be a deterministically aa-recognizable tree series. Recall
from Observation 3.1 that U is subtree closed, i.e., if t ∈ supp(U), then this
membership also holds for every subtree of t. We define the equivalence relation
of U as the binary relation ∼U ⊆ TΣ × TΣ such that for every t, t′ ∈ TΣ,
t ∼U t′ if and only if there is an x ∈ G \ {0} such that for every c ∈ CΣ the
equation (U, c[[t]]) = (U, c[[t′]])�x holds (cf. Section 5 of [Bor03] and Section 7.1
of [Bor04b]). In this section, we will abbreviate a class [t]∼U by [t].

Lemma 3.5 (cf. Lemma 7.1.2(ii) of [Bor04b]) The relation ∼U is a congruence
relation with respect to the intial Σ-term algebra.
Proof. It is clear that ∼U is an equivalence relation. Now let k ≥ 1, f ∈ Σ(k),
and for every 1 ≤ i ≤ k, let ti, t

′
i ∈ TΣ such that ti ∼U t′i. Then, for every

1 ≤ i ≤ k, there is a yi ∈ G \ {0} such that for every context c ∈ CΣ, we
have (U, c[[ti]]) = (U, c[[t′i]]) � yi. Since G is zero-divisor free, it follows that⊙k

i=1 yi 6= 0. Now let d ∈ CΣ be an arbitrary context over Σ. Then we can
calculate as follows:

(U, d[[f [t1, . . . , tk]]]) = (U, d[[f [�, t2, . . . , tk]]][[t1]])
= (U, d[[f [�, t2, . . . , tk]]][[t′1]])� y1

= (U, d[[f [t′1, t2, . . . , tk]]])� y1

...
= (U, d[[f [t′1, . . . , t

′
k]]])�

⊙k
i=1 yi.

Hence f [t1, . . . , tk] ∼U f [t′1, . . . , t
′
k]. �

Lemma 3.6 (cf. Lemma 7.1.3 of [Bor04b]) Let A = (Q, δ, λ) be an arbitrary
aa-wta over Σ and G such that A = U . Then, for all trees t, t′ ∈ TΣ, if
δ(t) = δ(t′), then t ∼U t′.
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Proof. Let t, t′ ∈ TΣ such that δ(t) = δ(t′). Thus, in particular, t, t′ ∈ df (λ)
and t, t′ ∈ supp(U). Then, since G is a group, there is an x ∈ G \ {0} such that
λ(t) = λ(t′)�x. Now let c ∈ CΣ be an arbitrary context over Σ. We distinguish
two cases.

c[[t]] ∈ df (δ): Then, due to Lemma 3.4 and the assumption that δ(t) = δ(t′),
also c[[t′]] ∈ df (δ). Since A is all accepting we can compute as follows (by using
Lemma 3.4 twice):

(A, c[[t]]) = λ(c[[t]])
= λ(c[[δ(t)]])� λ(t)
= λ(c[[δ(t′)]])� λ(t′)� x

= λ(c[[t′]])� x

= (A, c[[t′]])� x.

c[[t]] 6∈ df (δ): Then again it follows easily that also c[[t′]] 6∈ df (δ). Hence
(A, c[[t]]) = 0 = (A, c[[t′]]) = (A, c[[t′]])� x. �

Now we construct the aa-wta AU = (QU , δU , λU ) as follows (cf. Definition
7.2.1 of [Bor04b]):

• QU = {[t] | t ∈ supp(U)} and

• the families δU = (δU
k | k ≥ 0) and λU = (λU

k | k ≥ 0) are defined for
every k ≥ 0, f ∈ Σ(k), and t1, . . . , tk ∈ TΣ by

δU
k (f, [t1], . . . , [tk]) =

{
[f [t1, . . . , tk]] if (U, f [t1, . . . , tk]) 6= 0,

undefined otherwise,

and

λU
k (f, [t1], . . . , [tk]) =


(U, f [t1, . . . , tk])�

⊙k
i=1(U, ti)−1

if (U, f [t1, . . . , tk]) 6= 0,

undefined otherwise.

