

Recursive Blocked Algorithms and Hybrid Data Structures for Dense Matrix Computations

Bo Kågström Dept of Computing Science & HPC2N Umeå University, Sweden

4th China-Sweden Workshop on Computational Mathematics, June 6-9, 2004, Beijing, P.R. China

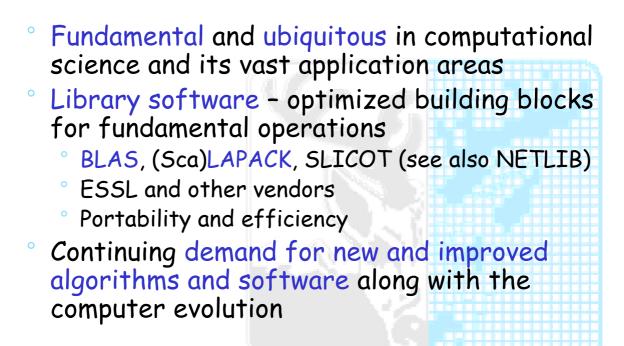
HPC2N - "HPC to North"

New super cluster (installed 2004-06-07):

- 392 proc (64 bit, AMD Opteron)
- 1.5 TB memory
- Myrinet
- ~ 1.3 Tflops/s HP-Linpack
- · Most powerful computer in Sweden
- Funded by the Wallenberg Foundation (KAW)

Funded by the Swedish Research Council and its metacenter SNIC

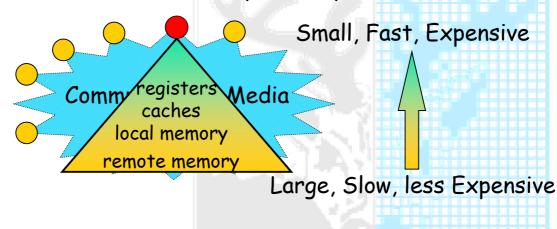
Matrix Computations



Bo Kågström 2004

of today's computer systems

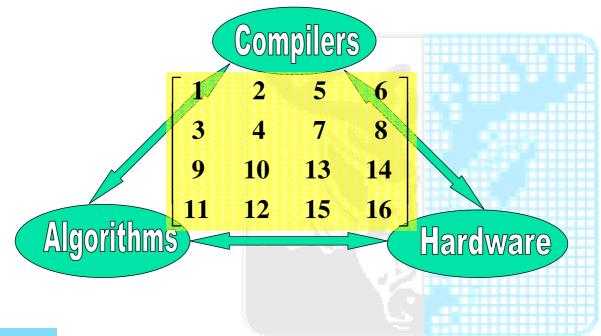
° PC - cluster - supercomputer



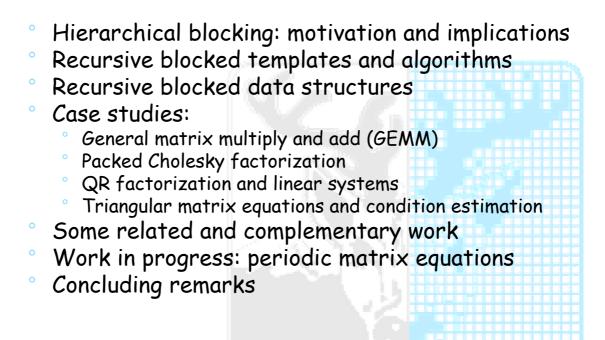
Management of deep memory hierarchies

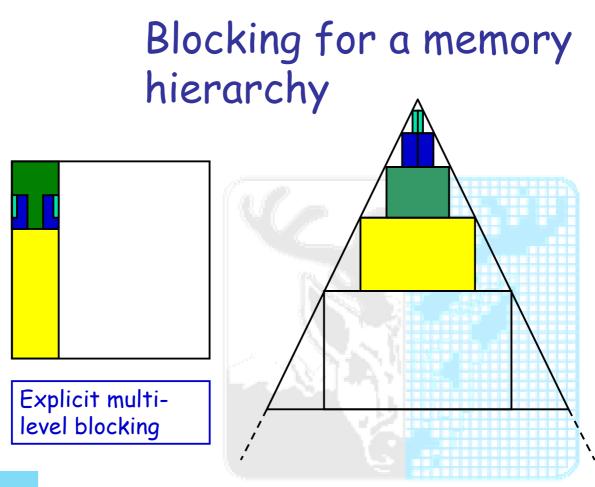
- Architecture evolution: HPC systems with multiple SMP nodes, several levels of caches, more functional units per CPU
- Key to performance: understand the algorithm and architecture interaction
- ° Hierarchical blocking

