
Bo Kågström 2004

High Performance Computing
Center North (HPC2N)

Recursive Blocked Algorithms
and Hybrid Data Structures for
Dense Matrix Computations

Bo Kågström
Dept of Computing Science & HPC2N

Umeå University, Sweden

4th China-Sweden Workshop on Computational
Mathematics, June 6-9, 2004, Beijing, P.R. China

Bo Kågström 2004

HPC2N – “HPC to North”
° National center for Scientific and

Parallel Computing
° Competence network with 5 partners:

° Luleå University of Technology
° Mid Sweden University
° Swedish Institute of Space Physics
° Swedish University of Agricultural

Sciences - SLU
° Umeå University

° Funded by the Swedish Research Council and its meta-
center SNIC

New super cluster (installed 2004-06-07):
• 392 proc (64 bit, AMD Opteron)
• 1.5 TB memory
• Myrinet
• ~ 1.3 Tflops/s HP-Linpack
• Most powerful computer in Sweden
• Funded by the Wallenberg Foundation (KAW)

Bo Kågström 2004

Matrix Computations
° Fundamental and ubiquitous in computational

science and its vast application areas
° Library software – optimized building blocks

for fundamental operations
° BLAS, (Sca)LAPACK, SLICOT (see also NETLIB)
° ESSL and other vendors
° Portability and efficiency

° Continuing demand for new and improved
algorithms and software along with the
computer evolution

Bo Kågström 2004

Communication Media

“Data transport” in memory
hierarchies

° of today’s computer systems
° PC - cluster - supercomputer

Small, Fast, Expensive

Large, Slow, less Expensive

caches
local memory

remote memory

registers

Bo Kågström 2004

Management of deep
memory hierarchies

° Architecture evolution: HPC systems
with multiple SMP nodes, several levels
of caches, more functional units per CPU

° Key to performance: understand the
algorithm and architecture interaction

° Hierarchical blocking

Bo Kågström 2004

The fundamental AHC triangle

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

16151211

1413109

8743

6521

Bo Kågström 2004

Outline
° Hierarchical blocking: motivation and implications
° Recursive blocked templates and algorithms
° Recursive blocked data structures
° Case studies:

° General matrix multiply and add (GEMM)
° Packed Cholesky factorization
° QR factorization and linear systems
° Triangular matrix equations and condition estimation

° Some related and complementary work
° Work in progress: periodic matrix equations
° Concluding remarks

Bo Kågström 2004

Blocking for a memory
hierarchy

Explicit multi-
level blocking

Bo Kågström 2004

Recursion leads to automatic
variable blocking

Recursive
blocking

Fits low level
in memory hierarchy

Fits high level in
memory hierarchy

Fits L1 Cache!
Stopping criteria

controlled by
parameter (blksz).

Bo Kågström 2004

Splittings defining independent
and dependent tasks

Critical path of subtasks:
(1), (2), (3)

Bo Kågström 2004

TRSM Operation: AX = C,
A mxm upper triangular, C/X mxn

Bo Kågström 2004

Case Study 1
General matrix multiply and add

(GEMM)

Bo Kågström 2004

Recursive splittings for GEMM:
)(op)(op)(op BACC αβ +←

m x n m x k k x nSplit

m, n, k

m

n

k

Bo Kågström 2004

Recursive splitting - by breadth
or by depth

Bo Kågström 2004

GEMM recursive blocked
template - splitting by depth
° C = rgemm(A, B, C, blksz)

If m, n, and k <= blksz
C = opt_gemm(A, B, C) % optimized GEMM kernel!

elseif m = max(m, n, k) % split m: m2 = m/2
C(1:m2, :) = rgemm(A(1:m2, :), B, C(1:m2, :), blksz)
C(m2+1:m, :) = rgemm(A(m2+1:m, :), B, C(m2+1:m, :), blksz)

elseif n = max(n,k) % split n: n2 = n/2, k
C(:,1:n2) = rgemm(A, B(:,1:n2), C(:,1:n2), blksz)
C(:,n2+1:n) = rgemm(A, B(:,n2+1:n), C(:,n2+1:n), blksz)

else % split k: k2 = k/2,
C = rgemm(A(:,1:n2), B(1:m2, :), C, blksz)
C = rgemm(A(:,n2+1:n), B(m2+1:m, :), C, blksz)

When to end the
recursive splitting?