Note that QU is finite: since U is deterministically aa-recognizable and by
Lemma 3.6 every aa-wta A with A = U has at least |QU | states. Consequently,
the finiteness of the state set of A implies that QU is finite as well. Moreover,
the definitions of δk and λk do not depend on the choice of t1, . . . , tk, because
∼U is a congruence, cf. Lemma 3.5. Finally, note that λU

k (f, [t1], . . . , [tk]) 6= 0
unless λU

k (f, [t1], . . . , [tk]) is undefined. This is because [ti] ∈ QU implies that
(U, ti) 6= 0 and thus (U, ti)−1 6= 0; since every multiplicative group is zero-divisor
free and G is a group, this yields

⊙k
i=1(U, ti)−1 6= 0. Thus, if (U, f [t1, . . . , tk]) 6=

0, then λU
k (f, [t1], . . . , [tk]) = (U, f [t1, . . . , tk]) �

⊙k
i=1(U, ti)−1 6= 0, and if

(U, f [t1, . . . , tk]) = 0, then λU
k (f, [t1], . . . , [tk]) is undefined.

Lemma 3.7 (cf. Theorem 4 of [Bor03] and Theorem 7.4.1(a) of [Bor04b])
AU is a state-minimal aa-wta which recognizes U .
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Proof. Let us show that U = AU . For this we prove the following two state-
ments, for every t ∈ TΣ:

(1) If t ∈ supp(U), then δ(t) = [t] and λU (t) = (U, t).
(2) If t 6∈ supp(U), then δ(t) is undefined.
Clearly, from these two statements the equality U = AU follows directly.

Let us prove statement (1) by induction on t. Let t = f [t1, . . . , tk] ∈ supp(U).
By the induction hypothesis we can assume that, for every 1 ≤ i ≤ k, the impli-
cation of statement (1) holds for ti. Since U is deterministically aa-recognizable
and t ∈ supp(U), it follows from Observation 3.1 that also ti ∈ supp(U), and
thus we know that δ(ti) = [ti] and λU (ti) = (U, ti). Then, using the definitions
of δU and λU , we obtain that δU (t) = [t] and

λU (t) = λU
k (f, δU (t1), . . . , δU (tk))�

⊙k
i=1 λU (ti)

= λU
k (f, [t1], . . . , [tk])�

⊙k
i=1(U, ti)

= (U, f [t1, . . . , tk])�
⊙k

i=1(U, ti)−1 �
⊙k

i=1(U, ti)
= (U, f [t1, . . . , tk]).

Now we prove statement (2) by induction on t. Let t 6∈ supp(U), i.e.,
(U, t) = 0. Then, in particular, δU

k (f, [t1], . . . , [tk]) is undefined (note that the
equivalence classes [ti] are defined, although they might not be states in QU ).
Now we make a case analysis:

∀1 ≤ i ≤ k : ti ∈ supp(U): Then, using statement (1), it holds that δ(ti) =
[ti]. Consequently, δ(t) = δU

k (f, δ(t1), . . . , δ(tk)) = δU
k (f, [t1], . . . , [tk]) is unde-

fined.
∃1 ≤ i ≤ k : ti 6∈ supp(U): Then, by the induction hypothesis, δ(ti) is unde-

fined, and hence, by definition of δ, also δ(t) is undefined.
This proves statement (2), and in total we obtain that U = AU . Minimality

of AU follows from Lemma 3.6. �

Lemma 3.8 Up to bijective renaming of states, every minimal aa-wta A rec-
ognizing U is equal to AU .
Proof. Let A = (Q, δ, λ) be a minimal aa-wta such that A = U . By Lemma 3.6
and the minimality of A it holds for all t, t′ ∈ supp(U) that t ∼U t′ if and only
if δ(t) = δ(t′). Furthermore, minimality implies that, for every q ∈ Q, there
exists a tree t ∈ supp(U) such that δ(t) = q. Hence the mapping π : Q → {[t] |
t ∈ supp(U)} defined by π(q) = [t], where t ∈ TΣ is any tree such that δ(t) = q,
is a bijection. For simplicity we will assume that π is the identity.

Next, we show that zero-freeness implies δ = δU . Let f ∈ Σ(k) and
t1, . . . , tk ∈ supp(U), and consider t = f [t1, . . . , tk]. Clearly, t ∈ supp(U)
implies δk(f, [t1], . . . , [tk]) = δ(t) = [t] = δU

k (f, [t1], . . . , [tk]). If t /∈ supp(U)
(i.e., (A, t) = 0), then λk(f, [t1], . . . , [tk]) must be undefined, because A is zero-
free and λ(ti) = (U, ti) 6= 0 for 1 ≤ i ≤ k (because of the assumption that
t1, . . . , tk ∈ supp(U)). Hence, δk(f, [t1], . . . , [tk]) is undefined as well, and thus
equal to δU

k (f, [t1], . . . , [tk]).
Now, let us show that λk(f, [t1], . . . , [tk])