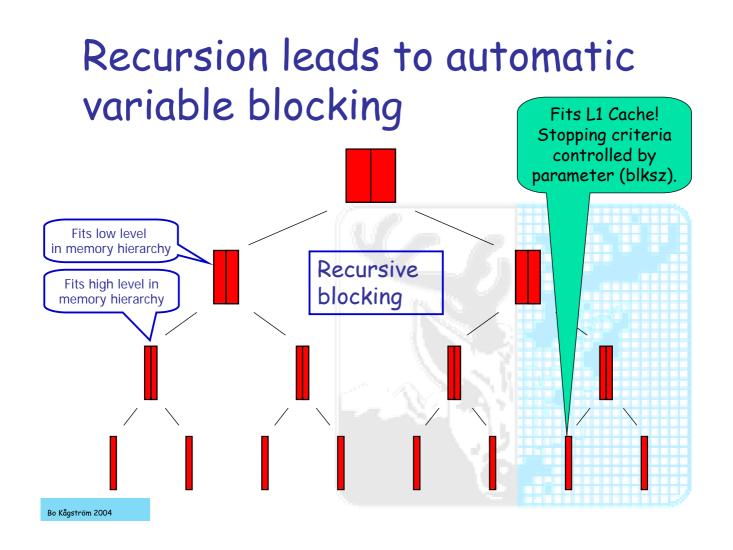
The fundamental AHC triangle



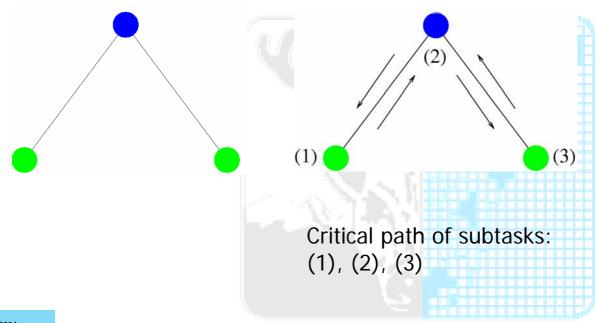
Outline

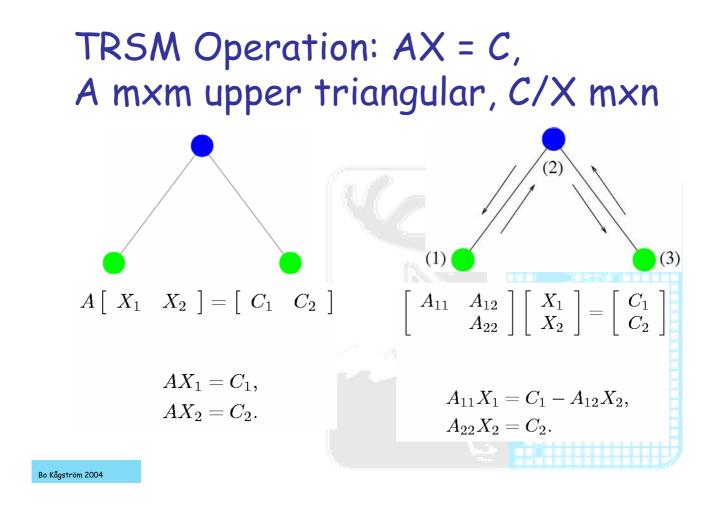






Splittings defining independent and dependent tasks



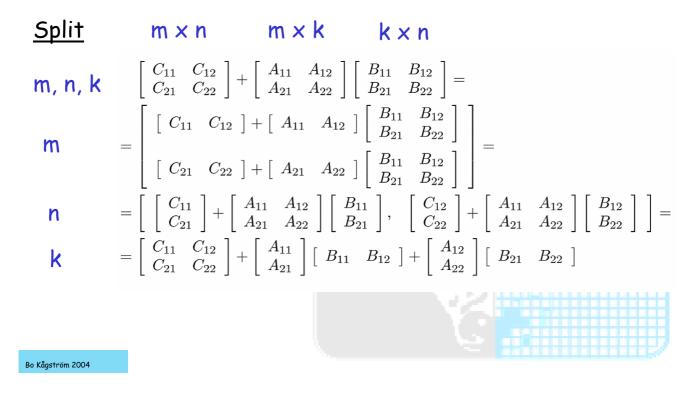


Case Study 1

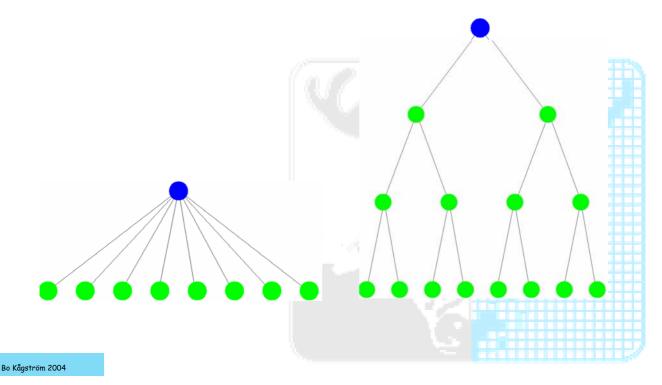
General matrix multiply and add

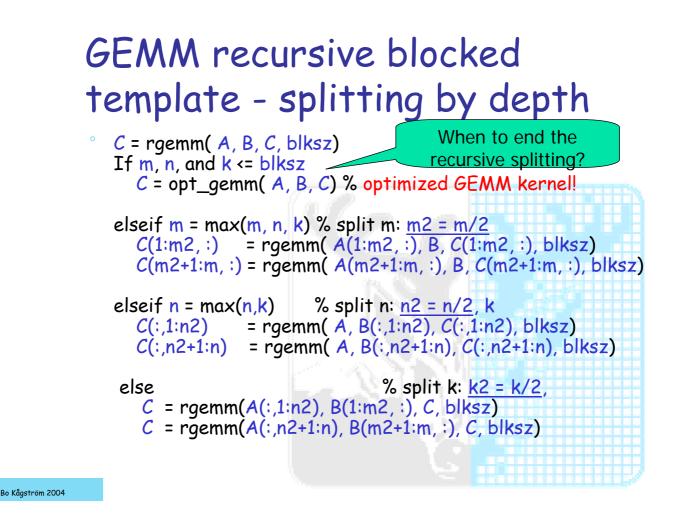
(GEMM)

