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Nothing is more usual and more natural for those, who pretend to
discover any thing new to the world in philosophy and sciences,
than to insinuate the praises of their own systems, by decrying all
those, which have been advanced before them. A treatise of human
nature (Hume, 1739)
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Chapter 1

Introduction

Example of how to use quotes at
the beginning of chapters

dali

Humans have the innate ability to adapt and learn in various environments
by utilizing all their senses and drawing from past experiences. This multi-
faceted approach helps us decipher complex information and handle new situ-
ations effectively. We complement what we see with what we hear to minimise
ambiguity in conversations and manage noisy information. These channels of
information are modalities, and multimodal information processing refers to the
simultaneously fusing information from different modalities. In dangerous sit-
uations we can rely on all our senses to build a complete picture to avoid harm,
often without thinking about it. Using our senses like taste, smell, touch, hear-
ing, and sight helps us navigate our environment effectively, and our ability to
generalize from experience that makes it easier for us to be successful in new
situations and places. Imagine that you are joining friends for driving snow
mobiles, an activity that you have never done before. You are listening to a
walk through of how to drive, but there is a loud noise momentarily drown-
ing out the presenter. Given the topic and the last few words that you heard,
you can probably infer the missing words with reasonable accuracy. If there are
slides, you might be able to align what the presenter said with text on the slides
to fill in the gap. If you clearly see the person, their facial expressions might
be enough to infer what you did not hear. Combining all of this information
happens for us without thinking too much about it. Similarly, while you have
never driven a snow mobile, you most likely have previous experiences that you
can combine to quickly learn. Do you know how to ride a bike? Drive a car?
Ski? Even sitting straight on a chair transfers. All these activities have aspects
that translate to driving a snow mobile, and thus we do not have to start from
scratch even if the environment and task is new. Instead, most people probably
only need a few instructions and a couple of tries to drive on their own. This
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is of course not the same as mastering the snow mobile, and we will get back
to such generalisation throughout this thesis. Multimodal information process-
ing and generalisation to novel scenarios are two core characteristics of human
intelligence, and are both central in many research topics and applications of
artificial intelligence. However, even with the impressive advancements of the
last decade, there is still a long way to go for robust human-level AI.

Throughout this thesis we will investigate multimodal machine learning for
language and vision and the generalisation capabilities of such models in vi-
sual question answering tasks. We will build an understanding of the effects of
including vision in language learning, and current limitations of compositional
generalization in multimodal language models. We categorise current chal-
lenges in language modelling into three categories; 1) robustness, 2) reasoning,
and 3) resources. In light of these challenges, we investigate how neuro-symbolic
architectures, systems combining neural networks and symbolic reasoning, and
curriculum learning, e.g. learning increasingly difficult tasks, can help address
these issues. We further argue that both internal structure and external be-
haviour must be evaluated in order to understand the capabilities of language
models. As our method, we use probing of embeddings to observe internal
structures of the embeddings produced by language models, and we construct
a benchmark for compositional generalisation to study model behaviour on vi-
sual reasoning tasks. In our probing experiments, we also investigate the impact
of vision on learning language. The thesis ends with an outlook on the rela-
tionship between language grounding, concept hierarchies, and compositional
generalisation.

Multimodality Now, in the context of artificial intelligence, why should we
study multimodal machine learning? We have spent centuries systematically
trying to understand and characterise human intelligence, how we understand
our surroundings and make sense of each other. How do we translate thoughts
into language? How do we learn language through experience and interaction?
We smell, taste, touch, see, and hear things to interact with the world around
us. These senses represent different modalities, and multimodal language learn-
ing simply implies that we are learning language with several modalities as
input at the same time, e.g., text-image pairs as input. An example is image
captioning, where systems are trained on images with captions to generate cap-
tions for new images. This task is impossible unless the system learns how to
relate the two modalities.

While human language is dynamic and expressive, building intelligent sys-
tems without multimodal capabilities means that we are limiting our human-
computer interaction. Asking a question about images is a natural way of
interacting with our surroundings, and combining complementary information
in audio and visual input can sometimes be crucial in understanding what is
going on. As an example, in a setting with noise pollution, humans can still
rely on lip movement and facial expressions to follow a conversation as a com-
plement to our hearing. We can teach multimodal language models to do the

2



same, as shown by Zadeh et al. (2016), to combine complementary information
to determine the sentiment of a speaker on video. More importantly, there is
evidence from a wide range of disciplines, such as developmental psychology,
that language learning in humans either requires or is facilitated by our use
of different senses. For instance, we speak about the exact same objects using
different words in the word/concept hierarchy. When referring to an image of
a cat, a speaker might use Norwegian forest cat, cat, and animal, all in the
same sentence structure depending on what level of resolution the context re-
quires. If there are many cats present, we might have to be more specific to
disambiguate which animal we are referring to. Similarly, if there are no ani-
mals present we can choose each of the alternatives without being ambiguous.
Hence, a model using vision has a stronger signal that these words all relate to
each other moreso than that they can be used in the same way in a sentence
to mean the same thing. Current large language models build these hierarchies
solely on words used in the same way. While that might work for large parts
of language learning, one of the questions in multimodal machine learning is
whether using other modalities helps make this learning process more efficient.
We must acknowledge that many applications that require natural language
processing do not need multimodal capacities to be successful. However, given
that we ground our language in our sensory experiences, we want to better
understand the role and impact of vision on language learning with machines.

Natural Language Processing So, we want to learn models of language
to facilitate the interaction between humans and machines, as well as process
language to distill or act on the information it contains. Therefore, Natural
Language Processing (NLP) is an important component in many fields of arti-
ficial intelligence (AI). This may not come as a surprise, as our most dynamic
and expressive form of interaction is through language. Historically, natural
language plays a central role in some of the most well-known artifacts of AI re-
search. The Turing test centers around written communication, introduced by
Alan Turing in 1950 as the imitation game (Turing, 1950). The Chinese Room
thought experiment taught to undergrad students takes a similar form (Searle,
1980). The famous ELIZA chatter bot (Weizenbaum, 1966) from the 1960’s
used relatively simple rules to interact with users in natural language. IBM
Watson used natural language both as an interface and to query for information
when it beat human players in Jeopardy!. Recent advancements that gather the
attention of the public are no different. Deep learning with methods such as
transformers or recurrent neural networks, in combination with vast datasets
of language found on the internet, have revolutionised large parts of the field
of NLP. Recently, generative language models such as GPT sent shock waves
through the AI community, with ChatGPT dominating news feeds and social
media. One of the reasons is that large language models now seem capable of
performing tasks that are not strictly language processing, such as mathemati-
cal reasoning or passing the bar to practise law. We will return to the question
of the line between language and general intelligence later, but note that it
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is fuzzy in the current research environment. However, as we will see in this
thesis, there are challenges with current language models that might require
something other than pure scale. While there are strong achievements across
disciplines, the neural networks of today are still susceptible to the neural net-
work, or connectionism, critiques from over 30 years ago. We will now spend
some time understanding these critiques.

Deep Learning When we are talking about learning language with ma-
chines, deep learning has been an crucial enabler of the systems we have today.
The last decade of AI research has been dominated by deep learning in every-
thing from language and vision, to robot control and playing games. Although
the term deep learning was coined in 1986 by Rina Decther (Dechter, 1986),
the deep learning revolution started in the 2010s. In 2012, researchers used
deep learning to achieve drastically better performance on the famous Ima-
geNet challenge. AlexNet was a combination of old ideas and the availability
of the necessary GPU hardware (Krizhevsky et al., 2017). Since then, deep
learning has become a golden hammer to address many challenges in artificial
intelligence. At the same time, deep learning faces critique on a wide range
of issues. We have many examples of ethical issues with large language mod-
els that reinforce discriminatory patterns and harmful societal biases. There
are also issues with robustness in critical tasks such as autonomous driving, or
various reasoning tasks (TODO CITE). From environmental and democratic
standpoints, the amount of resources required to build large language models is
both harmful and ethically questionable. To structure this discussion, we focus
on challenges in these three R’s; robustness, resources, and reasoning. We will
come back to this in Chapter 3. However, we would like to point out that
similar arguments goes back to debates in the 1980s, where J. A. Fodor and
Pylyshyn (1988) argue that connectionism cannot address the real challenges
of artificial intelligence but rather is a step backwards. We will expand on the
historical context more in detail in Chapter 2.

Since the 80s, the research landscape went through an AI winter, and while
AI research changed dramatically since then, the criticism of neural networks
from that time still applies. Deep learning systems achieve great performance
on benchmarks, but there are as many examples of how their shortcomings
when deployed in real world applications. Most recently this includes harmful
bias, catastrophic failures leading to nonsensical repeating, and just plain wrong
answers with large language models (TODO CITE). There are entire research
fields trying to dissect and understand these failures and general characteristics.
We can summaries the issue as the difference between deep learning and deep
understanding, and that many benchmarks test model behaviour rather than
verify specific characteristics central to intelligence. Chapter 5 will cover how
reasoning tasks can inform us in building better language systems, and what
role compositional generalisation plays in addressing the shortcomings.
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Compositional Generalisation A key characteristics of human success is
our ability to generalise from experience. One aspect of that ability is compo-
sitional generalisation, the capacity to compose knowledge from previous ex-
periences into new knowledge. Human language and cognition are both largely
compositional (todo, 2023), with Chomsky (Chomsky, 2014) stating that we
generate infinite use of finite means (originally attributed to Von Humboldt
(1836)). In other words, we can use language to generate sentences that have
never been seen before, such as the famous Chomsky example of colorless green
ideas sleep furiously (Chomsky, 1957). This theory is not without controversy,
but the critique mostly questions infiniteness and where it comes from. How-
ever, the lack of compositionality in many current language models is an impor-
tant challenge in addressing a range of issues (todo, 2023). Chapter 3 will go
into more details on compositional generalisation to prepare for the benchmarks
introduced in Chapter 5.

Human-inspired Learning The concluding chapters of this thesis will look
at what we can learn from human learning. Intuitively, there are large dif-
ferences between how children learn and how we teach, e.g., large language
models. There are many instances of how we can use insights from studying
humans to improve machine learning methods. However, it is important to note
the big difference between using human mechanisms as inspiration and trying
to replicate them. Neural networks are a great example of this, with the core
idea being inspired by neurons in our brains. In reality, there are a great deal
of components that are missing from neural network architectures for them to
be even remotely close. Similarly, we note the body of work that criticises the
way we train models, not only the architectures themselves. Mollo and Millière
(2023) formulate the vector grounding problem, a modernised formulation of
the grounding problem. One conclusion they draw is that merely having access
to multimodal data during training is not sufficient at all to ground the model
in the real world.

On the note of changing the way we train neural networks, Z. Liu et al.
(2023) introduces Brain-Inspired Modular Training (BIMT) that explicitly en-
courages networks to be modular and sparse. The main objective is to produce
models that are more interpretable, but there are many side-effects that are
interesting. The experiments show how a brain-inspired training procedure
and loss function can lead to neural networks that are more compositional in
structure. Their method penalises parameters with a cost proportional to the
length of each neuron connection. One effect is that concepts like composi-
tionality, independence, and feature sharing can be recovered from the network
structure.

• Developmental psychology, Chromium (Carey & Bartlett, 1978), Wugs (Berko,
1958), hierarchies (Eustace, 1969)

• Concept learning
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• Brenden Lake (B. M. Lake et al., 2019)

1.1 What Hill are we Climbing?

The field of artificial intelligence is sometimes referred to as a landscape with
hills and valleys. In this analogy, valleys represents dead ends, and the highest
hills, or peaks, represent something like our notion of artificial general intel-
ligence. The goal then is to find the highest hill and climb it. One problem
with climbing hills is that only moving upwards does not guarantee that you
find the highest peak. Following this algorithm in The Netherlands barely gets
you above sea level, hardly close to the peak of Mt. Everest. Therefore, it is
important to know how to identify the landscape of high hills, and know when
we are in a position to start climbing such a hill (G. Marcus & Davis, 2019).

1.2 On the Thesis Composition

The challenges outlined above constitutes the context for the work presented
in this thesis. We focus on compositional generalisation in multimodal do-
mains, and evaluate the usefulness of neuro-symbolic methods and hierarchies
in addressing the challenges. Some of the promises of neuro-symbolic methods
specifically address some of the shortcomings of deep learning-based methods.
For instance, neuro-symbolic methods integrate logical reasoning frameworks
into the architecture. This is useful both for exact and reliable reasoning,
but can also help reduce the required amount of training data. Of course,
neuro-symbolic methods have shortcomings, with one of the more prominent
ones being hand-engineered domains. We will come back to neuro-symbolic
methods later. Chapter 4 shows how we can use probing to peak into the
black boxes that are neural networks. We use probing to look at the effect of
learning language with vision, and how large language models differ in their
capabilities. Chapter 5 focuses on compositional generalisation in multimodal
reasoning tasks, evaluating the behaviour of neuro-symbolic systems and large
language models. In the Chapter 7, we propose and evaluate a curriculum
learning process where the internal properties and external behaviour will be
evaluated using probing and carefully selected test data. We answer questions
on how concept hierarchy curricula and multimodal data can help language
models achieve compositional generalisation.

1.3 Research questions

The aim of this thesis is to contribute to language technology that is capable
of robust reasoning in multimodal contexts, while moving towards more trust-
worthy and transparent AI. Throughout the thesis, the following main research
questions are addressed:
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(R1) How can vision contribute to language modeling?

(R2) What are advantages and disadvantages of neuro-symbolic methods in
multimodal language processing?

(R3) (Opt 1) Does utilizing hierarchical structures improve compositional gen-
eralisation in visual question answering?

(R4) (Opt 2) Does curriculum learning improve compositional generalisation
in visual question answering?

(R5) What are the challenges and opportunities of language-centric learning
on multimodal data, and what future research directions are there?

We use probing in Chapter 4 to answer (R1), and revisit the question in
Chapter 5. Chapter 5 and ?? address (R2), with Chapter ?? mainly address-
ing (R4). Each chapter summarises the challenges pertaining to the topic
covered, and we summarise the challenges and outlook in Chapter 8.

1.4 On the Choice of Methods and Experimental
Approach

Two central issue of current large language models is that they perform poorly
on the tail-end distribution of tasks, and rely on enormous amounts of data
mined from the internet and other sources (Bender et al., 2021a). The mined
data itself perpetuates bias, such as systemic racism, and relies on the law of
large numbers to sufficiently cover the underlying distribution of language and
knowledge. Recent examples include PaLM (Chowdhery et al., 2022), where
the authors train on a highly gender-skewed dataset (masculine pronouns are
mentioned 5.5 times more often than feminine). Synthetic datasets allow us to
control the underlying data distribution and generate examples which highlight
a specific edge case or behaviour such as compositional generalisation. The
downside is that it is difficult to generate the diversity that large internet-based
datasets capture. Therefore, synthetic datasets are a good complement to real
world datasets to control for specific expected behaviour or properties. As
such, it is suitable for our purposes of examining reasoning and compositional
generalisation.

One system for generating such datasets is CLEVR (Johnson et al., 2017),
which uses the 3D modelling software Blender to generate images of 3D scenes
with objects of different size, shape, and material. From the internal repre-
sentation of the 3D scene, questions regarding the contents of the images are
generated from a set of templates and a predefined functional language. The
questions are formed in such a way that they require reasoning about the dif-
ferent shapes, materials, and colors of the objects, and their relation in space.
Figure 1.1 shows an example of an image and a question-answer pair generated
using CLEVR. Since the publication of CLEVR in 2017, several extensions, con-
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Figure 1.1: Example image generated via Blender using CLEVR. One of the
generated questions regarding the scene in this is “What is the color of the
metal cylinder that is behind the cyan matte thing?” to which the answer is
red.

tinuations, and modifications have been introduced (sampat2021clevr_hyp;
Arras et al., 2022; Kottur et al., 2019; Z. Li et al., 2022; R. Liu et al., 2019b;
Salewski et al., 2022; Stammer et al., 2021). Stammer et al. (2021) intro-
duce experiments with confounding information in CLEVR-Hans, where prop-
erties such as color is used to confound a learning algorithm. To illustrate
the concept of confounding information, B. Kim et al. (2019) and Rieger et
al. (2020) use ColorMNIST where each digit is associated with a fixed color
during training but randomised in testing. Without any inductive bias, it
is uncertain how a learning algorithm should distinguish between the color
and the digit, as they are always seen together. A learning algorithm can
still use both information channels to define the concept compositionally like
digit1(1, obj) = color(blue, obj) ∧ shape(1, obj). However, given only a few ex-
amples in training where a digit is not associated with a fixed color, a learning
algorithm should be able to separate these two features. This becomes even
more important since assuming that training data is statistically identical (IID)
to test or live data, is an impossible requirement for any non-trivial real data.
Therefore, high sensitivity to compositionality is an important component in
reliable learning algorithms. An argument against only using deep learning
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Figure 1.2: TODO adversarial example

methods is that they pick up on signals that are not interesting to the task.
A famous example of this comes from the paper introducing the explainable
AI-method LIME (Ribeiro et al., 2016). In this, the authors show how object
recognition networks make predictions for the wolf class almost solely based on
the presence of snow in the image. Another example is that of adversarial at-
tacks, where small pixel changes in images can lead to turtles being recognised
as weapons (Athalye et al., 2018). Conversely, neuro-symbolic reasoning meth-
ods are designed to handle these situations better than pure neural networks.

1.4.1 The importance of testing for both behaviour and
internal properties

One main argument of this thesis is that we must test both the behaviour of
a model, using, e.g., a benchmark dataset, and examine internal structures.
This is similar to the almost antagonistic relationship between qualitative and
quantitative assessments. In the machine learning community in general, quan-
titative assessments are first class citizens derived directly from the training
process, while qualitative ones usually requires more thought. Conceptually,
this dichotomy is not new and we can draw parallels to, e.g., quality assurance
in engineering. We would never be allowed to drive a car that was only tested
fully assembled on a race track 10 times. Instead, we have rigorous processes
in place to ensure that each component lives up to safety standards before we
even consider taking a prototype for a test drive. In this analogy, testing in-
ternal properties is testing each component and testing the external behaviour
would be taking the car for a drive in the real world. The same sentiment is
echoed in a variety of contemporary literature, and this thesis builds on ideas
of e.g. Pavlick (2022).

Throughout this thesis we will see examples of both internal and exter-
nal testing. The internal testing takes the form of probing, as described in
Chapter 4. We use probing of, e.g., word embeddings to see how words for
visual concepts are more distinctly represented in multimodal language models
than text-only language models, as presented in Chapter 5. To test external be-
haviour, we construct benchmark datasets and splits to test, e.g., mathematical
reasoning in visual question answering. In Chapter 7, we use both techniques
to test compositional generalisation in a visual question answering domain. We
show how the two techniques are complementary in understanding a complex
concept such as compositional generalisation, and how one without the other
gives an incomplete picture.

TODO integrate There is work (Berrendorf et al., 2020; Kadlec et al., 2017;
Pezeshkpour et al., 2020; Rossi & Matinata, 2020; Y. Wang et al., 2019) critis-
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Figure 1.3: TODO overview figure showing the learning process with inter-
nal/external insights

ing how knowledge base completion is evaluated. In (Rossi & Matinata,
2020), the authors make the observation that less than 15% of enti-
ties cover more than 80% of the facts in many of the datasets. By
only predicting facts of this small set of entities, a model can achieve
good performance. Thus, a model can memorise the explicit facts
of a certain entities without learning anything about the general
relationships they describe. There is a clear parallel to how large
language models work, where the training does not hold out infor-
mation such that the testing actually tests for the generalisability
of the model. The contributions of (Rossi & Matinata, 2020) are
the definition of a set of properties useful in capturing the relations
rather than the small set of entities.

They use the inverse relationship train-test leakage examples from FB15K
and WN18, showing that father-of and child-of are inverse relations. I.e., learn-
ing that one is the inverse of the other means that you can explicitly learn one
fact in training and reproduce the inverse in testing.

The authors argue that global metrics such as mean rank et c. does not show
strengths and weaknesses of different models making it difficult to compare
them. Entity frequency will have a too big influence. They also point to other
work that highlight that the metrics only measure positive test facts, but not
that false or nonsensical facts get low scores.

Based on these results we can as ourselves "link prediction for what pur-
pose?". Is it to better model the world with graph completion? Unclear how
the metric reflects on the performance in an application. Usage for a recom-
mender system gives a different set of desirable properties than if used in a
database setting, or medical applications. The application matters, hence the
expected properties should be understood and possible to control for.

1.5 Identity of thesis
Rodney Brooks recently pointed out that when the term AI first appeared
for the original 1956 workshop on artificial intelligence, it implied (artificial)
general intelligence. Today, the term artificial general intelligence (AGI) is used
as a separate term. “What Will Transformers Transform?” (n.d.) argue that

[..] AGI is a different term than AI now is due to a bunch of
researchers a dozen or so years ago deciding to launch a marketing
campaign for themselves by using a new buzz acronym.

While the work on some of the topics in this thesis could be considered contri-
butions towards AGI, we will refrain from using the term.
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This thesis takes the position that;

• Understanding language is a multimodal endeavour

• Concepts are compositional in nature, a fact that should be reflected in
methods for learning

• Neural networks alone are not robust reasoners

• Neuro-symbolic methods fulfill many criteria for more transparent and
robust machine learning

• Symbolic systems alone have limited capacity for generalisation over large
amounts of data

One problem with deep learning is the data and the metrics used, not the
architectures themselves. It is not clear whether neuro-symbolic approaches are
clearly better than deep learning ones, or that general intelligence cannot be
deep learning based. One important observation is that if we want our models
to be capable of reasoning, this must be reflected in how we train them. A part
of this means identifying the properties we want and that we can control for in
datasets and with metrics. These can be used to construct learning situations
that give meaningful models. That is where this thesis comes in.

1.6 Thesis Outline and Contributions

The thesis contributes to our understanding of language modelling and the im-
plications of learning with multimodal data. A common problem with language
models is that specific properties, such as compositionality, are not explicitly
tested for, but rather that focus lies on behaviour (e.g. appearing human).

Chapter 2

When identifying current challenges in language modeling, it is important to
recognise whether they have been addressed historically, perhaps in a different
context or formulation. This chapter gives more historical context, relating
the topic of this thesis to classical problems such as symbol grounding. We
address the background of the research objectives and show how some of the
challenges of today have been around for a long time. Following the recent
trend of prompt-based interaction with large language models such as Chat-
GPT, we look at the similarities with the famous ELIZA chatter bot from the
1960’s. While the technology powering ChatGPT is vastly different from the
simple rule-based ELIZA bot, we argue that the fundamental problems of an-
thropomorphisation are the same. Further, we outline classical dilemmas such
as the Chinese Room Argument and the symbol grounding problem.
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Chapter 3

Chapter 3 gives an overview of current robustness, reasoning, and resource chal-
lenges with language models. It covers background and related work in compo-
sitional generalisation, neuro-symbolic AI, and multimodal machine learning.

Chapter 4

Chapter 4 covers the probing experiments for visual and linguistic properties;

• Dahlgren Lindström, A., Björklund, J., Bensch, S., & Drewes, F. (2020).
Probing multimodal embeddings for linguistic properties: The visual-
semantic case. Proceedings of the 28th International Conference on Com-
putational Linguistics, 730–744. https ://doi .org/10.18653/v1/2020.
coling-main.64

• Björklund, J., Dahlgren Lindström, A., & Drewes, F. (2021). Bridging
perception, memory, and inference through semantic relations. Proceed-
ings of the 2021 Conference on Empirical Methods in Natural Language
Processing, 9136–9142. https://aclanthology.org/2021.emnlp-main.719

Chapter 5

Chapter 5 introduces a dataset for multimodal visual reasoning and focuses on
learning in neuro-symbolic methods, addressing research question (R2);

• Lindström, A. D., & Abraham, S. S. (2022a). Clevr-math: A dataset
for compositional language, visual and mathematical reasoning. In A. S.
d’Avila Garcez & E. Jiménez-Ruiz (Eds.), Proceedings of the 16th inter-
national workshop on neural-symbolic learning and reasoning as part of
the 2nd international joint conference on learning & reasoning (IJCLR
2022), cumberland lodge, windsor great park, uk, september 28-30, 2022
(pp. 155–170, Vol. 3212). CEUR-WS.org. https ://ceur-ws.org/Vol-
3212/paper11.pdf

• KBCG-paper on NS-VQA extension

Chapter 6

This chapter introduces data splits of CLEVR-Math to investigate compo-
sitional generalization in visual question answering for neural and neuro-
symbolic methods. The benchmark evaluation is complemented by probing
experiments investigating how well the CLEVR attributes are compositionally
represented.

• ColorMNIST + DeepProbLog

• AAAI paper
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Chapter 7

Chapter 7 uses the techniques in Chapter 4 and Chapter 5 to answer research
question (R4) on the effect of curriculum learning on compositional generali-
sation capabilities in language models;

• Complement experiments from AAAI paper

Chapter 8

This chapter summarises the conclusions of the thesis, as well as provides an
outlook for what future research directions there are.

1.6.1 Contributions Not Included in This Thesis
• Tubella, A. A., Mollo, D. C., Lindström, A. D., Devinney, H., Dignum,

V., Ericson, P., Jonsson, A., Kampik, T., Lenaerts, T., Mendez, J. A.,
& Nieves, J. C. (2023). Acrocpolis: A descriptive framework for making
sense of fairness

• Björklund, J., Lindström, A. D., & Drewes, F. (2022). An algebraic
approach to learning and grounding. LearnAut 2022
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Chapter 2

What we can learn from
history - working title

This chapter will outline four historically important topics/themes/problems;
The Chinese Room, Symbol Grounding, ELIZA, and Fodor on concepts.

Many neuro-symbolic methods take a practical approach to the frame prob-
lem by working on predefined sets of symbols, thus scoping what is considered
“interesting” to a particular system. The symbol set can be viewed as the frame.
In recent years, there are many examples of large language models passing the
Turing test. The test itself has been critiqued throughout the years, with more
recent examples emphasising how LLMs can pass one instance while still per-
forming catastrophically on a related task. ChatGPT is one such example.

ELIZA

We can attribute some of the success of ChatGPT to the underlying deep
learning techniques and progress on processing large amounts of data. However,
the human-centered influence on the design, i.e. building an interactive model
with a low threshold, is arguably the key to its widespread success. In many
ways, this design is not that different from ELIZA (Weizenbaum, 1966), that
impressed researchers and the general public almost 60 years ago. ELIZA
convinced some users of its intelligence, with people reporting long meaningful
conversations. The following is an exchange between ELIZA and one such user:

Men are all alike

IN WHAT WAY

They’re always bugging us about something or other.

CAN YOU THINK OF A SPECIFIC EXAMPLE

Well, my boyfriend made me come here.
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YOUR BOYFRIEND MADE YOU COME HERE

He says I’m depressed much of the time.

I AM SORRY TO HEAR YOU ARE DEPRESSED

It’s true. I am unhappy.

DO YOU THINK COMING HERE WILL HELP YOU NOT TO
BE UNHAPPY

I need some help, that much seems certain.

WHAT WOULD IT MEAN TO YOU IF YOU GOT SOME HELP

Perhaps I could learn to get along with my mother.

TELL ME MORE ABOUT YOUR FAMILY

My mother takes care of me.

WHO ELSE IN YOUR FAMILY TAKES CARE OF YOU

My father.

YOUR FATHER

You are like my father in some ways.

WHAT RESEMBLANCE DO YOU SEE

You are not very aggressive but I think you don’t want me to notice
that.

WHAT MAKES YOU THINK THAT I AM NOT VERY AGGRES-
SIVE

You don’t argue with me.

WHY DO YOU THINK I DON’T ARGUE WITH YOU

You are afraid of me.

DOES IT PLEASE YOU TO BELIEVE I AM AFRAID OF YOU

My father is afraid of everybody.

WHAT ELSE COMES TO MIND WHEN YOU THINK OF YOUR
FATHER

Bullies.

DOES THAT HAVE ANYTHING TO DO WITH THE FACT
THAT YOUR BOYFRIEND MADE YOU COME HERE

This exchange also highlights that gender bias issues is not novel to large lan-
guage models, where, e.g., ELIZA becomes gendered based on its user (Dil-
lon, 2020). Weizenbaum built ELIZA on principles from Rogerian psychother-
apy (C. R. Rogers & Carmichael, 1942), where one core idea is that the ther-
apist reflects the word of the patient in a positive light. With simple rules for
how to reflect the input of the user, ELIZA managed to elicit attribution of
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human-like feelings from the users. Douglas Hofstadter defines this as the Eliza
effect (Hofstadter, 1995) in The Ineradicable Eliza Effect and Its Dangers, a
preface of Fluid Concepts and Creative Analogies: Computer Models and the
Fundamental Mechanisms of Thought ;

a host of implications follow in the minds of many if not most read-
ers, such as these: [. . . ] computers understand the physical world;
computers make analogies; computers reason abstractly; comput-
ers make scientific discoveries; computers are insightful cohabiters
of the world with us.

This type of illusion is generally known as the “Eliza effect”, which
could be defined as the susceptibility of people to read far more
understanding than is warranted into strings of symbols – especially
words – strung together by computers. (p. 157)

Hofstadter goes on to say that the Eliza effect is a part of AI researchers hyping
achievements. We seem to have returned to the ideas that ELIZA was built
on, equipped with much stronger building material and tools. Given our own
flawed ability to determine intelligence from interaction, we should be critical
of impressive results with interactive AI systems in general. This position
motivates the work on probing conducted throughout this thesis, as a way to
look beyond behaviour and into the box.

Generalisation is not a necessity for weak AI, and there is a vast range
of applications where strong AI is not needed. For instance, monitoring and
controlling the components of an aircraft can benefit from AI tools, but does
not require a generally intelligent agent to work. With a human-centered per-
spective, this is a key argument — we want AI tools to support humans, not
replace them. However, strong AI with general intelligence could replace.

Chinese Room

In his paper Minds, Brains, and Programs, John Searle introduces the Chinese
Room thought experiment (or Gedankenexperiment as he puts it) as an argu-
ment for why strong AI cannot be achieved without “just by designing programs
but would have to duplicate the causal powers of the human brain” (Searle,
1980). Specifically, Searle take issue with the following strong AI claims; 1)
“that the machine can literally be said to understand the story and provide the
answers to questions”, and 2) “that what the machine and its program do ex-
plains the human ability to understand the story and answer questions about
it”. We can restate the Chinese Room thought experiment as follows;

Suppose that a person is locked in a room with a large amount of
Chinese writing, and no knowledge of the language, and a set of
rules for how to produce Chinese symbols from Chinese text input.
The person then uses the Chinese writing and rules to interact with
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Figure 2.1: ChatGPT given the same prompt as ELIZA.
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a native Chinese speaker through a text-only interface. If the rules
are exhaustive enough, nobody can tell from the answers alone that
the person in the room don’t speak a word of Chinese.

Searle goes on to point out that the person locked in the room “[..] produce the
answers by manipulating uninterpreted formal symbols.” and is simply behaving
like a computer where the rules are analogous to a computer program. The
main claim is that the person does not understand Chinese, but only simulates
that ability, and that understanding can only be achieved with intentionality.
He later summarised this position as “Syntax by itself is neither constitutive of
nor sufficient for semantics.” in Searle (1990).