.= λU
k (f, [t1], . . . , [tk]) (where, again,

f ∈ Σ(k), t1, . . . , tk ∈ supp(U), and t = f [t1, . . . , tk]). If one side is defined while
the other is not, by zero-freeness exactly one of (A, t) and (AU , t) would be equal
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to zero, contradicting the assumption that A = U = AU . Thus, let us assume
that both sides are defined. Then, since 0 /∈ rg(λ) = rg(λU ), we have

λk(f, [t1], . . . , [tk]) = λ(t)�
⊙k

i=1 λ(ti)−1

= (U, t)�
⊙k

i=1(U, ti)−1

= λU (t)�
⊙k

i=1 λU (ti)−1

= λU
k (f, [t1], . . . , [tk]),

as claimed. �

4 Learning

We now turn to the main topic of this paper, namely learning a tree series.
First, we define the learning model to be used.

4.1 The learning model

In the rest of this paper let U ∈ G〈〈TΣ〉〉 be a deterministically aa-recognizable
tree series. The aim is to learn U algorithmically, where the only source infor-
mation available is a “teacher” who knows U and can answer the following two
types of queries:

(a) Coefficient queries: Given a tree t ∈ TΣ, the teacher returns the coef-
ficient (U, t) ∈ G.

(b) Equivalence queries: Given an aa-wta A. The teacher checks whether
A = U . If not, then she returns a counterexample, i.e., a tree t ∈ TΣ such
that (A, t) 6= (U, t).

This model is a straightforward adaptation of the MAT model (where MAT
stands for minimal adequate teacher) introduced by Angluin [Ang87]. Since the
goal in the original model is to learn a language rather than a series, it uses
membership queries rather than coefficient queries.

4.2 Observation tables

The idea behind our learning algorithm stems from [Ang87], where it was used
to devise a learning algorithm for regular string languages. Intuitively, the
algorithm tries to build AU without knowing the equivalence relation ∼U in its
entirety. This construction is based on the following lemma.

Lemma 4.1 Let s, s′ ∈ supp(U). Then s ∼U s′ if and only if (U, c[[s]]) �
(U, s)−1 = (U, c[[s′]])� (U, s′)−1 for all c ∈ CΣ.
Proof. By the definition of ∼U , we have s ∼U s′ if and only if there exists
an x ∈ G \ {0} such that (U, c[[s]]) = (U, c[[s′]]) � x for all c ∈ CΣ. Clearly,
x = (U, s′)−1 � (U, s) is such an x if (U, c[[s]])� (U, s)−1 = (U, c[[s′]])� (U, s′)−1

(since G is zero-divisor free). Conversely, if (U, c[[s]]) = (U, c[[s′]]) � x for all
c ∈ CΣ, we obtain x = (U, c[[s]]) � (U, c[[s′]])−1 by choosing c = � (where the
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inverse is defined because s′ ∈ supp(U)). Consequently, (U, c[[s]]) � (U, s)−1 =
(U, c[[s′]])� (U, s′)−1 for all c ∈ CΣ. �

Lemma 4.1 motivates the following definition.

Definition 4.2 For C ⊆ CΣ, we let ∼C denote the equivalence relation on
supp(U) such that, for all s, s′ ∈ supp(U), s ∼C s′ holds if and only if (U, c[[s]])�
(U, s)−1 = (U, c[[s′]])� (U, s′)−1 for every c ∈ C.

Obviously, ∼C is indeed an equivalence relation. In order to enhance read-
ability, we drop the subscript ∼C from the notation [s]∼C (s ∈ R) if C is clear
from the context.

By Lemma 4.1, ∼CΣ
equals ∼U . However, since U is assumed to be deter-

ministically aa-recognizable, the number of equivalence classes of ∼U is finite.
Hence, there is in fact a finite set C ⊆ CΣ such that ∼C = ∼U . This is of
particular interest because, with C being finite, s ∼C s′ can be decided us-
ing coefficient queries. The idea behind the learning algorithm is to determine
such a set C, together with representatives of the equivalence classes. At each
stage of the algorithm, the information gathered so far is recorded in a so-called
observation table. This notion is defined next.

Definition 4.3 An observation table is a triple T = (S, R,C), where

(1) S and R are finite subsets of TΣ such that S ⊆ R ⊆ Σ(S),

(2) C ⊆ CΣ with |C| ≤ |S|,

(3) R ⊆ supp(U), and

(4) s 6∼C s′ for every two distinct s, s′ ∈ S.