Recursive splittings for GEMM: $C \leftarrow \beta \operatorname{op}(C) + \alpha \operatorname{op}(A) \operatorname{op}(B)$



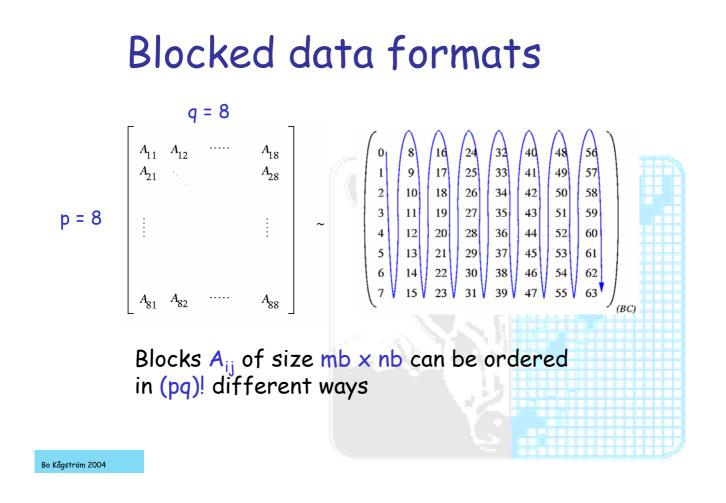
Recursive splitting - by breadth or by depth



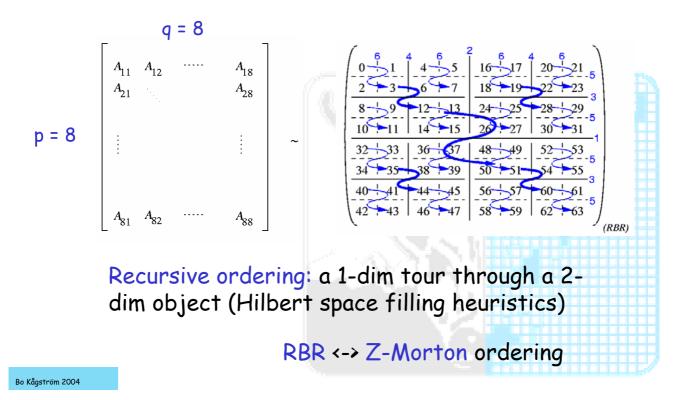


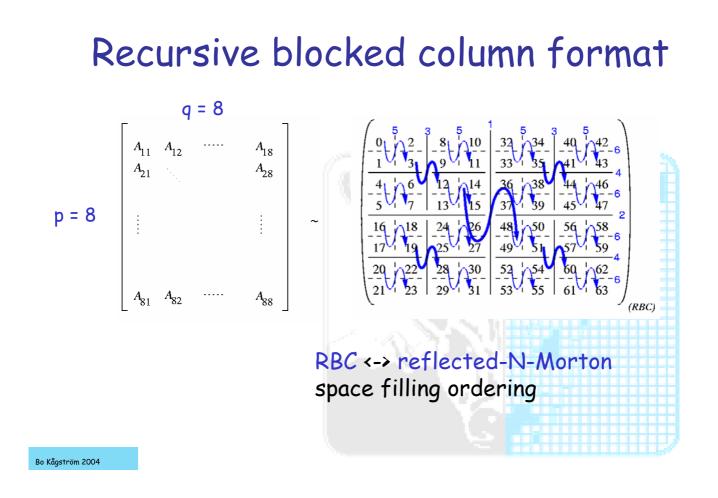
Locality of reference

- Recursive blocked algorithms mainly improve on the temporal locality
- Further performance improvements by matching the data structure with the algorithm (and vice versa)
- Recursive blocked data structures improve on the spatial locality