While the Chinese Room thought experiment illustrates a core issue in the
strong vs. weak AI debate, it is also simplified. We will defer the strong vs. weak
AI debate to some other time, there have been many replies to Searles’ position
taking issue with both the formulation and the premises. TODO Perhaps
address which criticism this thesis scribes to? One interesting critique is that
while the non-Chinese speaker cannot assign any meaning to the sentences it
manipulates, it inherits meaning from the Chinese speaker who is interacting
with the world. This argument is similar to how people ascribe meaning to
systems such as ELIZA, that meaning is in the eye of the beholder. Today,
the default assumption of deep learning research is to assume that the person
does know Chinese only from applying rules. In that context, it is important
to point to the contemporary debate and critique of large language models
with the Octopus Test introduced by Bender and Koller (2020). However, and
use the Chinese Room argument to illustrate why it is important to not only
examine the behaviour of a system. In Chapter 4 of this thesis, probing is used
in a way to pry open the proverbial door to the Chinese room and look inside.
Some of the work investigates how strongly a symbol is grounded to an image,
and the implications of this for multimodal methods. This leads us to our next
topic, symbol grounding.

The Symbol Grounding Problem
Following Searles’ phrase “Syntax by itself is neither constitutive of nor suffi-
cient for semantics”, others also emphasise the impossibility of learning Chi-
nese from dictionary alone. Stevan Harnad proposes that intelligent agents
must solve the symbol grounding problem in order to give meaning to the lan-
guage, by connecting it to physical systems and subjective experiences (Harnad,
1990). Harnad distinguishes between intrinsic and extrinsic meaning; the out-
put from the Chinese room only carries extrinsic meaning imposed by the Chi-
nese speaker. Importantly, he argues that meaning cannot come from symbols
alone, but must but built on top of the intrinsic meaning of our non-symbolic
interpretations of our sensory input. In a way, Harnad extends on Fodor in
saying that it is not enough that “that the meaning of the symbols comes from
connecting the symbol system to the world "in the right way".”. Instead, giving
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Figure 2.2: Illustration of the Peircean model of symbol-referent-thought

words intrinsic meaning is intertwined with the cognitive processing of sen-
sory input. Motivated by this division into intrinsic and extrinsic meaning,
Harnad proposes a hybrid system that combines symbolic and non-symbolic
elements. Moreover, he provides the following motivation for connectionism,
in a description of what we now would call a neuro-symbolic system.

Connectionism is one natural candidate for the mechanism that
learns the invariant features underlying categorical representations,
thereby connecting names to the proximal projections of the dis-
tal objects they stand for. In this way connectionism can be seen
as a complementary component in a hybrid non-symbolic/symbolic
model of the mind, rather than a rival to purely symbolic modeling.
Such a hybrid model would not have an autonomous symbolic “mod-
ule,” however; the symbolic functions would emerge as an intrinsi-
cally “dedicated” symbol system as a consequence of the bottom-up
grounding of categories’ names in their sensory representations.

Harnad (1993) later describes the frame problem (McCarthy, 1960) in rela-
tion to the symbol grounding problem as the problem of connecting iconic and
categorical representations to symbolic representations that are required by a
given context. For instance, we do not name every concept that we possibly
can while tasked with answering what color the cat is in an image. I.e., humans
perceive and process all our sensory input but we only connect them to symbols
when those symbols are useful to us.

Humans ground language to our experience of the world, meaning that
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Figure 2.3: Tentative illustration of language model vs. world model.

through our interaction with it we attach meaning to language. The alignment
of our internal model and our use of language means that while our world view
is slightly influenced by our language, the concepts we learn are more universal.

Many of the issues with large language models are related to the fact that
they are also world models, and that we have no direct way to observe or
intervene on that internal world model. For instance, bias or errors in "under-
standing" are related to the model of the world. The process of externalising
this internal model is grounding it in other modalities. Our language reflects
our own internal world views, and similarly we could do multi-agent simula-
tions in order to derive internal world models from agent interactions. This
can be a continuation of Machine Theory of Mind (Rabinowitz et al., 2018)
where agents are instantiated with different sets of beliefs and behaviours. The
task is for agents to use interactions to construct a model of the other agents’
internal parameters. An extension would be to do this but with interaction
via language. Along these lines, Mahowald et al. (2023) distinguish between
formal and functional use of language. Formal competence concerns knowl-
edge of linguistic rules and patterns whereas functional competence concerns
understanding and using language in the world (Mahowald et al., 2023). In
their work, they show that large language models are good at the former, but
fail the latter. One of their conclusions is that [..] a model that excels at real-
life language use would need to be an AGI, and argue that a human-like AGI
cannot be reached simply by getting really good at predicting upcoming words.
This supports many of the points made here.

This thesis takes the position that bridging the gap between visual input
and abstract concepts consists of three parts;

1. instantiation,

2. compositional learning, and
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3. grounding.

Grounding is the process of establishing a mapping between visual ele-
ment(s) and abstract concept(s). A system can use this mapping in resolving
which of the abstract concepts are seen in a specific image, thus instantiating
e.g. a logical expression with visual variables. Compositional learning is the
mechanism of building new concepts using previous knowledge as the building
blocks. These three processes allow for generalisation beyond the initial domain
defined.

We can take an example of the expression p(x) ∧ q(x) ∧ z(y). In the pre-
vious definition, grounding translates into understanding that z(y) maps to y
being a cylinder. Instantiation could be mapping p(x) to a specific object in a
given image. Compositional learning can be learning the higher-order relation
R(x, y) → p(x) ∧ q(x) ∧ z(y) so that the system can instantiate the relation
R in images going forward. This incremental learning The difference to e.g.
answer-set programming is that these concepts are not derived by the system
to exhausting, even if there is also room for that within these three processes.
Rather, compositional learning constitutes having a teacher naming the rela-
tion R, and the system connecting the previous knowledge in composing this
new piece of knowledge, rather than learning it as an atomic concept.

TODO Fodor - What are concepts?
Fodor claims that Connectionists are committed, willy-nilly, to all mental repre-
sentations being primitive; hence their well-known problems with systematicity,
productivity, and the like. (J. A. Fodor, 1998). Instead of constituent structures
of mental representations, the claim is that neural networks only have primi-
tive, or atomic, representations of concepts. However, this is easily refuted by
looking at works such as word2vec where adding or removing properties of a
given concept results in another concept representing this change. While there
is certainly merit to Fodors claim, the many scribe to the idea of foundation
models and that neural networks are capable of mental representations other
than those primitive. It is important to clarify that this does not entail that
neural networks get this for free, but rather that it is possible to train them
to attain such representations. As one example, work by Lovering and Pavlick
(2022) and Pavlick (2022) shows that neural networks indeed can exhibit the
systematicity of compositionality. This is by no means clear without detailed
inspection of the internal workings of neural network models.

• Representational theory of mind

• It’s a general truth that if you know what an X is, then you should also
know what it is to have an X.

• Unclear theory of what concepts are, could be argued for to not build
systems around such flawed theories

22



• Maybe having the concept X comes to something like ’being reliably able
to recognize Xs and/or being reliably able to draw sound inferences about
Xness’. p. 3

• [a] theory of meaning must answer ’What is it to understand a language?’

• There is the Idea DOG. It is satisfied by all and only dogs, and it has
associative-cum-causal relations to, for example, the Idea CAT.

• RTM tolerates thought without language

• Hume suggests mental representations are images

• Connectionists are committed, willy-nilly, to all mental representations
being primitive; hence their well-known problems with systematicity, pro-
ductivity, and the like.

• Mental representations have constituent (part/whole) structures

2.1 Clever Hans

This historical example of the 19th century horse Clever Hans is relevant for
two reasons. First, it illustrates one of the fundamental challenges of neural
networks and our evaluation of their behaviour. Secondly, it is the inspiration
for the name of the CLEVR dataset which is used as the basis the experiments
in Chapter 5 and 6 (Johnson et al., 2017). Clever Hans is often referred to as
”the horse that could count“, and is an interesting case in both the study of
animal intelligence and the history of psychology. Similar to ELIZA, this point
of this example is often referred to as the Clever Hans effect.

At the turn of the 20th century in Germany, the retired mathematics school
teacher Wilhelm von Osten lived alone in Berlin with his carriage horse Hans.
While observing how Hans would navigate the streets of Berlin, von Osten was
convinced that his horse was capable of concious thought. He embarked on
the project of teaching Hans to think, learning abstract cognitive reasoning.
Hans would learn to pull the cart without reins, and could count up to five by
stamping his hoofs. When Hans died, Von Osten was convinced that he could
teach again and bought another horse. Naming it Clever Hans, he set out to
train him in the same way. After a few years of training, Von Osten successfully
demonstrated Clever Hans’ ability to be able to solve mathematical problems,
understand the German language, and even identify musical tones, merely by
tapping his hoof. Clever Hans was even capable of counting the number of
straw hats in the audience, subtracting the number of hats worn by women.
Showcasing this wide range of skills to the public, Wilhelm von Osten would
tour Germany with Clever Hans while charging a significant amount of money.
The cognitive capabilities of Clever Hans attention far and wide, with The New
York Times reporting (Heyn, 1904) that
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Hans is an expert in numbers, even being able to figure fractions.
He answers correctly the number of 4s in 8, in 16, in 30&. When
asked how many 3s there are in 7 he stamps down his foot twice
and for the fraction once. Then, when 5 and 9 are written under
each other on the blackboard and he is asked to add the sum, he
answers correctly.

In the same article, the German Professor Karl Möbius, pioneer in the field of
ecology and the director of the Natural History Museum in Berlin, had this to
say about Hans:

“He posseses the ability to see sharply, to distinguish mental im-
pressions from each other, to retain them in his memory, and to
utter them by his hoof language.”

Regardless of the endorsement by distinguished scientists, skeptics ques-
tioned the legitimacy of Hans’s abilities. This would prompt a formal investi-
gation lead by the German board of education, known as the Hans Commis-
sion (untersucht den Klugen Hans, 2006). The investigation initially concluded
that there were no tricks behind the performance of Clever Hans. However, the
German biologist and psychologist Oskar Pfungst was tasked with further in-
vestigation. Pfungst’s meticulous experiments revealed that Hans was not gen-
uinely performing cognitive tasks, but was instead picking up on unconscious
cues from von Osten and other observers (Pfungst, 1911). Pfungst constructed
four experiments;

• Isolating horse and questioner from spectators, so no cues could come
from them

• Using questioners other than the horse’s master

• By means of blinders, varying whether the horse could see the questioner

• Varying whether the questioner knew the answer to the question in ad-
vance.

When the horse could not see its trainer or when the trainer himself did not
know the answer, Hans’s accuracy would plummet. The phenomenon, now
called the “Clever Hans effect”, refers to the role of subtle, unintentional cues
in human-animal interactions and has had profound implications in the fields
of animal cognition research and experimental design.

The Clever Hans effect has since been observed in a range of human-animal
interactions. Dog owners might recognise this effect when teaching their dog
new tricks, where a dog might pick up on the tone of voice rather than the
words spoken. An exercise to readers with dogs is to use a command with
a completely different tone of voice, and observe the confusion. Further, Lit
et al. (2011) investigates the Clever Hans effect in the training of working dogs
and their ability to detect drugs or explosives. Similar to the experiments of
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Pfungst, they set up experiments where the handler was told the location of a
certain substance. By telling some of the handlers false information, Lit et al.
showed that the handler would influence the dog through subconscious signals
such as body language or odor. Schmidjell et al. (2012) show similar results
for domestic dogs.

2.1.1 The Clever Hans Effect in Modern Machine Learn-
ing

Clever Hans is a good lesson in how observation of behaviour alone is not
sufficient to draw strong conclusions. Not even experts on animal behaviour and
psychology initially managed to uncover the underlying mechanism employed
by Hans. Looking back at the quote by Professor Möbius, we begin to see
the resemblance to the narrative around modern neural networks. Bender
and Koller (2020) highlight the issue with how researchers talk about neural
networks understanding language. Similar to how Hans picked up on a signal
that gave away the answer, there have been countless examples of the same
phenomenon with neural networks. The introduction to this thesis used the
example of machine vision models picking up on the snow in images of wolves.
There is no doubt that the spurious correlations that neural networks learn
capture natural language quite well by now, but in order to not fall into the
same trap as with Clever Hans we need to carefully evaluate methods based
not only on observations of behaviour.
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Chapter 3

Literature Review of Current
Challenges/Opportunities in
NLP/With LLMs - working
title

Example of how to use quotes at
the beginning of chapters

dali

The introduction to this thesis outlines resources,robustness, and reasoning
as three areas where current methods of AI fall short. This chapter outlines
relevant literature and background for multimodal machine learning, composi-
tionality, and neuro-symbolic AI, and how each of them relate to these three
areas of challenges.

3.1 Language Modeling

Section on the current approaches to language modeling, including a time line
and important methods

3.1.1 Brief history of language modelling

Traditional methods, Word2vec (Mikolov et al., 2013b), GloVe (Pennington
et al., 2014), BERT, GPT-X
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3.1.2 Foundation Models
In the comprehensive overview of neural network based models, or foundation
models as the authors name them, (Bommasani et al., 2021) outlines many
of the properties and challenges of foundation models. In this section, we
summarise the ones related to models in multimodal and/or reasoning contexts.
Finally, we argue why foundation models is a poor name and why we should
focus on foundational properties instead.

3.1.3 Representations of Meaning – Revisiting Fodor?
There are many approaches to model meaning, both implicitly and explicitly.
Continuous representations, such as word or sentence embeddings, approximate
meaning by closeness in a continuous vector space. Two words that are close
indicate that they have some shared semantics. There are also representations
of meaning based on the embedding of graph structures, encoding knowledge
into a vector space with a similar semantic connotation. Discrete representa-
tions of meaning take many different forms. There are graph-based approaches,
such as Abstract Meaning Representation (AMR) (Banarescu et al., 2013) and
more recently BabelNet Meaning Representation (BMR) (Navigli et al., 2022).

TODO Move to introduction? Discrete vs. Continuous vs. probabilistic
but discrete concepts? Easy with discrete for toy problems (e.g. CLEVR) to
build vector representations where one bit represents the presence of a feature.
However, to scale things, continuous representations have been key. Most of
the time, features or properties are not discrete but rather on a scale. Even
for toy problems this is the case, e.g. as the color blue is not one single color
or not covering the entire object. Probabilistic based discrete representations
with an intensity associate with each feature is more flexible in describing the
real world.

Representing meaning is a multifaceted problem where not only do we need
to model the concept behind a word, e.g. the action connected to it, but also
model the intentions of other agents and the state space in which we act. A
model that only does the first will be inadequate. We quickly see that modeling
this complexity with discrete concepts is a daunting task.

3.1.4 Difference between language model and world model
Many of the problems of large language models are rarely that they did not
produce human-like language, but that the language did not match our own
world model. For instance, telling you to saw a door in half instead of opening
the door is not wrong language-wise, but might be socially awkward. There
is also an increasing body of work on using language models as knowledge
bases (Petroni et al., 2019a), erasing the separation. A mechanism for aligning
world views, and adjusting the inner representation of a large language model
to adhere can be a useful tool going forward. It is also important to distinguish
between adhering to the world model, and generating human-like language that
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does not. For example, a language model could be prompted to converse about
an alternate reality or generate a made-up story. In this scenario, some aspects
might be coherent with our world models, but someone completely unthinkable
(e.g. long-since dead) might be the president of a country. One alternative is
the integration with knowledge graphs, as this could provide a "fixedness" in
separating out a world model from the language model. Knowledge graphs are
also clearly compatible with reasoning frameworks.

3.1.5 Mechanism for introducing new symbols

Many neuro-symbolic methods rely on a given set of symbols to manipulate,
such as the logic program language of NS-VQA (Yi et al., 2018) that they
learn the meaning of. However, generalising to learning new symbols is less
emphasised. A generic mechanism for introducing new symbols via human-
computer interaction would equip a wide range of methods with this capability.
Thus, such a mechanism could bridge the gap between neuro-symbolic and
neural approaches in their abilities to learn new concepts.

The Foucault effect; there is no meaning without discourse (Foucault, 1991).
The discourse is a socially constructed limitation on what is sayable, what
should be conserved, remembered, reactivated, or appropriated. Foucault ar-
gues that in the governing of social systems, we cannot talk about meaning
detached from the discourse. A perfectly valid action in the 1800s can be
totally unacceptable today. Similarly, language that carried great meaning
before, might have lost that meaning today.

3.2 Multimodality

Our interaction with the world consists of multiple senses. We smell, touch,
hear, and see things to make sense of the world. Each sense represents a differ-
ent perspective of an observation or an event. These channels of information
are known as different modalities. This section should give an overview of mul-
timodal machine learning, outlining the different kinds of approaches to the
problem.

Liang et al. (2022) gives an overview of the principles, challenges, and open
questions of multimodal machine learning. (Uppal et al., 2022) gives a similar
survey for language and vision. According to the authors, “we are now closer
than ever to achieving intelligent agents that can integrate and learn from
many sensory modalities”. They identify 6 key technical challenges; Represen-
tation, Alignment, Reasoning, Generation, Transference, and Quantification.
This thesis covers topics of Representation, Alignment, partially Reasoning,
and Quantification. The authors define multimodal as [..] the computational
study of heterogeneous and interconnected modalities. These two core prin-
ciples, heterogeneity and interconnectedness are further split up into several
dimensions.
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The dimensions of heterogeneity are element representation, distribution,
structure, information, noise, and relevance. Information covers the fact that
different modalities have different levels of information density under differ-
ent circumstances. For instance, dark footage contains less information than
bright, but certain objects scene might carry heavy weight in relation to the
uninformative speech heard in a recording. This thesis is mainly concerned
with element representation, structure, and information.

The second principle, interconnectedness, can be split into modality con-
nections and modality interactions. The connections can be either statistical
or semantic. The statistical connections can be of associative or dependent
nature as, e.g., correlations found by deep learning methods, or temporal or
causal dependencies. The semantic connections concern correspondence such
as those of explicit grounding, or relationships between higher-level concepts
such as hypernyms.

Multimodality has been a loosely defined term used to describe research on
methods for heterogeneous data. In (Parcalabescu et al., 2021), the authors
argue from this insight that an explicit definition is needed. They outline the
difference between human-centric and machine-centric definitions previously
used, and how they both have shortcomings. The authors instead consider
multimodality defined relative the task itself, whether the model or the data
representation is heterogeneous, and the complementary aspects of the data
used.

• VALSE, task-independent benchmark for vision and language centered
on linguistic phenomena (Parcalabescu et al., 2022)

• Neural natural language genereation survey (Erdem et al., 2022)

• Visually grounded transformers, such as Vilbert (J. Lu et al., 2019).

• Learning visually grounded sentence representations (Kiela et al., 2018),
perhaps move to ??

• Arguments for why imagination is a useful concept to model for multi-
modality (Elliott & Kádár, 2017).

• (Ross, 2022)

• (Bruni et al., 2014)

• Also, characterise language-for-vision vs. vision-for-language vs. language-
and-vision (Frank et al., 2021).

In transformer-based language models working only on text, words are grounded
by the company they keep. Summarise arguments by Bisk (Bisk et al., 2020)
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Figure 3.1: TODO Illustration of VQA tasks

3.2.1 Visual Question Answering (VQA) and Visual Rea-
soning - Datasets

One of the first VQA datasets proposed was the DAQUAR dataset (Malinowski
& Fritz, 2014) based on real images of indoor scenes. VQA is another widely
used dataset (Antol et al., 2015) with images from MS-COCO dataset (T.-Y.
Lin et al., 2014). Questions are manually created and answering these require
commonsense knowledge and reasoning. The CLEVR dataset (Johnson et al.,
2017) is based on automatically generated scenes and questions, giving great
control over the distribution of instances. With CLEVR, one can decide to
generate a training set with images having only a specific combination of objects
(red cubes and blue cylinders), and a test set with a different combination of
objects (red cylinders and blue cubes), as done in, e.g., CLEVR-Hans (Stammer
et al., 2021). This control allows us to study various aspects like compositional
generalisation of systems.

Closely related is the CLEVRER (Collision Events for Video Represen-
tation and Reasoning) dataset (Yi et al., 2020) and CLEVR-Hyp dataset
(sampat2021clevr_hyp). The questions on videos in CLEVRER requires
reasoning about the state of objects after an video event, instead of after ac-
tions in text as in CLEVR-Math. CLEVR-Hyp focus on VQA where reasoning
about effects of actions, and CLEVR-Math introduces an additional mathe-
matical reasoning dimension to the problem. GQA is another relevant dataset,
where real world images are annotated with rich scene graphs and a large set
of relations and attributes, and focuses on compositionality in visual reason-
ing (Hudson & Manning, 2019). Graph learning is a heavily studied area, with
applications in multimodal domains such as robotics (J. Ji et al., 2020; Wald
et al., 2020; Xia et al., 2021; Yu et al., 2021).

Experiments with Kandinsky patterns (Holzinger et al., 2019) show that
neural networks are easily confounded by visual reasoning tasks with shapes,
colors, and patterns that can be difficult to distinguish but follow clear rules.
The Winoground dataset (Thrush et al., 2022) shows similar results, where
no state-of-the-art visual reasoning method is able to distinguish between two
confounding captions and images.

Existing Approaches to VQA Most of the earlier approaches in VQA were
based on purely neural models that first encoded the two inputs - the image and
the accompanying question into embeddings using networks like Convolutional
Neural Networks (CNN) and Long Short Term Memory (LSTM) networks and
then the two embeddings were forwarded to a classifier that would then predict
the answer to the question ((Ben-Younes et al., 2017), (Fukui et al., 2016a)).
Another category of approaches are the attention mechanism-based approaches
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that identified the regions in the image that were relevant to answering the
associated question ((P. Wang et al., 2017), (Shih et al., 2016)). Graph neu-
ral networks (Narasimhan et al., 2018) have also been applied in VQA where
both text and the image are represented as graphs and a multi-modal vec-
torial representation is learned that captures the alignment of nodes in the
two graphs (Radford, Kim, Hallacy, Ramesh, Goh, Agarwal, Sastry, Askell,
Mishkin, Clark, et al., 2021b) introduced the CLIP models where a represen-
tation of the image is learned with natural language supervision by leveraging
the already available huge datasets for image captioning. More recently, neuro-
symbolic approaches have been used in addressing the task of VQA like Neuro
Symbolic Concept Learner (NSCL) (Mao et al., 2019a) and Neuro-Symbolic
Visual Question Answering (NS-VQA) (Yi et al., 2018). These approaches
convert the input image and text into an intermediate semantic representation
and then employ a quasi-symbolic program executor to derive an answer from
these semantic forms.

Multimodal Reasoning Multimodal reasoning, such as visual question an-
swering (VQA), concerns extracting knowledge from heterogeneous data, such
as images and text, leverage cross-modal interactions, and combining it in one
or more steps to infer new knowledge or make high level predictions (Bal-
trušaitis et al., 2019; Liang et al., 2022). VQA is a popular task with many
datasets available, ranging from synthetic 3D scenes to multimodal science
questions (Antol et al., 2015; Hudson & Manning, 2019; Johnson et al., 2017;
Krishna et al., 2017; P. Lu et al., 2022). GQA (Hudson & Manning, 2019) uses
real world images annotated with rich scene graphs and a large set of relations
and attributes, focusing on compositionality in visual reasoning. However,
such real world datasets does not give the same flexibility to create composi-
tional splits. Johnson et al. (2017) introduce CLEVR as synthetic dataset to
benchmark compositional multimodal reasoning, using 3D scenes rendered with
Blender and a template engine to generate questions based on the structural
representations of the visual scenes. The synthetic nature allows us to study
various aspects like compositional generalisation of systems, given the high
degree of control to generate a specific combination of objects (e.g., only red
cubes and blue cylinders). The compositional generalization splits in CLEVR
are limited to two splits restricting certain attribute compositions, and several
benchmarks have built on CLEVR to study various aspects of visual question
answering (sampat2021clevr_hyp; Arras et al., 2022; Kottur et al., 2019;
Z. Li et al., 2022; R. Liu et al., 2019b; Salewski et al., 2022; Stammer et al.,
2021). The questions on videos in CLEVRER (Yi et al., 2020) require reason-
ing about object states after an video event, instead of after actions in text as
in CLEVR-Math. CLEVR-Hyp (sampat2021clevr_hyp) focus on reason-
ing about effects of actions, whereas CLEVR-Math (Lindström & Abraham,
2022b) introduces an additional mathematical dimension to the problem.
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3.3 Compositionality

In the introduction we discussed how generalising from experience is a key
characteristic of human intelligence. An important component of this general
intelligence is compositionality – combining elements in unseen ways to cre-
ate new meaning. Without compositionality we would have to memorise all
possible, or at least all useful, combinations of words. Natural language is a
good example of a compositional system, where we put together words and
sentences to communicate completely new ideas and events. Stephen Fry elo-
quently demonstrates this in Episode 3 of the first season of A Bit of Fry and
Laurie;

Imagine a piano keyboard, eh, 88 keys, only 88 and yet, and yet,
hundreds of new melodies, new tunes, new harmonies are being
composed upon hundreds of different keyboards every day in Dorset
alone. Our language, tiger, our language: hundreds of thousands
of available words, frillions of legitimate new ideas, so that I can
say the following sentence and be utterly sure that nobody has ever
said it before in the history of human communication: “Hold the
newsreader’s nose squarely, waiter, or friendly milk will counter-
mand my trousers.” Perfectly ordinary words, but never before put
in that precise order. A unique child delivered of a unique mother.

Pelletier (1994) considers Argument 3.3.1 and 3.3.2 (below) to be the strongest
ones for why the principle of compositionality should be considered a desider-
atum for linguistic systems.

Argument 3.3.1 (Unlearnable Language). If a language lacked composition-
ality it would be unlearnable

Argument 3.3.2 (Infinite Understanding). Compositionality is the only expla-
nation of how a finite mechanism (such as the human brain/mind) can under-
stand an infinite set of sentences. (Without compositionality, novel utterances
would be non-understandable.)

Naturally, compositionality is a characteristic of intelligence that we would
like to replicate in systems of artificial intelligence. In the machine learning
community, compositionality of individual words is one of the reasons why
distributional semantic representations such as word2vec saw such success.
word2vec allows for arithmetic operations on concepts to compose e.g. capital
and Sweden to represent Stockholm. This capability was often used as an
example of the strength of the method, and was one important improvement
at the start of the current deep learning-wave. We will study how this translates
to current research throughout the rest of this section.

Szabó (2012) gives the following definition of the principle of composition-
ality :
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The meaning of a complex expression is determined by its structure
and the meanings of its constituents.

Another common definition comes from Partee et al. (1984):

The meaning of a compound expression is a function of the mean-
ings of its parts and of the way they are syntactically combined.

The definition given by Partee et al. (1984) uses a more mathematical language
to describe the principle, suggesting the existence of an evaluation function.
Neither of these definitions address pragmatics, i.e. considering the semantics
but in a given context. The principle of compositionality is often attributed
to Gottlob Frege as Frege’s Principle for its introduction in his work on The
Foundations of Arithmetic (Gottlob & Austin, 1884). The earliest record going
back to 4th or 5th century India with the less formal definition “[T]he meaning
of a sentence is based on the meaning of the words.”, by the Indian philosopher
Śabara (Pagin, 2003).

Now, we will consider an example that is relevant to the work presented later
in this thesis. Consider the sentence “A blue sphere.” referring to multiple
concepts (color, shape) that we use to understand the sentence. Without a
compositional understanding of these concepts, we might consider blue sphere
as a single concept, rather than the composition of two attributes of an object.
In doing so, we would not recognise the common shape of red spheres and blue
spheres. However, meaning is a central component of the above definitions of
compositionality that is left vague. For instance, a blue sphere might refer to
Planet Earth in some contexts, and a billiard ball in others. G. F. Marcus
(2003) gives a definition of compositionality that is closer to requirements on
an implementation:

• Stable encodings of individual elements

• An operation that concatenates pieces of trees together

– or disassembles wholes into parts

• Iterative process for (de)constructing larger structures

• Representational formats for trees (or something very similar).

While an attempt at concreticising compositionality to provide more of a blue
print, there are still vague elements in this list of requirements. It does not spec-
ify under which conditions encodings should be stable, nor what stable means.
Stable encodings of individual words is easily achieved in modern architectures,
but if the context should be considered the question becomes trickier. A general
critique of the principle of compositionality is precisely this type of vagueness.
Structure, meaning, and context are all components that require formal defini-
tions. After many attempts, so far there is not one all-encompassing definition.
However, our purpose does not require a definition that covers all. Instead,
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we will focus on the aspects of compositionality sufficient for understanding
the contributions in later chapters. More specifically, we will look at three
traits associated with compositionality; systematicity, productivity, and sub-
stitutivity. After describing and defining these traits, we will look at how we
can measure compositionality and how well current machine learning methods
generalise compositionally.

3.3.1 Defining Compositional Generalisation
J. A. Fodor and Pylyshyn (1988) define compositionality as

The ability to produce/understand some sentence is intrinsically
connected to the ability to produce/understand certain others...
[they] must be made of the same parts.

In contrast, Kamp and Partee (1995) give a more lenient definition of the
meaning of a sentence is a function of the meaning of its words and the way in
which they are combined. The later definition does not say anything about how
similar parts are evaluated in different inputs, only that meaning is derived
from the words themselves in combination with their ordering. However, for
a compositional system, understanding that constituent parts can be reused
across different inputs is a key property of building an efficient system. The
hypothesis is that this is a criterium for achieving compositional generalisation.

Definition 3.3.1 (Principle of Compositionality). Given language L, for every
complex expression e in L and every context c, the occasion meaning of e in L
at c is determined by the structure of e in L and the occasion meanings of the
constituents of e in L at c.

Definition 3.3.1 shows a definition of the principle of compositionality given
by Szabó. A key issue that is not addressed in this definition is how we can
determine the meaning of e. Montague (1970) gives formal definitions to clarify
these aspects as a part of Montagues’ work on pragmatics, where the key idea is
that compositionality requires a homomorphism between expressions and their
meaning.The formal discussion contains more nuance than what is captured
in Definition 3.3.1, and we refer to, e.g., (Szabó, 2022) for a more in-depth
discussion.

Definition 3.3.2 (Productivity). Let us consider a finite vocabulary V and
a finite set of rules R. Productivity is defined as the ability to generate a po-
tentially infinite set of sentences S using V and R, mathematically represented
as:

S = {s1, s2, s3, . . .} such that si = fR(v1, v2, . . . , vn), for vj ∈ V,

where fR represents the application of rules in R to construct sentences
using elements from V .
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Productivity thus refers to the ability of a language system to create a
potentially infinite number of sentences or expressions using a finite set of rules
and vocabulary. In the context of compositional generalization, it would imply
the capacity of the model to generate novel compositions by combining known
components in different arrangements and structures. The productivity of a
language model can be measured by its ability to generate coherent, novel
sentences or structures using learned compositional rules.

Definition 3.3.3 (Systematicity). Consider a function g that applies a rule r
from set R to a series of inputs x1, x2, . . . , xn to produce outputs y1, y2, . . . , yn:

g(r, xi) = yi for i = 1, 2, . . . , n

If the function g is systematic, it should be able to apply the rule r con-
sistently across different inputs, maintaining the relationship r across varied
contexts.

Systematicity involves the consistent application of rules across different
contexts or components within a language. It implies that if a model has
learned a particular rule or pattern in one context, it should be able to apply
that learned knowledge to understand or generate sentences in different but
structurally similar contexts. In other words, systematicity represents the abil-
ity of a system to generalize learned patterns or rules to novel, yet structurally
similar, scenarios. This aspect is crucial in compositional generalization as it
ensures that the rules and patterns learned from the training data can be gen-
eralized to new, unseen data, ensuring consistent performance across a range
of tasks.