The observation table T is complete if, for every s ∈ R, there is some s′ ∈ S
such that s ∼C s′. Owing to item (4), this s′ is uniquely determined. We denote
it by selectT (s).

The requirement in item (3) corresponds to the avoidance of so-called dead
states in [DH06b]: throughout the whole learning process, the learner solely
considers trees whose coefficients are nonzero. This is important because it
means that the inverse of a tree in R is always defined.

We mention here that, from the implementation point of view, there are
two natural ways in which observation tables can be implemented. These may
be called the implicit and the explicit one. The implicit implementation follows
Definition 4.3 and records only S, R, and C, but not the value (U, c[[s]])�(U, s)−1

for c ∈ C and s ∈ R. Each time the algorithm needs to know this value, the
teacher is asked two coefficient queries. While this behaviour is theoretically
sound and saves memory space, it may obviously lead to an unnecessarily large
number of coefficient queries. The explicit approach would therefore turn the
observation table into a two-dimensional array indexed by the elements of R
and C. The cell given by s and c contains the value (U, c[[s]])� (U, s)−1. Thus,
only one pair of coefficient queries is needed for each pair (s, c).
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Lemma 4.4 Let T = (S, R,C) be a complete observation table. For every
s ∈ S, it holds that selectT (s) = s. Moreover, if f [s1, . . . , sk] ∈ R, then
selectT (si) = si for every i = 1, . . . , k.
Proof. The first statement is due to item (4) of Definition 4.3. Furthermore, for
f [s1, . . . , sk] ∈ R item (1) of Definition 4.3 yields s1, . . . , sk ∈ S ⊆ R. Therefore,
the second statement follows from the first one. �

4.3 Synthesizing an aa-wta

From a complete observation table T = (S, R,C), we may synthesize an aa-wta
by following the construction of the minimal deterministic aa-wta described in
Section 3.3, but replacing ∼U with ∼T . The aa-wta synthesized from T is the
aa-wta AT = (QT , δT , λT ) such that

• QT = {〈s〉 | s ∈ S} and

• δT = (δk | k ≥ 0) and λT = (λk | k ≥ 0), where we define for every k ≥ 0,
f ∈ Σ(k), and s1, . . . , sk ∈ S

δk(f, 〈s1〉, . . . , 〈sk〉) =

{
〈selectT (f [s1, . . . , sk])〉 if f [s1, . . . , sk] ∈ R,

undefined otherwise

and

λk(f, 〈s1〉, . . . , 〈sk〉) =


(U, f [s1, . . . , sk])�

⊙k
i=1(U, si)−1

if f [s1, . . . , sk] ∈ R,

undefined otherwise.

To see that AT is well defined, consider the definition of λk(f, 〈s1〉, . . . , 〈sk〉)
for some f [s1, . . . , sk] ∈ R. Since R ⊆ Σ(S) (cf. item (1) of Definition 4.3), we
have that si ∈ S ⊆ R for every i = 1, . . . , k. By item (3) of Definition 4.3, it
follows that (U, si) 6= 0 and hence, the inverses exist and λk is well defined. Note
also that the finiteness of observation tables implies that AT can be constructed
effectively (using coefficient queries if an implicit implementation of T is used).
In particular, the number of states is finite.

Lemma 4.5 Let T = (S, R,C) be a complete observation table, and let s ∈ R.
Then δT (s) = 〈selectT (s)〉 and (AT , s) = λT (s) = (U, s).
Proof. This follows by structural induction on s = f [s1, . . . , sk] ∈ R. By
the definition of observation tables, R ⊆ Σ(S) and thus s1, . . . , sk ∈ S ⊆ R.
Therefore, we can apply the induction hypothesis to the si and obtain δT (si) =
〈selectT (si)〉; by Lemma 4.4, this implies that selectT (si) = si. Hence,

δT (s) = δk(f, δT (s1), . . . , δT (sk))
= δk(f, 〈selectT (s1)〉, . . . , 〈selectT (sk)〉)
= δk(f, 〈s1〉, . . . , 〈sk〉)
= 〈selectT (s)〉.
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This shows in particular that s ∈ df (δT ), and thus (AT , s) = λT (s). It
remains to be checked that λT (s) = (U, s), as follows:

λT (s) = λk(f, δT (s1), . . . , δT (sk))�
⊙k

i=1 λT (si)
= λk(f, 〈selectT (s1)〉, . . . , 〈selectT (sk)〉)�

⊙k
i=1(U, si)

= λk(f, 〈s1〉, . . . , 〈sk〉)�
⊙k

i=1(U, si)
= (U, s)�

⊙k
i=1(U, si)−1 �

⊙k
i=1(U, si)

= (U, s).