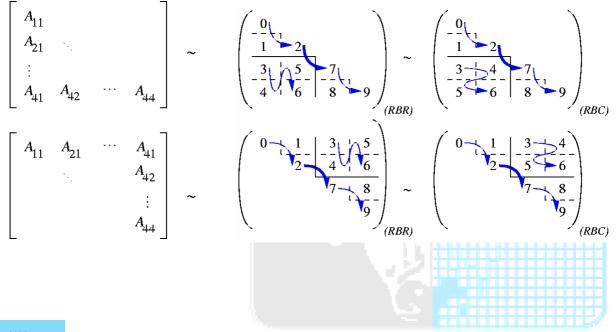


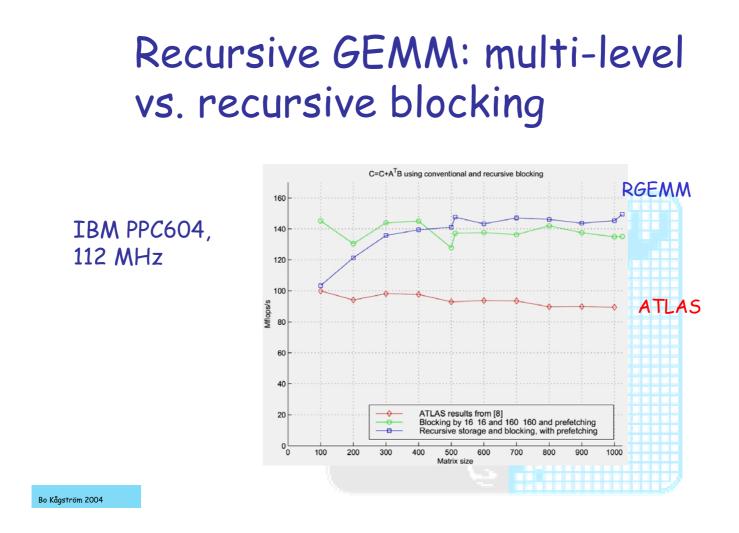
Recursive blocked row format



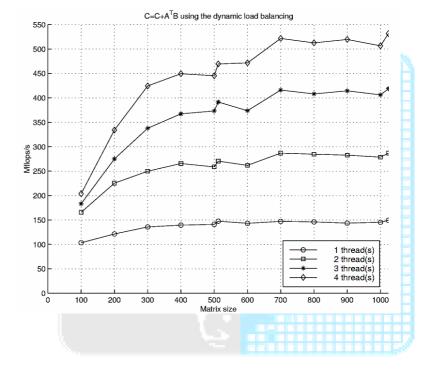


Triangular recursive data format



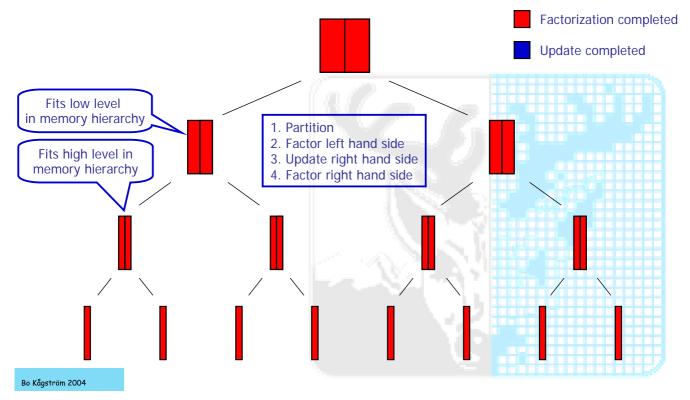


Recursive blocked GEMM and SMP parallelism via threads



IBM PPC604, 4 proc

Recursion template for onesided matrix factorization



Case Study 2

Cholesky factorization for matrices in packed format

Packed Cholesky factorization

$$A \equiv \begin{bmatrix} A_{11} & A_{21}^T \\ A_{21} & A_{22} \end{bmatrix} = LL^T \equiv \begin{bmatrix} L_{11} & 0 \\ L_{21} & L_{22} \end{bmatrix} \begin{bmatrix} L_{11}^T & L_{21}^T \\ 0 & L_{22} \end{bmatrix}$$

Standard approach (typified by LAPACK):

- Packed storage -> cannot use standard level 3 BLAS (e.g., DGEMM)
- Possible to produce packed level 3 BLAS routines at a great programming cost
- Run at level 2 performance, i.e., much below full storage routines.
- Minimum storage: 1/2n(n+1) elements

Bo Kågström 2004

Packed recursive blocked data

1	2	4	7	11	16	22		1	2	3	7	10	13	16
	3	5	8	12	17	23			4	5	8	11	14	17
		6	9	13	18	24				6	9	12	15	18
			10	14	19	25					19	20	22	24
				15	20	26						21	23	25
					21	27							26	27
						28								28
		Packed upper Packed recursive upper												

FIG. 3.1. Memory indices for 7×7 upper triangular matrix stored in traditional packed format and recursive packed format.

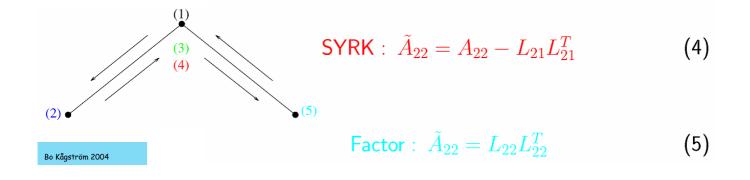
- •Divide into two isosceles triangles T1, T2 and rectangle R
- ·Divide triangles recursively down to element level
- •Store in order: T1, R, T2
- Rectangles stored in full format →
 - Possible to use full storage level 3 BLAS

Cholesky recursive blocked template

$$A = \begin{pmatrix} A_{11} & A_{21}^T \\ A_{21} & A_{22} \end{pmatrix} = LL^T = \begin{pmatrix} L_{11} & 0 \\ L_{21} & L_{22} \end{pmatrix} \begin{pmatrix} L_{11}^T & L_{21}^T \\ 0 & L_{22} \end{pmatrix}$$
(1)