Definition 3.3.4 (Substitutivity). Given a sentence represented by a function
h which takes inputs x1, x2, . . . , xn (representing components like words or
phrases), substitutivity means that replacing one of the inputs with another
equivalent input does not change the truth value or grammatical correctness of
the sentence:

h(x1, x2, . . . , xi, . . . , xn) = h(x1, x2, . . . , xj , . . . , xn) if xi ∼ xj

Here, ∼ denotes an equivalence relation indicating that xi and xj can be
substituted for each other without altering the grammatical or semantic prop-
erties of the sentence represented by h.

Mathematically, substitutivity can be defined using equivalence relations.
Substitutivity is a principle that posits that in certain grammatical contexts,
one expression can be substituted for another without changing the truth value
or grammatical correctness of the sentence. In the realm of compositional
generalization, substitutivity would involve the model’s ability to recognize and
execute valid substitutions of components (like words or phrases) in sentences,
allowing for the generation or understanding of new sentences that retain the
grammatical structure and meaning of the original sentence. It is a key aspect
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of compositional operations where known components can be replaced with
others to create meaningfully different expressions.

In essence, a model with good compositional generalization capabilities
would be able to effectively demonstrate productivity, systematicity, and sub-
stitutivity in its operations, showcasing the ability to generate novel, gram-
matically correct, and meaningful sentences by leveraging learned rules and
patterns across different contexts and components.

3.3.2 Measuring Compositionality

The principle of compositionality stands on three legs; how meaning is evalu-
ated, structure, and the parts or symbols in the system. One way to evaluate
whether a system fulfils the principle is to prove that the internal properties of
the system satisfy the principle. For example, we can define a purely symbolic
system where these three components are clear, such as mathematical logic
frameworks. In this domain, logical rules and their application over atoms are
well-defined, and we can a logical expression such that the meaning is dependent
on the structure and the meaning of the parts. This functional composition-
ality corresponds well to the definitions given earlier in this section. However,
natural language and its meaning in the real world does not afford us with
the same well-defined components. When we talk about a bank, we use the
context to disambiguate between a river bank and financial bank. This type of
interdependence between words results in combinatorial explosions in symbolic
systems. So, while a system might satisfy the principle of compositionality, that
does not mean that it measures up to the semantic compositionality required
for natural language. The literature has instead turned to benchmarks for
compositional generalization in order to evaluate compositionality in linguistic
systems. These benchmarks are constructed by holding out certain composi-
tions of symbols in the training data, and testing whether a model can still
evaluate a novel composition of symbols correctly during testing. If a system
is able to compose previously seen parts into unseen combinations, we say that
it generalizes compositionally. For visual question answering, we can withhold
all blue cars from the training data but keep blue buses, and test whether
the model can answer questions about blue cars without ever seeing them be-
fore. Evaluating the external behaviour on such benchmarks also makes the
evaluation model-agnostic.

Recently, with the ubiquity of neural networks, there have been a num-
ber of benchmarks proposed to study compositional generalization, including
scan (B. Lake & Baroni, 2018a; Loula et al., 2018), COGS (N. Kim & Linzen,
2020) and PCFG (Hupkes et al., 2020b; Ruis et al., 2020). Several of these
papers have shown that end-to-end neural networks are not able to composi-
tionally generalize, especially in few-shot regimes. While it might be possible
to see all useful structures given enough data, humans perform structural gen-
eralisation with far less data (Linzen, 2020). Several approaches show that
neural models that are made aware of the problem structure can do structural
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generalization (Qiu et al., 2022; Weißenhorn et al., 2022).
This section will cover ways compositionality can be measured in machine

learning models through compositional generalization benchmarking. Table 3.1
gives an overview of such benchmarks. Compositional generalisation bench-
marks highlight weaknesses in machine learning methods, and are useful for
guiding us in constructing better methods. However, they are not without
weaknesses themselves. A common critique is that synthetic data often used
means that the benchmarks carry little ecological validity compared to bench-
marks based on natural/real-life data. While there is merit to this critique,
we argue that synthetic data is useful when exploring capabilities and for aug-
menting real data. Instead, we will now spend a brief moment looking at some
specific faults of COGS and gSCAN, and what has been done to address these
issues. We will later use this to inform our own compositional generalisation
benchmark. For further details on how to measure compositionality, see (An-
dreas et al., 2019; Chaabouni et al., 2020; S. Xie et al., 2022).

Dataset Task Modality Year
COGS
ReCOGs
SCAN
gSCAN
ReaSCAN

CLEVR
CLEVR-HANS
CLEVR-ref+
CLEVR-dialog
CLEVR_HYP
CLEVR-XAI
CLEVR-x
Super-CLEVR
CFQ
GQA
NLVR
CLOSURE
CLUTTR
Math (Saxton et al., 2019)

Table 3.1: Compositional generalisation benchmarks

Formal Languages and Compositionality Benchmarks A common fea-
ture of all the benchmarks described in this section is that they all utilise some
formal language to generate the data. Often a context-free grammar is used
to define the domain and generate samples, affording transparency and control
over the distribution of data. An intermediate logical form is also common,
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Figure 3.2: Illustration of (a) lexical and (b) structural generalisation in COGS.
TODO ask permission or recreate.

used either to hold out samples from training data, or as the target form to
learn for e.g. semantic parsing. The usage of these formal languages allows
us to produce well-defined synthetic data with clear distributions of features.
This can be used to generate completely synthetic data, as with e.g. SCAN, or
partially synthetic data as with CFQ.

COGS (N. Kim & Linzen, 2020) N. Kim and Linzen (2020) introduce
COGS as a compositional generalisation challenge based on semantic inter-
pretation of sentences. COGS is generated using a Probabilistic Context-Free
Grammar (PCFG) such that there are systemic gaps that can only be filled if a
model has learnt concepts compositionally. The task is then to parse each sen-
tence into the simplified logical form representing each sentence. For example,
the training data can contain the following two sentences: The cat loves the
girl, and The hedgehog sees the cat. To test whether a model can use these con-
cepts to compose and understand novel sentences, we can give it the sentence
The boy loves the hedgehog. N. Kim and Linzen (2020) further characterises the
different generalisation cases into lexical and structural generalisation. Lexical
generalisation means using a known word in a new context, whereas struc-
tural generalisation means creating a new combination of familiar structures.
When looking at dependency trees, lexical generalisation means exchanging
the word at a leaf node with a word of equivalent word class. In structural
generalisation, an entire sub-tree is exchanged with another subtree previously
seen. Figure 3.2 illustrates the two cases. N. Kim and Linzen (2020) show
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that Transformers and LSTMs can learn the semantic interpretation task with
near-perfect accuracy in-distribution, but generalise poorly. They note that
both models perform better on lexical generalisation than on structural, with
close to zero accuracy on the structural generalisation cases and up to around
40% on cases requiring lexical generalisation.

Z. Wu et al. (2023) identify a set of issues with COGS, addressing them in
ReCOGS. Their general claim is that compositional generalisation benchmarks
operationalise meaning with logical forms that limit the possible meanings that
would be acceptable to one particular representation and meaning. The se-
mantically irrelevant details and design choices of a given logical form lead to
a misrepresentation of the compositional generalisation capabilities of models.
In a sense, this means that good performance on a compositional generalisation
benchmark indicates that a model has this capability in general, but poor per-
formance does not necessarily indicate the opposite. For COGS, the authors
identify two main factors contributing to this; redundant symbols in the logi-
cal form of COGS, and the requirement that models predict exact numerical
values when binding variables. Z. Wu et al. (2023) argue that “[t]hese details
cannot be justified semantically, and they play a large role in shaping model
performance”. Their relaxations and modifications to the logical form used by
COGS consistently allows for better compositional generalisation in LSTM and
Transformer baselines. They construct ReCOGS based on these modifications
and insights to better assess semantic capabilities of models. They also show
how ReCOGS is harder than the original COGS, while also being more true to
semantics.

SCAN B. Lake and Baroni (2018a) introduce scan (Simplified versions of
the CommAI Navigation) to show that end-to-end recurrent neural architec-
tures fail to generalize to longer sentences than seen during training (length
generalization) and novel actions jump, despite obtaining near-perfect accu-
racy on the in-distribution split.

Qiu et al. (2021) suggest that the remaining challenges for gSCAN may not
necessarily be related to visual grounding [...], and propose an additional task
with more complex natural language. While processing more complex language
is a natural extension of the gSCAN dataset, another conclusion is that there
is room for a more visually complex dataset. In the proposed task “the agent
needs to reason about spatial relations between objects expressed in language”.
The authors also evaluate cross-modal attention as a way for Transformer-based
models to achieve strong performance on gSCAN. Their approach outperforms
other methods specifically built for gSCAN, and observe that performance de-
grade significantly when less than 40% of the training examples are used.

In the same spirit, Z. Wu et al. (2021) identify a set of limitations in gSCAN
which they address with ReaSCAN. They remark that the ideas gSCAN build
on are powerful, but that there are some central limitations coming from specific
design choices. The first observation is that the word order of commands does
not matter for the defined tasks. A simple bag-of-word model is sufficient to
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encode the original gSCAN commands. The second observation is that there is
limited testing for linguistic compositionality. The third observation is that the
distractors (i.e., objects added to distract or confuse a model) are not correctly
sampled, leading to by-chance accuracy that is dependent on the language used
to describe objects in a task. The last observation is that there are simply too
few distractors, and that the ones used have little to no impact on the output
action sequence.

Sikarwar et al. (2022) extends the work by Qiu et al. (2021) with GroCoT, a
multimodal transformer model achieving state-of-the-art performance on ReaS-
CAN. The authors complement their experiments on extended ReaSCAN and
GSRR (Qiu et al., 2021) with linear probing classifiers to identify what infor-
mation the transformer is encoding for each object property. They conclude
that their modifications to a multimodal transformer does improve composi-
tional generalisation in the gSCAN domain. Their probing experiments show
that identifying the target location is a main challenge for better solving the
benchmark.

CLEVR (Johnson et al., 2017) Introduced in 2017, the CLEVR dataset
is a large-scale synthetic dataset for Compositional Language and Elementary
Visual Reasoning (CLEVR). The dataset is named after the famous German
show horse from the turn of the 19th century, Clever Hans (Pfungst, 1911). It
consists of over 100,000 images of 3D objects in a variety of scenes, along with
questions and answers about the images. Associated with each image is a struc-
tured scene representation and functional programs representing the questions.
The questions are designed to test a variety of visual reasoning skills, such as
recognizing objects, counting, comparing sizes, and understanding relationships
between objects. Figure 1.1 shows an example image and illustrates some of
the visual reasoning tasks. Johnson et al. (2017) evaluate several neural meth-
ods, mainly LSTM+CNN-based approaches, showing that they struggle with
the tasks. They also introduce a compositional generalisation split, CoGenT,
where spheres and cubes do not have the same color palettes in training. The
color palettes are then swapped during testing so that the models are presented
with unseen color-shape combinations, such as red cubes. Spheres are assigned
all colors in both training and testing, used as control and an intermediary for
the models to see that (at least some) shapes can be of all colors. The evalu-
ation shows that the models more strongly associate colors with shapes than,
e.g., colors with materials.

Since the introduction of CLEVR, many follow-up datasets have been pro-
posed through various extensions to the templates and code base used to gen-
erate the original data. While not all of them are strictly compositional gen-
eralisation benchmarks, they target related concepts. CLEVR-Hans (Stammer
et al., 2021) uses the CLEVR dataset to create an image classification problem,
and introduces a neuro-symbolic method (NeSy XIL). The data is partitioned
into classes such as images with c1 =a large cube and a large cylinder, split
into a 3-class and 7-class partitioning. Each class has a confounding variable
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Q: Are there an equal number of large things and metal spheres?
Q: What size is the cylinder that is left of the brown metal thing
that is left of the big sphere? Q: There is a sphere with the same
size as the metal cube; is it made of the same material as the small
red sphere?
Q: How many objects are either small cylinders or metal things?

Figure 3.3: A sample image and questions from CLEVR. Questions test aspects
of visual reasoning such as attribute identification, counting, comparison, mul-
tiple attention, and logical operations. TODO ask permission or recreate.

Figure 3.4: Illustration of the relationship between natural language questions,
their intermediate logical form, and the corresponding SPARQL query used to
extract the answer from Freebase. TODO ask for permission to use figure, or
remake.

associated with one of the objects defining the class. This confounding variable
is then only present during training as a way to trick models into focusing on
object attributes that do not define the class. For instance, the confounding
variable in c1 is that the large cubes are always gray in the training data.
Stammer et al. (2021) show how regular CNNs are sensitive to the confound-
ing variables, and that their NeSy XIL-method does not face this issue while
outperforming previous neuro-symbolic methods (NSCL (Mao et al., 2019b)).

Other examples of CLEVR-based datasets include Clevr-ref+ (R. Liu et
al., 2019a), CLEVR_HYP (Sampat et al., 2021), CLEVR-dialog (Kottur et
al., 2019), CLEVR-XAI (Arras et al., 2022), Super-CLEVR (Z. Li et al., 2022),
Clevr-x (Salewski et al., 2022).

CFQ (Keysers et al., 2020) The Compositional Freebase Questions (CFQ)
dataset is a realistic and large-scale natural language understanding benchmark
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designed to measure compositional generalisation. CFQ is based on question-
answer pairs extracted from the Freebase knowledge base (Bollacker et al.,
2008). The pairs are extracted using rules produced through the distribution-
based compositionality assessment (DCBA) method also introduced in (Keysers
et al., 2020). Figure 3.4 illustrates how the question-answer pairs are gener-
ated from an intermediate logical form representing the results from SPARQL
queries over Freebase. An example of training and test data is the question-pair
Did Christopher Nolan produce Goldfinger? and Did Christopher Nolan direct
Goldfinger?. With other questions asking who directed, e.g., Inception, a com-
positional model should be able to answer whether Nolan directed Goldfinger
since it has seen all the words and structures before but not in this com-
position. Keysers et al. (2020) evaluate an LSTM with attention, a regular
Transformer (Kobayashi et al., 2020), and a Universal Transformer (Dehghani
et al., 2018). All three methods learn to answer questions with near-perfect
accuracy when tested in-distribution, but the performance drops to below 20%
when tested on the compositional generalisation split.

Winoground (Thrush et al., 2022) Levesque et al. (2012) introduce the
Winograd schema challenge as an alternative to the Turing test.

The trophy doesn’t fit in the brown suitcase because it’s too big.
What is too big? A) the trophy, or B) the suitcase?

Kocijan et al. (2020) outline problems with the assumptions in the original
Winograd schema challenge, and some of the approaches used to solve the
challenge. They point out that neural language models such as BERT (Kenton
& Toutanova, 2019) can solve the challenge, but still fail on tasks related to
common sense reasoning. In the multimodal domain, Thrush et al. (2022) pro-
poses a Winograd schema for visio-linguistic reasoning with images and text.
Shown in Figure 3.5, the task consists of pairs of images and corresponding de-
scriptions, where the descriptions are swapped versions of each other. Thus, the
sentences contain the same symbols, but represent different meanings. Thrush
et al. (2022) show that state-of-the-art models in multimodal machine learning
fail significantly on this task. Looking back at the principle of compositionality,
this entails that these models do not evaluate the language according to the
structure. Instead, the results suggests that structure is somewhat ignored in
favor of a bag-of-words approach.

Using Structure Weißenhorn et al. (2022) and Qiu et al. (2022) both show
that neural models that are made aware of structure can do structural gener-
alisation. Qiu et al. (2022) identify that transformer models can be augmented
with synthetic data that is generated from structured methods, in their case
quasi-context free grammars. Weißenhorn et al. (2022) uses neural network
components for dependency parsing and constructing a graph representation,
hence building highly structured representations of sentences. It might be pos-
sible to see all useful structures given enough data, but humans clearly perform
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Figure 3.5: Example taken from (Thrush et al., 2022)

structural generalisation with far less data (Linzen, 2020). Another important
concept that can help accelerate a models ability to generalise compositionally
is curriculum learning. By inducing a compositional bias early on, the rest of
a training process can adhere to that structure much like how human knowl-
edge is built compositionally by learning the building blocks first as in addition
before multiplication.

Compositional Generalisation in Deep Learning There has been a long-
standing debate on whether connectionist architectures like neural networks are
able to generalize compositionally (J. A. Fodor & Pylyshyn, 1988). B. M. Lake
(2019) introduces a test for systematic generalisation, defined as an algebraic
capacity to combine novel sentences from known components. As an example,
learning what jump means, a human can be asked to jump twice without being
told what the combination entails given that twice is known. This is something
neural networks have been shown to fail at, especially for recurrent neural
networks (B. Lake & Baroni, 2018b). The dataset introduced by B. M. Lake
(2019) uses pseudowords, such as blicket and abstract outputs in the form of
colored dots, to test this property without dependency on a specific language.

Pavlick (2022) investigate how deep learning models exhibit semantic struc-
tures, e.g. by showing how different properties of concepts are learnt at differ-
ent stages throughout a network (Lovering & Pavlick, 2022). The authors
show that concepts are learnt compositionally such that structural concepts
with shapes and formations are not affected by the color seen in training and
testing. This work aims at answering to which degree neural networks em-
ploy systematicity in constructing their understanding of its input data, also
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exemplified in (R. Patel & Pavlick, 2021). Pavlick (2022) argues that rep-
resentations should be continuous and that compositionality does not imply
discrete symbols. A discrete set of symbols does not imply compositionality
if a new symbol is grounded for each new combination of properties without
relating them back to already known components. This line of work shows
evidence that the continuous representations of neural networks can exhibit
a compositional structure to some degree. This implies that it is possible to
learn concepts compositionally with neural networks, but it is still unclear how
effective this process is. This also implies that failing on a compositionality
test does not imply that the underlying system is not compositional.

Hupkes et al. (2020b) decomposes testing of compositionality into system-
aticity, producitivty, substitutivity, localism, and overgeneralisation. Similar to
our artificial neural effigies, our ability for continuous computing that allows
for arbitrary small changes to concepts used in reasoning. This is known as the
continuity principle and underlies the advancement of deep learning (Hinton
et al., 1986). Smolensky (1988) denotes the trade-off between the continuity
and the compositionality principles as the Central Paradox of Cognition. In
their work on neurocompositional computing, Smolensky et al. (2022) attribute
the achievements of convolutional neural networks (CNNs) for vision and trans-
formers for language to their compositionally structured processing of input (J.
Henderson, 2020). For CNNs, the convolutional layers impose spatial structures
on the computing. Similarly, it is possible to show that transformers are equiv-
alent to graphs with weighted links between symbols, thus imposing a composi-
tional structure of concepts (Dwivedi & Bresson, 2020). Smolensky et al. (2022)
argues that architectures that respect both the continuity and compositional-
ity principles will address some of the issues with current AI systems such as
their lack of reasoning capabilities. The authors define Tensor-Product Repre-
sentations (TPRs) and Neurally-Encoded Compositionally-Structured Tensor
(NECST) computing as a theoretical framework to show this. Recent ap-
proaches, such as the NECSTransformer, build on these concepts (Schlag et
al., 2019).

Compositional Generalisation in Neuro-Symbolic Methods Work by
IBM on compositional generalisation and neuro-symbolic methods (Basu et al.,
2021; Ito et al., 2022; Klinger et al., 2020; Riegel et al., 2020; Sen et al., 2022).
J. D. Fodor et al. (2013) critiques the “unreality” of semantic representations.
In discrete representations, compositionality is a property that falls out by
definition, but in continuous representations this is much more opaque.

Importance of Compositional Generalisation B. Lin et al. (2023) sur-
veys compositional generalisation in applications. They outline seven differ-
ent application areas; mathematics, control systems, semantic parsing, image
captioning, question answering, automatic translation, and recommendation
systems. In this thesis, we focus on the compositionality in mathematics, se-
mantic parsing, and question answering. In mathematics, the operators must
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work compositionally with any novel combination of mathematical elements.
The experiments with CLEVR-Math described in Chapter ?? support the claim
that a lack of compositional generalisation severely affects the mathematical
capabilities of a model. These insights are echoed by e.g. Y. Lan et al. (2022).

Qiu et al. (2022) outline the limitations of model scaling for compositional
generalisation, pointing out that, e.g., fine-tuning has a flat or even negative
effect. They find that prompt tuning is the most effective way to improve
compositional generalisation. For image captioning and question answering,
compositional generalisation is central to understand and respond to novel com-
binations of concepts. However, in both cases, current state of the art methods
leave big gaps to improve upon. To summarise, in all the mentioned domains B.
Lin et al. (2023) identify recent methods leveraging structured representations
to improve performance on compositional generalisation benchmarks.

Compositionality in human learning B. M. Lake (2019) introduces a test
for systematic generalisation, defined as an algebraic capacity to combine novel
sentences from known components. As an example, learning what jump means,
a human can be asked to jump twice without being told what the combination
entails given that twice is known. This is something neural networks have been
shown to fail at, especially for recurrent neural networks (B. Lake & Baroni,
2018b). The dataset introduced by B. M. Lake (2019) uses pseudowords, such
as blicket and abstract outputs in the form of colored dots, to test this property
without dependency on a specific language. This could be extended to the
CLEVR domain, by introducing pseudowords for abstract concepts such as
three blue cubes being called a blargh.

In developmental psychology, assigning new meaning to a new word, rather
than as a referent to something previously known, is called mutual exclusivity.
It makes up the three components of lexical learning, together with the tax-
onomy assumption and fast mapping (Golinkoff et al., 1992). It is important
to distinguish between mutual exclusivity and learning a word in a different
language. For instance, consider a new word blargh. It could be a synonym
for sphere, in which learning blargh is similar to learning a new language (i.e.
anchoring known concepts in a new language space). However, if blargh means
blue sphere, or 3 blue spheres, then it is a compositional learning task. Building
a new concept out of previously known ones like this is a mechanism that we
study in Chapter 7.

Compositional bias can be a structural property of an architecture, or an
emergent property of the training data or procedure. This is one example of an
important innate bias that exists in humans, allowing us to learn under vastly
different circumstances.

‘Syntax is an algebra, semantics is an algebra, and meaning is a homomor-
phism between them’ (Janssen, 1986).
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3.3.3 Compositionality and Compositional Generalisation

Compositionality is a strong trait of neuro-symbolic architectures, introduced
by symbolic components. However, compositional generalization does not fol-
low from a compositional structure.

3.4 Neuro-symbolic machine learning - is not a
challenge of NLP, is a response - where to
put?

Chapter 2 introduced the symbol grounding problem as the task of giving mean-
ing to language by connecting it to physical systems and subjective expe-
riences (Harnad, 1990). In introducing his work on the symbol grounding
problem, Harnad described what we today would call neuro-symbolic systems.
Depending on the community and time period, other names include neuro-
explicit, learning and reasoning systems, and hybrid systems. According to A.
Garcez et al. (2019), neuro-symbolic AI aims to combine the two most funda-
mental cognitive abilities: the ability to learn from experience, and the ability
to reason from what has been learned. Often such systems aim at scalable
learning and reasoning, where neural methods are better at the former and
symbolic methods at the latter. Neuro-symbolic AI has a long tradition, sur-
veyed by A. S. d. Garcez et al. (2002) over twenty years ago and Sun and
Bookman (1994) describing the field emerging during the 1990s. The idea pre-
dates artificial intelligence as a field by decades, where McCulloch and Pitts
(1943) describe a logical calculus of the ideas immanent in nervous activity,
attributed as the first description of a neuro-symbolic systems. The field has
recently gathered mainstream interest, with publications in top conferences on
the topic is growing (Hamilton et al., 2022; Sarker et al., 2021). In particular,
neuro-symbolic AI is increasingly important to address challenges of safety and
interpretability (A. d. Garcez & Lamb, 2023), as a response to the shortcom-
ings or recent deep neural network-based approaches. Symbolic components
can be utilised to increase the transparency and verifiability of AI systems, im-
portant for industry applications. However, purely symbolic systems struggle
with, e.g., the combinatorial explosion of learning and manipulating symbolic
representations, complemented by the success of machine learning with neural
networks. These complementing strengths and weaknesses of neural and sym-
bolic methods can be combined in different ways depending on the goal of the
system (Hitzler et al., 2022).

A. d. Garcez and Lamb (2023) outline two main challenges that current
systems do not address; (a) variable grounding and symbol manipulation, and
(b) commonsense and combinatorial reasoning. The former is of particular
relevance for this thesis. A. d. Garcez and Lamb (2023) characterise the first
problem as [..] the study of how symbols may emerge and become useful [..]. At
a certain point, it may be more productive from as computational perspective to
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refer to such symbols and manipulate them [sic] symbolically. They illustrate
this process with the example of translating images of digits to symbols that
can be used precisely to compute their sum. Grounding the images in symbols
allows the system to perform exact reasoning, in contrast to the approximate
“reasoning” by neural networks. In general, (neuro-)symbolic methods are not
built to introduce new symbols but are often restricted to a predefined domain
of symbols. The work on compositional generalisation presented in the later
chapters of this thesis is a first step in the direction of achieving general variable
grounding. In particular, the integration of learning and reasoning through
the combination of neural and symbolic components gives architectures strong
compositional characteristics (A. Garcez et al., 2019; A. d. Garcez et al., 2022).

Neuro-symbolic AI is also partially motivated by cognitive and behavioural
sciences, with for instance Nobel laureate Daniel Kahneman and Amos Tver-
sky’s work on dual process theory later published as Thinking Fast and Slow by
Daniel Kahneman (Kahneman, 2011). Briefly, the dual process theory suggests
that the human cognitive process can be split into two systems; the fast Sys-
tem 1 and the slow System 2. System 1 reacts to direct stimuli, e.g., in the case
of burning your hand on a stove, or riding a bike. System 2 is engaged when
deliberate thinking is required to process complex information. In this line of
work, neural networks are often considered the fast System 1, and symbolic
systems are considered the slow System 2. We will elaborate on this mental
model later in this chapter with a comment oon Thinking Fast and Slow is used
to motivate AI architectures.

3.4.1 Integrating Neural and Symbolic Components

Combining neural and symbolic components can take many forms. Table ??
shows the taxonomy of neuro-symbolic systems given by Kautz (2022). This
taxonomy focuses on how neural and symbolic components are connected.
Bader and Hitzler (2005) provide a taxonomy with greater focus on the traits of
the components. For example, is it neuronal (mimicking biological neural net-
works) or connectionist (technological approximation, modern deep learning).
Sarker et al. (2021) compare the taxonomies of Bader and Hitzler (2005) and
Kautz (2022), analysing papers published in top tier AI conferences since 2011.
One important observation is that for three of the eight dimensions in Bader
and Hitzler (2005), all papers included in the study fall into one of the two cate-
gories. For instance, none of the papers covers methods that are neuronal, only
connectionist. Therefore, we choose the more recent and integration-focused
taxonomy of Kautz (2022) to further describe the field.

symbolic Neuro symbolic The standard in machine learning. Symbolic
data (e.g. text), is fed into a neural model that produces symbols (e.g. a next
word prediction).
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Integration type Description
symbolic Neuro symbolic BERT (Kenton & Toutanova, 2019)
symbolic[neuro] AlphaGo (Silver et al., 2017)
Neuro | symbolic NS-VQA (Yi et al., 2018)
Neuro ∪ compile(symbolic)
Neuro -> symbolic
Neuro[symbolic]

Table 3.2: caption

symbolic[neuro] A symbolic problem solver calls a neural system to solve a
(sub)task

Neuro | Symbolic Neural component(s) converts continuous data, such as
images, into symbolic representations that a symbolic system processes for task
solving.

Neuro -> symbolic

Neuro[symbolic]

3.4.2 Neuro-Symbolic Visual Reasoning

While multimodal transformer methods have been extensively used for Visual
Question Answering (VQA), including ViLT (W. Kim et al., 2021) LXMERT (Tan
& Bansal, 2019), and VisualBERT (L. H. Li et al., 2020), neuro-symbolic ap-
proaches achieve state of the art performance on VQA datasets (Amizadeh
et al., 2020; Mao et al., 2019a; Yi et al., 2018). These methods disentan-
gle language, vision, and reasoning into three distinct components, allowing
symbols to be composed in novel ways to solve out of distribution tasks.
Neuro-Symbolic Visual Question Answering (NS-VQA) (Yi et al., 2018) is a
three-component system for visual reasoning. The Neuro-Symbolic Concept
Learner(NSCL) (Mao et al., 2019b) is a successor to NS-VQA. In the Neuro-
Symbolic Concept Learner by (Mao et al., 2019b), programs for visual question
answering are learned by combining modules for neural perception, semantic
parsing of programs from language, and program execution. Other work builds
on similar ideas (B. Zhang et al., 2021).

Finally, grounding in language and vision with neural networks is exten-
sively researched for VQA (Antol et al., 2015; Chaplot et al., 2018; Fukui et
al., 2016b). Neuro-symbolic approaches to VQA include the work by (Yi et al.,
2018).
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3.4.3 Neuro-Symbolic Logic Programming

DeepProbLog (Manhaeve, Dumančić, et al., 2018), DeepStochLog (Winters
et al., 2021), Probabilistic Logic Programming (PLP (Dantsin, 1992; Ng &
Subrahmanian, 1992)), provides reasoning under uncertainty, with methods
such as (De Raedt et al., 2007). (L. D. Raedt & Kersting, 2008) gives an
overview of the combination of PLP and ILP, Probabilistic ILP. Neuro-symbolic
PLP, such as DeepProbLog, can realise predicates as trainable neural networks,
as a way to ground and reason about visual concepts (Manhaeve, Dumancic,
et al., 2018; Weber et al., 2019; Winters et al., 2021).

3.4.4 Kuhnian perspective

A body of research can positioned in a broader context in many ways. The
philosopher Thomas Kuhn introduced the term paradigm shift in this book The
Structure of Scientific Revolutions (Kuhn & Hawkins, 1963). Kuhn studied
the history of science and the progress of scientific knowledge, and Kuhn and
Hawkins (1963) describes a paradigm shift as a scientific change through 5
phases; 1) pre-paradigm, 2) normal science, 3) crisis, 4) scientific revolution,
and 5) post-revolution. A crisis arises when the reigning theories of a paradigm
cannot explain oddities that seem to require considerable efforts outside of the
current scope of theories to address. This leads to a paradigm shift where
the underlying assumptions of the old paradigm are questioned to produce a
new paradigm. Once a new paradigm is established, the field can return to
the practice of normal science. Kuhn argues that science alternates between
normal science and revolutions through these phases.