�

4.4 The learning algorithm

The main procedure of our learning algorithm, the learner, is the following
simple loop:

T = (S, R,C) := (∅, ∅, ∅);
loop

A := Synthesize(T );
t := CounterExample(A); (ask equivalence query)
if t = ⊥ then return A (teacher has approved A)
else T := Extend(T, t) (teacher has rejected A; extend T using t)

end loop

Here, Synthesize(T ) builds and returns the aa-wta synthesized from T .
The function Extend is the central part of the learner. It is based on the
following intuition. If δT (s) = 〈s′〉 for a subtree s of the counterexample t, this
means that AT assumes s to be equivalent to the tree s′ ∈ S (and if δT (s) is
undefined, it assumes that s /∈ supp(U)). By Lemma 4.5, this assumption is
necessarily correct if s ∈ S, because then s′ = s. Thus, as AT fails to work
correctly on t, there must be a subtree s /∈ S for which the assumption made is
incorrect. The purpose of the function Extend is to search for a minimal such
tree s, using a technique known as contradiction backtracking [Sha83]. This
technique does not only find such a tree; it guarantees also that the returned
tree s is an element of Σ(S). This is ensured by modifying t during the search. In
a bottom-up manner, Extend chooses an arbitrary subtree s ∈ Σ(S)\S, in effect
decomposing t into c[[s]]. If s is not the sought subtree, then t′ = c[[selectT (s)]]
is a counterexample as well (as we shall prove in Lemma 5.1), and thus Extend
calls itself recursively, with the argument t′ instead of t. Otherwise, the table
resulting from the addition of s (and perhaps c) to T is returned. The resulting
pseudocode for Extend is this:
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(1) function Extend(T, t) where T = (S, R,C)
(2) decompose t into t = c[[s]] where s = f [s1, . . . , sk] ∈ Σ(S) \ S;
(3) if s ∈ R then

(use coefficient queries to check the following condition:)
(4) if (U, c[[selectT (s)]])� λT (selectT (s))−1 = (U, c[[s]])� λT (s)−1 then

(c[[selectT (s)]] is also a counterexample)
(5) return Extend(T, c[[selectT (s)]])

else (we have selectT (s) 6∼C∪{c} s)
(6) return Complete(S ∪ {s}, R, C ∪ {c})

else (we have (A, t) = (A, s) = 0 but (U, t) 6= 0 and thus (U, s) 6= 0)
(7) return Complete(S, R ∪ {s}, C)

The auxiliary function Complete is simple. It makes an observation table
(S, R,C) complete by checking, for every equivalence class [s] with s ∈ R,
whether s ∼C s′ for some s′ ∈ S. If this is not the case, it adds s to S.

Let us now reconsider the formal tree series U ∈ Z∞〈〈TΣ〉〉 from Example 3.3
and apply the learning algorithm to U . For an observation table Ti, we will
denote its first, second, and third components by Si, Ri, and Ci, respectively.
Also, in order to enhance succinctness of the presentation, for a complete obser-
vation table T = (S, R,C), we introduce the mapping repT : S → P(R) which
is defined for every s ∈ S by repT (s) = select−1

T (s).
At the beginning of the execution of the algorithm we have

T0 = (∅, ∅, ∅) and AT0 = (∅, δ∅, λ∅).

Since the support of the tree series recognized by AT0 is the empty set, the
teacher returns a counterexample, say, t = a, and the algorithm executes
Extend(T0, a). This results in

T1 = ({a}, {a}, ∅) and AT1 = ({〈a〉}, δ1, λ1)

with repT1
(a) = {a}, and δ1 and λ1 are specified as follows:

(δ1)0(a) = 〈a〉, (λ1)0(a) = 1.

Again the teacher returns a counterexample, say b, and the algorithm executes
Extend(T1, b) with the following result:

T2 = ({a}, {a, b}, ∅) and AT2 = ({〈a〉}, δ2, λ2)

with repT2
(a) = {a, b} (note that selectT2(b) = a, because the set C2 of contexts

with respect to which equality has to be checked, is empty), and thus

(δ2)0(a) = (δ2)0(b) = 〈a〉, (λ2)0(a) = 1, (λ2)0(b) = 0.

