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Introduction

Want to solve generalized eigenvalue problem for matrix pencil

A − λB, A, B ∈ R
n×n.

This consists of:

Finding generalized eigenvalues λ:

det(A − λB) = 0.

(for nonsingular B : ⇔ λ is an eigenvalue of B−1A)

Finding right and left deflating subspaces X and Y:

AX ⊆ Y, BX ⊆ Y.

(for nonsingular B : ⇔ X is an invariant subspace of B−1A)

Assumption: A − λB is a regular pencil, i.e., det(A − λB) 6≡ 0.
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The Basic QZ Algorithm

Moler/Stewart ’73: QZ generates a sequence of orthogonally
equivalent matrix pencils:

(A0 − λB0) := (A − λB), (A1 − λB1), (A2 − λB2), . . . .

Under suitable conditions (Watkins/Elsner ’94) :

(Ai − λBi) −→

(

− λ

)

.

Three ingredients of implicit QZ:

initial reduction to Hessenberg-triangular form;

deflation;

QZ iterations = bulge chasing.
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Hessenberg-Triangular Reduction

A B

original matrix pencil A − λB

blocked QR factorization of B and update of A

blocked reduction to block Hessenberg-triangular form

reduction to Hessenberg-triangular form

based on pipelined Givens rotations

(Dackland/Kågström ’99)

Up to three times faster than LAPACK’s DGGHRD.
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Deflation I: Small Subdiagonal Entry in A
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⇒ generalized eigenvalue problem deflated into two smaller ones.
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Deflation II: Small Diagonal Entry in B
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Deflation II: Small Diagonal Entry in B
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⇒ one eigenvalue λ = ∞ deflated.
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Implicit QZ Iteration

Assumption: B is nonsingular.

Goal: Drive subdiagonal entries of A to ε.

Shift polynomial: Define shifts σ1, σ2 as generalized eigenvalues of
the bottom right 2 × 2 subpencil of A − λB. Let

x = (AB−1 − σ1In)(AB−1 − σ2In)e1,

and Q such that QT x = αe1.

QZ iteration: Reduce QT A − λQT B back to Hessenberg-triangular

form.
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Bulge Chasing

..apply QT from the left....reduce 1st column of B by (opposite) Householder from the right....reduce 1st column of A by Householder from the left....reduce 2nd column of B by (opposite) Householder from the right..
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Bulge Chasing

One QZ iteration requires O(n2) flops.

On average, roughly two QZ iterations are necessary for
deflating a gen. eigenvalue (typically at the bottom right corner).

High memory access/computation ratio and poor memory
access pattern ⇒ poor performance!

Remedy: Use more shifts per iteration.

But: Large bulge sizes lead to shift blurring phenomena and loss of
convergence(Watkins ’96, Kressner ’04).

Use tightly coupled chain of small bulges instead. Based on ideas of
Braman/Byers/Mathias ’02, Lang ’97, and many others for the QR

algorithm.
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Multishift QZ: Introducing a Chain of Bulges

Red area: Updated during introduction.

Blue area: Updated after introduction via matrix-matrix-mult.
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Multishift QZ: Chasing a Chain of Bulges
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Performance of the QZ algorithm

500 1000 1500
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LAPACK
multishift, ns = 2
multishift, ns = 4
multishift, ns = 6

# shifts/bulge: ns ∈ {2, 4, 6}

# shifts/QZ iteration: m = 60
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Aggressive Early Deflation

Based on work by Braman/Byers/Mathias ’02 for the QR algorithm,
a more effective deflation strategy can be used to accelerate
convergence of the QZ algorithm.

500 1000 1500
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1

n

LAPACK
ns = 2, early deflation
ns = 4, early deflation
ns = 6, early deflation
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Computation of Deflating Subspaces

Output of QZ algorithm: Orthogonal matrices Q, Z such that

QT AZ − λQT BZ = − λ .

First k columns of Q and Z span pair of deflating subspaces
belonging to gen. eigenvalues of k × k leading principal subpencil.

To compute other deflating subspaces, gen. eigenvalues must be
reordered.

Van Dooren ’82, Kågström ’93, Kågström/Poromaa ’96, propose to
reorder gen. eigenvalues in a bubble sort-like fashion.

Again: High memory access/computation ratio and poor memory

access pattern ⇒ poor performance!
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Block Algorithm for Reordering Eigenvalues
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Performance of Block Reordering Algorithm

For standard eigenvalue problem:

n sel. LAPACK new ratio

500 5% 0.25 0.09 36%

500 25% 0.75 0.25 33%

500 50% 0.81 0.33 40%

1000 5% 2.87 0.60 21%

1000 25% 8.40 1.57 19%

1000 50% 10.08 2.10 21%

1500 5% 9.46 1.69 18%

1500 25% 30.53 4.88 16%

1500 50% 35.93 6.55 18%

Daniel Kreßner, Institut für Mathematik, TU Berlin Blocked and Multishift Variants of the QZ Algorithm for Computing Deflating Subspaces of Regular Matrix Pencils – p.18/19



Concluding Remarks

Work under progress:

Integration of described algorithms into new release of
LAPACK.

ScaLAPACK-like parallel implementation of QZ algorithm (Björn
Adlerborn, Univ. Umeå)

For more details, see:

Adlerborn/Dackland/Kågström: Parallel and blocked algorithms for reduction of a

regular matrix pair to Hessenberg-triangular and generalized Schur forms.

PARA2002, Springer-Verlag, LNCS, Vol. 2367, pp 319–328.

Kressner/Kågström: Multishift variants of the QZ algorithm with aggressive early

deflation. In preparation, 2004.

Kressner: Numerical algorithms and software for general and structured

eigenvalue problems. PhD thesis, 2004.
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