• Phase 1 – It exists only once and is the pre-paradigm phase, in which
there is no consensus on any particular theory. This phase is charac-
terized by several incompatible and incomplete theories. Consequently,
most scientific inquiry takes the form of lengthy books, as there is no
common body of facts that may be taken for granted. If the actors in the
pre-paradigm community eventually gravitate to one of these conceptual
frameworks and ultimately to a widespread consensus on the appropriate
choice of methods, terminology and on the kinds of experiment that are
likely to contribute to increased insights.[13]

• Phase 2 – Normal science begins, in which puzzles are solved within the
context of the dominant paradigm. As long as there is consensus within
the discipline, normal science continues. Over time, progress in normal
science may reveal anomalies, facts that are difficult to explain within the
context of the existing paradigm.[14] While usually these anomalies are
resolved, in some cases they may accumulate to the point where normal
science becomes difficult and where weaknesses in the old paradigm are
revealed.[15]
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• Phase 3 – If the paradigm proves chronically unable to account for anoma-
lies, the community enters a crisis period. Crises are often resolved within
the context of normal science. However, after significant efforts of normal
science within a paradigm fail, science may enter the next phase.[16]

• Phase 4 – Paradigm shift, or scientific revolution, is the phase in which the
underlying assumptions of the field are reexamined and a new paradigm
is established.[17]

• Phase 5 – Post-Revolution, the new paradigm’s dominance is established
and so scientists return to normal science, solving puzzles within the new
paradigm.[18]

What does this have to do with learning language with machines? I argue
that AI research is possibly in the middle of phase 3, after the revolution of
deep learning in the early 2010s. While the impact and amount of impressive
results of current deep learning models (current paradigm) is undeniable, there
is an every-growing body of work showing how such models fail considerably
and might not be fixable (TODO CITE). As a result, there is a strong wave
of research on neuro-symbolic methods (new paradigm) designed to address
the faults of deep learning. From a scientific philosophy perspective, it is a
great paradigm shift as it clearly combines and encompasses previous results
while contributing to something greater than the sum of the two. Kuhn notes
that it is a good thing for science that a paradigm shift do not occur often or
easily. Hence, time will still tell whether the neuro-symbolic paradigm is strong
enough to reign.

Relationship between learning and reasoning

Kakas and Michael argues for a synergistic relationship between learning and
reasoning (Kakas & Michael, 2020). Learning provides the elements/knowl-
edge used in reasoning, while reasoning provides inferences that can be used
as inductive bias when learning or extend the base of knowledge. One of their
questions is; how do we exploit the reasoning process to enhance the learning
process? Similarly, Luc Steels argues that AI suffers from a paradox called the
“. . . hermeneutic circle: To understand the whole we need to understand the
parts but to understand the parts we need to understand the whole (Gadamer,
1975)” and uses this as an argument against the linear progression of informa-
tion in common data-drive AI methods (STEELS et al., 2022). Luc Steels et al.
define the process of understanding as “We frame the process of understanding
in terms of a process of generating questions, reducing questions, and finding
answers to questions.” and propose to facilitate this process via narrative net-
works (STEELS et al., 2022). This method of measuring understanding could
be extended to other semantic representations, such as argumentation, to check
its validity and find commonalities.

Kakas and Michael (Kakas & Michael, 2020) point out that generalisa-
tion cannot be absolute, referring to the problem of induction (L. Henderson,
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2020), and pointing to Humes’ A Treatise of Human Nature (Hume, 1739) with
“. . . inductive generalisation that is universal and absolute runs into logical dif-
ficulties as we cannot be sure that a future case will not contradict the general-
ization”. This is used to motivate that argumentation is a flexible framework
wherein such logical difficulties are possible to resolve naturally, as an argument
only holds until evidence proves otherwise. One example the authors give is
the difference between all beans from this bag are white and all normal beans
from this bag are white, given that all beans drawn from a bag during training
are white. The second leaves room for the possibility that there are beans of
other colors than white. Another example that is closer to the domain of this
thesis is colored MNIST data. For instance, when each digit is assigned a spe-
cific color in training but can have any color during testing, the generalisations
during training that color is the main feature, or the shape, are both valid
all else equal. How can you model both feature dimensions independently to
be able to instruct a model to focus on shape, not color, in a particular test,
independent on the training procedure? This generalisation issue is important
as context for the experiments performed in Chapter 5 and 7.

3.4.5 Thinking Fast and Slow, and neuro-symbolic AI

Daniel Kahneman and Amos Tversky categorises the human mind into system
1 and system 2, responsible for fast and slow thinking respectively (Kahneman,
2011). Thinking Fast and Slow, and other dual-process theories, have had a
big influence on the discourse in AI and development of new systems and meth-
ods. For example, the field of neuro-symbolic AI is heavily influenced by the
mental model of fast and slow components, such as artificial neural networks
in combination with logic programming. L. d. Raedt et al. (2020) claims that
“Kahneman, 2011 has put the quest for neural symbolic computation A. d.
Garcez et al., 2015; A. S. d. Garcez et al., 2012; Hammer and Hitzler, 2007
high on the research agenda” However, in many cases, these architectures do
not reflect the systems described in many dual-process theories and would not
fall under those definitions. Simply building a dual-component system is not
sufficient in order to realise the full potential of cognitive dual-process systems.
We argue that for Human-Centric AI (HCAI), the misalignment of dual-process
theory and its instantiation in AI systems together form a foundation that is
more than shaky. For example, neuro-symbolic methods with neural networks
used as input to symbolic components are still sensitive to the same type of
biases that the AI community in general is tackling. Bias exists in humans’
fast thinking, but is countered by slow thinking and adjusted over time accord-
ingly. The relationship between neural and symbolic components cannot be
unidirectional. Similarly, not all cognitive theories on this topic suggests two
components, but three or a plethora of components. Neuro-symbolic AI would
benefit from research in this direction, acknowledging that there is existing
work on this TODO CITE.

It is important to remember that dual-process theory contain other works
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(e.g. J. Evans, 1996; Sloman, 1996; Stanovich and West, 2000, and that they
also provide insights on their own. E.g. Slomans tripartite Reflective, Algo-
rithmic, and Autonomous minds Stanovich, 2009.

A definition of fast and slow thinking given by J. S. B. T. Evans and
Stanovich (2013) gives the following definition of fast and slow thinking;

Our preferred theoretical approach is one in which rapid autonomous
processes (Type 1) are assumed to yield default responses unless in-
tervened on by distinctive higher order reasoning processes (Type
2). What defines the difference is that Type 2 processing supports
hypothetical thinking and load heavily on working memory.

However, neuro-symbolic methods rarely adhere to this definition.

3.4.6 Explainability
One big argument for neuro-symbolic methods, especially in critical indus-
try applications, is that symbolic components increase the transparency and
explainability of such systems in comparison to neural networks. Symbols
are easier to interpret, and interventions to change the behaviour of a neuro-
symbolic system can be done on a symbol level. Explainability is needed both
in evaluating systems, and as an affordance towards users. Neural networks are
notoriously difficult to explain, whereas traditional methods like decision trees
are much more straightforward. Combining neural networks with e.g. logic
opens up for explainability by design, contrasted with the ad hoc explaina-
tions of, e.g., LIME (Ribeiro et al., 2016), SHAP (Lundberg & Lee, 2017), and
DeepLIFT (Shrikumar et al., 2017). These methods are themselves vulnerable
to adversarial attacks, as exemplified in (Slack et al., 2019). However, when
humans explain decisions they (rarely) refer to brain activity and specific neu-
rons but rather give justifications on higher levels. Most of the time, intuition
rather than explicit reasoning is the underlying mechanism of our decisions and
actions, as argued by, e.g., Mercier and Sperber (2009). This could support the
post hoc explainations, but on the other hand, as McCarthy said, "Artificial
intelligence is not, by definition, simulation of human intelligence" (Maker,
2006).

3.5 Challenges and characteristics
What is the purpose of the representation

• Transparency

• Allow explicit reasoning

• Shared representation in communication between humans and machines

• Allow for representing different world views/states.
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What are the properties of the representation?

• Continuous concepts should be possible to represent

• Structured representation to allow for explicit reasoning

• Possible to construct new concepts compositionally from previously known

• Possible to represent ’possible world states’

• Possible to represent multiple modalities

• As little inductive bias as possible

• Possible to do multiagent grounding (mapping between ’world views’)

Summarise challenges.

• Generalise outside given program structures

• Scalability

• How to introduce and ground new symbols, e.g. with clevr: Introduce
arbitrary relations/concepts such as four red objects is called a gallub.

• Difficult to construct difficult datasets (comp.gen.)
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Chapter 4

Probing multimodal language
models

Example of how to use quotes at
the beginning of chapters

dali

One major challenge with neural network-based methods is to understand
their inner workings, which we commonly refer to as “looking into the black
box”. Even if we have constructed a benchmark where good performance should
tell us how a model behaves, it is difficult to know if the way a system pro-
duces an output follows a procedure that is actually desirable. In Chapter ??,
we talked about this as an implication by the Chinese Room (Searle, 1980)
thought experiment, where a computer system applies rules over Chinese char-
acters to pass the Turing test. Searle (1980) questions whether this system
understands Chinese, stipulating that it mearly simulates it by hijacking mean-
ing as imposed by the user. This perfectly illustrates a big issue with machine
learning in general, and deep learning specifically, in that it is difficult to draw
strong conclusions about the capabilities of a model strickly from observing its
behaviour. With this in mind, we now turn to probing as a method to open up
these black boxes.

Probing is one approach to reveal what information an embedding actu-
ally encodes (Conneau et al., 2018; Hupkes et al., 2020a; A. Rogers et al.,
2018; Yaghoobzadeh et al., 2019). An embedding is a vector representation
of anything from a word to an entire image that we obtain by feeding input
to a neural network and extracting the activations from a layer in the net-
work. For some methods, like word2vec, the embedding is the final output
that is used on its own in a downstream task. Conversely, we can extract an
embedding from any layer of a neural network to observe what information
is encoded at certain stages throughout the network. In general, we say that
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such embeddings capture some semantic information distilled from the syntac-
tical information present in the input. Two well-known semantic embeddings
are word2vec (Mikolov et al., 2013a) and BERT (Devlin, Chang, et al., 2019).
In (Mikolov et al., 2013a) the authors demonstrate the additive composition-
ality characteristic of word embeddings in word2vec. In particular, if words or
phrases occur frequently together in the same context, the sum of the vector
representations of two single words is close to the vector representation of a
phrase that combines those single words. For example, the sum of the vector
representations vec(Russia) + vec(river) is close to the vector representa-
tion vec(Volga river) (see (Mikolov et al., 2013a)). BERT (Bidirectional
Encoder Representations from Transformers) is introduced in (Devlin, Chang,
et al., 2019) and is a bidirectional language model. Unlike word2vec, BERT
considers the left and right context surrounding a word and pre-trains deep bidi-
rectional language representations in an unsupervised way. BERT can then be
fine-tuned to another task as an instance of transfer learning.

In this chapter we look at two sets of probing experiments. Section 4.2 shows
probing for visual information in multimodal embeddings, giving us insight into
how visual information is encoded in multimodal embeddings. For Section 4.3,
we test how well language embeddings capture information about semantic
relations such as synonyms and hyponyms.

4.1 What can probing tell us?

Conneau et al. (2018) define a (linguistic) probing task to be a classification
task that categorizes sentences according to specific linguistic properties, such
as sentence length. Commonly, probing tasks are agnostic to the specifics of
encoder architectures and can therefore be used to compare across different
methods. In (Conneau et al., 2018) linguistic probing tasks are systematized
building on work in (X. Shi et al., 2016) and (Adi et al., 2016). In particular,
Conneau et al. define a probing task to be a classification task that categorizes
sentences according to specific linguistic properties. For example, given an en-
coder such as an LSTM, pre-trained on some downstream task, the sentence
embeddings that it produces can be used to train a grammatical classifier for
the probing task that asks to determine the number (singular or plural) of the
subject of the main verb. If the sentence embedding captures that informa-
tion in an accessible way, this may be revealed by the classifier performing
well, whereas the classifier will certainly not be able to perform well if the
information is not appropriately captured. Thus, the main idea of probing
tasks is to draw conclusions from the classifier performance about the probed
embedding; if the classifier succeeds it means that the semantic embedding
captures interpretable information regarding the aspect under consideration.
Hewitt and Liang (2019) argue that the performance of a probe alone is not
sufficient, and introduce so-called control tasks to improve interpretability of
probing tasks. A control task reveals whether high accuracy of a probing task
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Type of information probed for:
Surface Syntactic Semantic

Sentence length Bigram shift Tense
Word content Tree depth Number of subjects

Top constituent Number of objects
Semantic incongruence
Coordination inversion

Table 4.1: Probing tasks for semantic embeddings, organized along three
broader probing categories as investigated in Conneau et al. (2018)

really indicates that semantic representations encode a linguistic property, or
whether the probing task itself learns this property. In particular, a probing
task is complemented with a control task that associates random outputs to
the properties under consideration (for example, POS tags). Thus, a control
task with low accuracy indicates that a corresponding probing task with high
accuracy does indeed encodes the probed property. Simply put, a probing task
is a classification task in which a network is trained on a given embedding.
The task is chosen so that the performance of the trained classifier provides
insight into the nature of the information captured by the embedding. Finally,
ignorance about what is actually captured in an automatically learned seman-
tic representation may lead to serious consequences of various kinds such as
propagating discrimination bias (Bolukbasi et al., 2016; Brunet et al., 2019;
Caliskan et al., 2017), or causing safety hazards in robotics by inducing unex-
pected robotic actions that put humans at risk (Orseau & Armstrong, 2016;
Wachter et al., 2017).

The probing tasks proposed by Conneau et al. (2018) probe sentence em-
beddings and are categorized according to the type of linguistic properties they
capture: surface,- syntactic,- and semantic information. We now give a brief
account of these categories, which are outlined in Table 4.1. Surface informa-
tion comprises probing for sentence length (number of words) and the word
content (whether the sentence contains a given word). The probing tasks in
the syntactic category ask to detect bigram shift, tree depth and top con-
stituent, revealing whether the embedding makes certain syntactic information
accessible. Bigram shift tries to predict whether two adjacent words have been
swapped (that is, encoding the syntactic order of words). Tree depth asks to de-
termine the depth of the syntactic tree of the sentence, and the top constituent
task asks the classifier to determine the sequence of the top constituents di-
rectly below the sentence (S) node. The probing tasks that probe for semantic
properties are tense, subject and object number, Semantic Odd Man Out, and
coordination inversion. The tense task consists in finding the tense of the main
verb, whereas the subject and object number tasks ask to predict the gram-
matical number of subjects and objects of the main verb, respectively. The
task Semantic Odd Man Out is about predicting whether a sentence has been
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modified or not (i.e., a random noun or verb was replaced with another noun
or verb). Coordination inversion probes for the information whether two coor-
dinate clauses in a sentence have been switched. For example, “They might be
only memories, but I can feel each one” and “I can still feel each one, but they
might be only memories” (Conneau et al., 2018).

These probing tasks were defined for unimodal embeddings of natural lan-
guage. Machine learning that utilize multimodal embeddings is a lively field
(Adi et al., 2017; Felix et al., 2018; Socher et al., 2013), but little is known
about what properties these multimodal embeddings actually capture. Work,
such as by H. Wu et al. (2019), aiming to analyze embeddings according to the
composition of their encoded concepts is rare.

The establishment of probing tasks is one way to gain systematic knowledge
about what embeddings actually capture. Another complementary way is to
build taxonomies of multimodal machine learning techniques and multimodal
embeddings. Such taxonomies are proposed, for example, by Baltrusaitis et
al. (2019) and Beinborn et al. (2018). Both groups of authors categorize em-
beddings according to different but partly overlapping criteria. The taxonomy
by Baltrusaitis et al. (2019) classifies approaches according to five categories
of criteria: (a) representation – how complementary and redundant informa-
tion is represented, (b) translation – how data is mapped between modali-
ties, (c) alignment – whether and how elements in the different modalities are
aligned, (d) fusion – how information coming from different modalities is inte-
grated, and (e) co-learning – in which ways the learning exploits multimodality.

The taxonomy by Beinborn et al. (2018) for (learning) multimodal rep-
resentations distinguishes between (f) concept representations – embeddings
that use low-level representations of concepts, (g) projections – embeddings
that represent concepts using only one of the modalities, and (h) compositional
representations – approaches that fuse or jointly embed the different modalities.

Multimodal probing tasks can support the location of a given method in a
taxonomy without requiring intimate knowledge of its inner workings: probing
which information is accessible by a network trained on the resulting embed-
dings provides insight into what information is present and how it is repre-
sented. Some major difficulties of multimodal processing tasks and representa-
tions are discussed (from the perspective of multimodal grounding) by Beinborn
et al. (2018). Their discussion illustrates the usefulness of multimodal probing
in general, and of visual-semantic probing in particular:1

Combining complementary pieces of information Different modalities con-
tribute to the information content of multimodal input in complementary ways.
For example, highly relevant visual properties, like the fact that birds have
wings and violins are brown, are not usually mentioned in text as they are the
default. Conversely, taxonomic and functional relations between concepts are
poorly represented in images. Probing tasks that check whether, e.g., the word

1We extract two aspects from the four challenges discussed by Beinborn et al. (2018),
basically combining challenges 2–4, as our focus is not on grounding.
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brown relates to images of violins would allow to draw conclusions about how
successfully these dimensions are combined in the embedding.

Representation of abstract concepts Multimodal grounding of verbs is diffi-
cult in comparison to grounding nouns and adjectives. This should not come as
a surprise because verbs denote more abstract concepts than many nouns and
adjectives do. Abstract concepts like together, theory, and states of mind give
rise to similar difficulties. Probing tasks that evaluate how well such concepts
are represented in multimodal embeddings would thus be highly useful.

Combining complementary information: Different modalities contribute dif-
ferent qualitative data. For example, highly relevant visual properties (e.g.
birds have wings, violins are brown) are not represented in text, whereas tax-
onomic and functional relations between concepts are poorly represented in
images. An open question is to which extent image information contributes
when combined with text (most research investigating along these lines, focus
on nouns and adjectives only). The authors argue for multimodal approaches
that go beyond concept similarity.

Multimodal grounding of verbs: research investigating multimodal aspects
for verbs are extremely rare. Existing work suggest that the performance
for verbs is significantly worse (compared to nouns, adjective). The authors
in (Beinborn et al., 2018) compare different representations of combining visual
and textual verb pairs.

Imageability of abstract words: Concrete words can be visualized and vi-
sually represented much better than abstract words (e.g. together, theory).
This also holds for verbs with a high degree of embodiment (e.g. fall, dive)
compared to verbs with a lower degree of embodiment (e.g. know, decide).

Selective multimodal grounding: we lack an understanding of how to com-
bine concept representations and this is a difficult tasks since, for instance,
image collections are much more diverse for concrete concepts (e.g. ladder,
car) than for abstract concepts (e.g. happiness, intention). Thus, approaches
that perform selective multimodal grounding constitute a more plausible ap-
proach to sentence processing according to the authors. An open question
is how to visually represent coordinating expressions (e.g. but, nor, and, or,
so, yet). Casper et al. (2023) provides a comprehensive overview of probing
methods.

TODO Fit somewhere else In multimodal semantic analysis, the syntactic
domain is a Cartesian product of two or more domains, such as an image
with a caption. The syntactic domain is sparse, where words are represented
as one-hot vectors and images as their pixel values. The dense embedding,
on the other hand, captures semantic information that a complex model can
interpret. They allow for semantic analysis beyond what is possible with more
syntactic or handcrafted representations. One example of a simple example is
how it is possible to define distance between embeddings that carry semantic
information. There are many models based on machine learning techniques
that jointly process the input modalities (Shen et al., 2019; H. Wu et al., 2019).
Multimodal learning models such as DeViSE (Frome et al., 2013) demonstrate
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in particular that zero-shot learning can be signficantly improved by engaging
multiple modalities.

4.2 Probing Multimodal Embeddings for Linguis-
tic Properties

Semantic analysis aims to infer meaning from data, relating objects in a syntac-
tic domain to objects in a semantic domain. In natural language processing,
semantic embeddings from methods such as word2vec, BERT, and GPT-3,
revolutionised semantic analysis of text. The embeddings map words to real-
valued vectors which reveal semantic aspects, for example, if words are related
in meaning or belong to the same topic. Creating such an embedding means to
enrich as well as filter out information. Unavoidably, some (usually surface and
syntactic) information will be lost in the process of projecting words and their
contexts onto a representation that focuses on meaning. For example, when
the word ‘bat’ is seen in the context “the bat hits the baseball”, its embedding
vector is quite different from what it would have been if the context was “a small
bat captured by a zoologist”. Hence, there is a trade-off: the better we capture
the semantics, the more surface and syntactic information becomes blurred. It
depends on the downstream task what is the right balance between abstraction
and detail. What complicates matters is that embeddings are automatically
learned rather than crafted by hand, and thus it is not clear precisely which
aspects such an embedding actually represents.

The combination of modalities that has hitherto received the greatest inter-
est is the pairing of images and text, with their embeddings commonly called
visual-semantic embeddings. Throughout the rest of this paper, we focus on
visual-semantic embeddings, and base the empirical part of our work on the
dataset Common Objects in Context (MS-COCO), which consists of images
with captions (T. Lin et al., 2014).

When semantic analysis is applied to the text component of an image-
caption pair, the visual information can resolve semantic uncertainties such
as in the phrase “a man with a bat in his hands”. Figure 4.1 shows two MS-
COCO images,2 each image accompanied by two of its associated captions in
the dataset. While humans would probably glean the correct interpretation
of ‘bat’ and ‘club’ from the text alone (but not of ‘bird’), the visual-semantic
information is much less ambiguous. The vector diagram to the right of the
images illustrates how one might imagine the vectors of a word embedding such
as word2vec to be affected by moving to the multimodal embedding, including
visual information. Imagine the vectors ⟨bat⟩, ⟨bird⟩, and ⟨club⟩ to be those of
the pure word embedding. That is, for simplicity we assume that the words are

2The authors gratefully acknowledge the MS-COCO dataset (T. Lin et al., 2014) as
the source of the two photographs, licensed under https://creativecommons.org/licenses/
by-nc-nd/2.0/CC BY-NC-ND 2.0 and https://creativecommons.org/licenses/by-nc/2.0/CC
BY-NC 2.0, respectively.
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A tiny bat is held by someone with a
camera.
A man gently attempts to feed a baby
bird.

A man in shorts is swinging a bat.
A man is swinging a club with both
hands.

⟨bat⟩

⟨Chiroptera⟩

⟨bi
rd-

like
Chir

op.
⟩

⟨bird⟩

⟨club⟩

⟨club/bat⟩

Figure 4.1: Image-caption pairs (top) and how vectors representing the words
‘bat’, ‘club’, and ‘bird’ may be affected by the image information (above)
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embedded as in the original word2vec embedding, without taking the context
provided by the sentence into account. In particular, the two occurrences of
‘bat’ in the captions are represented by one and the same vector ⟨bat⟩, and
similarly for the two occurrences of ‘club’. Incorporating the information in
the corresponding image may affect the vectors. The principle is shown in
red for the combination of ‘bat’ and ‘bird’ with the left image,and in blue for
the combination of ‘bat’ and ‘club’ with the right image. On the left, ⟨bat⟩
becomes ⟨Chiroptera⟩ (i.e., the vector now represents the mammal of the order
Chiroptera) and ⟨bird⟩ becomes ⟨bird-like Chiroptera⟩, intuitively representing
a hybrid between birds and Chiropteras. In the right, both ⟨bat⟩ and ⟨club⟩ are
turned into a vector ⟨club/bat⟩ representing bats in the sense of clubs. While
the information becomes semantically more accurate, other aspects are lost,
e.g. whether the word ‘bat’ or ‘club’ was used, and probably also the fact that
the second caption on the left actually mentioned a bird.

We propose probing tasks for visual-semantic embeddings (in other words,
images with captions). In particular, we are interested in tasks that shed light
on whether and how a given embedding makes use of the image information in
relation to linguistic phenomena such as synonyms and polysemy.

Section ?? motivates our approach and relates it to existing work. Sec-
tion 4.2.1 provides a systematic discussion and formalisation of probing tasks
for visual-semantic embeddings. With this, we hope to map out which prop-
erties probing tasks of various types can be used to investigate. Section 4.2.2
introduces three concrete probing tasks that illustrate our approach, and which
are used in our actual experiments reported on in Section 4.2.3. The code is
publicly available.3 The conclusion in Section 4.2.5 summarizes our findings
and lists future challenges for multimodal probing.

4.2.1 Systematic Probing for Properties of Visual-Semantic
Embeddings

In this section we develop a general view of visual-semantic probing tasks, and
lift the ideas of Conneau et al. (2018) to the multimodal realm. Consider a prop-
erty Π that a given embedding E may or may not have. In the visual-semantic
case, such a property may be “the embedding associates visual properties with
the nouns in the text component” or “the embedding encodes the number of
objects in the image”. A probing task is defined to be a machine learning task
– usually a classification task – that is designed in such a way that a model
can be trained on E, and the achieved performance allows to draw conclusions
regarding the extent to which E possesses property Π.

We are specifically interested in developing probing tasks for visual-semantic
embeddings E, where Π is a property that reflects aspects of the multimodal
nature of E. Ultimately, the goal is to come up with tasks that probe how the
embedding maps the individual modalities into a common space. While we are

3https://github.com/dali-does/vse-probing
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not quite there yet, below we provide a general discussion of what to look for,
and how such tasks may be categorized. Probing tasks that meet the following
requirements seem to be especially valuable:

1. The task is a well-defined classification problem on combined (i.e., joint
or coordinated) embeddings of two or more modalities.

2. The task gives insight into whether and how the multimodal embedding
integrates the modalities.

3. The task has a simple and well-defined structure, so that the results are
straightforward to interpret.

4. The task can be evaluated on standard data sets, or on datasets that can
be created from such.

We propose that the probing tasks are organized according to how they
make use of the information in the sample data to map out embedding char-
acteristics. For the visual-semantic case, at an abstract level, each probing
task either probes the embedding of the original text-image pair (T, I), or it
is based on turning (T, I) into (T ′, I ′) in a well-specified manner, such that by
comparing the performance of a classifier on emb(T ′, I ′) and emb(T, I), one
can draw conclusions about the embedding. Depending on how T ′ and I ′ are
obtained, different types of probing tasks arise.

Direct Probing

Probing tasks based on emb(T, I), that is, without inflicting changes on either
part, are easy to implement, but have limited potential to reveal information
about the specifically multimodal characteristics of the embedding. Neverthe-
less, some of the probing tasks by Conneau et al. (2018) have meaningful coun-
terparts in this context. Here, we mention only the number of concepts, which
is similar to sentence length and translates into complexity : given emb(T, I),
the task is to determine |T |, |I|, and |(T, I)|, where |T | is the number of con-
cepts mentioned in T (objects and properties of objects, say), |I| is the number
of concepts in I (i.e., the number of segments and their properties), and |(T, I)|
is the number of concepts in (T, I). In the latter, an image segment and its
counterpart in T would be counted only once. Note that an embedding may be
expected to be ideal for determining |T | and |I| if it keeps the two modalities
entirely separate, while good performance on the task of determining |(T, I)|
indicates a tighter integration.

Creation of Inconsistencies

By considering emb(T − x+ y, I) or emb(T, I − x′ + y′) where y and y′ do not
align with x and x′, respectively, the effect of inconsistencies can be studied.
For example, nouns in T aligned to objects in I may be replaced with other
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nouns, and similarly for adjectives referring to attributes of objects in I such
as position, color, size, form, and number. Variants may rely only on injecting
inconsistent information, that is, emb(T + x, I + y), where x and y form an
inconsistent pair such as x = ball and y = cube. However, depending on the
nature of the embedding this may require to make sure that T + x is actually
a reasonably well-formed sentence.

The Challenge of Interpreting Probing Results

We end this section with an urge for caution in the interpretation of probing
task results, especially in the multimodal setting, and even more so when the
results are “negative”.

Consider the task of determining the length of the caption of a text-image
pair. If classifiers trained on this task perform well, this indicates that the em-
bedding is not well integrated. The reason is that a well-integrated embedding
would blur the distinction between the image and the caption, presumably asso-
ciating a high sentence length even if a complex image is provided with a short
caption. Unfortunately, the converse is not true: if classifiers perform badly,
the reason may equally well be that the textual part of the embedding simply
does not capture sentence length, or that the chosen classifier was unsuitable
for the task. It may thus be easier to interpret a probing task that asks for the
number of objects present in the text-image pair (see Section 4.2.2). Even in
this case, poor performance does not necessarily say much about the nature of
the embedding, because also a highly integrated embedding can be unsuitable
for the counting task. However, despite these difficulties, this type of probing
task may yield important insights if one is aware of the interpretation pitfalls.

4.2.2 Concrete Probing Tasks
This section illustrates the abstract principles introduced in Section 4.2.1 through
a set of concrete probing tasks. These tasks will be experimentally tested in
Section 4.2.3 and will, in future work, be extended with tasks of the types
proposed in Section 4.2.1 to highlight complementary aspects of the semantic
embeddings.

Direct Probing

Our first proposed probing tasks are instances of direct probing, as discussed
in Section 4.2.1: ObjectCategories and NumObjects. In ObjectCategories, the
task is to determine which of the 80 MS-COCO object categories are present in
a given image. To turn the task into a simple classification task, we restrict the
dataset to image-caption pairs in which only one of the 80 object categories is
present (possibly multiple times). The second direct probing task, NumObjects,
asks to estimate the number of object instances in the image. For this task, we
bin the object instances present in an image into 6 bins (5 equidistant bins for
the interval 0–29, and one bin for ≥ 30 objects).
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Semantic Congruence

Detection of semantic incongruity is an example of a probing task that arises
from the creation of inconsistencies (see Section 4.2.1). It reveals whether the
information propagated by emb(T, I) is sufficient to recognize that a caption
has been modified, and to what extent this information stems from the visual
part I. The associated probing task SemanticCongruence is the classification
task that asks whether a caption has been modified. Later, we will perform
this task on both emb(T, ∅), and emb(T, I). Without the image information,
the decision must be based on purely linguistic features such as syntactic form,
relative word frequencies, semantic consistency, and so forth. When the image
is present, the model can also exploit incongruities between the modalities to
detect modifications.

The characteristics of this probing tasks are largely determined by how the
captions are modified, something that can be accomplished in numerous ways.
FOIL-COCO by Shekhar et al. (2017) consists of modified MS-COCO pairs
obtained by choosing, from each caption, a name of an object category and
replacing it by another noun taken from the same MS-COCO super category.
The replaced nouns occur in more than one caption, but their substitutes are
salient in that they are not among the objects annotated in the image. To
create plausible captions, the authors over-generate captions and use an LSTM
trained on the original dataset to keep only the highest ranking ones.

To explore a range of linguistic features broader than nouns, which are the
focus of FOIL-COCO, we compile a corpus of modified captions in which the
linguistic head of each caption has been replaced. The procedure for modifying
a caption works as follows. First, we run the Stanford dependency parser (Qi
et al., 2020) on the caption to pick out the head. The parser also provides us
with a part-of-speech tag for the head, which we use as input to the classical
disambiguation algorithm by Lesk (1986). The algorithm returns the most
likely synonym set (synset) and the abstract category assigned to the word by
Wordnet. The replacement word is picked from a synset that is in the same
Wordnet category. For example, if the head is ‘walk’ in the abstract category
verb.motion then we might choose ‘fly’ from the same category. For simplicity,
we avoid proper nouns. When the head is a verb, we prefer replacement words
sharing the same set of frames, i.e., that can fill the same functions. Finally, we
inflect the replacement word to match the inflection form of the head, and also
mimic capitalization. To obtain a challenging data set, we generate N = 10
modified sentences for each caption and then use BERT (Devlin, Chang, et al.,
2019) as a language model to select the best scoring alternative. This yields
sentence pairs such as that of Figure 4.2.

4.2.3 Experiments

This section describes our experiments with direct probing (see Section 4.2.2)
and semantic congruence probing (see Section 4.2.2).
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1.1 A child holding a flowered umbrella and petting a yak.
1.2 A checker holding a flowered umbrella and petting a yak.

2.1 A young man holding an umbrella next to a herd of cattle.
2.2 A young mime holding an umbrella next to a herd of cattle.

3.1 A young boy holding an umbrella touching the horn of a cow.
3.2 A young wad holding an umbrella touching the horn of a cow.