Now the teacher may return the counterexample t = f [a, b]. Extend decomposes
this into t = f [a,�][[b]], i.e., c = f [a,�] and s = b. Since s ∈ R2, Extend

compares two expressions (cf. line (4)):

(U, f [a,�][[selectT2(b)]])+(−λT2(selectT2(b))) = (U, f [a, a])−λT2(a) = 3−1 = 2

(U, f [a,�][[b]]) + (−λT2(b)) = 1− 0 = 1.

The discrepancy reveals that a ∼U b, and also that c is a context witness-
ing this fact. Therefore, Extend returns the new complete observation table
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(cf. line (6)):

T3 = ({a, b}, {a, b}, {f [a,�]}) and AT3 = ({〈a〉, 〈b〉}, δ3, λ3)

with repT3
(a) = {a} and repT3

(b) = {b}. Thus,

(δ3)0(a) = 〈a〉, (δ3)0(b) = 〈b〉, (λ3)0(a) = 1, (λ3)0(b) = 0.

In other words, the context f [a,�] has separated the trees a and b. But still,
the wta AT3 rejects the input tree f [a, b] (i.e., δ3(f [a, b]) is undefined). So,
the teacher may again return t = f [a, b] as the next counterexample. Now t
is decomposed into c = � and s = f [a, b], and since s 6∈ R3, the following
complete observation table is returned in line (7):

T4 = ({a, b}, {a, b, f [a, b]}, {f [a,�]}) and AT4 = ({〈a〉, 〈b〉}, δ4, λ4)

with repT4
(a) = {a} and repT4

(b) = {b, f [a, b]}. The transition and coefficient
mappings of AT4 are extensions of the corresponding mappings of AT3 :

(δ4)0(a) = 〈a〉, (δ4)0(b) = (δ4)2(f, 〈a〉, 〈b〉) = 〈b〉,

(λ4)0(a) = 1, (λ4)0(b) = (λ4)2(f, 〈a〉, 〈b〉) = 0.

In order to enhance readability we express these extensions of δ3 and λ3 in a
slightly informal way, as follows:

δ4 = δ3 ∪
[
(δ4)2(f, 〈a〉, 〈b〉) = 〈b〉

]
λ4 = λ3 ∪

[
(λ4)2(f, 〈a〉, 〈b〉) = 0

]
.

We will keep this habit also for the wta AT5 through AT7 which will be synthe-
sized next.

Since AT4 rejects t = f [a, a], the teacher may choose t to be the next coun-
terexample. The decomposition of t yields c = � and s = f [a, a] and, since
s 6∈ R4, Extend returns the following complete observation table:

T5 = ({a, b}, {a, b, f [a, b], f [a, a]}, {f [a,�]}) and AT5 = ({〈a〉, 〈b〉}, δ5, λ5)

with repT5
(a) = {a, f [a, a]} and repT5

(b) = {b, f [a, b]}. Thus,

δ5 = δ4 ∪
[
(δ5)2(f, 〈a〉, 〈a〉) = 〈a〉

]
,

λ5 = λ4 ∪
[
(λ5)2(f, 〈a〉, 〈a〉) = 1

]
.

Now the teacher may answer the equivalence query by returning, e.g., t =
f [f [a, b], a]. This tree has a possible decomposition into c = f [�, a] and s =
f [a, b]. The comparison in line (4) yields

(U, f [�, a][[selectT5(f [a, b])]]) + (−λT5(selectT5(f [a, b])))
= (U, f [b, a])− λT5(b) = 1− 0 = 1

(U, f [�, a][[f [a, b]]]) + (−λT5(f [a, b])) = 2− 1 = 1.
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Thus, the algorithm continues with line (5) and executes Extend(T5, f [b, a]).
The result is the following complete observation table with the corresponding
synthesized wta:

T6 = ({a, b}, {a, b, f [a, b], f [a, a], f [b, a]}, {f [a,�]})

and
AT6 = ({〈a〉, 〈b〉}, δ6, λ6)

with repT6
(a) = {a, f [a, a])} and repT6

(b) = {b, f [a, b], f [b, a]} and

δ6 = δ5 ∪
[
(δ6)2(f, 〈b〉, 〈a〉) = 〈b〉

]
,

λ6 = λ5 ∪
[
(λ6)2(f, 〈b〉, 〈a〉) = 0

]
.

