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What did we find?

It is difficult to generalise from one to many reasoning
steps with multimodal data for both state of the art neural

and neuro-symbolic methods

Figure 1: Take away all large green metallic spheres. Now remove all cyan
objects. How many objects are left? (4) 2



Test your reasoning

(a) Take away all small purple matte
blocks. Subtract all blocks. How many
objects are left?

(b) Remove all red metallic objects.
Subtract all yellow objects. How many
objects are left?
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Test your reasoning

(a) Take away all small purple matte
blocks. Subtract all blocks. How many
objects are left?
Answer: 2

(b) Remove all red metallic objects.
Subtract all yellow objects. How many
objects are left?
Answer: 5
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Motivation



Example of ’reasoning’ in the world of neural networks
You are having a small dinner party. You want to serve dinner in
the living room. The dining room table is wider than the doorway,
so to get it into the living room, you will have to remove the
door. You have a table saw, so you cut the door in half
and remove the top half.

(a) some
plants

surrounding a
lightbulb

(b) a lightbulb surrounding
some plants

Figure 4: Example from the Winoground
dataset (Thrush et al., 2022).

Figure 5: Teddy bears
shopping for groceries in
the style of ukiyo-e by
DALL-E 2.
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Fast and Slow in NeSy - a simple mental model
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Learning math in elementary school

Problem: Adam has three apples,
and Eve has five. Eve gives Adam
all her apples. How many apples
does Adam have, if he eats one?
Equation: X = 3 + 5 − 1

Figure 6: ‘‘Adam holds five
apples and Eve gives him
three apples, retro
style’’ (Ramesh et al., 2022)
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Motivation summarised

Mathematical reasoning tasks have
clear answers and are easy to
control. On reasoning tasks NeSy
methods should perform better
than neural methods.
Multimodality is important.
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What did we do?



Compositional learning with CLEVR



Templates

Type Templates
Remove group

”Remove all ... . How many ... are there?”
”Take away X ... . How many objects are there?”

Remove subset
”Remove X ... . How many ... are there?”

Insertion
”Add X .... How many objects are there?”

Count backwards
”How many ... must be removed to get X ...?”
”Take away ... . How many were removed if are X ... left?”

Multi-hop
”Take away all A. Remove all B. How many objects are left?”

Adversarial
”Remove all A . How many B are left?”
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More samples from CLEVR-Math

Figure 7: (i) Remove all gray spheres. How many spheres are there? (3), (ii)
Take away 3 cubes. How many objects are there? (7), (iii) How many blocks
must be removed to get 1 block? (2)
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Our experiment with NS-VQA (Yi et al., 2018) and CLIP (Rad-
ford et al., 2021)
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Results

Model All Addition Subtraction Adversarial Multihop Multihop (0-shot)
NS-VQA 0.8840 0.9781 0.9948 0.9957 0.286 0.267

CLIP 0.3464 0.5699 0.3019 0.2848 0.272 0.238

(a) Subtract all small purple
matte blocks. Subtract all blocks.
How many objects are left? was
answered by CLIP with 3 instead
of 2.

(b) Subtract all red metallic
objects. Subtract all yellow
objects. How many objects are
left? was answered with 9 instead
of 5 by NS-VQA.
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Conclusions



My takeaways

• Neuro-symbolic methods (clearly) better at these reasoning
tasks

• Room for improvement on how language is used in
NeSy-methods

• Multimodal multihop reasoning is hard for state of the art
methods

• State representation could be key to better performance for
multihop reasoning

14



Future work

• Intermediate scene graphs for each step
• Generate subquestions and apply actions individually
• How does a prompt-like input (like that of CLEVR Hyp) effect the

outcome?
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Resources

https://huggingface.co/datasets/dali-does/clevr-math

https://github.com/dali-does/clevr-math
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Related work

• Math problem solving (MAWPS (Koncel-Kedziorski et al., 2016),
SVAMP (Patel et al., 2021))

• CLEVR-based work (CLEVR hyp (Sampat et al., 2021),
CLEVRER (Yi et al., 2019), CLEVR-Hans (Stammer et al., 2021))

• Visual reasoning (Kandinsky patterns (Holzinger et al., 2019),
GQA (Hudson & Manning, 2019))
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Confusion matrix

Figure 11: Confusion matrix for CLIP trained on 20 000 samples.
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