4.1 A young boy with an umbrella who is touching the horn of a cow.
4.2 A young bear with an umbrella who is touching the horn of a cow.

5.1 A boy holding an umbrella while standing next to livestock.
5.2 A fry holding an umbrella while standing next to livestock.

Figure 4.2: In task SemanticCongruence, the objective is to recognise seman-
tically implausible captions.
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Experimental Setup

Dataset We use the Microsoft Common Objects in Context (MS-COCO)
dataset curated by T. Lin et al. (2014). It consists of approximately 123 000
images, each with at least five human-written captions. The object categories of
the manually annotated image segments comprise 80 object categories, grouped
into 11 supercategories. We use the splits provided by Karpathy and Fei-Fei
(2015), consisting of 82 783 train, 5000 validation, and 5000 training images,
respectively. For testing, 5000 image-caption pairs over 1000 images are used of
the test data, limited by what precomputed values are used by the investigated
models. This split is originally used in training all the multimodal embeddings.
We use image features precomputed by VGG19 (S. Liu & Deng, 2015) and
ResNet-152 (He et al., 2016), as detailed in Table 4.2.

Models The visual-semantic models analysed through our probing tasks are
VSE++ (Faghri et al., 2018), VSE-C (H. Shi et al., 2018), and HAL (F. Liu
et al., 2020). In addition, we use the well-known unimodal language models
BERT (Devlin, Chang, et al., 2019) and GPT-2 (Radford et al., 2019a).

Following the taxonomy by Beinborn et al. (2018), VSE++, VSE-C, and
HAL are cross-modal transfer models trained via joint learning on the MS-
COCO dataset. The implementations of VSE-C and HAL are both based
on the open source code for VSE++. We use pretrained versions of these
models, as provided with the respective papers. VSE++ learns visual-semantic
embeddings by incorporating hard negatives into the loss function and using
a similarity function that scores higher for the correct image-caption pairs
than for the semantically incorrect ones (that is, for the negative samples).
VSE-C learns instead by manipulating the original captions in the MS-COCO
dataset so that they constitute contrasting image-caption pairs. HAL uses the
same architecture as VSE++, but tries to avoid the so-called hubness problem
where the results are skewed by frequently occurring vectors, by making the
loss function aware of such structural properties of the data.

As all X ∈ {VSE++,VSE-C,HAL} embed the two modalities individually
(though trained on the actual multimodal data), each results in two separate
models Xtext and Ximage. We use these models in our experiments, in addi-
tion to “true” multimodal models Xavg and Xconc obtained by averaging and
concatenating (resp.), the corresponding vectors in Xtext and Ximage.

BERT (Bidirectional Encoder Representations from Transformers) is a bidi-
rectional language model introduced by Devlin, Chang, et al. (2019). It consid-
ers the left and right context surrounding a word, and relies on unsupervised
learning to pre-train deep bidirectional language representations. We use an
existing BERT model trained on the BookCorpus with 800 million words and
on the English Wikipedia pages with 2 500 million words (Devlin, Chang, et al.,
2019). The last model, GPT-2 (Generative Pre-Training, second generation), is
a transformer-based unidirectional language model trained on 40GB of lightly
curated Internet text (Radford et al., 2019a). We use the Transformers library
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Model Precomputed features Emb. Size Parameters

VSE++ VGG19 1024 15.5(159.2)M
VSE-C ResNet-152 1024 13.8(74.1)M
HAL ResNet-152 1024 11.3(71.6)M
GPT-2 768 117M
BERT 768 110M

Table 4.2: Overview of the investigated embeddings. The total size of the
model, including models used to extract precomputed image features, is given
in parenthesis.

for these models (Wolf et al., 2019a).

Probing We perform the three classification tasks ObjectCategories, NumOb-
jects, and SemanticCongruence. For NumObjects, the label distribution be-
tween the 6 bins (see Section 4.2.2) is 47 443, 17 580, 9 626, 4 549, 2 061, 1 524
during training and 3 025, 1 060, 470, 240, 130, 75 during testing. Our baseline
is naively guessing the largest class. The ObjectCategories task is based on
9 629 and 1 145 samples in the training and test data, respectively. For the
SemanticCongruence task, a modified caption is chosen with probability 0.5,
and remains the same for all models tested for fair comparison. We note that
more complex models could yield higher accuracies, but following the results
of (Hewitt & Liang, 2019) on probe model selectivity, this improvement does
not necessarily reflect the availability of the information probed for. Therefore,
we use two classifiers for probing; one multilayer perceptron (MLP) with one
hidden layer of 256 nodes and sigmoid activation, and one linear classifier with
softmax activation. Both models use a dropout of 0.2, similar to (Conneau
et al., 2018). The probing models are trained on the MS-COCO data for 30
epochs using the cross-entropy loss function. In all cases the models start to
converge within the last 10 epochs. The results reported are for the test split.

Embeddings For each probing task, the input to the classifier is either the
image embedding from one of our used models (VSE++image, VSE-Cimage,
HALimage) or the text embedding from one of our models (VSE++text, VSE-Ctext,
HALtext, BERT, GPT-2). For the size of the embeddings we refer to Table 4.2.
For SemanticCongruence the Xtext input consists also of modified captions. In
order to contrast the probing results obtained with those for embeddings con-
taining the full visual-semantic information, we also consider Xavg and Xconc,
for X ∈ {VSE++,VSE-C,HAL}. All weights of each model are frozen, mean-
ing that no weights are updated for the embedding models during the probing.

Experiment Details The implementation is written in Pytorch 1.4.0 and
trained on a NVIDIA Tesla V100 32GB GPU using CUDA 10 with Tensorflow
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2.1. The models are all trained for 30 epochs, where each epoch times in at
100 seconds on average, and the experiments are conducted using the Adam
optimizer with learning rate 1.0× 10−4 for ObjectCategories and NumObjects,
and 1.0× 10−3 for the SemanticCon probing task. During initial experiments
SGD was also considered but Adam showed better performance.

The implementations of VSE++4, VSE-C5, and HAL6 the open sourced
Github repositories with the best corresponding pretrained models are used.
For BERT and GPT-2, the Python library Transformers7 is used to access
pretrained models. In both cases the base model is used, since initial experi-
ments showed no significant difference when using larger models and in interest
of keeping the comparison fair given that the larger models are substantially
larger than the visual semantic embedding models. All pretrained models are
outlined in Table ??. Random numbers generated with Numpy uses a fixed seed
of 1974, to make the experiments reproducible.

4.2.4 Results and Analysis

Table 4.3 shows the results for the ObjectCategories, NumObjects and Seman-
ticCongruence tasks, using both a MLP and a linear probe. While the two
types of probes perform differently, the relative behavior across embeddings is
very similar. A notable deviation from this general rule is the performance of
BERT and GPT-2 on the ObjectCategories task (see below).

ObjectCategories We note that the text-only embedding for all three visual-
semantic models yields better performance on the ObjectCategories task than
the corresponding text-only embedding, with the exception of the linear probe
for HAL. Worth noting is that out of the multimodal embeddings, HAL per-
forms well on image-only but worst on text-only for both probes. Further,
there is a large gap between the performances of MLP and linear probes on
the BERT and GPT-2 embeddings. This supports the conclusion of Hewitt
and Liang (2019) that MLPs, rather than acting as probes, may simply learn
the task itself if provided with sufficiently rich embeddings as input, and that,
therefore, linear probes may be a more appropriate choice.

Note also that BERT performs best for both probes in the text-only case,
while GPT-2 scores the lowest. All merged embeddings significantly outper-
form their corresponding unimodal embeddings, with concatenated VSE++
scoring the highest for both probes. Merging the embeddings shows an im-
proved accuracy of 3.8–11.9% across both probe types, which suggests that
the visual-semantic models combines the multimodal data in a useful way to

4https://github.com/fartashf/vsepp
5https://github.com/vacancy/VSE-C
6https://github.com/hardyqr/HAL
7https://github.com/huggingface/transformers/
8Since BERT is used during the generation of congruencies, this result is somewhat self-

referential.
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Embedding ObjectCat. NumObjects SemanticCon.
MLP lin MLP lin MLP lin

Baseline - 0.605 0.502

Image
VSE++image 0.753 0.768 0.646 0.613 0.502 0.506
VSE-Cimage 0.754 0.675 0.654 0.629 0.503 0.504
HALimage 0.799 0.730 0.674 0.633 0.533 0.510

Text
VSE++text 0.862 0.863 0.627 0.610 0.739 0.710
VSE-Ctext 0.838 0.805 0.629 0.617 0.763 0.756
HALtext 0.826 0.648 0.625 0.611 0.730 0.737
BERT 0.878 0.365 0.622 0.599 0.816 0.7688

GPT-2 0.811 0.137 0.617 0.585 0.792 0.718

Merged
VSE++avg 0.862 0.876 0.658 0.638 0.707 0.662
VSE++conc 0.911 0.901 0.661 0.641 0.743 0.713
VSE-Cavg 0.831 0.783 0.665 0.636 0.735 0.713
VSE-Cconc 0.896 0.879 0.666 0.652 0.776 0.758
HALavg 0.847 0.820 0.667 0.642 0.712 0.702
HALconc 0.903 0.849 0.683 0.648 0.730 0.730

Improvement
by merging
VSE++ 0.049 0.038 0.015 0.028 0.040 0.003
VSE-C 0.058 0.074 0.012 0.023 0.013 0.002
HAL 0.077 0.119 0.009 0.015 0.000 -0.007

Table 4.3: Probing accuracies using a MLP with embeddings as input. The
bottom three show for each model the difference between the best unimodal
and the best merged embedding. All results are averaged over 5 runs and have
variance ≤ 0.01.
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capture which objects are present in a scene. Overall VSE++ seems to best
capture and combine information about the object categories, beating BERT
and GPT-2 by a large margin for both probes.

NumObjects The results for the NumObjects task show that the text em-
beddings consistently encode the probed information in a less accessible manner
than the corresponding image embeddings which are, in turn, outperformed by
their merged counterparts. Using MLP probing, HAL reaches the highest accu-
racy on both image-only and its merged embeddings, whereas VSE-C appears
to be on par with HAL on merged embeddings under a linear probe, the precise
result depending on the merging strategy. It is worth noting that the improve-
ments from merging the embeddings are small, but are larger when using a
linear probe. Once again, this supports the conclusion of Hewitt and Liang
(2019) as it indicates that the weaker probes exhibit a better sensitivity.

It is worth noting that the best result for the NumObjects task is only
about 8% better than the baseline. This seems to indicate that the task could
be improved. Most of the images contain fewer than 10 object instances, thus
falling into classes 1 and 2.9 Table 4.4 display the per-class accuracy, showing
that the accuracy for most embeddings and models is above 90% for class 1,
and between 30-50% for classes 2,3, and 6. Classes 4 and 5 (i.e., 18–23 and
24–29 object instances) yield accuracies of approximately 4–18% and 3–15%,
respectively. Further, the per-class accuracies show that the linear probes show
performance comparable to the MLP probe on the first three classes, but never
learn the 24–29 object class, and very few of the 18–23 and ≥ 30 samples.

Image scenes containing 0–5 object instances can exhaustively be described
with words, mentioning numbers and listing distinct objects explicitly (“a cup
and a fork”), whereas scenes containing 18–29 objects are harder to explicitly
describe. The high accuracy for scenes with more than 29 objects may be due
to the fact that the large number of object instances is a “property of the image”
and might therefore be described with words such as “crowd”. A more balanced
distribution could amplify the differences. Table 4.4 show that for class 1 (i.e.
0-5 object instances) the performance of the text-only embeddings is slightly
better than for the multimodal embedding, which in turn performs slightly
better than the image-only embedding. The results for class 1 is in average 0.9
for all three embeddings. For class 2 and 3 (i.e. 6-11 and 12-17 object instances)
the performance for all three embeddings drops significantly (to an average of
0.2) and text-only has the lowest performance whereas the performance of
multimodal embeddings is higher than for image-only embeddings. For class 4
and 5 (i.e. 18-23 and 24-29 instances) the performance continues to drop for
all three embeddings with text lowest performance and slightly better or worse
performance for image-only and multi-modal (depending on the considered
model and embedding). For class 6 (30+) the performance for all embeddings
and models increase again (and is similar to that in class 2, 6-11 objects). 30+

9Remember that we have 6 output labels representing the number of object instances.
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text lowest again where the multimodal embedding are better for VSE++ avg
(not conc) and for HAL mm does not add antyhing.

Model 0–5 6–11 12–17 18–23 24–29 ≥30
MLP lin MLP lin MLP lin MLP lin MLP lin MLP lin

Image
VSE++image 0.92 0.95 0.32 0.23 0.25 0.09 0.19 0.00 0.12 0.00 0.40 0.18
VSE-Cimage 0.92 0.93 0.40 0.34 0.28 0.25 0.06 0.07 0.00 0.00 0.48 0.53
HALimage 0.91 0.97 0.41 0.21 0.33 0.02 0.15 0.00 0.04 0.00 0.53 0.00

Text
VSE++text 0.93 0.93 0.29 0.26 0.15 0.09 0.04 0.04 0.00 0.00 0.24 0.13
VSE-Ctext 0.92 0.96 0.39 0.22 0.29 0.05 0.11 0.00 0.00 0.00 0.56 0.19
HALtext 0.94 0.96 0.26 0.15 0.12 0.00 0.09 0.00 0.02 0.00 0.23 0.00
BERT 0.96 0.99 0.16 0.04 0.13 0.00 0.00 0.00 0.03 0.00 0.20 0.00
GPT-2 0.92 1.00 0.22 0.00 0.23 0.00 0.04 0.00 0.05 0.00 0.24 0.00

Merged
VSE++avg 0.91 0.94 0.38 0.31 0.30 0.14 0.12 0.04 0.06 0.00 0.43 0.24
VSE++conc 0.93 0.94 0.38 0.32 0.31 0.17 0.18 0.05 0.15 0.00 0.32 0.24
VSE-Cavg 0.93 0.96 0.34 0.28 0.25 0.10 0.08 0.02 0.00 0.00 0.53 0.25
VSE-Cconc 0.93 0.95 0.29 0.34 0.17 0.14 0.04 0.07 0.01 0.00 0.25 0.28
HALavg 0.93 0.97 0.40 0.27 0.25 0.16 0.13 0.02 0.08 0.00 0.51 0.08
HALconc 0.92 0.95 0.43 0.33 0.30 0.22 0.17 0.00 0.11 0.00 0.52 0.00

Table 4.4: Accuracy per label of the tested models A more detailed account of
the accuracy of the tested models for the task NumObjects. The class labels
correspond to the number of objects annotated in the image..

SemanticCongruence The results obtained from the SemanticCongruence
probing suggest that the additional information provided by the multimodal
component does not make up for the relative loss of linguistic information. This
becomes particularly clear when using linear probing. VSE-Ctext outperforms
VSE++text and HALtext, but is in turn clearly outpaced by the unimodal em-
beddings BERT and GPT-2. If we add visual information (to VSE++, VSE-C,
and HAL), the performance generally does not increase, and even decreases in
one instance. Our interpretation is that the alternative captions can be rec-
ognized from linguistic patterns such as verb-preposition agreement and other
contextual information soley from having a good language understanding. Go-
ing back to Figure 4.2, we recognize that a well-formed sentence can still be
highly unlikely given an understanding of language, just as Chomsky’s famous
example “Colorless green ideas sleep furiously” (Chomsky, 1975). Further, al-
though the visual information could provide additional clues, it also adds noise
and makes the relative proportion of linguistic data smaller. If this interpre-
tation is correct, an improved linguistic quality of the alternative sentences
should make the visual information more valuable for the task. Since this vi-
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sual information cannot encode whether the caption was modified, HALimage
aligns with the results of Hewitt and Liang (2019), suggesting that this MLP
probe learns something other than the probing task. Finally, we note the good
performance of BERT despite the fact that BERT was the embedding used
to select the most convincing alternative captions, which should make them
particularly apt at confusing BERT.

TODO Fix figures and description This section gives a sample of images
from MS-COCO, together with original captions (x.y.1), where x ∈ N identifies
the image and y ∈ {1, . . . , 5} identifies the original caption, and two series of
modified versions, one series (x.y.2) of lower quality, and one series (x.y.3)
of higher quality, both modifying the caption x.y. We use the higher quality
series in the semantic congruence task. The modified versions illustrate some
of the challenges of automatically generating syntactically valid alternatives.
The most common reason for poor captions is that lexical disambiguation has
failed, or that we do not control for verb-preposition coherence.

2.1.1 That looks like a wall mural in the background of this photo ...
2.1.2 That occupies like a wall mural in the background of this photo ...
2.1.3 That runs like a wall mural in the background of this photo ...

2.2.1 A huge heard of sheep are all scattered together.
2.2.2 A huge heard of sheep are all pumped together.
2.2.3 A huge heard of sheep are all resurfaced together.

Summary We see that the multimodal embeddings in the merged section
of Table 4.3 outperform their image- and text-only embeddings on the tasks
ObjectCategories and NumObjects. This indicates that the text- and image-
only embeddings complement each other in what information they encode, and
that merging them can utilize this fact. The concatenated embeddings yield
consistently better performance than the averaged ones, probably because the
complementary information is fully retained. It is not clear how well the text-
and image-only embeddings project to the same space, which together with
the introduction of noise from the respective modality can cause averaging to
drown out important information. Still, averaging gives better performance
than unimodal approaches except for VSE-C on ObjectCategories. The first
two tasks are highly visual, which makes it only reasonable that the image
embeddings encode more information of concern in these problems. It is also
suggested from the results that the state-of-the-art unimodal text embeddings
have a better semantic language understanding. It seems that there is a trade-
off between language modeling versus understanding visual concepts, and that
the training of the multimodal models has favored the latter. This idea also
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aligns with the fact that these models are built for image-to-text and text-
to-image retrieval, a task for which the unimodal embeddings are insufficient.
Interestingly, HAL seems to be more focused on visual information as seen
in the results on ObjectCategories and NumObjects. This could help explain
why HAL outperforms VSE++ and VSE-C on text-to-image and image-to-text
retrieval. We also note, importantly, that the language models are larger by
factors 1.45 up to 10, excluding/including the network used to precompute im-
age features, respectively. This can help explain why the multimodal models
are not as capable in distilling the probed information in the text-only Object-
Category task as BERT. To conclude, the results show that the image and text
embeddings complement each other in understanding visual concepts, but that
this does not extend to the understanding of language itself, as shown in the
results on SemanticCongruence. Therefore, we conjecture that there is signifi-
cant room for improvement on the multimodal embeddings for understanding
scene semantics.

4.2.5 Conclusions

Probing semantic embeddings with neural-network based classifiers is like look-
ing into a black box with a lens that is itself a black box. Valuable information
can still be derived, but experiments that take this approach must be made with
care, and the results analysed with caution. One approach to mitigate such
opacity is proposed by Hewitt and Liang (2019), namely that the probing task
is complemented with a control task to alleviate a possible misinterpretation
of what semantic representations actually encode.

In the multimodal setting, it is helpful to use probing tasks (as well as
complementing control tasks) that are simple, well-defined, and easily imple-
mented on standard data sets. The importance of a task being well-defined is
illustrated, albeit in a negative way, by the NumObjects task: Since there are
countless equally valid ways to semantically decompose an image, it can simul-
taneously be true that an image shows dozens of sheep and that it shows a single
herd. The flaw is arguably not as much in the task itself, as in the combination
of task and data set. We may, for example, expect that the NumObjects task
comes to its right in situations where logical units of counting are understood
in advance, e.g., in the case of camera footage tracking traffic congestion, where
a natural unit would be the number of vehicles. An interesting finding from
our initial experiments was the importance of linguistic compared to visual
information for complexity estimation and semantic incongruity detection.
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4.3 NOT REWRITTEN AT ALL - Bridging Per-
ception, Memory, and Inference through Se-
mantic Relations

In Chapter ??, we saw how Bender and Koller (2020) and Bender et al. (2021b)
postulate that it is impossible to learn meaning from surface form alone, and
express concerns about what is perceived as an over-reliance on large-scale
pretrained neural networks. This line of thought supports the interest in hybrid
systems that amalgamate elements from complementary learning paradigms
(see, e.g., (Hohenecker & Lukasiewicz, 2020; Pearl, 2019; van Bekkum et al.,
2021; P.-W. Wang et al., 2019)). In (Dahlgren et al., 2021), we argue that this
calls for an explicit distinction to be made between the faculties of perception,
memory, and inference. We therefore promote the development of systems that
consist of subsystems with responsibilities corresponding to the three faculties.
Such future systems would thus consist of a perception component realised
by a neural network, a component that provides explicit memory in the form
of a knowledge base, and a third one performing symbolic inference, that is,
rule-based reasoning.

We suggest to study how the subsystems can be aligned so for a seamless
information flow between them. We view it as particularly important that
(i) the network and the knowledge base together yield a consistent treatment
of semantic relations and (ii) training takes the knowledge base into account,
so that the resulting embeddings are consistent with established facts. Our
conceptual discussion is complemented by a preliminary empirical evaluation
of six popular English language models, which we subject to linear probes to
test their abilities to capture central semantic relations.

After a brief discussion of related work in Section 4.3.1, Section 4.3.2 dis-
cusses the role of semantic relations in the context of our envisioned triad
system while Section 4.3.3 and 4.3.4 of this paper complement our conceptual
discussion with a preliminary empirical evaluation of the chances to achieve (i)
by probing six popular language models with respect to a semantic relation
learning task.

4.3.1 Related work

There is a rapidly growing literature on relation extraction and hybrid sys-
tems. Petroni et al. (2019b) observe that language models such as BERT (De-
vlin, Chang, et al., 2019) and GPT-3 (T. B. Brown et al., 2020) are imprinted
with large amounts of common sense and factual knowledge during training.
If this information can be reliably extracted then, they argue, word embed-
dings could find a new use as knowledge bases. To test the practicality of this
approach, they consider a knowledge extraction task where a language model
is given a sentence containing a subject word x and a relation R, but where
the object word y has been removed, and the model should guess the miss-
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ing y (i.e., rank the vocabulary words) based on the fact that x and y are in
the relation R. The sentences are generated based on manually constructed
templates, one per relation. For example, to the relation birth-place, they use
the template “⟨subject⟩ was born in ⟨blank⟩” and instantiate it to “Dante was
born in ⟨blank⟩”. The most important baselines are two variations of the rela-
tion extraction model by Sorokin and Gurevych (2017). Key findings are that
language models appear to be better at learning one-to-one relations, whereas
the relation extraction models are better at picking out many-to-many rela-
tions. Petroni et al. also find that the choice of template has an impact on the
performance of the language models, and point this out as an item for future
work.

Bouraoui et al. (2020) pick up this thread and propose a method for extract-
ing good template sentences from BERT, and using these to fine-tune BERT so
as to improve its performance on relation extraction. For a target binary rela-
tion R (represented as a set of ordered pairs) and a sample of pairs R ⊆ R, they
filter the training data for sentences expressing that x and y, with (x, y) ∈ R,
have the relation R, and which would still be natural if x and y where simulta-
neously replaced by some other (x′, y′) ∈ R. Finally, they fine-tune a language
model to predict, from an instantiation of one of the remaining sentences with
a pair (x′′, y′′), whether (x′′, y′′) ∈ R. The most relevant aspect of this work for
the present effort is the evaluation of the Bigger Analogy Test Set (also known
as BATS) which contains 40 relations with 50 instances per relation (Gladkova
et al., 2016). Bouraoui et al. (2020) report a mixed performance on the type
of semantic relations considered here, namely hypernyms and hyponyms.

Additional methods for choosing template sentences are proposed by Jiang
et al. (2020) who, similar to Bouraoui et al. (2020), mine the training data
for suitable sentences. A dependency analysis on candidate sentences makes
it possible to extract a larger variety of phrases that express the desired rela-
tionship than Bouraoui et al. (2020) can. The authors also generate candidate
sentences by paraphrasing. In short, they find that both mined and paraphras-
ing have their usages, and that combinations of template types, e.g., manually
constructed and mined, often perform well.

Poerner et al. (2019) question the conclusion by Petroni et al. (2019b) that
BERT contains factual knowledge derived from the training data. The authors
believe that in may cases, BERT simply exploits superficial similarities and
general patterns to guess what is most likely. For example, from the fact that a
person has a typically French surname, BERT could guess that that person is
actually French without having learned the nationality of the particular person.
To expose this weakness, (Poerner et al., 2019) remove what they believe are
easily guessed pairs of subjects and objects from the data set of (Petroni et al.,
2019b). They also provide a modified version of BERT, E-BERT, in which
the embeddings of entities mentioned in Wikipedia have been replaced by a
symbolic entity embedding. They find that E-BERT outperforms both BERT
and ERNIE on the trimmed data set, but also that a combination E-BERT
and BERT (taking the average of or concatenating the embeddings) give higher
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Synonymy Hyponymy Meronymy

band set assumption theory house library
circle miracle attic
ring audacity porch

office agency copper metal road bend
bureau penny crossing
authority policeman turnout

origin root correction improvement song words
source therapy language
blood punishment chorus

Table 4.5: Instances of the relations synonymy, hypernymy, and meronymy
extracted from WordNet.

accuracy than either on its own.
Rosenbloom (2010) model different types of declarative and procedural

memory with what is essentially weighted hypergraphs, in which nodes corre-
spond to actions and conditions, and edges to activation functions. Procedural
and declarative memory are distinguished based on the direction in which val-
ues are propagated through the hypergraph. The analogy to human cognition
is that procedural memory contains information about how to do something,
whereas declarative memory concerns facts and events.

4.3.2 The role of semantic relations

As the brief account given in the previous section shows, there is a solid body of
work on the extraction of relations from language models (see Section 4.3.1), to
derive facts such as that the birth place of Olga Tokarczuk is Sulechów, Poland,
and that the capital of Bolivia is La Paz. Looking to knowledge bases, it is
natural to view them as graphs, where nodes represent objects and properties,
and edges represent semantic relations. Finally, for logical inference, basic

fish vertebrate craniate

centralised brainstarfish

hypernym

hyponym

synonym

meronym

meronym
/

Figure 4.3: In this work we focus on recovering synonyms, hypernyms, hy-
ponyms, and meronyms from natural language models via probing to under-
stand the prerequisites of integration with knowledge bases.

77



semantic relations such as synonymy, hyponymy, hypernymy, and meronymy
play a central role. We recall that words are synonyms if they have (nearly) the
same meaning; that a hypernym of a concept is a generalisation of that concept
(e.g., ‘bird’ is a hypernym of ‘sparrow’), while a hyponym is an instance of the
concept (e.g., ‘spider’ is a hyponym of ‘arachnid’), and that a meronym of
a concept is a part of the whole (e.g., ‘branch’ is a meronym of ‘tree’); see
Table 4.5 for examples found in WordNet (Miller, 1992).

For logical inference, we can infer that starfish are not fish from knowing
that ‘heart’ is a meronym of ‘craniate’ but not of ‘starfish’ (all craniates have
hearts whereas starfish do not), ‘vertebrate’ is a hypernym of ‘fish’ (fish are
vertebrates), and ‘craniate’ is a synonym of ‘vertebrate’. See Figure 4.3 and
Table 4.5 for further examples.

To achieve a seamless integration of a neural network with a knowledge
base of relations and an inference engine, we propose to devise methods for
(i) enabling the network to utilise the knowledge base, but fall back on the
less certain information in the embedding when necessary and (ii) taking the
relations in the knowledge base into account during network training, so that
the trained network reflects the contents of the knowledge base. In this endeav-
our, we believe that particular emphasis should be placed on the treatment of
lexico-semantic relations such as meronymy, hyponymy, and synonymy because
of their central role in logical deduction and lexical semantics.

4.3.3 Empirical study: method

To gain some initial insight into how well state-of-the-art pretrained contex-
tual embeddings handle lexico-semantic relations, we conducted experiments on
word embeddings generated by ALBERT (Z. Lan et al., 2020), ROBERTa (Y.
Liu et al., 2019), BERT (Wolf et al., 2019b), and GPT-2 (Radford et al.,
2019b). We also included Word2Vec (Mikolov et al., 2013b) and GloVe (Pen-
nington et al., 2014) models in our experiments, for comparison. These are
all self-supervised learning algorithms, based on neural networks and built to
translate words into vector representations. BERT and GPT-2 are transformer
models, each having 12 encoder layers. ROBERTa is a retraining of BERT on
a larger data set, while ALBERT is an extension of BERT that has a higher
data throughput with 10x fewer parameters, and thus scales better.

In contrast to the works discussed in Section 4.3.1, we do not extract rela-
tions from the embeddings by means of linguistic templates. Rather, we view
sentence extraction as an instance of probing (Conneau et al., 2018; Hupkes
et al., 2020a; A. Rogers et al., 2018; Yaghoobzadeh et al., 2019), a diagnostic
method to reveal what aspects of the input the embedding actually encodes.
Probing tasks should ideally be agnostic as to the underlying encoder archi-
tecture, so that results are transferable between embeddings (Dahlgren et al.,
2021; Hewitt & Liang, 2019). Random control tasks (Hewitt & Liang, 2019) are
implemented, see discussion in Section 4.3.4. In our experiments, we considered
the following probing task: Given a pair of word vectors, we ask whether the
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encoded words are in relation R. This avoids the optimisation problem linked
to the choice of template seen in (Petroni et al., 2019b).

All experiments are on the English language, and the data set used in our
experiments was obtained from WordNet as follows. We first built a vocabulary
V by taking the 5 000 most common nouns in the Brown corpus (Kucera &
Francis, 1967) and removing those not found in WordNet (Miller, 1992). This
resulted in a vocabulary of 3497 words. For each word w in the vocabulary V
and target relation R ∈ {hypernym,meronym, synonym} we then picked words
v and v in V such that (w, v) ∈ R and (w, v′) /∈ R, and stored these as triples
(w, v, v′).

We formulate a classification task for each relation R, and probe each of the
investigated models for their ability to capture each relation in their respec-
tive embeddings. Each classification task is based on 1 712, 306, 2 740, 1 630
samples for synonyms, meronyms, hypernyms, and hyponyms respectively. We
use a linear classifier probe as these better reflect the availablity of the infor-
mation probed for, as shown in (Dahlgren et al., 2021; Hewitt & Liang, 2019).
From (w, v, v′), positive (w, v) and negative (w, v′) examples are drawn with
equal probability, labeled either 0 or 1, to represent if the tuple represents a
negative or a positive pair. The binary labels are given together with either
(w, v) or (w, v′) as input to the probe by concatenating both word embeddings.
We train the probe for 10 epochs using 5-fold cross validation, using softmax
activation, dropout of 0.2 to prevent memorising samples, and cross-entropy
loss with the Adam optimizer using a lr = 0.001. We average the results over
5 runs. The experiment is implemented with Pytorch for CPU and uses the
Huggingface (Wolf et al., 2019b) library for all pretrained transformers, and
the Gensim (Rehurek & Sojka, 2011) library for word2vec and GloVe. The
experiments completed within 1 hour on an Intel i7-based Linux laptop with
32GB RAM. The code is available on Github10.

4.3.4 Results and discussion
Table 4.6 displays the numerical results, with the header row showing, for each
relation R, the size of the larger of the two classes. This number coincides
with the control tasks implemented to measure selectivity, which are omitted
to limit redundancy. The table shows linear probe classification accuracy for
each language model, with the variance written out within parentheses. As can
be expected, the variance is highest for meronyms where there is least data.
Various observations can be made by comparing the results for the individ-
ual embeddings. Particularly worthwhile noting is the fact that GloVe and
word2vec performs on par or better than the contextual embeddings, except
for the case of hyponyms. This behaviour was seen with 5 and 20 training
epochs as well.