Now (U, f [b, b]) = 0 whereas (AT6 , f [b, b]) = ∞. Hence, the teacher might return
t = f [b, b] as the next counterexample. The extension of T6 with t yields the
new complete observation table:

T7 = ({a, b}, {a, b, f [a, b], f [a, a], f [b, a], f [b, b]}, {f [a,�]})

and
AT7 = ({〈a〉, 〈b〉}, δ7, λ7)

with repT7
(a) = {a, f [a, a]} and repT7

(b) = {b, f [a, b], f [b, a], f [b, b]} and

δ7 = δ6 ∪ [(δ7)2(f, 〈b〉, 〈b〉) = 〈b〉],

λ7 = λ6 ∪ [(λ7)2(f, 〈b〉, 〈b〉) = 0].

The next equivalence query reveals that CounterExample(AT7) = ⊥, because
U = AT7 . In fact, up to the renaming 〈a〉 7→ c and 〈b〉 7→ p of states, the wta
AT7 equals the wta A shown in Example 3.3. �

5 Correctness and complexity

In this section, the correctness of the learner is proved formally. We show that
the learner will always return the minimal aa-wta recognizing U . Afterwards,
we discuss briefly the runtime complexity of the learner.

We start by proving a lemma which shows that the first two return state-
ments in Extend are appropriate.

Lemma 5.1 Let T = (S, R,C) be a complete observation table and A =
Synthesize(T ). Moreover, let c ∈ CΣ and s ∈ R be such that (A, c[[s]]) 6=
(U, c[[s]]). If

(U, c[[selectT (s)]])� (U, selectT (s))−1 = U(c[[s]])� (U, s)−1,

then (A, c[[selectT (s)]]) 6= (U, c[[selectT (s)]]). Otherwise, (S ∪ {s}, R, C ∪ {c}) is
an observation table.
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Proof. Let A = (Q, δ, λ). By Lemma 4.5, we have δ(s) = selectT (s) =
δ(selectT (s)). Using Lemma 3.4, this implies that λ(c[[s]]) � λ(s)−1 .=
λ(c[[δ(s)]]) .= λ(c[[δ(selectT (s))]]) .= λ(c[[selectT (s)]]) � λ(selectT (s))−1 and thus
(A, c[[s]])� λ(s)−1 = (A, c[[selectT (s)]])� λ(selectT (s))−1.

Now recall that, by Lemma 4.5, also λ(s) = (U, s) and λ(selectT (s)) =
(U, selectT (s)). Thus, if (U, c[[selectT (s)]])�λ(selectT (s))−1 = U(c[[s]])�λ(s)−1,
then we get

(A, c[[selectT (s)]])� λ(selectT (s))−1 = (A, c[[s]])� λ(s)−1

6= (U, c[[s]])� λ(s)−1

= (U, c[[selectT (s)]])� λ(selectT (s))−1,

i.e., (A, c[[selectT (s)]]) 6= (U, c[[selectT (s)]]), as claimed.
If (U, c[[selectT (s)]]) � λ(selectT (s))−1 6= U(c[[s]]) � λ(s)−1, then we have to

prove that (S ∪ {s}, R, C ∪ {c}) satisfies (1)–(4) in Definition 4.3. Require-
ments (1)–(3) are fulfilled by the choice of s, since T is an observation ta-
ble. Requirement (4) is satisfied because the assumed inequality, together with
Lemma 4.5, yields (U, c[[selectT (s)]]) � (U, selectT (s))−1 6= U(c[[s]]) � (U, s)−1,
i.e., s 6∼C∪{c} selectT (s). �

Our next task is to prove that the last return statement in Extend is appro-
priate as well.

Lemma 5.2 Let T = (S, R,C) be a complete observation table and A =
Synthesize(T ). If c ∈ CΣ and s ∈ Σ(S) \R are such that (A, c[[s]]) 6= (U, c[[s]]),
then (S, R ∪ {s}, C) is an observation table.
Proof. The only requirement of Definition 4.3 which is not obviously satisfied
is requirement (3). To check that s ∈ supp(U), let s = f [s1, . . . , sk]. By the
fact that s ∈ Σ(S) \R, δk(f, 〈s1〉, . . . , 〈sk〉) is undefined. Hence, by Lemma 4.5,
δ(s) is undefined and thus (A, c[[s]]) = 0, which shows that (U, c[[s]]) 6= 0. Since
U is deterministically aa-recognizable, the latter means that s ∈ supp(U) (by
Lemma 3.4). �

The following easy lemma shows that each call of Extend terminates.

