Blocked and Multishift Variants of the QZ Algorithm for Computing Deflating Subspaces of Regular Matrix Pencils

Bo Kågström

Dept. of Computing Science and HPC2N
Umeå University, Sweden

Daniel Kressner

Institut für Mathematik
TU Berlin

DFG research center Berlin mathematics for key technologies
23.03.2004

Introduction

Want to solve generalized eigenvalue problem for matrix pencil

$$
A-\lambda B, \quad A, B \in \mathbb{R}^{n \times n}
$$

This consists of:
e Finding generalized eigenvalues λ :

$$
\operatorname{det}(A-\lambda B)=0
$$

e Finding right and left deflating subspaces \mathcal{X} and \mathcal{Y} :

$$
A \mathcal{X} \subseteq \mathcal{Y}, \quad B \mathcal{X} \subseteq \mathcal{Y}
$$

Introduction

Want to solve generalized eigenvalue problem for matrix pencil

$$
A-\lambda B, \quad A, B \in \mathbb{R}^{n \times n}
$$

This consists of:
e Finding generalized eigenvalues λ :

$$
\begin{gathered}
\operatorname{det}(A-\lambda B)=0 \\
\text { (for nonsingular } \left.B: \Leftrightarrow \lambda \text { is an eigenvalue of } B^{-1} A\right)
\end{gathered}
$$

e Finding right and left deflating subspaces \mathcal{X} and \mathcal{Y} :

$$
A \mathcal{X} \subseteq \mathcal{Y}, \quad B \mathcal{X} \subseteq \mathcal{Y}
$$

(for nonsingular $B: \Leftrightarrow \mathcal{X}$ is an invariant subspace of $B^{-1} A$)

Introduction

Want to solve generalized eigenvalue problem for matrix pencil

$$
A-\lambda B, \quad A, B \in \mathbb{R}^{n \times n}
$$

This consists of:
e Finding generalized eigenvalues λ :

$$
\operatorname{det}(A-\lambda B)=0 .
$$

(for nonsingular $B: \Leftrightarrow \lambda$ is an eigenvalue of $B^{-1} A$)
e Finding right and left deflating subspaces \mathcal{X} and \mathcal{Y} :

$$
A \mathcal{X} \subseteq \mathcal{Y}, \quad B \mathcal{X} \subseteq \mathcal{Y}
$$

(for nonsingular $B: \Leftrightarrow \mathcal{X}$ is an invariant subspace of $B^{-1} A$)
Assumption: $A-\lambda B$ is a regular pencil, i.e., $\operatorname{det}(A-\lambda B) \not \equiv 0$.

The Basic QZ Algorithm

Moler/Stewart '73: QZ generates a sequence of orthogonally equivalent matrix pencils:

$$
\left(A_{0}-\lambda B_{0}\right):=(A-\lambda B),\left(A_{1}-\lambda B_{1}\right),\left(A_{2}-\lambda B_{2}\right), \ldots .
$$

Under suitable conditions (Watkins/Elsner '94) :

$$
\left(A_{i}-\lambda B_{i}\right) \longrightarrow(\nabla-\lambda \bigvee)
$$

The Basic QZ Algorithm

Moler/Stewart '73: QZ generates a sequence of orthogonally equivalent matrix pencils:

$$
\left(A_{0}-\lambda B_{0}\right):=(A-\lambda B),\left(A_{1}-\lambda B_{1}\right),\left(A_{2}-\lambda B_{2}\right), \ldots
$$

Under suitable conditions (Watkins/Elsner '94) :

$$
\left(A_{i}-\lambda B_{i}\right) \longrightarrow(\nabla-\lambda \Psi)
$$

Three ingredients of implicit QZ:
e initial reduction to Hessenberg-triangular form;
e deflation;
e QZ iterations = bulge chasing.

Hessenberg-Triangular Reduction

$$
\text { original matrix pencil } A-\lambda B
$$

blocked QR factorization of B and update of A
blocked reduction to block Hessenberg-triangular form
reduction to Hessenberg-triangular form based on pipelined Givens rotations
(Dackland/Kågström '99)
Up to three times faster than LAPACK's DGGHRD.