The relatively strong performance of the pre-transformer solutions may not
be surprising as far as synonyms are concerned, since their construction builds

10https://github.com/dali-does/semprof
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Model Synonyms Meronyms Hypernyms Hyponyms

Majority 50.1 (0.0) 54.2 (0.0) 51.0 (0.0) 50.7 (0.0)
Word2Vec 61.5 (1.8) 68.8 (5.0) 69.1 (1.5) 54.1 (1.7)
GloVe 63.2 (2.3) 73.3 (6.0) 68.7 (2.0) 55.7 (1.7)

ALBERT 51.9 (2.6) 48.7 (2.2) 51.2 (1.8) 51.7 (2.9)
ROBERTa 61.7 (1.9) 62.7 (5.9) 64.1 (1.2) 58.2 (2.8)
BERT 56.7 (1.2) 57.2 (3.6) 64.2 (1.6) 51.1 (0.3)
GPT-2 58.0 (1.2) 61.8 (5.3) 65.0 (1.3) 52.4 (2.5)

Table 4.6: The probing accuracy on the semantic relations, with variance given
in parentheses. The accuracy of a “largest class” strategy is shown next to each
relation. All transformers give embeddings of 768 dimensions, with word2vec
and GloVe using 300 dimension. Each relation contain 1712, 306, 2740, and
1630 samples, respectively.

around aligning words found in the same context. However, we would not have
expected similar results for hypernyms and even lesser so for meronyms. We
note that ALBERT does not accessibly encode any of the relations, resulting in
random guesses. This could be because ALBERT is trained using tenfold fewer
parameters to produce much smaller embeddings, and might have less room for
this type of information. Since ALBERT is comparable in performance to, e.g.,
BERT on many data sets and other metrics, this needs further investigation to
see to what extent these relations are present in the data sets. The complexity
of the probe could also be the culprit, as an embedding with lower dimensional-
ity poses a more difficult task for a probe with limited capabilities of separating
intertwined concepts. These results do not mirror those of Z. Lan et al. (2020),
which indicates that the relations studied here could receive more attention
in future evaluations of language embeddings. ROBERTa seems to generally
outperform the other transformers, especially on the hyponyms, taking into
account that not all results are statistically significant. Hypo-/hypernym re-
lations usually follows a tree hierarchy, with hypernyms directed towards the
root. This gives a decreasing number of hypernyms, for example, fish has six
hypernyms but 39 hyponyms in WordNet, and it is likely that less common
words will be chosen as a positive example for hyponyms. Weighting the words
according to frequency could show different results, but filtering words based
on the data the models are trained on is counterproductive to the purpose of
these probes. ROBERTa is better able to capture synonyms, which could be
an effect of the much larger dataset used in training compared to the other
BERT-models leading to more of the less common examples of hyponyms be-
ing seen more. One hypothesis on why GPT-2 also shows poor performance
is that Wikipedia is removed from the training data. The proposition is that
many Wikipedia articles explicitly outlines hyponym relations, e.g. in “The cat
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is a [domestic species of small carnivorous] mammal ” 11.
Summarising the results, the fact remains that according to our probes no

model covers the relations reliably. If this observation is confirmed by fur-
ther experiments, it supports the case for a combination of neural networks,
traditional relational knowledge bases, and inference engines. With this ar-
chitecture, established facts could be retrieved from the knowledge base and
complemented by less certain facts deduced by the network to cover up for
missing information without causing inconsistencies. The results also indicate
that a significant threshold should be applied for transferring relational knowl-
edge derived from an embedding to a knowledge base, if this should be done
at all, to avoid large error propagation. This is especially important if the
“facts” in the knowledge base are considered to be absolute truths rather than
tentative findings.

In conclusion, the reliability of the probe could improve with evaluation
sets from relations found in knowledge bases, and a correlational study be-
tween probing accuracy and downstream NLP tasks could further support the
usefulness of studying these relations.

4.4 Challenges and characteristics

11https://en.wikipedia.org/wiki/Cat
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Chapter 5

The compositional behaviour
of multimodal language
models

Example of how to use quotes at
the beginning of chapters

dali

We established in Chapter 4 that multimodal language models represent
visual concepts more distinctly compared to text-only models. In this chapter,
we will study how multimodal language models behave on reasoning tasks over
visual scenes. As it turns out, compositional generalisation is central to achieve
good performance on the mathematical problems we devise. It also turns out
that the available benchmarks are not complex enough, or does not cover mul-
timodal data. Previous literature highlights how neuro-symblic methods are
much stronger on reasoning tasks. Hence, we are on a quest to construct mul-
timodal benchmarks that compare neuro-symbolic and deep learning methods
on mathematical visual reasoning and compositional generalisation.

5.1 DeepProbLog and compositionality

Neuro-symbolic methods rely on their symbolic components to achieve com-
positional generalisation. However, empirical results show that this might not
always be the case, where the bias in data carries over too strongly into the
model. In this section we will investigate how confounding information can fool
a neuro-symbolic method. DeepProbLog (Manhaeve, Dumančić, et al., 2018)
is a neuro-symbolic model for learning and reasoning with neural networks. We
use confounding colors with ColorMNIST (B. Kim et al., 2019; Rieger et al.,
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2020) to test how DeepProbLog generalises compositionaliy. This way, a model
that picks up on the color as important will fail on the test set. The hypothesis
is that the neural component in NeSy models will have better guidance via
the symbolic information that is put into the model. DeepProbLog has not
been tested on such data to the best of our knowledge, only on the regular
MNIST dataset (Manhaeve, Dumančić, et al., 2018). Here we compare how
DeepProbLog performs on ColorMNIST versus the regular MNIST dataset,
and outline the differences.

We train and evaluate DeepProbLog on MNIST under three setups. The
original experiment on addition with MNIST digits reported on in (Manhaeve,
Dumančić, et al., 2018) is used as a baseline. The same experiment but with
colored digits from ColorMNIST is used in two settings; consistent colors be-
tween training and testing (ColorMNISTsame), and fixed colors during training
and randomised colors during testing (ColorMNISTdiff). The experiments on
colored images uses the NeSyXIL model to handle color. Both experiments
are run with the same hyperparameters (Adam, learning rate 1e-03), for the
same number of epochs. The experiments build on code from (Stammer et al.,
2021) 1 and (Manhaeve, Dumančić, et al., 2018) 2. Table 5.1 shows the accu-
racy of learning to do addition using MNIST digits using DeepProbLog with
and without confounding colors. Figure 5.1 shows the confusion matrix with

MNIST ColorMNISTsame ColorMNISTdiff
DeepProbLog 0.7798 0.4498 0.1178
TODO Neural

Table 5.1: Accuracy on evaluation data for both

grayscale MNIST digits. Figure 5.2 shows the confusion matrix when color is

Figure 5.1: Confusion matrix for DeepProbLog on MNIST

consistent between training and testing, suggesting that the extra dimensions
of color leads to a more difficult problem. Training the model differently is
necessary to rule out factors related to model convergence. Figure 5.3 shows

1https://github.com/ml-research/NeSyXIL
2https://github.com/ML-KULeuven/deepproblog
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Figure 5.2: Confusion matrix for DeepProbLog on ColorMNIST using the same
color maps for training and testing.

the confusion matrix when color is confounding between training and testing,
leading to almost random performance.

Figure 5.3: Confusion matrix for DeepProbLog on ColorMNIST using different
color maps for training and testing.

These results suggests that DeepProbLog handle confounding colors in
MNIST poorly. This contradicts the supposed strong compositionality of neuro-
symbolic methods. Further experiments are necessary to identify why we see
this behaviour, but this insight can be used to guide the design of future meth-
ods and datasets.

One philosopical issue is that for the model has no way of knowing whether
we want it to learn the shapes or the colors of digits. During training, both
color and shape directly map to the number, meaning there is no information
available to the model to realise that the color is not important. In a sense, our
biased expectations on the model are not aligned with what our data suggests.
This shows that even for small toy datasets it is difficult to create learning
tasks that are not ambiguous.

5.2 Multimodal Word Math Problems

We have now seen how the relationship between neuro-symbolic methods and
compositional generalisation can be affected by the data it is trained on. Now
we will introduce multimodal word math problems as a richer domain for us to
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analyse such methods and compare them to deep learning alternatives. Now
that we have outlined how we can use synthetic data from CLEVR to build
multimodal benchmarks, we will use word math problems as the basis for tasks.
Chapter 3 introduced us to the CLEVR dataset as a way to build multimodal
benchmark. We will use this as the basis for our word math problem tasks.

Consider the following word math problem,

Adam has three apples, and Eve has five. Eve gives Adam all her apples. How
many apples does Adam have, if he eats one?

For a system to answer this question, it must reason in multiple steps, as well
as translate verbs into mathematical operations. Small changes in the text
will also lead to large semantic changes, e.g. changing eats to finds. An arbi-
trary number of sentences with actions also require compositional generalisa-
tion (Chen et al., 2020; Keysers et al., 2020; N. Kim & Linzen, 2020; B. M. Lake,
2019; Saqur & Narasimhan, 2020; Shaw et al., 2020), the capability to "generate
infinite use of finite means" (Chomsky, 2014). Word math problems are a great
setting for benchmarking systems on their generalisability in the intersection of
natural language, reasoning, and vision. Previous work have mostly explored
word math problems in a text only setting, like the problem shown above,
using neural networks (Robaidek et al., 2018; Sundaram & Khemani, 2015;
Sundaram et al., 2020), and other methods (Mitra & Baral, 2016; Sundaram &
Abraham, 2018). Math Word Problem Solving (MAWPS) (Koncel-Kedziorski
et al., 2016) was one of the earlier datasets introduced in the domain and col-
lected around 3320 single/multi equation word problems involving operators
+, −, ∗, /. These word problems were annotated with equations involved and
the answer (solution of the equation). More recently, larger datasets like Alge-
bra Question Answering with Rationales (AQuA-RAT) (Ling et al., 2017) were
introduced and it has around 100K multiple choice questions annotated with
equations and a textual explanation for the rationale behind the equations. (A.
Patel et al., 2021) illustrated the deficiencies in MAWPS dataset by introduc-
ing another dataset named Simple Variations on Arithmetic Math word Prob-
lems (SVAMP). SVAMP is created by making minor variations to problems
in MAWPS (A. Patel et al., 2021) showed that state-of-the-art neural solvers
trained on MAWPS performs poorly on the SVAMP dataset. See (Huang et al.,
2016) for an overview of how to construct word math problems.

With word math problems as the basis, we introduce a multimodal word
math problem dataset with images and corresponding mathematical tasks. We
generate 3D scenes using CLEVR (Johnson et al., 2017), creating CLEVR-
math. As discussed earlier, previous work such as CLEVR-Hans (Stammer
et al., 2021) uses CLEVR in similar fashions to generate 3D data to examine
specific behaviour. Figure 5.4 shows an example from this dataset. One im-
portant aspect of the human mind is that we envision changes without them
physically manifest (TODO CITE). Imagining changes and infering the conse-
quences is a big part of how we reason. CLEVR-Math pose problems that tests
a models ability to imagine such change, since the tasks involve chains of oper-
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Figure 5.4: Selection of questions generated from this image: (i) Remove all
gray spheres. How many spheres are there? (3),, (ii) Take away 3 cubes. How
many objects are there? (7), (iii) How many blocks must be removed to get 1
block? (2)

ations and queries over the resulting (internal) state. Mathematical operators
are well suited to build compositional generalisation tasks since the operators
work recursively over any novel combination of mathematical elements

Therefore, testing the effect of compositionality on the mathematical rea-
soning provides a well-defined but broad domain where compositionality is a
core principle. This could be tested by fixing the domain to a single color,
shape, material, and size, and ask the same questions again. Additionally,
including an increasing amount of confounding information is a related exper-
iment. This could be done by always presenting blue cubes at training time,
and randomising at testing. Important to measure is how the degree of con-
founding information affects the model. It should be enough to have only a
couple of non-confounding examples (e.g. 5 out of 100) to realise that cubes
are not always blue and should be disentangled as a concept. The hypothesis
is that neural networks would need something close to equal distribution over
the combinations and properties in order to achieve good performance.

When considering benchmarks for grounding, reasoning, or compositional-
ity, it is important to not only measure behaviour but also internal structures of
systems. Given enough capacity, a neural network would be able to memorise
everything necessary to perform reasonably well. Similarly, a symbolic-driven
system could introduce a new symbol for each combination of concepts or prop-
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erties of objects. A blue ball can be encoded as a single concept, with red ball
being encoded completely independently. Now, if we only test for behaviour,
then this is difficult to uncover using the standard approaches in the deep
learning community. One way of getting around this is by probing the internal
structures to uncover desiderata. One such instance is by using confounding
information, e.g. by always associating a shape with a specific color. There
are multiple ways in which this can be investigated. For shapes and colors, it
is possible to fix one shape-color pair while letting the other shapes and colors
combine randomly. If a model is able to categorise shapes and colors to be part
of the same concept categories, then it should be able to realise that spheres
can be other colors than blue since the shape category does not have a fixed
relationship to the color category. A slightly different experiment is to always
associate shapes with specific colors, and measure the impact of introducing
a few samples where this is not the case. For instance, if spheres are always
blue, but one sample contains a red sphere, that might not be enough evidence
that spheres are not synonymous with blue objects. However, once there have
been 10 such samples, there is more reliable evidence that this is not the case.
Given different systems, the ratio between fixed and randomised shapes and
colors can reveal a lot about its inner workings. A desiderata is to have as
small a supporting set as possible to break up such fixed relationships. The
hypothesis is that neural networks perform poorly under such conditions.

5.3 CLEVR-Math

To recap, solving mathematical word problems requires one to be able to map
the natural language text to a mathematical expression, identifying the known
and unknown quantities and the operators to be used. Again, we consider the
following math word problem,

Problem: Adam has three apples, and Eve has five. Eve gives
Adam all her apples. How many apples does Adam have, if he eats
one?
Equation: X = 3 + 5− 1

Minor changes in the text may result in large semantic changes, e.g. changing
just one word in the above problem - eats to finds, will change the equation
to X = 3 + 5 + 1. Most of the recent efforts in automatic math word problem
solving treat it as a translation task (from word problem to equation) and have
employed sequence-to-sequence networks or sequence to tree (generating the
expression tree of the equation) networks ((Luong et al., 2015), (Z. Xie & Sun,
2019),(J. Zhang et al., 2020)).

While text-based math word math problems are a great setting for natural
language understanding, it would also be interesting to consider word problems
which are accompanied by a diagram, and the information required to derive
the solution has to be captured from both its textual and visual representations.
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Figure 5.5: CLEVR-Math example question Take away 2 matte cylinders. How
many objects are left? with corresponding mathematical equation X = 9− 2.

That is, part of the problem scenario description is expressed as text and the
other part is represented in the form of an image. We introduce such a multi-
modal math word problem dataset, CLEVR-Math (since it is based on CLEVR
dataset (Johnson et al., 2017)), where each problem has a textual and a visual
description (image). Based on the strengths of using synthetic data previously
discussed, CLEVR-Math allows us to test the ability of systems to generalise to
unseen combinations of actions in the word problem. For example, we can train
on single mathematical operations, and test on chains of operations. Figure
5.5 shows a sample problem in CLEVR-Math.

While each instance in CLEVR dataset has an image and a natural language
query about the scene depicted in the image, in CLEVR-Math, the natural
language query may not be about the scene represented in the image, but
about the state of the scene after/before a sequence of actions are applied on the
scene. The actions in our case are addition/removal of specific type of objects
to/from the original scene. We believe this is an interesting problem setting as
the ability to envision changes without them being physically manifested is an
important aspect of the human mind.

Our contributions are two-fold, we

• construct an open source multi-modal math word problem dataset, CLEVR-
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Math and

• analyse the performance of state-of-the-art neural and neuro-symbolic
(NeSy) solutions for solving such multi-modal problems.

Our results and analysis shows how both neural and NeSy methods are unable
to compositionally generalise to chains of operations.

5.3.1 Constructing CLEVR-Math
We construct the CLEVR-Math dataset as an extension of CLEVR by introduc-
ing three new functions and 13 templates. Using the codebase provided with
CLEVR, we generate new questions based on the original scenes. We categorise
the 13 templates into six types, all based on addition and subtraction. The
domain is restricted to numbers between 0− 10 to conform with CLEVR.

New CLEVR functions:

The three functions that we implement are - subtraction and addition to per-
form subtraction and addition, and choose to operate on subsets of objects.
Instead of removing all blue spheres, choose allows us to remove a random
number of a specific type of object, e.g. 2 blue spheres out of 4. The ran-
dom number generated by choose replaces a questions “X" placeholder during
generation. Figure 5.6a shows three examples of subtraction, and Figure 5.6b
shows a question requiring multihop reasoning. Appendix ?? includes more
samples from the test set.

(a) (i) Remove all gray spheres.
How many spheres are there? (3),
(ii) Take away 3 cubes. How many
objects are there? (7), (iii) How
many blocks must be removed to get
1 block? (2)

(b) Take away all large green metal-
lic spheres. Now remove all cyan
objects. How many objects are left?
(4)

Figure 5.6: Example image-question pairs from CLEVR-Math, 5.6a showcase
addition and subtraction, and 5.6b shows multihop reasoning. Answers in
parenthesis.
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Question Categories:

The different question categories are shown in Table 5.2.

• Remove group: All objects belonging to a specific group are removed
from the scene.

• Insertion : A specific number of objects are added to the scene.

• Count backwards: The query is about the change - that is the number
of objects added/removed from the scene to get a goal state.

• Remove subset : A specific number of objects are removed from the
scene.

• Adversarial questions: These are trick questions where the actions
may be performed on one object, but the query is about an object that is
not affected by the action. The adversarial actions are always on objects
that are seen in the image.

• Multi-hop: In contrast to the above questions, multi-hop questions per-
form sequences of actions (insertion, removal) on the objects. Such ques-
tions with chained functions help us test a model’s ability to generalise
to infinite combinations of operations.

Each problem in the dataset is also annotated with it’s equivalent functional
program based on the CLEVR functions described in the previous section. For
example, consider the question from insertion category and it’s program (the
arguments of an instruction refer to another instruction - indicating it’s input
is the output of the referred instruction):

Q: Add 3 blue cylinders. How many cylinders are there?
Program: 1. scene, 2. choose[3], 3. count(1),
4. filter_cylinder(1), 5. count(4), addition(2, 5)

The program contains the choose function - choose[i] operator returns i
(i = 3 in this case).

Question generation.

To support greater linguistic variation, we add synonyms for addition and sub-
traction to the template engine. Subtract can be replaced with remove, take
away and withdraw, and addition with introduce, and insert. We use the same
training and validation scenes as CLEVR, and generate 5000 new scenes as test
data. Figure 5.7 show the distribution of attributes, words, templates and an-
swers in CLEVR-Math, aggregated over the training, validation, and test data.
The distribution is reflected in each of the splits.

There are 50 words in the CLEVR-Math vocabulary, where the narrow lan-
guage puts focus on the mathematical reasoning rather than advanced language
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Type Templates
Remove group

"Remove all <C> <S>s. How many <S>s are there?"
"Take away all <Z> <C> <M> <S>s. How many <S>s
are there?"
"Take away X <C> <S>s. How many objects are
there?"
"Take away all <C> <S>s. How many objects are
there?"

Insertion
"Add X <Z> <C> <M> <S>s. How many <Z> <C>
<M> <S>s are here?"
"Add X <Z> <C> <M> <S>s. How many objects are
there?"

Count backwards
"How many <C> <S>s must be removed to get X
<C> <S>s?"
"Take away <C> <S>s. How many were removed if
there are X <C> <S>s left?"

Multi-hop
"Take away all <Z> <C> <M> <S>s. Remove all
<Z2> <C2> <M2> <S2>s. How many objects are
left?"

Remove subset
"Remove X <S>s. How many <S>s are there?"

Adversarial questions
"Remove all <C1> <S1>s. Remove all <C2> <S2>s.
How many <S1>s are left?"
"Remove all <C1> <S1>s. How many <C2> <S2>s
are left?"

Table 5.2: An overview of the different templates implemented by CLEVR-
Math. <Z>, <C>, <M>, <S> are instantiated to size, color, material, and
shape during the question generation.

capabilities. Figure 5.7c show that most questions are 8-9 words long, with a
second peak at 13 for the multihop questions.

Table 5.3 shows the distribution of templates, with an approximately equal
amount of questions for subtraction and addition, and similarly for adversarial
and multihop questions. The ratios are consistent between splits. To test multi-
hop reasoning and compositional generalisability we generate train-validation-
test with only singlehop questions in training and validation, and only multihop
questions in the test data. Thus, a model using the CLEVR-Math-multihop con-
figuration must solve the multihop questions in a zero-shot fashion.

92



0

0.5

1

1.5

2
·105

Shape
Material

Size
Color

(a) Attribute distribution per category, showing even allo-
cations.

0 5 10
0
2
4
6
8

·104

(b) Answer distribution, from 0 to
10.

10 15

0

0.5

1

1.5
·105

(c) Distribution of number of
words.

0

2

4

6

·104

Subtraction
Addition

Adversarial
Multihop

(d) Template distribution over categories of templates. Each
bar corresponds to a template in each respective category.
We see that subset subtraction (i.e., remove 2 blue cubes) is
underrepresented.

Figure 5.7: The attributes are used evenly throughout the dataset, whereas the
answers are biased towards the smaller numbers. The numbers are aggregated
over all splits.

Open sourcing data.

We open source CLEVR-Math as a Huggingface dataset 3 with two configu-
rations; CLEVR-Math and CLEVR-Math-multihop. The extended CLEVR source
code is available on Github 4. Table 5.4 shows the Huggingface dataset card
for CLEVR-Math. The template feature allows for filtering to perform, e.g.,
only singlehop training and multihop testing.

3https://huggingface.co/datasets/dali-does/clevr-math
4https://github.com/dali-does/clevr-math
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Template Train Validation Test
Subtraction 229364 49149 3281
Addition 193641 41600 2752

Adversarial 65180 13900 950
Multihop 67897 14553 972

Table 5.3: Distribution of templates in each data split.

Feature Type Example
template String subtraction-multihop

id String CLEVR_math_test_000010.png
question String Remove 5 spheres. How many objects are

there?
image image path CLEVR_v1.0/images/train/CLEVR_new_

000010.png
label int64, 0-10 5

Table 5.4: Huggingface dataset card for CLEVR-Math.

5.3.2 Experiments

CLIP (Radford, Kim, Hallacy, Ramesh, Goh, Agarwal, Sastry, Askell, Mishkin,
Clark, et al., 2021b) is used as a neural baseline. Questions and images are em-
bedded using CLIP, and an additional classification layer is added to predict the
correct answer. Fine tuning CLIP on CLEVR-Math as a masked language task
before adding classification gave no significant improvements, while consuming
significantly more computational resources. CLIP and this classification layer
is trained jointly for 10 epochs with early stopping using a batch size of 64.

NS-VQA (Yi et al., 2018) is used as the neuro-symbolic baseline. Here, a
mask-RCNN (He et al., 2017) is trained independently to convert an image
to a scene graph. In our experiments, we skip this step and use the actual
scene graphs associated with images. The question is parsed into a functional
program by a sequence to sequence (Seq2Seq) network based on Bi-LSTM. A
quasi-symbolic program executor executes the program generated on the scene
graph of the image to return an answer. The Seq2Seq network is pre-trained
in a fully supervised fashion by providing it a few examples (around 60 exam-
ples) of (question, program) pairs. The pre-trained network is then trained
further using REINFORCE algorithm that returns a reward based on whether
the program generated could derive the expected answer or not. Supervised
pretraining and REINFORCE were run for 1000 and 5000 iterations, respec-
tively, with a batch size of 128. Both CLIP and NS-VQA models were trained
on a NVIDIA Tesla P100 GPU computing processor.

Each model is evaluated on each question category, and are trained on 2500,
5000, 10000, and 20000 samples to see the influence of the amount of data. For
multihop, training and validation sets with and without multihop questions are
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used, with the latter named multihop (0-shot).

5.3.3 Results
Table 5.5 shows the accuracy of CLIP and NS-VQA on the different categories
as well as an aggregated accuracy over the entire dataset. Both the models were
trained on 10, 000 samples. NS-VQA performs better than CLIP models for
most templates apart from multihop. NS-VQA performs better on subtraction
and adversarial problems (both based on ‘subtraction’ CLEVR function) than
addition problems. This could be because the functional programs for addition
problems always contain a choose operator. It is important to identify the
argument to choose operator from the problem statement (which is mostly
one of the numerical quantities in the word problem) to arrive at the correct
answer. Unlike this, there are subtraction and adversarial problems (in remove
group) that do not have a choose operator in the program. Neither of the

Model All Add Subtract Adversarial 2-hop 2-hop (0-shot)
NS-VQA 0.88 0.98 1.00 1.00 0.29 0.27

CLIP 0.35 0.57 0.30 0.29 0.27 0.24

Table 5.5: Accuracy on the CLEVR-Math dataset, shown for each template
group and aggregated over all templates.

methods perform well on the multi-hop questions, with a clear degradation in
the performance for NS-VQA. This is because the question parser of NS-VQA
relies on a Seq2Seq network that does not generalize compositionally (B. Lake
& Baroni, 2018a). CLEVR focus on visual attribute compositionality, and the
multihop reasoning introduces higher demands on linguistic compositionality.
When multihop questions are included in the training and validation data,
naturally both methods improve their performance.

To gain further insight into CLIPs’ performance on CLEVR-Math, Ap-
pendix 5.3.5 shows a confusion matrix from training CLIP on 20 000 samples
and evaluating on all question categories. These results show that most errors
made by CLIP is off by ones. This reflects the generative nature of such mod-
els, in how they can get the context correct but sometimes miss out on details.
We also see how CLIP focus on learning in the range 1-5, reflecting that these
problems represent a majority of the problems.

Model 2500 5000 10000 20000
NS-VQA 0.6283 0.8840 0.6795 0.6118

CLIP 0.2918 0.3184 0.3528 0.3464

Table 5.6: Accuracy over all templates for different dataset sizes.

Table 5.6 shows how different training sizes influence the accuracy. We
can see that NS-VQA achieves high accuracy from relatively few examples and
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plateaus, which is consistent with the original results on CLEVR. It also seems
like NS-VQA is overfitting with more data given, and one hypothesis is that
more emphasise is put on the program, but that they are similar enough to
confound NS-VQA. In CLEVR, the different questions were more distinguish-
able from a program perspective. CLIP scales with the number of samples, but
plateaus at a much lower accuracy. We note that a larger number of samples
could lead to similar performance for CLIP, but at the cost of more computa-
tional resources.

(a) Subtract all small purple matte
blocks. Subtract all blocks. How
many objects are left? was an-
swered by CLIP with 3 instead of
2.

(b) Subtract all red metallic ob-
jects. Subtract all yellow objects.
How many objects are left? was
answered with 9 instead of 5 by
NS-VQA.

Figure 5.8: Examples of when CLIP and NS-VQA fails on multihop questions.

We randomly sample 20 correct and 20 incorrect answers from the multihop
test data for both CLIP and NS-VQA. Appendix ?? contains a subset of those
samples, and Figure 5.8 illustrates two incorrect answers. There are no clear
patterns of failures, such as only performing one of the actions, but we notice
multiple instances where CLIP fails to perform overlapping subtraction, or
subtraction when no objects match the description. Another observation is
that half of the 20 incorrect answers from CLIP, where on images with only
three objects. Scenes with few objects have a much smaller possible action
space associated to it, meaning that there is less room for error. In Figure 5.8a,
there are no purple matte blocks to remove, so the corresponding equation is
3− 0− 1 = 2.

5.3.4 Conclusions

We introduced a new dataset, CLEVR-Math, containing word math problems
about visual scenes. Our results show that the state-of-the-art NeSy model,
NS-VQA, achieves higher accuracy on CLEVR-Math with less data and com-
putational resources, than the neural model, CLIP. This is further evidence
that neural methods, such as CLIP, are lacking in reasoning capabilities, even
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after fine tuning. Given that NS-VQA uses perfect scene graphs, the compari-
son is not completely fair. We still expect the results of learning end-to-end to
be consistent with the current results in alignment with the original results on
CLEVR for NS-VQA.

CLEVR-Math successfully introduces a focused benchmark for learning and
reasoning in multimodal data. There are a few natural extensions to this work,
both on further development of the dataset and on evaluation. Extending the
benchmark to answers outside of the range 0-10 would provide a more challeng-
ing domain, and providing scene graphs for each step of the reasoning chain
could open up for other methods. The empirical results show that neither of the
models could generalize to chained actions. Hence, it is also of research interest
to design neuro-symbolic models where language perception is tackled in a more
generalizable manner. Focus should lie on the representations (symbols) that
are learned. Other interesting directions is to introduce a representation that
is manipulated internally according to the actions as they are read. Adding
longer chains of operations, or chains with alternating subtraction and addi-
tion, would put even more emphasise on the reasoning capabilities. Finally,
there is an opportunity to add confounding information to test the robustness,
e.g. by associating each shape with a fixed color during training and randomise
it during testing.

5.3.5 CLIP confusion matrix
Figure 5.9 shows a confusion matrix indicating that CLIP is learning something
for all labels. It also shows that when an answer is wrong, it is off by one. The
confusion matrix also reflects the distribution over answers, showing that most
answers are considered by CLIP to lie in the range 1-5.

5.4 Extending NS-VQA for Multihop Questions
So, I ran the "train on two steps, test on one step" experiment and learned a
couple of things. Basically, NS-VQA has a really hard time learning with either
0 or abysmal accuracy. First of all, there are two main limitations of NS-VQA
regarding what templates it can work with and how easy it is to extend the set of
operators. We can write the two-hop template for questions on the form Remove
all <C1> <S1>s. Remove all <C2> <S2>s. How many objects are left?
the following three ways;

"text": [
"Remove␣all␣<Z>␣<M>␣<C>␣<S>s.␣Remove␣all␣<Z2 >␣<M2 >␣<C2>␣

<S2>s.␣How␣many␣objects␣are␣left?"
],
"nodes": [
{ "type": "scene", "inputs": [ ] },
{ "type": "filter", "inputs": [ 0 ], "side_inputs": [

"<Z>", "<C>","<M>", "<S>" ]},

97



Figure 5.9: Confusion matrix for CLIP trained on 20 000 samples.