Lemma 5.3 For every complete observation table T = (S, R,C) and every tree
t ∈ TΣ with (U, t) 6= (AT , t), the call Extend(T, t) terminates.
Proof. Let v(t) be the number of (occurrences of) subtrees of t which are not in
S. If Extend calls itself recursively with the second parameter t′ = c[[selectT (s)]],
then s ∈ R\S. By definition, selectT (s) ∈ S, which shows that v(t′) = v(t)−1.
Consequently, there can be at most v(t) recursive calls. (In fact, by Lemma 4.5,
there cannot be more than v(t)− 1 calls since no counterexample can be in S.)
�

Theorem 5.4 The learner terminates and returns the minimal aa-wta AU rec-
ognizing U .
Proof. Until it terminates, the learner calls the function Extend in every itera-
tion of its main loop. By Lemma 5.3 every such call of Extend terminates and
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produces a new observation table T . Initially, T = (∅, ∅, ∅) which is complete.
Assuming that T is a complete observation table, it follows from Lemmata 5.1
and 5.2 that Extend(T, t) is a complete observation table as well, for every
counterexample t. Thus, after every iteration, T = (S, R,C) is a complete ob-
servation table. By the results of Section 3.7 and the construction of AT , it is
clear that AT is the minimal aa-wta recognizing AT . To complete the proof,
it is thus sufficient to show that the learner terminates (as it will do so only if
there does not exist any counterexample).

Let z ∈ N be the number of equivalence classes of ∼U . Firstly, Defini-
tion 4.3(4) yields s 6∼C s′ for all distinct s, s′ ∈ S, and thus s 6∼U s′. This shows
that, throughout the execution of the learner, we have |S| ≤ z. Secondly, the
inclusion R ⊆ Σ(S) yields a bound on the maximum number of elements R can
have (namely |Σ| · rk, where r is the maximum rank of symbols in Σ). Thirdly,
we have |C| ≤ |S| ≤ z by requirement (2) of Definition 4.3. However, each exe-
cution of the main loop adds a new element to at least one of the components
of the observation table. Hence, termination is guaranteed. �

Let us now briefly discuss the runtime complexity of the learner. For this,
we assume that the learner is implemented on a random-access machine. Fur-
thermore, we assume that x� y and x−1 can be computed in constant time for
all x, y ∈ G, and that each element of G can be stored in a single register (using
some appropriate representation). The time needed by the teacher to answer a
coefficient or equivalence query is not taken into account; below, every query is
assumed to be answered instantaneously.

In Section 4 of [DH06b], the running time of the learner for regular tree
languages proposed in that paper is studied in detail. The parameters con-
sidered are the maximum rank r of symbols in Σ, the maximum size m of
counterexamples, the number |Q| of states of the sought automaton, and |δ|,
the number of transitions of this automaton. In the following, we consider the
same parameters (where |δ| =

∑
k∈N |df (δk)|).

The learner proposed in [DH06b] is shown to run in time O(r · |Q| · |δ| ·(|Q|+
m)) if certain optimizations to the basic algorithm are made. For example, if
Extend has extended the observation table according to line (8) of its definition,
there is no need to recompute the synthesized aa-wta from scratch. Instead, the
components δ and λ (and perhaps Q) of the previous aa-wta can be extended
in the obvious way. Another important observation is that the set S can be
stored efficiently as a directed acyclic graph consisting of exactly |S| nodes
(since S ⊆ Σ(S)). A careful examination of the arguments and techniques used
in [DH06b] reveals that, with only minor modifications, the same ideas yield
an efficient implementation of the learner proposed in this paper. With one
exception, the resulting estimations of the running time are unaffected.

The mentioned exception concerns the fact that, in [DH06b], observations
yield binary values – either c[[s]] is a member of the tree language in question, or
it is not. As a consequence, the |C| cells of the observation table that store the
observations for a tree s ∈ R can be regarded as a bit string of length |C|, and
can thus be stored in a single register. Using this representation, comparisons
can be made in a single step if an explicit observation table is used.
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In the present case, the cells of the observation table contain arbitrary el-
ements of G, which implies that we have to use lists of length |C| rather than
single registers in order to store the observations made for each s ∈ R. As a con-
sequence, comparisons and similar operations now require |C| ≤ |S| ≤ |Q| steps
rather than a single step. For this reason, the running time of the algorithm is
increased by the factor |Q| if compared with the one in [DH06b] (regardless of
whether we use implicit or explicit observation tables). More precisely, we have
the following theorem.

Theorem 5.5 If AU = (Q, δ, λ, F ) is the minimal aa-wta recognizing U , then
the learner runs in time O(r · |Q|2 · |δ| · (|Q| + m)), where m is the maximum
size of counterexamples returned by the teacher, and r is the maximum rank of
symbols in Σ.
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