Factor :
$$A_{11} = L_{11}L_{11}^T$$
. (2)

$$\mathsf{TRSM}: \ L_{21}L_{11}^T = A_{21}. \tag{3}$$



Similar formulation for SYRK $XA^{T} = B \quad \text{or} \qquad (6)$ $XA^{T} = B \quad \text{or} \qquad (6)$ $x = \frac{k_{1}}{k_{1}} \frac{k_{2}}{k_{2}} + \frac{k_{2}}{k_{1}} \frac{k_{2}}{k_{2}} + \frac{k_{2}}{k_{1}} \frac{k_{2}}{k_{2}} = m \left\{ \left(\begin{array}{c} \frac{k_{1}}{B_{1}} \frac{k_{2}}{B_{2}} \right) = B \right\} \right\}$

If we break Equation (6) into its component pieces we get $TRSM: X_1A_{11}^T = B_1$ (7)

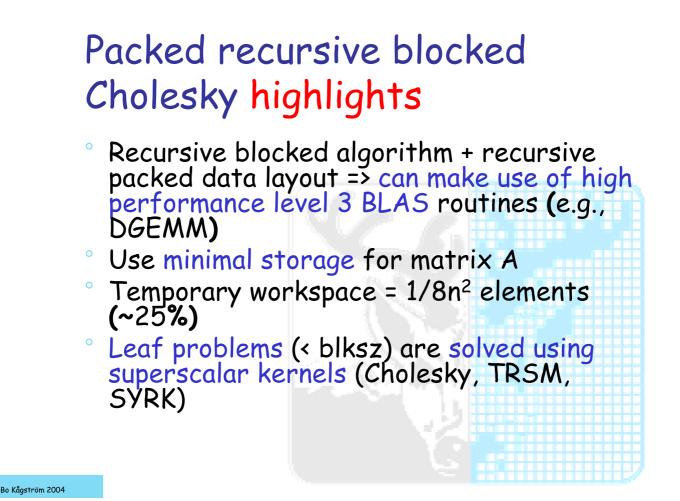
$$\mathsf{GEMM}: \ \tilde{B}_2 = B_2 - X_1 A_{21}^T \tag{8}$$

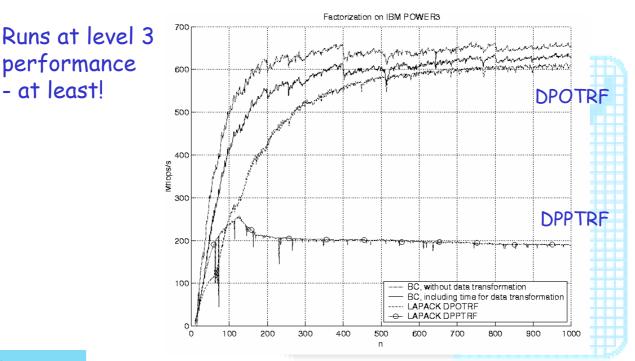
TRSM :
$$X_2 A_{22}^T = \tilde{B}_2$$
 (9)

Bo Kågström 2004

(6)

(8)



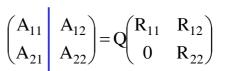


Case Study 3

QR factorization and linear systems


```
Bo Kågström 2004
```

Recursive blocked QR factorization



if n < 4 use

 $\begin{pmatrix} \mathbf{R}_{12} \\ \widetilde{\mathbf{A}}_{22} \end{pmatrix} \leftarrow \mathbf{Q}_{1}^{\mathrm{T}} \begin{pmatrix} \mathbf{A}_{12} \\ \mathbf{A}_{22} \end{pmatrix}$

 $Q_2 R_{22} = \tilde{A}_{22}$

Stopping criteria:

standard algorithm

- 1. Divide A mxn in two parts (left & right)
- 2. Factorize left hand side by a recursive call $Q_1 \begin{pmatrix} R_{11} \\ Q_1 \end{pmatrix} = \begin{pmatrix} A_{11} \\ A_{21} \end{pmatrix}$
- 3. Update right hand side
- 4. Factorize by a recursive call

Aggregating $Q = I - YTY^T$

Given $Q_1 = I - \tau_1 v_1 v_1^T$ and $Q_2 = I - \tau_2 v_2 v_2^T$, then $T = \begin{pmatrix} \tau_1 & -\tau_1 v_1^T v_2 \tau_2 \\ 0 & \tau_2 \end{pmatrix}$ and $Y = (v_1 v_2)$	Two elementary transformations
Given $Q_1 = I - Y_1 T_1 Y_1^T$ and $Q_2 = I - \tau_2 v_2 v_2^T$, then $T = \begin{pmatrix} T_1 & -T_1 Y_1^T v_2 \tau_2 \\ 0 & \tau_2 \end{pmatrix} \text{ and } Y = (Y_1 v_2)$	One block and one elementary transformation Column by column using Level 2 operations
Given $Q_1 = I - Y_1 T_1 Y_1^T$ and $Q_2 = I - Y_2 T_2 Y_2^T$, then $T = \begin{pmatrix} T_1 & -T_1 Y_1^T Y_2 T_2 \\ 0 & T_2 \end{pmatrix} \text{ and } Y = (Y_1 Y_2)$	Two block transformations Recursively, block by block using Level 3 operations
ström 2004	