Bo Kågström 2004

Locality of reference
° Recursive blocked algorithms mainly

improve on the temporal locality
° Further performance improvements

by matching the data structure with
the algorithm (and vice versa)

° Recursive blocked data structures
improve on the spatial locality

Bo Kågström 2004

Blocked data formats

Blocks Aij of size mb x nb can be ordered
in (pq)! different ways

q = 8

p = 8

Bo Kågström 2004

Recursive blocked row format

Recursive ordering: a 1-dim tour through a 2-
dim object (Hilbert space filling heuristics)

q = 8

p = 8

RBR <-> Z-Morton ordering

Bo Kågström 2004

Recursive blocked column format

RBC <-> reflected-N-Morton
space filling ordering

q = 8

p = 8

Bo Kågström 2004

Triangular recursive data format

Bo Kågström 2004

Recursive GEMM: multi-level
vs. recursive blocking

IBM PPC604,
112 MHz

ATLAS

RGEMM

Bo Kågström 2004

Recursive blocked GEMM and
SMP parallelism via threads

IBM PPC604, 4 proc

Bo Kågström 2004

Recursion template for one-
sided matrix factorization

1. Partition
2. Factor left hand side
3. Update right hand side
4. Factor right hand side

Factorization completed

Update completed

Fits low level
in memory hierarchy

Fits high level in
memory hierarchy

Bo Kågström 2004

Case Study 2
Cholesky factorization for matrices

in packed format

Bo Kågström 2004

Packed Cholesky factorization

Standard approach (typified by LAPACK):
° Packed storage -> cannot use standard level 3

BLAS (e.g., DGEMM)
° Possible to produce packed level 3 BLAS

routines at a great programming cost
° Run at level 2 performance, i.e., much below

full storage routines.
° Minimum storage: 1/2n(n+1) elements

Bo Kågström 2004

Packed recursive blocked data

•Divide into two isosceles triangles T1, T2 and rectangle R
•Divide triangles recursively down to element level
•Store in order: T1, R, T2
•Rectangles stored in full format

Possible to use full storage level 3 BLAS

Bo Kågström 2004

Cholesky recursive blocked template

Bo Kågström 2004

TRSM recursive blocked template

Similar

formulation

for SYRK

Bo Kågström 2004

Packed recursive blocked
Cholesky highlights
° Recursive blocked algorithm + recursive

packed data layout => can make use of high
performance level 3 BLAS routines (e.g.,
DGEMM)

° Use minimal storage for matrix A
° Temporary workspace = 1/8n2 elements

(~25%)
° Leaf problems (< blksz) are solved using

superscalar kernels (Cholesky, TRSM,
SYRK)

Bo Kågström 2004

Recursive blocked Cholesky vs.
LAPACK – (rec.) packed format

Runs at level 3
performance
- at least!

DPPTRF

DPOTRF

Bo Kågström 2004

Case Study 3
QR factorization and linear systems

Bo Kågström 2004

1. Divide A mxn in two parts
(left & right)

2. Factorize left hand side by a
recursive call

3. Update right hand side

4. Factorize by a recursive call

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

22

1211

2221

1211

R0

RR
Q

AA

AA

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛⎯⎯←⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

22

12T
1

22

12

A

A
Q

A
~
R

Recursive blocked
QR factorization

22222 A
~

RQ =

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛=⎟
⎠

⎞
⎜
⎝

⎛

21

1111
1 Α

Α
0

R
Q

Stopping criteria:
if n < 4 use
standard algorithm

Bo Kågström 2004

Aggregating Q = I - YTYT

()21
2

22
T
111

T
2222

T
1111

vv Y and
τ0

τvvττ
 T

 then,vv τ- I Q and vv τ- I QGiven

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

==
Two elementary transformations

()21
2

22
T

111

T
2222

T
1111

vY Y and
τ0

τvYTT
 T

 then,vv τ- I Q and YTY - I QGiven

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

== One block and one
elementary transformation

Column by column
using Level 2 operations

()21
2

22
T
111

T
2222

T
1111

YY Y and
T0

TYYTT
 T

 then,YTY - I Q and YTY - I QGiven

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

== Two block transformations

Recursively, block by block
using Level 3 operations

Bo Kågström 2004

Recursive blocked QR highlights
° Recursive splitting controlled by nb

(splitting point = min(nb, n/2), nb = 32-64)
° Level 3 algorithm for generating

Q = I – YTYT (compact WY) within the
recursive blocked algorithm (T triangular
of size <= nb)

° Replaces LAPACK level 2 and 3 algorithms

Bo Kågström 2004

Recursive QR vs. LAPACK

1.2-1.3x

Up to 1.95x

m = n m >> n

Bo Kågström 2004

Least squares recursive algorithm

GEMM + TRSM

GEMM + TRMM

GEMM + TRMM + TRSM

Use
Recursive

QR

Use
Recursive

QR

Bo Kågström 2004

Recursive linear systems solvers
Solve op(A)X = B, A m x n - full row (or column) rank
(compare LAPACK DGELS):

• RGELS solves P1
• P2 solved as P1 after explicit transposition
• RGELS-like algorithm solves P3
• P4 solved as P3 after explicit transposition

Bo Kågström 2004

Case Study 4
Triangular matrix equations and

condition estimation

Bo Kågström 2004

Matrix equations

One-sided (top) and two-sided (bottom)

Bo Kågström 2004

Block diagonalization and
spectral projectors

S block-diagonalized by similarity:

where R satifies AR – RB = C
Spectral projector associated with (1,1)-block:

Computed estimate:

Bo Kågström 2004

Separation of two matrices

Computing Sep[A,B] costs O(m3n3) – impractical!