Deflation I: Small Subdiagonal Entry in A

$$
\left[\begin{array}{cccccc}
a & a & a & a & a & a \\
a & a & a & a & a & a \\
& a & a & a & a & a \\
& & \varepsilon & a & a & a \\
& & & a & a & a \\
& & & & a & a
\end{array}\right]-\lambda\left[\begin{array}{cccccc}
b & b & b & b & b & b \\
& b & b & b & b & b \\
& & b & b & b & b \\
& & & b & b & b \\
& & & & b & b \\
& & & & & b
\end{array}\right]
$$

Deflation I: Small Subdiagonal Entry in A

Deflation I: Small Subdiagonal Entry in A

$$
\left[\begin{array}{ccc|ccc}
a & a & a & a & a & a \\
a & a & a & a & a & a \\
& a & a & a & a & a \\
\hline & & 0 & a & a & a \\
& & & a & a & a \\
& & & & a & a
\end{array}\right]-\lambda\left[\begin{array}{ccc|ccc}
b & b & b & b & b & b \\
& b & b & b & b & b \\
& & b & b & b & b \\
\hline & & & b & b & b \\
& & & & b & b \\
& & & & & b
\end{array}\right]
$$

\Rightarrow generalized eigenvalue problem deflated into two smaller ones.

Deflation II: Small Diagonal Entry in B

$$
\left[\begin{array}{cccccc}
a & a & a & a & a & a \\
a & a & a & a & a & a \\
& a & a & a & a & a \\
& & a & a & a & a \\
& & & a & a & a \\
& & & & a & a
\end{array}\right]-\lambda\left[\begin{array}{cccccc}
b & b & b & b & b & b \\
& b & b & b & b & b \\
& & \varepsilon & b & b & b \\
& & & b & b & b \\
& & & & b & b \\
& & & & & b
\end{array}\right]
$$

Deflation II: Small Diagonal Entry in B

$$
\left[\begin{array}{cccccc}
a & a & a & a & a & a \\
a & a & a & a & a & a \\
& a & a & a & a & a \\
& & a & a & a & a \\
& & & a & a & a \\
& & & & a & a
\end{array}\right]-\lambda\left[\begin{array}{cccccc}
b & b & b & b & b & b \\
& b & b & b & b & b \\
& & & b & b & b \\
& & & & b & b \\
& & & & b
\end{array}\right]
$$

Deflation II: Small Diagonal Entry in B

$$
\left[\begin{array}{cccccc}
a & a & a & a & a & a \\
a & a & a & a & a & a \\
& a & a & a & a & a \\
& & a & a & a & a \\
& & & a & a & a \\
& & & & a & a
\end{array}\right]-\lambda\left[\begin{array}{cccccc}
b & b & b & b & b & b \\
& b & b & b & b & b \\
& & 0 & b & b & b \\
& & & b & b & b \\
& & & & b & b \\
& & & & & b
\end{array}\right]
$$

Deflation II: Small Diagonal Entry in B

$$
\left[\begin{array}{cccccc}
a & a & a & a & a & a \\
0 & a & a & a & a & a \\
& a & a & a & a & a \\
& & a & a & a & a \\
& & & a & a & a \\
& & & & a & a
\end{array}\right]-\lambda\left[\begin{array}{lllll}
0 & b & b & b & b \\
b & b & b & b & b \\
& b & b & b & b \\
& & b & b & b \\
& & & & b \\
& & & & \\
& & & & \\
& & b
\end{array}\right]
$$

.. by a sequence of Givens rotations ..

Deflation II: Small Diagonal Entry in B

$\left[\begin{array}{c|ccccc}a & a & a & a & a & a \\ \hline 0 & a & a & a & a & a \\ & a & a & a & a & a \\ & & a & a & a & a \\ & & & a & a & a \\ & & & & a & a\end{array}\right]-\lambda\left[\begin{array}{c|ccccc}0 & b & b & b & b & b \\ \hline & b & b & b & b & b \\ & b & b & b & b \\ & & b & b & b \\ & & & b & b \\ & & & & & b\end{array}\right]$
\Rightarrow one eigenvalue $\lambda=\infty$ deflated.

Implicit QZ Iteration

Assumption: B is nonsingular.
Goal: Drive subdiagonal entries of A to ε.
Shift polynomial: Define shifts σ_{1}, σ_{2} as generalized eigenvalues of the bottom right 2×2 subpencil of $A-\lambda B$. Let

$$
x=\left(A B^{-1}-\sigma_{1} I_{n}\right)\left(A B^{-1}-\sigma_{2} I_{n}\right) e_{1}
$$

and Q such that $Q^{T} x=\alpha e_{1}$.
QZ iteration: Reduce $Q^{T} A-\lambda Q^{T} B$ back to Hessenberg-triangular form.

Bulge Chasing

Bulge Chasing

..apply Q^{T} from the left..

Bulge Chasing

..reduce $1^{\text {st }}$ column of B by (opposite) Householder from the right..