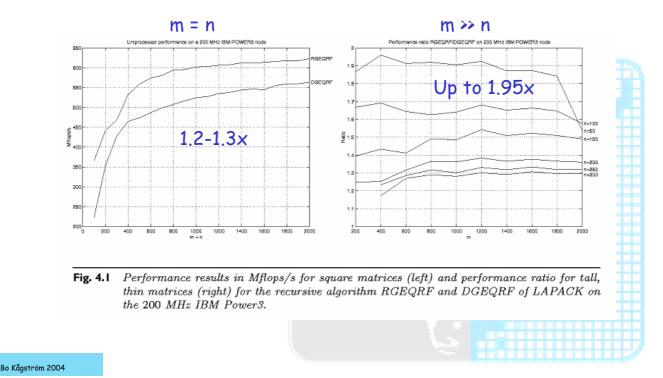
Recursive blocked QR highlights

- Recursive splitting controlled by nb (splitting point = min(nb, n/2), nb = 32-64)
- Level 3 algorithm for generating
 Q = I YTY^T (compact WY) within the
 recursive blocked algorithm (T triangular
 of size <= nb)</p>

Replaces LAPACK level 2 and 3 algorithms

Bo Kågs

Recursive QR vs. LAPACK



Least squares recursive algorithm

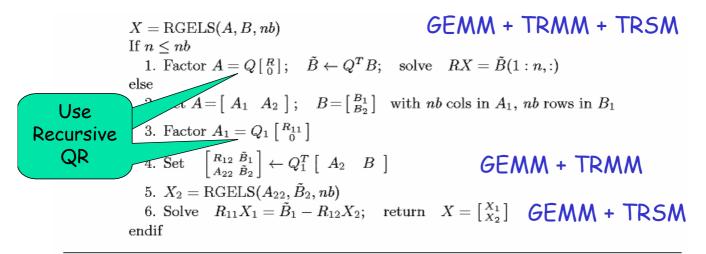


Fig. 4.2 Recursive least squares RGELS algorithm for computing the solution to AX = B, where A is $m \times n \ (m \ge n)$.

Recursive linear systems solvers

Solve op(A)X = B, A m × n - full row (or column) rank (compare LAPACK DGELS):

- 1. linear least squares solution to min $||AX B||_F$ $(m \ge n)$;
- 2. linear least squares solution to $\min \|A^T X B\|_F$ (m < n);
- 3. minimum norm solution to min $||A^T X B||_F$ $(m \ge n);$
- 4. minimum norm solution to min $||AX B||_F$ (m < n).
 - RGELS solves P1
 - P2 solved as P1 after explicit transposition
 - RGELS-like algorithm solves P3
 - P4 solved as P3 after explicit transposition

Bo Kågström 2004

Case Study 4

Triangular matrix equations and condition estimation

Matrix equations

Name	Matrix equation	Acronym
Standard Sylvester (CT)	AX - XB = C	SYCT
Standard Lyapunov (CT)	$AX + XA^T = C$	LYCT
Generalized coupled Sylvester	(AX - YB, DX - YE) = (C, F)	GCSY
Standard Sylvester (DT)	$AXB^T - X = C$	SYDT
Standard Lyapunov (DT)	$AXA^T - X = C$	LYDT
Generalized Sylvester	$AXB^T - CXD^T = E$	GSYL
Generalized Lyapunov (CT)	$AXE^T + EXA^T = C$	GLYCT
Generalized Lyapunov (DT)	$AXA^T - EXE^T = C$	GLYDT

One-sided (top) and two-sided (bottom)

Bo Kågström 2004

Block diagonalization and spectral projectors

S block-diagonalized by similarity:

$$\begin{bmatrix} I_m & -R \\ 0 & I_n \end{bmatrix} S \begin{bmatrix} I_m & R \\ 0 & I_n \end{bmatrix} = \begin{bmatrix} A & 0 \\ 0 & B \end{bmatrix} \qquad S = \begin{bmatrix} A & -C \\ 0 & B \end{bmatrix}$$

where R satifies AR - RB = C

Spectral projector associated with (1,1)-block:

$$P = \begin{bmatrix} I_m & R \\ 0 & 0 \end{bmatrix}$$

Computed estimate:

$$s = 1/\|P\|_F$$

 $||P||_2 = (1 + ||R||_2^2)^{1/2}$

Separation of two matrices

$$\begin{split} \mathsf{Sep}[A,B] &= \inf_{\|X\|_F = 1} \|AX - XB\|_F = \sigma_{\min}(Z), \\ \text{where} \quad Z &= I_n \otimes A - B^T \otimes I_m. \end{split}$$

Computing Sep[A,B] costs O(m³n³) - impractical!