Reliable Sep-estimates of cost O(m2n + mn2):

Bo Kågström 2004

Matrix equation Sep-functions

Z x = b, Z is a Kronecker product representation

Sep-function = smallest singular value of Z

Bo Kågström 2004

Recursive blocked SYCT template
Case 1: 1 <= n <= m/2

Case 2: 1 <= m <= n/2

Case 3: n/2 < m < 2n

Bo Kågström 2004

Recursive SYCT - Case 3

Bo Kågström 2004

Recursive SYCT – Case 3

2a, 2b can be
executed in parallel
as well as 3a,3b

Bo Kågström 2004

SYCT and matrix functions
° A triangular => F := f(A) triangular
° f analytic => exists series expansion =>

A F - F A = 0
° recursive template:

Bo Kågström 2004

Triangular generalized coupled
Sylvester equation - GCSY

AX – YB = C
DX – YE = F

(A, D) and (B, E) in
generalized Schur
form

Solution (X, Y) over-
writes r.h.s. (C, F)

LAPACK

Explicit //

rtrgcsy (2.6x)

(1.6x)

Bo Kågström 2004

Two-sided matrix equation: GLYDT
° AXAT – EXET = C
° C = CT nxn; (A, E) n x n in gen. Schur form
° Unique sol’n X = X^T

° Recursive splitting:

Bo Kågström 2004

GLYDT recursion template
X21 = X21

T => three GLYDT subequations:

Four two-sided updates of C11 as two SYR2K ops:

where are TRMM operations

Bo Kågström 2004

Two-sided matrix product

TBXACC)(op)(opαβ +=

•A and/or B can be dense or triangular
•One or several of A, B and C can be symmetric
•Extra workspace – size of r.h.s.

Make use of symmetry, e.g., in GLYDT:

Bo Kågström 2004

GLYDT performance with
optional condition estimation

Up to 1.9x

Up to 5.3x

Bo Kågström 2004

RECSY library
° Recursive blocked algorithms for solving

reduced matrix equations
° Recursion implemented in F90
° SMP versions using OpenMP
° F77 wrappers for LAPACK and SLICOT

routines
° www.cs.umu.se/research/parallel/recsy/
° Part of Isak Jonsson’s PhD Thesis, Dec 2003

Bo Kågström 2004

ScaLAPACK-style library

° The methods presented here
can be applied to several
similar problems.

° Our aim is to construct a
ScaLAPACK-style software
package of matrix equation
solvers for distributed
memory machines.

° The triangular solvers will be
used in implementing parallel
condition estimators for each
matrix equation.

° Robert Granat, PhD student

GLYDT

GLYCT

GSYL

GCSY

LYDT

SYDT

LYCT

SYCT

√

√

√

√
CBXopXAop =±)()(

CAXopXAop T =+)()(

CXBXopAop =±)()(

CXAXopAop T =−)()(

FEYopXDop

CBYopXAop

=±
=±

)()(

,)()(

CEXopDopBXopAop =±)()()()(

CEXopEopAXopAop TT =−)()()()(

CAXopEopEXAop TT =+)()()()(

Bo Kågström 2004

Recursive blocking ...
° creates new algorithms for linear algebra

software
° expresses dense linear algebra algorithms

entirely in terms of level~3 BLAS like
matrix-matrix operations

° introduces an automatic variable blocking
that targets every level of a deep memory
hierarchy

° can also be used to define hybrid data
formats for storing block-partitioned
matrices (general, triangular, symmetric,
packed)

Bo Kågström 2004

High-performance software

° implementations are based on data locality
and superscalar optimization techniques

° recursive blocked algorithms improve on
the temporal data locality

° hybrid data formats improve on the spatial
data locality

° portable and generic superscalar kernels
ensure that all functional units on the
processor(s) are used efficiently

Bo Kågström 2004

Some related and complementary work
° Recursive algorithms and hybrid data

structures
° Winograd-Strassen’69: Douglas etal’94, ESSL,

Demmel-Higham’92 (stability)
° Quad- and octtrees: Samet’84, Salman-

Warner’94 (N-body, Barnes-Hut’84)
° Cache oblivious algorithms: Leiserson etal’99

(sorting, FFT, AT)
° GEMM: Chatterjee etal’02, Valsalam and

Skjellum’02, ATLAS-project
° LU: Toledo’97(dense), Dongarra, Eijkhout

Luszczek’01 (sparse)
° QR: Rabani and Toledo’01 (out-of-core), Frens

and Wise’03 (Givens-based)

Bo Kågström 2004

Some related and complementary work
° Automated generation of library software

and compiler technology
° Empirical optimization:

PHiPAC – Bilmes, Demmel etal’97,
ATLAS – Whaley, Petitet and Dongarra’00,
Sparse kernels – Vuduc, Demmel et al’03

° FLAME: Gunnels, Goto, Van de Geijn etal’01, ’02
° Compiler blockability: Wolf and Lam’91 (loop

transformations), Carr and Lehoucq’97
° Automatic generation of recursive codes:

Ahmed and Pingali’00 (iterative algorithms ->
recursive), Yi, Adve and Kennedy’00 (convert
loop nests into recursive form)

Bo Kågström 2004

° Thanks for your attention!