Bulge Chasing

..reduce $1^{\text {st }}$ column of A by Householder from the left..

Bulge Chasing

..reduce $2^{\text {nd }}$ column of B by (opposite) Householder from the right..

Bulge Chasing

Bulge Chasing

Bulge Chasing

e One QZ iteration requires $\mathcal{O}\left(n^{2}\right)$ flops.
e On average, roughly two QZ iterations are necessary for deflating a gen. eigenvalue (typically at the bottom right corner).
e High memory access/computation ratio and poor memory access pattern \Rightarrow poor performance!

Bulge Chasing

e One QZ iteration requires $\mathcal{O}\left(n^{2}\right)$ flops.
e On average, roughly two QZ iterations are necessary for deflating a gen. eigenvalue (typically at the bottom right corner).
e High memory access/computation ratio and poor memory access pattern \Rightarrow poor performance!

Remedy: Use more shifts per iteration.
But: Large bulge sizes lead to shift blurring phenomena and loss of convergence(Watkins '96, Kressner '04).

Use tightly coupled chain of small bulges instead. Based on ideas of
Braman/Byers/Mathias '02, Lang '97, and many others for the QR algorithm.

Multishift QZ: Introducing a Chain of Bulges

Red area: Updated during introduction.
Blue area: Updated after introduction via matrix-matrix-mult.

Multishift QZ: Chasing a Chain of Bulges

Performance of the QZ algorithm

\# shifts/bulge: $n_{s} \in\{2,4,6\}$
\# shifts/QZ iteration: $m=60$

Aggressive Early Deflation

Based on work by Braman/Byers/Mathias '02 for the QR algorithm, a more effective deflation strategy can be used to accelerate convergence of the QZ algorithm.

Computation of Deflating Subspaces

Output of QZ algorithm: Orthogonal matrices Q, Z such that

$$
Q^{T} A Z-\lambda Q^{T} B Z=\bigvee-\lambda
$$

First k columns of Q and Z span pair of deflating subspaces belonging to gen. eigenvalues of $k \times k$ leading principal subpencil.
To compute other deflating subspaces, gen. eigenvalues must be reordered.

Van Dooren '82, Kågström '93, Kågström/Poromaa '96, propose to reorder gen. eigenvalues in a bubble sort-like fashion.

Again: High memory access/computation ratio and poor memory
access pattern \Rightarrow poor performance!

Block Algorithm for Reordering Eigenvalues

$\times \times \times$

- $\times \times \times$ $\times \times \times$ $\times \times \times$ $\times \times \times \times \times \times \times \times \times \times \times$ - $\times \times \times \times \times \times \times \times \times \times$ $\times \times \times \times \times \times \times \times \times \times$
$\times \times \times \times \times \times \times \times$
$\times \times \times \times \times \times \times$
$\times \times \times \times \times \times \times$
$\times \times \times \times \times \times$
- $\times \times \times \times$
- $\times \times \times$
$\times \times \times$

Block Algorithm for Reordering Eigenvalues

Block Algorithm for Reordering Eigenvalues

Block Algorithm for Reordering Eigenvalues

Performance of Block Reordering Algorithm

For standard eigenvalue problem:

n	sel.	LAPACK	new	ratio
500	5%	0.25	0.09	36%
500	25%	0.75	0.25	33%
500	50%	0.81	0.33	40%
1000	5%	2.87	0.60	21%
1000	25%	8.40	1.57	19%
1000	50%	10.08	2.10	21%
1500	5%	9.46	1.69	18%
1500	25%	30.53	4.88	16%
1500	50%	35.93	6.55	18%

Concluding Remarks

Work under progress:
e Integration of described algorithms into new release of LAPACK.
e ScaLAPACK-like parallel implementation of QZ algorithm (Björn Adlerborn, Univ. Umeå)

Concluding Remarks

Work under progress:

e Integration of described algorithms into new release of LAPACK.
e ScaLAPACK-like parallel implementation of QZ algorithm (Björn Adlerborn, Univ. Umeå)
For more details, see:
e Adlerborn/Dackland/Kågström: Parallel and blocked algorithms for reduction of a regular matrix pair to Hessenberg-triangular and generalized Schur forms. PARA2002, Springer-Verlag, LNCS, Vol. 2367, pp 319-328.

Q Kressner/Kågström: Multishift variants of the QZ algorithm with aggressive early deflation. In preparation, 2004.

Q Kressner: Numerical algorithms and software for general and structured eigenvalue problems. PhD thesis, 2004.