Reliable Sep-estimates of cost O(m²n + mn²):

$$\frac{\|x\|_2}{\|y\|_2} = \frac{\|X\|_F}{\|C\|_F} \le \|Z^{-1}\|_2 = \frac{1}{\sigma_{\min}(Z)} = \mathsf{Sep}^{-1}$$

$$(mn)^{-1/2} \|Z^{-1}\|_1 \le \|Z^{-1}\|_2 \le \sqrt{mn} \|Z^{-1}\|_1.$$

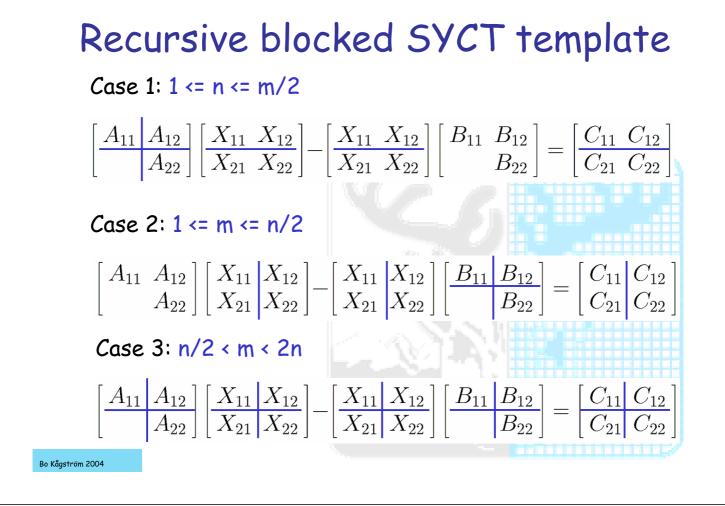
Bo Kågström 2004

Matrix equation Sep-functions

Z-matrix	Sep-function $= \sigma_{\min}(Z_{-})$	
$\begin{vmatrix} Z_{\text{SYCT}} = I_n \otimes A - B^T \otimes I_m \\ Z_{\text{LYCT}} = I_n \otimes A + A \otimes I_n \end{vmatrix}$	$ \inf_{\ X\ _F=1} \ AX - XB\ _F \\ \inf_{\ X\ _F=1} \ AX - X(-A^T)\ _F $	-
$Z_{\text{GCSY}} = \begin{bmatrix} I_n \otimes A & -B^T \otimes I_m \\ I_n \otimes D & -E^T \otimes I_m \end{bmatrix}$	$\inf_{\ (X,Y)\ _{F}=1} \ (AX - YB, DX - YE)\ _{F}$	E
$\begin{aligned} Z_{\text{SYDT}} &= B \otimes A - I_n \otimes I_m \\ Z_{\text{LYDT}} &= A \otimes A - I_n \otimes I_n \\ Z_{\text{GSYL}} &= B \otimes A - D \otimes C \\ Z_{\text{GLYCT}} &= E \otimes A + A \otimes E \\ Z_{\text{GLYDT}} &= A \otimes A - E \otimes E \end{aligned}$	$ \begin{split} &\inf_{\ X\ _{F}=1} \ AXB^{T} - X\ _{F} \\ &\inf_{\ X\ _{F}=1} \ AXA^{T} - X\ _{F} \\ &\inf_{\ X\ _{F}=1} \ AXB^{T} - CXD^{T}\ _{F} \\ &\inf_{\ X\ _{F}=1} \ AXE^{T} - EX(-A^{T})\ _{F} \\ &\inf_{\ X\ _{F}=1} \ AXA^{T} - EXE^{T}\ _{F} \end{split} $	

Z x = b, Z is a Kronecker product representation

Sep-function = smallest singular value of Z



Recursive SYCT - Case 3

$$\begin{bmatrix} A_{11} & A_{12} \\ A_{22} \end{bmatrix} \begin{bmatrix} X_{11} & X_{12} \\ X_{21} & X_{22} \end{bmatrix} - \begin{bmatrix} X_{11} & X_{12} \\ X_{21} & X_{22} \end{bmatrix} \begin{bmatrix} B_{11} & B_{12} \\ B_{22} \end{bmatrix} = \begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix}$$

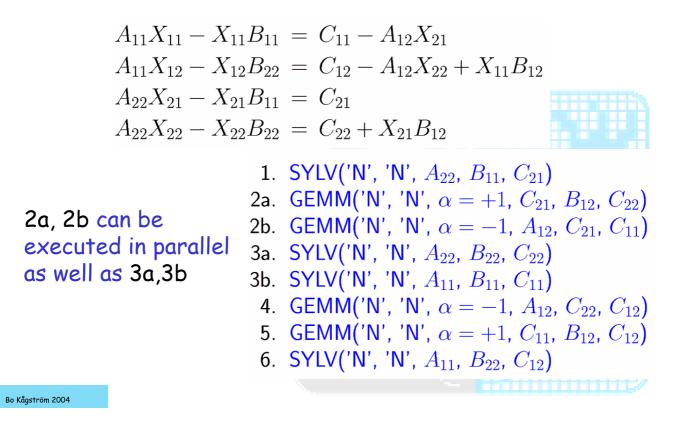
$$A_{11}X_{11} - X_{11}B_{11} = C_{11} - A_{12}X_{21}$$