{ "type": "filter", "inputs": [ 1 ], "side_inputs": [
"<Z2 >", "<C2>","<M2>", "<S2 >" ]},

{ "type": "subtraction_set", "inputs": [0,1]},
{ "type": "subtraction_set", "inputs": [3,2]},
{ "type": "count", "inputs": [4]}
]

Now, the documentation says NS-VQA requires a topological ordering of the
operations. The first realisation after digging through the code is that the
implementation cannot handle this first template, even though it is ordered
’correctly’, because of how it remembers past output (basically only one variable
to keep track of output, meaning we cannot remember both the C1S1 and C2S2
sets when executing). So we can "linearised" the template as follows;

"text": [
"Remove␣all␣<Z>␣<M>␣<C>␣<S>s.␣Remove␣all␣<Z2 >␣<M2 >␣

<C2>␣<S2>s.␣How␣many␣objects␣are␣left?"
],
"nodes": [
{ "type": "scene", "inputs": [ ] },
{ "type": "filter", "inputs": [ 0 ],

"side\_inputs": [ "<Z>", "<C>","<M>", "<S>" ]},
{ "type": "subtraction\_set", "inputs": [0,1]},
{ "type": "filter", "inputs": [ 2 ],

"side\_inputs": [ "<Z2 >", "<C2>","<M2>", "<S2>"
]},

{ "type": "subtraction\_set", "inputs": [2,3]},
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{ "type": "count", "inputs": [4]}
]

We remark that each filter operation is unfolded into a sequence of filter_size,
filter_color, filter_material, filter_shape operators. Initially, this template
seems to be too hard to learn with the LSTM generating longer and longer
sequences. However, on closer inspection of data preprocessing pipeline, we
identify that the issue comes from the stringification of the programs. Consider
the following template instantiation;

[
{'function ': 'scene ', 'inputs ': [], '_output ': [0, 1, 2, 3,

4, 5], 'value_inputs ': []},
{'function ': 'filter_shape ', 'inputs ': [0], '_output ': [0, 2

, 4], 'value_inputs ': ['cube ']},
{'function ': 'subtraction_set ', 'inputs ': [0, 1],

'_output ': [1, 3, 5], 'value_inputs ': []},
{'function ': 'filter_color ', 'inputs ': [2], '_output ': [3, 5

], 'value_inputs ': ['brown ']},
{'function ': 'filter_shape ', 'inputs ': [3], '_output ': [3],

'value_inputs ': ['cylinder ']},
{'function ': 'subtraction_set ', 'inputs ': [2, 4],

'_output ': [1, 5], 'value_inputs ': []},
{'function ': 'count ', 'inputs ': [5], '_output ': 2,

'value_inputs ': []}
]

Once this is fed through the preprocessing function list_to_prefix, we get the
execution tree illustrated in Figure 5.10. Here we can see four subtraction_set
operations, instead of the expected two required to compute the program. This
in turn gets linearised as the string ”count subtraction_set subtraction_set
scene filter_shape[cube] scene filter_shape[cylinder] filter_color[brown]
subtraction_set scene filter_shape[cube] scene“ . This erroneous lin-
earisation is a attempting to correctly chain a stateless execution of programs.
We can get around this problem by introducing subtraction_set as a state-
manipulating operation, relaxing the requirement on the parser to produce an
execution tree for stateless program executions. Adapting the code to this relax-
ation, we instead get a tree that better reflects the intended program execution
order. This execution tree is correctly linearised as ”count subtraction_set
filter_shape[cylinder] filter_color[brown] subtraction_set filter_shape[cube]
scene“.

Now that the preprocessing no longer assumes statelessness, we modify the
executor to allow subtraction_set to manipulate an internal representation
of the scene. Using an internal representation that can be manipulated re-
duces the complexity of the execution trees, offloading that complexity onto
the executor from the LSTM.

An alternative to what is described above, is to implement a remove opera-
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tor that reduces the template complexity by combining the filter and subtrac-
tion operations.

"text": [
"Remove␣all␣<Z>␣<M>␣<C>␣<S>s.␣Remove␣all␣<Z2 >␣<M2 >␣<C2>␣

<S2>s.␣How␣many␣objects␣are␣left?"
],
"nodes": [
{ "type": "scene", "inputs": [] },
{ "type": "remove", "inputs": [ 0 ],"side\_inputs": [

"<Z>", "<C>","<M>", "<S>" ]},
{ "type": "remove", "inputs": [ 1 ],"side\_inputs": [

"<Z2 >", "<C2>","<M2>", "<S2 >" ]},
{ "type": "count", "inputs": [2]}
]

This showed to the second limitation, where the program executor (i.e., the
code that runs the sequence of operators that the LSTM learns to generate) is
implemented like this:

s e l f . f i l t e r _ c o l o r [ b lue ] = s e l f . f i l t e r_b l u e
. . .
s e l f . f i l t e r_shape [ sphere ] = s e l f . f i l t e r_ sph e r e
. . .

def f i l t e r_b l u e ( s e l f , scene1 , _) :
# Loops over o b j e c t s and re turns a l l t h a t are b l u e

In other words, for every operator that have attributes as parameters, there
is a separate function for each attribute. The same goes for the vocabulary,
where entires can be filter_color[blue]: 28 Sort of taking the "it is difficult
to extend the domain for neuro-symbolic methods" to the extreme. Now,
this is the reason why filter is unfolded into a sequence of filters. Hence, if
you want to implement remove to take a set of attributes, you cannot unfold
it similarly to filter, and hence you would need to add enumerate all com-
binations of remove and attributes for the vocabulary and in the executor.
Which isn’t reasonable or sustainable as an approach. Instead, I generalised
the code to add the attributes to the program vocabulary, and modified the
code to push attributes to a stack that is emptied whenever an operator is
read. Doing this lead to above 50% accuracy on the two-hop validation data
(didn’t test it with the 1-hop test data yet). The next step was to make sure
that the modifications worked with the second template above. This has not
worked yet, and I’m not sure whether it is the LSTM not being able to learn
properly, or something else. However, the modifications mean that instead
of the template being tokenized as scene, filter_color[blue], remove_set, fil-
ter_color[yellow], filter_shape[cube], remove_set, count of length 7, it gets
instantiated as scene, filter_color, blue, remove_set, filter_color, yellow, fil-
ter_shape, cube, remove_set, count of length 10. Since there is no indication
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what attributes are and what operators are, this might become difficult for
the LSTM to learn. In my experience, LSTMs can be fickle. In the original
CLEVR dataset, all templates are on the form

scene
op [ 0 ] . . .
op [ 1 ] . . .
op [ 2 ] . . .

producing chains that are seemingly easier to learn, even thought the questions
themselves might be compositionally difficult. (edited)

5.5 Experiments with modified NS-VQA on Com-
positional Generalisation splits

NS-VQA will perform good on the comp. gen. splits, while the transformer
will not. As a result, we would like to see if CL can help with the comp. gen.
capabilities of a transformer.

5.6 Challenges and characteristics
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Figure 5.10: Illustration of the execution tree produced by the original NS-
VQA parser for the question “Remove all cubes. Remove all brown cylinders.
How many objects are left?”.
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Figure 5.11: Illustration of the execution tree produced by the modified NS-
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How many objects are left?”.
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Chapter 6

Multimodal Compositional
Generalization

“Hold the newsreader’s nose
squarely, waiter, or friendly milk
will countermand my trousers.”
Perfectly ordinary words, but
never before put in that precise
order. A unique child delivered of
a unique mother.

Stephen Fry, A Bit of Fry and
Laurie, Series 1, Episode 3 (1989)

6.1 Compositional Generalization splits for CLEVR-
Math

Compositional generalization is a key challenge for artificial intelligence, as
human language and cognition are both largely compositional. It requires a
model to understand the underlying characteristics of the data (such as struc-
ture, types, and grammar) to be able to recombine elements in novel ways
rather than rely on its ability to memorize specific examples. Compositionality
in human language is multi-faceted, and prior work (J. A. Fodor & Pylyshyn,
1988; Hupkes et al., 2020b; Szabó, 2022) has studied models for evidence of
systematicity and productivity. Both systematicity and productivity rely on
the recombination of known constituents into larger compounds. Systematicity
means that the ability to produce/understand some sentences is intrinsically
connected to the ability to produce/understand certain others J. A. Fodor and
Pylyshyn (1988). For example, if a system knows the meaning of John loves
Mary, then it should be able to generalize to the sentence Mary loves John
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without seeing such examples during training. Productivity describes our abil-
ity to produce/understand a potentially infinite number of sentences with a
finite-capacity brain because we can build the meaning of a sentence from the
meaning of its parts (Frege, 1963; Szabó, 2022). For example, one who un-
derstands the sentence John gave a book to Mary, also understands John gave
the book to Mary, who gave it to Lucy, who gave it to Liz. Closely related is
the principle of Substitutitivty (Pagin, 2003) which states that if a substitution
preserves the meaning of the parts of a complex expression, it also preserves
the meaning of the whole.

Figure 6.1: An example from CLEVR-Math (Lindström & Abraham, 2022b),
with a corresponding functional program.

There has been significant recent interest in trying to understand the com-
positional generalization abilities of modern neural networks (Hupkes et al.,
2020b; N. Kim & Linzen, 2020; B. Lake & Baroni, 2018a). However, most of
these only focus on benchmarking neural networks for language-only semantic
parsing tasks. In this paper, we broaden this scope by developing a com-
prehensive benchmark for multimodal compositional generalization in visual
question answering (VQA). We then compare the state-of-the-art neural ap-
proaches with neuro-symbolic methods to understand which methods are bet-
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ter suited to tackle the various dimensions of the compositional generalization
challenge. Multimodal visual reasoning allows us to examine the interaction be-
tween language and vision, grounding challenges of language to the scene, and
its relationship to compositional generalization. Figure 6.1 shows an example
of such reasoning in the CLEVR-Math dataset, which is a domain consisting
of questions about simple arithmetic operations on images, where one such
operation corresponds to one reasoning step or “hop”. In Figure 6.1, function
blocks in the dashed boxes correspond to these reasoning hops. We develop a
multimodal compositional generalization benchmark and present several data
splits that test generalization over various attributes, such as red cubes held
out from training, and generalizing to longer chains of reasoning hops. We
evaluate one state-of-the-art neuro-symbolic method NS-VQA (Yi et al., 2018)
and two transformer-based neural methods, ViLT (W. Kim et al., 2021) and
CLIP (Radford, Kim, Hallacy, Ramesh, Goh, Agarwal, Sastry, Askell, Mishkin,
Clark, et al., 2021a); a powerful vision-and-language transformer, and a popu-
lar multimodal few-shot learning model, respectively.

Recent work often focus on evaluating the compositional generalization in
neural networks, in part to understand how to close the gap between general-
purpose models, such as seq2seq language models, with specialized architec-
tures with strong compositional bias (Shaw et al., 2021). As a bridge between
the two, neuro-symbolic methods have been proposed as a way to combine the
strengths of neural and symbolic methods. Neuro-symbolic methods have been
shown to be effective for a variety of synthetic tasks of a compositional nature,
including visual question answering (VQA) (Mao et al., 2019a; Yi et al., 2018).
NS-VQA (Yi et al., 2018) has been used in many subsequent works, most re-
cently Hong et al. (2023), to showcase the strength of neuro-symbolic methods
on visual question-answering tasks. In the recent CLEVR-Math dataset (Lind-
ström & Abraham, 2022b), NS-VQA is shown to perform well on 1-hop prob-
lems such as Remove all blue cubes. How many objects are left?, but fails on
the 2-hop example in Figure 6.1. Most other work demonstrate the success
of NS-VQA in in-distribution settings, and in this paper we evaluate along
different dimensions of compositionality: systematicity, productivity, and sub-
stitutivity. For systematicity we test whether the models can reason over novel
attribute compositions and for productivity, we test whether the model is able
to generalize to longer or shorter hop questions than seen during training. For
substitutivity, we test how models perform on syntactic modifications of the
questions, designed to be more challenging than in previous work (Johnson et
al., 2017). We extend the NS-VQA method to handle the multi-hop questions
for our productivity splits, and compare the performance of the neuro-symbolic
method with the previously mentioned pre-trained neural models. We perform
a number of ablation experiments to show the impact of increasing training
data, as well as the training data complexity (measured by the number of
hops) on the performance of neural versus neuro-symbolic models.
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Math Word Problems The math word problems of CLEVR-Math makes
it especially suitable for benchmarking compositional generalization in the in-
tersection of natural language and reasoning (B. Lin et al., 2023). Previous
work mostly explores word math problems in a text-only setting using neural
networks (Robaidek et al., 2018; Sundaram & Khemani, 2015; Sundaram et al.,
2020), and other methods (Mitra & Baral, 2016; Sundaram & Abraham, 2018).
Y. Lan et al. (2022) gives an overview of the different aspects of compositional
generalization that math word problems cover, and Kudo et al. (2023) show
that neural networks struggle the most with systematicity in arithmetic math
word problems. CLEVR-Math is especially suitable for compositional general-
ization benchmarking since, compared to previous CLEVR datasets, the math
word problems introduce multi-hop reasoning requiring scene manipulation.

6.1.1 Contributions
We summarise our contributions as follows:

1. We introduce a compositional generalization benchmark comprising splits
over functions, modalities, and attributes, for multimodal mathematical
reasoning.

2. We perform an extensive empirical comparison of a neuro-symbolic (NS-
VQA, along with a multi-hop extension we propose in this paper) with
different neural baselines (ViLT, CLIP).

3. We show via ablation experiments the effect of the amount and com-
plexity of training data on the compositional generalization ability of the
neuro-symbolic method compared to the neural methods.

6.2 Methods
Since mathematical reasoning is so important and is suitable for compositional
generalization experiments (B. Lin et al., 2023), we create our data splits with
CLEVR-Math as the basis. Our work consists of an extension of the templates
and constraints of CLEVR-Math, as well as generating new data in compo-
sitional generalization splits. Table 6.1 outlines all data splits used in our
experiments, including counting corresponding to zero reasoning hops. In or-
der to achieve this using CLEVR-Math, we introduce a new CLEVR function,
remove, along with a set of new constraints to exclude certain attribute com-
positions from the data generation process. One general constraint on all data
splits is that the questions will always mention shape, but the other attribute
types (color, material, size) are not always included in questions. Figure 6.2
illustrates the CLEVR program NS-VQA executes to answer the given ques-
tion. The box containing filter and subtract represents the block of functions
that are chained for multihop reasoning.
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Figure 6.2: Three examples from our generalization splits, showing splits on
productivity, systematicity, and substitutivity. The last row shows the func-
tional programs for the function generalization examples from 1- to 2hop. The
function blocks in dashed boxes illustrates reasoning hops for the correspond-
ing problems.

All the details on extensions of the CLEVR language are included in the
Github repository 1. We use the scenes from CLEVR-Math and create 10 in-
stantiations per scene, adjusted so that data splits based on multiple templates
(e.g. as with 1+2hop) sum to 10 instances. The CLEVR instantiation engine
imposes a uniform distribution, resulting in close to equal distribution over
templates, attributes, and an answer distribution of 10±1% over 0-10. The
training, validation, and test data are then put together in a ZIP file and made
available through a Huggingface dataset. The Huggingface data loader is used
to load multiple test sets for each split, so that, e.g., a model trained on 1hop
questions is tested on 1-,2-, and 3hop questions in parallel.

6.2.1 Systematicity: Attribute Generalization

We create 5 attribute generalization splits where the training data does not
contain any questions involving objects with a certain set of attributes, such
as small blue cubes (see Table 6.1 for a complete list). The questions are all 1-
hop questions, to isolate the compositional generalization over attributes from
function generalization. The training data contains no questions on red cubes,
however, they are present in the scenes.

1Github repository and Huggingface dataset will be made public with the final version.
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Split Description
Counting No removals, only counting objects.
1hop Remove all Xs. How many objects are left?
2hop Remove all Xs. Remove all Ys. How many ob-

jects are left?
3hop Remove all Xs. Remove all Ys. Remove all Zs.

How many objects are left?
Red CubeLang No questions with red cubes.
Red CubeV is No red cubes in images or text.
Large Cylinders No large cylinders.
Matt Spheres No matt spheres.
Small Blue Cubes No small blue cubes.
Small Yellow Metal
Spheres

No small yellow metal spheres.

1+2hop Combination of 1hop and 2hop.
1+3hop Combination of 1hop and 3hop.
1+2+3hop 1-, 2-, and 3hop problems.
Spatial 1hop 1hop questions to remove objects in spatial re-

lation to a unique object.
Language Complexity
1hop

1hop with 10 paraphrased versions of the ques-
tion.

Table 6.1: Data splits for function and attribute generalization. The first
segment shows the core tasks, the second all attribute splits, and the last
segment contains the splits used to investigate the impact of different types of
complexity on generalization.

6.2.2 Productivity: Function Generalization

Complementary to the length generalization experiments in, e.g., B. Lake and
Baroni (2018a), we test productivity function generalization splits for general-
izing to longer and shorter chains of functions than those trained on. Figure 6.2
illustrates how the split with 1hop questions for training and 2hop questions for
testing are used to evaluate function generalization. If a model trained on 1hop
questions performs well on the 2hop test data, we say that it generalizes the
subtraction function well. However, 1hop questions without additional context
says nothing about the possibility to chain the subtraction function indefinitely.
If we give no inductive bias to say that the function can be applied in longer or
shorter chains, it is a strong assumption that a model will learn to generalize.
Therefore, we also create the 1+2/3hop (1-hop combined with 2-hop or 3-hop)
data splits, since here the data suggests that at least the function can be ap-
plied in a variable number of steps. We also note that 2- and 3-hop questions
inherently address the bag-of-words issue identified by Z. Wu et al. (2021) ,
since Remove all blue cubes. Remove all red spheres. rely on the pairing of
attributes in the two subtasks. The causality of the operations is also impor-
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tant, as the overlap between small cubes and blue cubes might be non-empty.
This would result in merely counting the two sets (small cubes, blue cubes)
and removing the union would result in the wrong answer. Our 2hop, 3-hop,
and lang-1hop questions also introduce more linguistic complexity, mitigating
the issues identified by Qiu et al. (2021). To focus on function generalization,
the attributes are restricted to shapes and colors in these experiments.

6.2.3 Substitutivity: Linguistic Variations, Cross-Modal
Influence and Spatial Relations

In this section we describe three splits aimed at understanding the language
understanding capabilities of our models along three dimensions: (1) linguis-
tic variations to the question (2) ability to understand the question in the
absence/presence of the visual concept (3) ability to understand constraints
specified via spatial relations in the question. For (1) we add 10 variants of
the 1hop questions with the same semantics in the Language Complexity 1hop-
split. The variants are listed in Table 6.2. Examples include How many objects
are left after removing all Xs?, changing the order of the operation (remove)
and the query (how many), and thus resulting in questions with completely
different dependency parse trees. This linguistic complexity is much harder
than that in the original CLEVR data, where synonyms and optional phrases
provide variation in the questions but never change the overall structure of the
parse trees. Figures 6.3 and 6.4 contains the dependency parse trees Addi-
tionally, it becomes harder to pattern match attribute keywords to solve the
problems since there is no fixed order mapping to the task. Thus, our lan-
guage complexity split is significantly more challenging compared to previous
work. This split is closely related to the substitutivity aspect of compositional
generalization (Hupkes et al., 2020b; Pagin, 2003).

Figure 6.3: Dependency tree for the original formulation of 1-hop questions,
seen in Table 6.2. Generated from the text Remove all cubes, how many objects
are left? using https://corenlp.run/.

For (2), we compare Red CubeV is to Red CubeLang to see the how much the
attribute generalization depends on novel attribute compositions being present
visually. Complementary to the first red cube split, this split has no images
showing red cubes. This way, we can measure the difference in performance on
the two splits as a proxy to determine the effect of novelty also in the visual
domain.

Finally for (3), to investigate the impact of function diversity on general-
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Original: Remove all < X >s. How many objects are left?
1. Remove all < X >s [from the scene]. How many objects are left [in
the scene]?
2. How many objects are left after removing all < X >s [from the
scene]?
3. Remove all < X >s. How many objects are left?
4. If all < X >s are taken away, how many objects remain?
5. What is the total count of objects left after all < X >s are discarded?
6. Once all < X >s are subtracted, how many objects are left?
7. Subtract all < X >s. How many objects are there now?
8. Subtract all < X >s. How many objects are left?
9. How many objects would be left if all < X >s were removed?

Table 6.2: Linguistic variations used to investigate effect of syntactic complex-
ity on compositional generalization. < X > is a placeholder for < Z >< M ><
C >< S >.

Figure 6.4: Dependency tree for paraphrasing 2 in Table 6.2. Generated
from the text How many objects are left after removing all cubes? using
https://corenlp.run/.

ization, our Relational 1hop-split includes spatial relational functions such as
to the left of to increase the complexity of the function space. The example
“Remove all cubes to the left of the blue sphere. How many objects are left?”
shows how the split uses a unique object (blue sphere) to restrict the set of
cubes using the left-of function.

6.2.4 Models

For our experiments, we evaluate our modified NS-VQA described later in this
section, the CLIP-based model used in Lindström and Abraham (2022b), and
ViLT (W. Kim et al., 2021) on our compositional generalization splits. CLIP
and ViLT are pretrained on large corpora of text-image pairs; both with a
image-text matching objective, and ViLT with an additional masked language
objective.

NS-VQA is trained in two steps; an initial supervised step on 100 sam-
ples per template for 10 000 steps, and then using reinforcement learning with
REINFORCE on all data for 50 000 iterations. We make two changes to the
architecture for our benchmarking; 1. a mutable scene representation in the
execution engine, and 2. a modification to the preprocessing program parser to
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produce execution tress that rely on the managed state. Figure 6.5 illustrates
how the extended NS-VQA uses the mutable scene representation when remov-
ing and counting objects. In the original architecture, NS-VQA relies on two
variables to manage the intermediate results from previous functions. Since the
CLEVR questions only query a given scene state without manipulations, our
modifications are necessary for NS-VQA to execute multiple reasoning steps.
Without our modifications, NS-VQA is unable to correctly parse 2- and 3hop
questions. We use the same hyper parameters as Yi et al. (2018) for all exper-
iments.

Cube

Count

Remove all red cubes. How many objects are left?

Filter
Subtract

Red
Scene

Color

Filter

Shape

Figure 6.5: An example question and the corresponding functional program
in the CLEVR diagram language (Johnson et al., 2017). The dotted scene
represents the internal representation used by our modified NS-VQA.

We train ViLT and CLIP for 50 epochs using all data, and a batch size of
128. Both models are trained using the entire dataset of 50 000 training sam-
ples, with 15 000 validation samples, and 1000 test samples for each split. The
results report the mean and standard deviation over 5 runs for each experiment
for all models.

Reproducibility The code used to generate our data splits, run the experi-
ments, and the modified NS-VQA will be made available through Github in the
final submission. The models were trained on a GPU cluster using NVIDIA
A100-cards. Each experiment is run 5 times each, and uses the fixed seeds
42, 1984, 1972, 72, 365 for model initialization and data sampling to give more
reliable results and increase reproducibility. The experiments uses NVIDIA
driver version 525.125.06 with CUDA 12.2, and Pytorch 2.0.1+cu117 and
runs on Python 3.9.

6.3 Results
Table 6.3 shows model accuracy on the core tasks and attribute generalization
splits.
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Split NS-VQA CLIP ViLT
Task baselines
Counting 98±1 28±1 78±3
1-hop 100±1 53±1 75±2
2-hop 100±0 35±1 86±1
3-hop 100±0 41±0 93±1
spatial-1hop 17±8 53±1 48±1
lang-1hop 42±5 60±1 52±1
Attribute comp. gen.
Red Cube (Lang) 100±0 48±12 65±3
Red Cube (Vis) 100±0 50±5 63±3
Large Cylinders 85±30 49±12 66±3
Matte Spheres 100±0 39±7 76±2
Small Blue Cubes 100±0 50±15 56±3
Small Yellow Metal Spheres 100±0 48±14 64±4

Table 6.3: Accuracy of task baselines and novel attribute composition splits.

We observe that our modified NS-VQA generalizes perfectly on most splits,
overcoming the issue identified in Lindström and Abraham (2022b). NS-VQA
outperforms both neural models on most tasks, with the exception of spatial-
1hop and lang-1hop. The performance on counting follows 1hop performance
for NS-VQA and ViLT, with CLIP showing a large degradation from 1hop.
Since only learning to count is strictly easier than the 1hop task, counting can
be viewed as an upper bound on the 1hop performance. ViLT achieves similar
performance on pure counting versus 1hop, suggesting that the difficulty for
ViLT lies in counting objects. ViLT learns longer reasoning chains better, going
from 75% to 93% accuracy on 1hop versus 3hop, approaching the performance
of NS-VQA. NS-VQA and ViLT both struggle with the spatial-1hop split, with
NS-VQA dropping around 80% compared to the regular 1hop split and ViLT
dropping around 27%. For lang-1hop, CLIP seems to benefit the language
diversity, as it achieves higher accuracy on lang-1hop than 1hop. Conversely,
NS-VQA drops performance by almost 60% and ViLT by around 27% on the
lang-1hop split.

TODO Cover empty string results

6.3.1 Attribute Generalization

NS-VQA generalizes perfectly on all attribute splits apart from Large Cylinder,
where the performance drops with a large variance over the 5 runs. This failure
is explained by a catastrophic failure with 30% accuracy with seed 42. Inspect-
ing the data used in the supervised training reveals that the failure is not due
to lack of samples containing large or cylinder, an issue identified in prelimi-
nary experiments. While CLIP has the worst in-distribution performance on
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Model Trained on Count 1-hop 2-hop 3-hop
NS-VQA 1-hop 8±5 100±1 3±2 2±2

2-hop 0±0 27±0 100±0 7±0
3-hop 9±6 20±7 59±20 100±0
1+2-hop 19±5 76±9 54±1 22±3
1+3-hop 21±5 78±7 68±15 58±3
1+2+3-hop 19±11 95±5 55±38 31±20
spatial-1hop 12±3 17±8 6±2 5±4
lang-1hop 24±1 57±2 0±0 0±0

CLIP 1-hop 6±1 53±1 14±0 1±0
2-hop 16±0 11±1 35±1 25±1
3-hop 20±0 5±0 20±1 41±0
1+2-hop 9±1 51±1 22±1 19±1
1+3-hop 8±0 49±1 19±1 25±2
1+2+3-hop 10±0 55±1 20±1 22±1
spatial-1hop 8±0 53±1 13±1 0±0
lang-1hop 7±0 60±1 5±0 0±0

ViLT 1-hop 23±3 75±2 14±7 0±1
2-hop 19±2 71±2 86±1 22±2
3-hop 16±3 70±4 78±2 93±1
1+2-hop 28±1 53±2 72±3 27±6
1+3-hop 26±1 56±1 82±2 44±1
1+2+3-hop 27±3 78±3 84±2 82±3
spatial-1hop 18±1 46±1 0±0 0±0
lang-1hop 17±0 52±1 0±0 0±0

Table 6.4: Model accuracy on function generalization over multihop questions,
averaged over 5 runs. In percentage, higher is better. Each row represents
training on, e.g., 1+3hop and the performance on the n-splits.

1hop questions, the performance does not drop with significance. This could
be attributed to similar objects being part of the pretraining objective, given
the vast corpus used (Radford, Kim, Hallacy, Ramesh, Goh, Agarwal, Sastry,
Askell, Mishkin, Clark, et al., 2021a). Investigating the overall poor perfor-
mance of CLIP, and the large σ on most attribute splits is interesting future
work. The accuracy for ViLT drops 10% on 3 of the splits, with 0% drop on
Matte Spheres and a 20% drop on Small Blue Cubes.

Scaling Laws To investigate how sensitive each architecture is to the amount
of training data, Table 6.5 shows the model accuracy over 10%, 50%, and 100%
data for the held out attribute compositions combined. NS-VQA is not sensitive
to the amount of data and needs very little data to be successful, consistent
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Model 10% 50% 100%
NS-VQA 100±1 100±0 100±0
CLIP 49±1 53±1 56±1
ViLT 61±8 63±8 70±3

Table 6.5: Accuracy on held out attribution compositions when trained on
5000, 25000, and 50000 samples.

with previous results on CLEVR (Johnson et al., 2017). CLIP and ViLT both
perform better with more training data.

TODO Add plots of loss et c.

6.3.2 Function Generalization

The function generalization results are shown in Table 6.4, with each column
representing out of distribution model performance when trained on the split in
the first column. When trained on 1- or 2hop questions, all three models fail to
generalize to longer reasoning chains, with CLIP and ViLT achieving accuracies
5-10% above random. When trained on 2- or 3hop questions, ViLT shows the
best generalization to fewer hops, with the model trained on 3hop only loosing
about 4% on the 1hop questions compared to in distribution. NS-VQA shows
a steep decline in performance generalizing from 3hop to 1hop questions, with
a loss in accuracy of around 80%.

Looking closer at the output of NS-VQA, the answer accuracy decouples
from the the program accuracy on all out of distribution tests, with close to
100% for n-hop to n-hop, but 0% for most out of distribution tests. This is
explained by looking at the predicted 1hop programs from NS-VQA trained on
3hop questions. For the 1-hop sample Remove all blue cubes. How many objects
are left?, the 3hop-trained model produces the program sequence equivalent to
Remove all blue objects. Remove all blue cubes. Remove all blue cubes. How
many objects are left?. If the two “extra” remove operations are of objects
that are not present in the scene, the reasoning engine of NS-VQA will still
answer the question correctly. This is consistent with the results in Table 6.4,
as the probability of two remove operations having no effect on a scene and
thus producing a correct answer is significantly higher than for one.

Implicit Learning of Counting as Subtask Table 6.3 show the model
accuracy when trained purely on counting the objects. Counting the objects
in a scene as an implicit task seems to improve when the model is subjected to
more complexity (e.g. learning 1-, 2- and 3hop problems simultaneously). We
see this in Table 6.4 as both NS-VQA and ViLT achieve significantly better
accuracy on the pure counting task only when subjected to training data with
mixed-hop questions. However, the accuracy on counting as an implicit task
is still far from the performance when trained to count explicitly. We also see
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that CLIP and VILT show opposite patterns on counting when moving from
1- to 3hop, with CLIP increasing its performance while ViLT degrades.

6.3.3 Complexity Driven Generalization

Table 6.4 shows model performance when trained on mixed-hop splits, as well as
with spatial functions and more diverse language. NS-VQA struggles to learn
different reasoning lengths jointly, e.g. shown by the results on 1+2+3hop
where 1hop performance is close to perfect, but 2- and 3hop performance being
significantly lower and with large variance. The same pattern can be seen
for 1+2hop and 1+3hop. Conversely, ViLT generalizes better to 3hop when
trained on 1+2hop than either 1- or 2hop, but the in-distribution accuracy is
overall lower. For ViLT, the generalization to 2hop sees almost no degradation
when trained on 1+3hop compared to 2hop. On the other hand, NS-VQA sees
a large drop in performance for 1+3hop to 2hop.

All models struggle with the spatial- and lang-1hop splits, both in terms
of lower in-distribution performance and generalization to longer splits. ViLT
generalizes worst to 2hop and 3hop with 0%, but both CLIP and NS-VQA get
around or below random performance.

6.4 Discussion

Our experiments show that NS-VQA generalizes to novel attribute composi-
tions with near-perfect accuracy. The neural methods perform much worse,
showing significant degradation in performance for novel compositions. We
have shown that all three models generalize poorly to longer reasoning chains,
with similar patterns for the neural methods and complete failures of less than
random performance for NS-VQA. For NS-VQA, generalizing to fewer hops
see less of a degradation but further investigation shows that the model hal-
lucinates and forces the predicted program sequences to use as many hops as
trained on. The CLIP-based model follows a similar pattern, but shows over-
all poor performance. This can be attributed to CLIP only being trained to
align text and images, and not masked language modeling. ViLT shows strong
performance generalizing to fewer hops, achieving performance comparable to
in-distribution tests.

In our experiments with mixed-hop training, we show how ViLT benefits
from complexity similarly to previous work, whereas NS-VQA struggles to learn
more than on hop jointly. One previous argument in the domains of neuro-
symbolic language learning and compositional generalization, is that the lan-
guage component fails on such tasks because it cannot capture the complexity
of language sufficiently. Our results on function generalization indicate that
NS-VQA does indeed suffer from this, where the more powerful ViLT trans-
former is able to consistently generalize to shorter chains. However, all three
methods suffer on our language complexity split, confirming that our language

117



complexity split is more challenging than previous work. This also shows that
there is room for improvement for in-distribution learning on these types of
tasks.

We argue that learning recursive functions is one key challenge in compo-
sitional generalization. Currently, even if NS-VQA does answer some 1-hop
questions correctly when trained on 2-hop questions, our investigation shows
that it does not do so by partial application of the 2-hop function. If both
the architecture and the learning procedure would reflect the recursive nature
of subtraction, generalizing from 1- to 2-hop should be no different than from
1-hop to any K-hop questions.

An important future research direction is to look at curriculum learning
based on attributes and program complexity. Although it is known that cur-
riculum learning can lead to more efficient training, the effects on compositional
generalization is unclear. Given that NS-VQA and ViLT both see a significant
increase in performance on the counting subtask when subject to mixed-hop
training, curriculum learning could be beneficial for this task.

6.4.1 Conclusion

In this paper we have developed a benchmark to test compositional general-
ization in multimodal mathematical reasoning. We have introduced data splits
for compositional generalization that address both systematicity and produc-
tivity. For each of these splits we compare the state-of-the-art neuro-symbolic
model NS-VQA with recent neural models ViLT and CLIP. We showed that
while NS-VQA is superior in attribute generalization (systematicity) it lags
behind the neural models like ViLT for functional generalization (productiv-
ity). We additional demonstrated some splits are hard for either model family
and also presented ablation experiments that contrast the various models on
different amounts and complexities of training data. We believe our work will
help inspire future research on better architectures that can compositionally
generalize on diverse multimodal applications.

6.5 Probing CLEVR Attribute Compositionality

The experiments with compositional generalisation splits earlier in this chapter
evaluates models based on their external behaviour. This section will provide
complementary experiments focusing on the internal properties of models using
the probing techniques described in Chapter 4.

Probing experiments have been used before to gain insight into the compo-
sitional generalisation of models. Chapter 3 covered how Lovering and Pavlick
(2022) and Pavlick (2022) uses probing to test compositionality in deep learning
models for vision tasks. A key takeaway important for this work is that prob-
ing showed that the models tested saturated the performance on one attribute
before moving to the next. The order in which the attributes were learned cor-
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responded to their visual complexity, learning horisontal versus vertical lines
before learning to classify fuzziness. Sikarwar et al. (2022) use mechanistic
interpretability of Transformer attention to gain insight into how multimodal
transformers learn to compose on ReaSCAN. They propose an extended set of
data splits targeting compositional generalisation, and show how multimodal
transformers are capable to generalise systematically to some extent. They
complement the performance over these splits with a linear probe using the
self-attention weights, Figure 6.6 shows the probing results. This indicates
that the learned model does good job but does not manage to disentangle
perfectly.

Figure 6.6: Image from (Sikarwar et al., 2022) todo ask for permission.

Another relevant use of probing is shown by Tenney et al. (2019), where the
authors argue that BERT rediscovers the classical NLP pipeline. Each layer
of BERT is probed for how much each layer contributes to the performance
on a certain NLP task (such as part-of-speech tagging). Figure 6.7 illustrates
the results, indicating that the earlier layers are responsible for the NLP tasks
with lower complexity.

The experiments introduced this chapter combines the ideas of Lovering
and Pavlick (2022), Sikarwar et al. (2022), and Tenney et al. (2019), probing
each layer for how well they represent CLEVR attributes. Going back to the
Principle of Compositionality, in order to apply a function over parts in a
structure the parts must be distinguishable as symbols at some point during
the computation. This intuition motivates the following experiments which
probes the embeddings of the models to recover the CLEVR attributes over
which the compositional generalisation splits were created. If a linear probe
recovers the concepts with high degree of certainty, then the model seems to
have access to such individual parts to combine and evaluate. If a concept
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Figure 6.7: Probing of each layer in BERT shows how NLP tasks interleave
roughly corresponding to a classical NLP pipeline. The performance on Part-of-
Speech tagging (POS) comes from the earlier layers, whereas the performance
on a more complex task such as co-reference resolution comes from the layers
at the very end. TODO ask for permission

is well-represented in the earlier layers but seems to be absorbed in the later
ones (i.e., being non-recoverable), we can still argue that this is a step in the
evaluation of the parts. However, if no layer represents the concept distinctly,
then the concept is not accessible and this suggests that the model does not
fulfil the Principle of Compositionality.

6.5.1 Experiments

1. Baseline: Train probe for each attribute on the pretrained model without
finetuning
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2. Probe: Linear probe

3. For each dataset d in [holdout-1hop,2hop,allhop,lincomp,spatial]:

4. Train one epoch on dataset d:

(a) for each attribute a:

i. Train probe pi,a on training data

(b) For each attribute composition from holdout split:

i. Evaluate accuracy of probe pi,a

(c) Checkpoint model

1. Train models on allhop, lingcomp, 1+2hop, spatial

2. Probe each of these models for attributes, does it differ?

3. Relationship between probing and comp. gen.

• Correlation between probing and comp. gen. results

These probing experiments can tell us whether there is a correlation between
probing performance and the compositional generalization accuracy. Figure 6.8
shows the probing performance per layer of ViLT for CLEVR attributes. The
results when probing ViLT for the number of hops, seen in Figure 6.8c, can be
explained by the fact that some questions use and instead of a period, resulting
in a misleading probing task. However, the fact that the F1-score approaches
that of 1- and 3hop could mean that and is associated with 2hop further into
the network. This can be interpreted as ViLT composing the meaning from
the parts and the structure.

If we assume that accuracy in probing tasks translate into how well a model
composes compositionaly, then it should be possible to predict compositional
generalisation performance from probing accuracy. If the probing accuracy is
lower for red and cube than on blue and sphere, and the model follows the prin-
ciple of compositionality, then we can expect the model to generalise to unseen
red cubes worse than blue spheres. Figure 6.9 shows a similar experiment, where
2-gram attributes are probed for.

Figure 6.8b shows that probes for red and purple have the lowest F1-score
of around 0.75, with brown and cyan having the highest at close to 0.9 F1-
score. Figure 6.8a shows that probes for cylinder has an F1-score of around
0.85, with both cubes and spheres getting around 0.70. If the hypothesis about
the correlation between probing scores and compositional generalisation is true,
then ViLT should generalise better to brown or cyan cylinders than to red cubes
or purple spheres.

Recent work to write about

• (Weiss et al., 2021)
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(a) Probing of shapes

(b) Probing of color

(c) Probing number of hops in the input question.

Figure 6.8: Probing the layers of ViLT for shape, color, and the number of
instructions in the original question.

Figure 6.9: Probing ViLT for 2-grams.

• (Keysers et al., 2020)

• (Belinkov, 2022)

122



• (Kobayashi et al., 2020)
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Chapter 7

Using Concept Hierarchies to
Improve Compositional
Generalisation

Example of how to use quotes at
the beginning of chapters

dali

• Effect of curriculum on comp. gen., in terms of

– Final accuracy

– How quickly good performance is reached

• Probing results could perhaps help explain?

• One pseudoword experiment with blargh= small blue sphere

– Look at more than one level of abstraction

• Relate these experiments to Eustace and Carey

– Extend curriculum to include tasks for identifying objects, counting,
et c.

– Relate this to (Aissa et al., 2023; Askarian et al., 2021)

• Ideally add support for more models in evaluation

• Check effect of L2 norm on NS-VQA and ViLT
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7.1 Language Learning in Developmental Psy-
chology

TODO Dupoux (2018) gives an overview on how results from cognitive science
in infant language learners can be used to build better language systems.

Compositional generalisation in multimodal language models is studied
mostly through implicit metrics in unsupervised settings. Recent systems such
as CLIP, DALL-E 2, Stable Diffusion, et c., are impressive in the way they
process novel combinations of concepts, but it is difficult to verify underlying
structures and mechanisms allowing these compositions. One difficulty when
analysing these capabilities is that we do not know exactly what data a sys-
tem was trained on. Therefore, an experimental setup using synthetic data
means we can investigate with high control. However, for ecological validity,
we also want the data to have enough natural properties to show transferability
to natural domains. Previous work does this with abstract 2D concepts and
pseudowords (B. M. Lake, 2019; B. M. Lake et al., 2019; Ruis et al., 2020).
In this work, we propose a compositional generalisation benchmark in a 3D
environment using hierarchical pseudoword concepts. With pseudowords, we
can ensure that the specific concept has not been seen before associated with
that word. Since vision models can achieve perfect accuracy on the CLEVR
dataset, this means that we can assume that the basic properties such as shape
and color is already known. The hierarchical aspect means that concepts build
on each other, and that we can investigate whether a model learns basic build-
ing blocks first before composing more complex concepts. This then means
that we can more easily construct curriculum learning setups. This allows us
to investigate the impact of relying on such structures.

Pseudoword setups has a long-standing place in linguistics research, most
famously with the Wug Test introduced by Berko (1958) in 1958. The test
involves 27 questions where pseudowords are introduced, and the task is to
use it in a novel grammatical role. Each question is posed on a card with an
illustration of the pseudoconcept. The example that gave the test its name is
seen in Figure 7.1, showing how the word wug (denoting a bird) is supposed
to be used in plural. Using 56 children age 4–7, the experiments show how
the subjects can apply morphological rules to novel words correctly with fairly
high degrees of accuracy. Regarding the difficulty of the task, we refer to
this statement by the authors; Answers where willingly, and often insistently,
given (Berko, 1958). One important takeaway from the Wug Test is that
humans learn rules that can be applied to novel words in a zero-shot situation,
and that we are able to compose previous knowledge to do so.

Carey and Bartlett (1978) is another example from developmental psychol-
ogy, investigating how children learn a single new word. The authors detail
the process of acquiring a word by different pieces of information. According
to Carey and Bartlett (1978), a learner

• makes a new lexical entry, noting the word and in which language
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Figure 7.1: Example of card from the Wug Test (Berko, 1958), showing a task
of applying morphological rules to a novel (pseudo)word.
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• learns the syntactic subcategorization, e.g. that it is a verb,

• relate it to other known words through super-, hypo-, and hypernyms

• ground the word in the real world,

• differentiate this concept from previous concepts by e.g. breaking it out
as a different species of animal.

In their experiments with 19 children, the subjects were told that chromium
was the word for the color olive green. The procedure involved the following
tasks;

• Introduction to the word “chromium”,

• Baseline vocabulary assessment,

• Olive sorting task,

• Olive naming task,

• Chromium comprehension task, and

• “Chromium” hyponym task.

In the sorting task, the children were tasked with using their newly acquired
knowledge about “chromium” to solve the physical task of matching colors to
boxes among similarly odd colors. With plain red, green, and yellow, it can
be expected that the children confused the concept of chromium meaning olive
green with it meaning something like the odd color out. In the comprehen-
sion task, the children were tasked with pointing at three colors, one of which
was chromium, controlling whether they had properly learnt a referent for
“chromium”. In the hyponym task, the experiment controlled for whether the
children had learnt that “chromium” indeed refered to a color. It is important
to note here that these tasks cover multiple different aspects of understand-
ing a word, rather than only the textual understanding aspect as in the Wug
Test. From their experiments, the authors distinguish between two phases;
the fast mapping and drawn out mapping. Fast mapping takes place in the
first few encounters, and gives only a small subset of the information outlined
above, such as its language and supernym. A more complete understanding of
the word instead requires both more encounters and more time. Their results
show that the subjects could use the new word after only one exposure, but
that the second encounter was necessary to perform well on the outlined tasks.
One takeaway is that we learn a sufficient amount of information about a new
word with very little data by utilizing existing understanding, but not enought
to understand and use it fully without exposure over longer periods of time.
In a sense, it can be expected that we learn certain aspects well at the first
encounter, but that that more complex notions take more time.
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B. M. Lake (2019) and B. M. Lake et al. (2019) use similar ideas to construct
tests for compositional generalisation skills in humans. Their work involves
learning words for objects and functions over objects, constructed as 2D images
of colored dots in patterns. While the authors reuse the same approach of
using pseudowords that are speakable, they restrict the experiments to the
pseudoword domain. In the context of AI, using only pseudowords mitigates
the problem of information leaking from the training data. For instance, it
is difficult to draw any strong conclusions from performing the Wug Test on
GPT-derivatives as this is most likely mentioned many times over in the vast
amount of data used during training.

T. Brown et al. (2020) show with 6 examples that GPT-3 can acquire new
words. This shows how deep learning-based methods can be built to acquire
new words, but it does not tells us much about to which extent the new word
and associated concept can be understood in relation to existing knowlegdge.
We argue that the only conclusion we can draw is that GPT-3 performs the
fast mapping described by Carey and Bartlett (1978).

Similar to the psychology experiemnts on aquiring a new word by Carey and
Bartlett (1978), Eustace (1969) performs experiments with learning a complex
concept at different hierarchical levels.

What we can learn from the Wug Test, is that we can use new words
instantly with little learning, and therefore we should be able to bootstrap
to previous knowledge. When designing a benchmark, we can translate the
Wug Test to check whether there are internal structures and rules that can be
applied to novel words, or if the model relies on something more fuzzy.

From the Chromium experiments, we learn different aspects of a word with
different speed, which means that testing should reflect these expectations. For
our benchmark, this means that we can expect a pseudoword to be lexically
understood, but that things like hyponyms is expected to take longer to learn.

The first hypothesis is that we can expect to see similar behaviour in lan-
guage models. The second hypothesis is that constructing the training proce-
dure to build on previous knowledge will be benefitial for training times, and
that learning syntactic usage should come before more complex tasks.

TODO SUMMARISE THE ABOVE INTO A LIST THAT CAN BE AP-
PLIED TO OUR BENCHMARK

7.2 Concept learning

In Chapter 1 we saw some of the historical debate on what concepts are and
how they are useful for artificial intelligence. In this section, we explore recent
approaches building on these ideas, mainly from the field of meta-learning.

Meta-learning is a branch of machine learning focused on enabeling learn-
ing algorithms in learning-to-learn from past experiences and transfering knowl-
edge to new tasks. The current interest in the field is partially a reaction to the
deep learning paradigm of training from scratch on specific tasks (Hospedales
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et al., 2022). By letting a system self-improve the learning algorithm itself
over different tasks, rather than using a fixed learning algorithm to improve
task performance. Learning-to-learn can lead to a variety of benefits such as
improved data and compute efficiency (Hospedales et al., 2022). Harlow (1949)
talks about the construction of learning sets as a key aspect of primate learning,
stating that

The learning of primary importance to the primates, at least, is the
formation of learning sets; it is the learning how to learn efficiently
in the situations the animal frequently encounters. This learning
to learn transforms the organism from a creature that adapts to
a changing environment by trial and error to one that adapts by
seeming hypothesis and insight.

Moving from primates to neural networks, Hospedales et al. (2022) formalise
the difference between conventional neural networks and meta-learning.

Given a dataset D = (x1, y1), . . . , (xN , yN ), neural networks are trained to
a minimise a loss function L for a predictive model ŷ = fθ(x) parameterized
by θ.

θ∗ = arg min
θ

L(D; θ, ω), (7.1)

The parameter ω denotes the assumptions on how to learn, including network
architecture and training parameters siuch as the optimizer for θ. A meta-
learning model is instead tasked with learning ω to minimise the loss over
tasks T = D,L.

min
ω

ET ∼p(T )L(D;ω) (7.2)

Using these definitions, we can see how conventional neural networks are cap-
tured within meta-learning. However, it is important to note that even if we
only have one task, the meta-learning objective in Equation 7.2 is still con-
cerned with finding the best assumptions for ω. Now, with meta-learning as
the backdrop, we will look at meta-learning approaches to facilitate few-shot
learning of concepts.

Vinyals et al. (2016) introduce matching networks for one shot learning as a
method to learn a similarity metric between a query input and a set of labeled
examples. The method uses an attention mechanism over learned embeddings
of the labeled examples, and classifies unlabeled input using a technique sim-
ilar to nearest-neighbor search by finding the closest labeled example. The
authors show how matching networks can perform one-shot learning on image
recognition and natural language processing tasks.

Building on the ideas of Vinyals et al. (2016), Snell et al. (2017) introduce
ProtoNet, prototypical networks for few-shot learning. Extending on the idea
of similarity in an embedding space, prototypical networks work under the
assumption that there is a single point in the embedding space that can act
as the prototype representation of a class. ProtoNet works by first creating a
set of such prototype embeddings from the training data. These prototypes
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are then used to classify new data points by computing the distance between a
new data point and the prototypes. The model then assigns the new data point
to the class of the most similar prototype. Using a few tricks, such as using
Euclidian distance instead of cosine similarity, ProtoNets outperform matching
networks on a range of tasks.

Following these two embedding space-based methods, Cao et al. (2021) ar-
gue that reusable concepts is an important missing piece of the puzzle. They
say that [..] this lack of structure is limiting the generalization ability of the
current meta-learners while refering to B. Lake et al. (2011) and B. M. Lake
et al. (2015) and the importance of compositionality for few-shot learning. An
often used example is how humans use parts to determine the whole, for in-
stance by identifying an animal as a cat by its whiskers, paws, pointy ears, and
fur. Motivated by this, they introduce COMET as a meta-learning method
based on learning human-interpretable concepts. Similar to the prototypical
networks (Snell et al., 2017), COMET uses embeddings of the labeled data
to construct a composable set of concepts. However, instead of learning one
joint embedding space for all prototypes, COMET learns individual embedding
functions for each concept. Each concept learner is used to produce concept
prototypes similar to the averaged prototype embeddings in ProtoNets. When
we want to classify a data point, each concept learner computes an embed-
ding of the data point and we measure the distance of each embedding to the
concept prototype classes to determine its class. The method is evaluated on
tasks from computer vision (CUBS, Flowers), NLP (Reuters news classifica-
tion), and biology (Tabula Muris). As an example, they use all hypernyms
of a given word in the Wordnet (Miller, 1992) hierarchy to create concepts to
base the model on for the Reuters news classification. For the classification
of birds in CUBS, concepts such as beak and wing are given by the dataset.
COMET outperforms Matching Networks and Prototypical Networks in both
1- and 5-shot settings for all tasks. COMET also achieves comparable perfor-
mance with the other methods even on a small subset of all the concepts. One
question now is whether the performance gain comes from this more elaborate
architecture, or whether the method bootstraps its performance to the human-
defined concepts. To answer this, COMET is also tested using unsupervised
concepts, still marginally outperforming the baselines while clearly outperform-
ing ProtoNet. Hence, it is not strictly necessary to use human-interpretable
concepts for COMET to work, but they provide stronger performance. How-
ever, human-interpretable concepts are important for interpretability of how a
model understands a certain class. For this, COMET is evaluated on local and
global explanations concerning which concepts are the most important for a
given data point or class. In their evaluation, Cao et al. (2021) conclude that
COMET is consistent with human interpretations.

These three methods all show how meta-learning using basic building blocks
can give efficient learning methods. Specifically, COMET shows how we can use
human-interpretable primitives to compose more complex concepts for classifi-
cation. Importantly, all these methods require only a few examples of a novel
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class to recognise its instances.
With a concept learner setup based on human-interpretable concepts, we

do not need to perform experiments like the probing detailed in Chapter 3.
Instead, such insights fall more naturally out of the architecture itself with
COMET. We can also make a strong case for how such a model handle the
introduction of new symbols by adding concept learner as soon as something
sufficiently out-of-distribution is seen. One counter argument is that the in-
teractions between and the nueances of real-life concepts are so complex, that
these concept learners merely are crude approximators while LLMs can embrace
and model that complexity.

While COMET showcases important properties and good performance, the
architecture only models one level of abstraction. Hence, to have real world
applicability, it might be necessary to neste concept learners hierarchically.
If this can be done in a emergent way, similar to what we described in the
previous paragraph on new symbols, this might allow the same complexity
while producing a human-interpretable model. The benefit of having human-
interpretable concepts as with COMET is that there is a much clearer path to
how a model can be a shared representation between humans and machines. We
saw in Chapter 5 how a shared representation is a key component of building
human-centered AI.

7.3 Curriculum Learning with Concept Hierar-
chies

7.3.1 Experiments

1. Define curriculum cl

2. Define good-enough criteria c

3. For each level in curriculum:

(a) Train model m until criteria c

(b) Evaluate on test data for held out compositions

(c) Checkpoint model

Questions:

• How do you define criteria c?

– Plateau in loss or validation data accuracy

– Threshold loss or accuracy

– Fixed number of epochs
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Concept Hierarchy

Based on attributes and function difficulty, similar to X. Wang et al., 2022.

Loss-based

Another approach is to do a loss-based curriculum learning where a subset of
the most difficult subset of samples are chosen in each epoch.

7.4 Compositional generalisation benchmark us-
ing hierarchical pseudoword concepts in CLEVR

Previous work shows us the importance of compositionality for generalisation,
and how human intelligence is compositional. We have seen examples of tests
for compositional generalisation in language models (e.g. COGS (N. Kim &
Linzen, 2020)), and examples for multimodal language models in e.g. (Johnson
et al., 2017). However, the benchmarks for multimodal language models have
focused mainly on confounding information and n-gram associations (e.g. fixing
the color of spheres in training but not testing), rather than complex compo-
sitional structures such as those modeled in COGS (N. Kim & Linzen, 2020).
This section will detail a compositional generalisation benchmark for hierarchi-
cal concepts using some of the ideas from developmental psychology outlined
earlier in this chapter. The benchmark is realised with CLEVR using pseu-
doword concepts that build hierarchically on each other, exemplified in Fig-
ure 7.2. In the spirit of the Chromium test by Carey and Bartlett (1978), we
device multiple tasks through which the comprehension of these concepts are
tested.

• Determining presence or absence of concept in image

• Performing a task – mathematical reasoning

• Hyponym task

These tasks are constructed to cover different aspects of the concepts, not
necessarily corresponding to orders of difficulty. However, given the hierarchical
ordering of the concepts, we can construct a curriculum learning setup for
learning concepts by order in the hierarchy. Curriculum learning has shown
to improve generalisability and the convergence rate during training (Bengio
et al., 2009; X. Wang et al., 2022). One central challenge of curriculum learning
is how to estimate difficulty in order to create a curriculum. In our case, we can
use the hierarchical structure to reflect the complexity of a concept. With a
curriculum, we can then compare differences in task peformance when training
on randomly ordered concepts versus using a curriculum. Beyond performance,
we can hypothesise about how a curriculum affects the internal structure of a
model to better allow for compositional generalisation.
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Figure 7.2: A simple example of data generated in CLEVR, where we see two
pseudoconcepts; a) a blargh – two small cubes next to each other, and b) a
perde – a large cyan sphere.

Another motivation behind this work is TODO CITATION OF IBM, where
abstraction, composition, and recursion are three central characteristics neces-
sary to generalise. We can also look to examples from reinforcement learning,
where Zhao et al. (2022) propose a reinforcement learning method that achieves
compositional generalisation in a object oriented domain. The authors borrow
ideas from curriculum learning, as they describe three stages (object extraction,
action binding, and transition modeling between properties) of learning using
their model. However, this work does not address hierarchical compositions
but only a flat hierarchy.

Askarian et al. (2021) look at the effects of three different curriculum learn-
ing strategies on performance in relation to amount of data and training costs.
Their claim is that “curriculum learning effectively improves low data VQA”,
showing on subsets of CLEVR how CL and L2-norm regularisation can dras-
tically improve performance when training with only 20% of the original data.
They define three different curriculum learning strategies using complexity crit-
era based on program length, answer hierarchy, and hard examples. The first
strategy is based on the intuition that the length of a question is an indication
of how difficult it is to answer. As a proxy for length, this strategy measures the
length of the program as given in the CLEVR dataset (i.e., filter_colorblue
counting as one operation. The second strategy uses an answer hierarchy cre-
ated by the authors themselves. The intuition is that a learner first learns
the answer type, e.g. that a question requires a number as its answer. From
this intution, Askarian et al. (2021) constructs a hierarchy of the answer types,
shown in Figure 7.3. Hardness is then defined as how far from the hierarchy
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root an answer is. Their third strategy uses examples that yield high learner
loss. This makes it the only strategy to have a dynamic hardness criteria, since
the loss will change for hard examples over time as they become easy for the
model to answer.

As further insight into the benefits of curriculum learning for visual ques-
tion answering, Aissa et al. (2023) proposes a Neural Module Network (NMN)
method for Visual Question Answering that uses predefined cross-modal em-
beddings and curriculum learning to reduce the cost of training and the amount
of training data while still achieving good accuracy. They show how their cur-
riculum learning strategies allow the NMN model to achieve the same perfor-
mance using half of the data and 18 times less compute. Their main hardness
criteria is a combination of the number of objects in a scene and the pro-
gram length of a given question. They complement this hardness criteria with
pretraining on random examples, and two weighting strategies to 1) achieve
uniform distribution over the different answer types, and 2) weigh examples
proportinal to the sum of the avergae losses of the program modules corre-
sponding to the quesition (this focuses the model on hard examples). These
strategies are all follow the same spirit as the strategies presented by Askarian
et al. (2021). Aissa et al. (2023) move away from CLEVR into the more natural
domain of GQA, to provide a more challenging and complex setup.

Keysers et al. (2020) formalise distribution-based compositionality assess-
ment (DBCA) as a method to assess the adequacy of a dataset split for mea-
suring compositional generalisation. They introduce two guiding principles; 1)
similar atom distribution, and 2) different compound distribution, and argue
together with Saxton et al. (n.d.) that automated rule-based generation of data
brings the control necessary to adhere to these principles. Hence, we build on
these ideas when constructing our benchmark.

Another important continuation is to provide tasks with increasing diffi-
culty, either as more steps, higher scene complexities, or more complicated
operations to learn. A task that is difficult in general is the introduction of
new symbols. From a grounding perspective, it is key that a word is associ-
ated with the correct real world referent. From a compositional perspective,
it is key that a new concept is composed of previously known concepts where
appropriate. A key component of intelligence is that we can generalise beyond
the domain knowledge we have. For AI systems, this means that the domain
knowledge encoded at creation might be important inductive bias, but cannot
restrict a models’ ability to interact and to learn.

Fundamentals

• Mapping n-grams of properties (blue, small) to "natural"* pseudowords[0,4,5]
as pseudoconcepts - small blue sphere -> blargh

• Compose a hierarchy of pseudoconcepts

• Hierarchy should reflect (arbitrary) categories
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Figure 7.3: The answer hierarchy for CLEVR, as introduced by Askarian et al.
(2021). Used to define hardness for their curriculum learning strategy.136



Figure 7.4: Example of a pseudoconcept hierarchy over the CLEVR vocabulary.

• How is this complementary to gSCAN (Ruis et al., 2020), Tangrams (A.
Ji et al., 2022)? Can we use those domains as well/instead?

– gSCAN talks about “composition of references and another involv-
ing composition of attributes”, since a small red square can have
referants “square”, “red square”, “small red square”, et c.

• None of the compositional generalisation benchmarks seem to cover hier-
archical compositions of concepts, this is a main point of novelty

• Important to have uncertainty in concepts, e.g. by defining conditional
properties such as wug=sphere AND (red OR green)

In gSCAN, [..] each target referent from the instruction determiner phrase
is ensured to be unique (only one possible target in “walk to the yellow square”)..
Our benchmark is complementary to this notion in the sense that a model must
apply actions over possibly multiple targets.

Tasks and experiments

• Did the model learn category abstractions?
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• What is the effect of curriculum learning (X. Wang et al., 2022) by ac-
quiring pseudoconcepts from the bottom up (i.e. 1-gram pseudoconcepts)
rather than sampled randomly from hierarchy?

– Do we learn faster/with less?

– Is the resulting internal structure of the model different? (E.g. in-
vestigate using probing experiments of Lovering and Pavlick (2022))

• “Maximize Presupposition”-like setup using, e.g., an image with only one
large object: “What color is the large cube?” vs. “What color is the large
object?” (Schlenker, 2012)

• Different levels of comprehension - Wug Test (Berko, 1958), Chromium
test (Carey & Bartlett, 1978), CLEVR-Math (Lindström & Abraham,
2022a)

– Detecting the presence of an object

– Point out concept in line up

– Use it in a task, e.g. mathematical reasoning or regular CLEVR (John-
son et al., 2017)

• Investigate the effects on comp.gen. when, e.g., gray scaling the image or
dimming the lighting, and other visual changes

• Important to do splits across multiple dimensions to test compositionality

– Recursive depth, do we learn a mechanism/algorithm, or just pattern
matching?

– Properties, shape color et c., do we strongly associate colors and
shapes, or do we disentangle them?

• How do we construct a rich enough hierarchy?

The hierarchical constructions are on the following forms

• No parent – base/given knowledge, in this case shape/color et c.

• Naming of an unknown concept, i.e. analogous to the Chromium experi-
ments

• Renaming of a color, e.g. blargh as a synonym for red

• Creating a parent for a 2-gram, e.g. a blue cylinder is called a blik

• Creating a parent for pseudoconcepts, e.g. two small bliks are called a
fnik
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Figure 7.5: Illustration of how a curriculum can be used to investigate the
effects of training on compositional generalisation.

Experiment Susan Carey

• New lexical entry, recording the word and language

• Lean the syntectic subcategorization, i.e. verb

• Relate it to known words, e.g. hyponyms

• Ground word in the real world

• Differentiate the concept from related words

Chromium task

• Introduce word chromium (synonym for olive green color)

• Baseline vocabulary assessment, does the person recognize chromium as
a word, same for olive green

• Olive sorting task

• Olive naming task

• Chromium comprehension task

• Chromium hyponym task

Eustace

• Names - What would you name the group in the top right corner?

• Groups - What is the common feature of these objects/groups?
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• Word groups - group the objects based on color

• Noun definition - define the properties of the yellow sphere

• Noun position - What is to the left of the cube?

• Abstract noun - What is the relationship between A and B?

• Noun subject - What is the central object in this picture?

• Intergroup flexibility - Understand/manipulate categories/groups

Hypothesis is that your performance on (easier) subtasks must be greater
than on the composite task, otherwise we cannot say for certain that the par-
ticular concept is understood. We combine the ideas of the Chromium task and
Eustace, introducing two pseudo-word concepts mapped to attribute n-grams.

• Is there a blarghin the image?

• What color is the blargh?

• What size is the blargh?

• What shape is the blargh?

• Remove all blargh. How many objects are left?

• What shape is the object left of the blargh?

• Is the blarghnext to a cube?

• What is the common feature of the objects on the left side of the image?

We can translate this into a curriculum of tasks

• Is there a sphere in the image?

• Is there blue object in the image?

• Is there a blue sphere in the image?

• Is there a blobb (blue sphere) in the image?

• What color is the sphere?

• What color is the large object?

• What size is the sphere?

• How many spheres are there?

• How many blue objects are there?

• Remove all spheres. How many objects are left?
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• What shape is the object left of the sphere?

• Is the sphere next to a cube?

• What is the common feature of the objects on the left side of the image?

We perform the experiment with both blarghand its components small blue
sphereto assess the baseline behaviour that can be achieved.

The curriculum learning attempt reinitialises the trainer, resetting the learn-
ing rate. The impact of cyclical learning rates has been explored before, where
Smith (2017) shows how it can improve both classification accuracy and reduce
the amount of iterations necessary.

Early stopping when training on all data terminates the training processes
too early, and the generalisation to 3hop is abysmal. However, early stopping
in combination with curriculum learning can improve the convergence time and
leads to a low loss over all subtasks.

One explanation to this behaviour could be that training on all tasks simul-
taneously leads to gradient starvation (Pezeshki et al., 2021).
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Chapter 8

Conclusions

Example of how to use quotes at
the beginning of chapters

dali

Summarise challenges, opportunities, how current work address those, and
future work.
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