$$A_{11}X_{12} - X_{12}B_{22} = C_{12} - A_{12}X_{22} + X_{11}B_{12}$$

$$A_{22}X_{21} - X_{21}B_{11} = C_{21}$$

$$A_{22}X_{22} - X_{22}B_{22} = C_{22} + X_{21}B_{12}$$

Recursive SYCT - Case 3



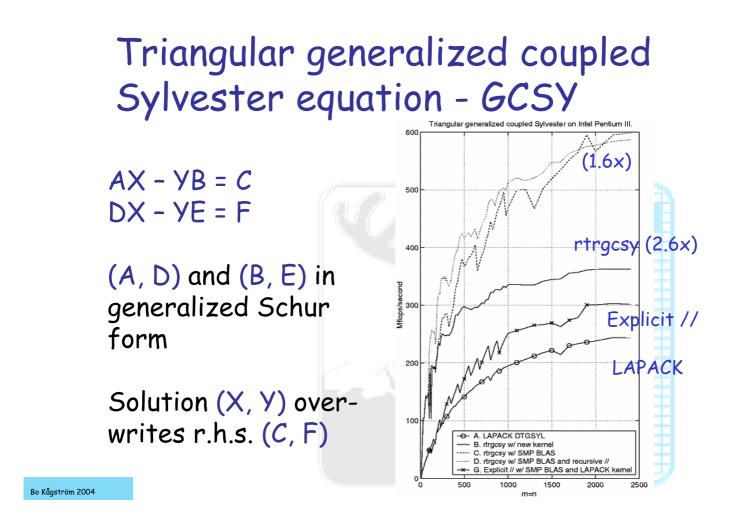
SYCT and matrix functions

A triangular => F := f(A) triangular

- f analytic => exists series expansion =>
 A F F A = 0
- ° recursive template:

$$\begin{bmatrix} A_{11} & A_{12} \\ & A_{22} \end{bmatrix} \begin{bmatrix} F_{11} & F_{12} \\ & F_{22} \end{bmatrix} - \begin{bmatrix} F_{11} & F_{12} \\ & F_{22} \end{bmatrix} \begin{bmatrix} A_{11} & A_{12} \\ & A_{22} \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

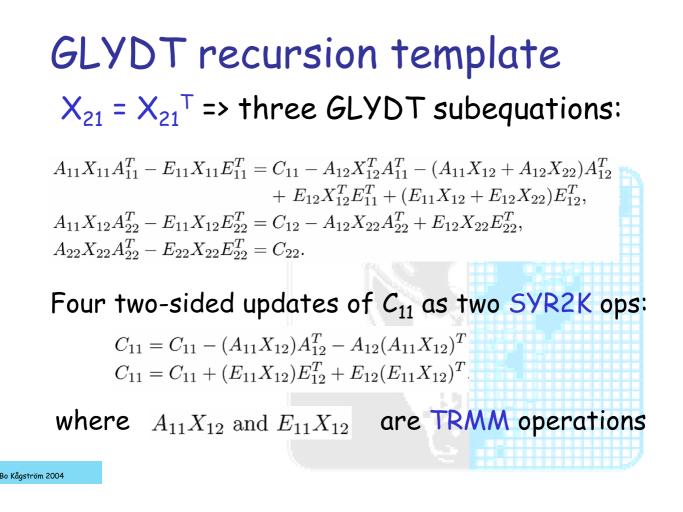
 $A_{11}F_{11} - F_{11}A_{11} = 0$ $A_{11}F_{12} - F_{12}A_{22} = F_{11}A_{12} - A_{12}F_{22},$ $A_{22}F_{22} - F_{22}A_{22} = 0$



Two-sided matrix equation: GLYDT

•
$$AXA^{\top} - EXE^{\top} = C$$

• $C = C^{\top} nxn; (A, E) n \times n \text{ in gen. Schur form}$
• Unique sol'n $X = X^{\top} \Leftrightarrow$
 $\lambda_i \text{ of } A - \lambda E \text{ satisfy } \lambda_i \lambda_j \neq 1$
• **Recursive splitting:**
 $\begin{bmatrix} A_{11} & A_{12} \\ A_{22} \end{bmatrix} \begin{bmatrix} X_{11} & X_{12} \\ X_{21} & X_{22} \end{bmatrix} \begin{bmatrix} A_{11}^T \\ A_{12}^T & A_{22}^T \end{bmatrix} -$
 $\begin{bmatrix} E_{11} & E_{12} \\ E_{22} \end{bmatrix} \begin{bmatrix} X_{11} & X_{12} \\ X_{21} & X_{22} \end{bmatrix} \begin{bmatrix} E_{11}^T \\ E_{12}^T & E_{22}^T \end{bmatrix} = \begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix}$



Two-sided matrix product

$$C = \beta C + \alpha \operatorname{op}(A) \operatorname{Xop}(B)^{T}$$

- •A and/or B can be dense or triangular
- •One or several of A, B and C can be symmetric
- •Extra workspace size of r.h.s.

Make use of symmetry, e.g., in GLYDT:

 $C_{11} = C_{11} - A_{12}X_{22}A_{12}^T$ and $C_{11} = C_{11} + E_{12}X_{22}E_{12}^T$

GLYDT performance with optional condition estimation

Table 5.3 Timings for solving unreduced two-sided matrix equations (GLYDT) with optional condition estimation. (Job = X, compute solution only; Job = X + Sep, compute solution and Sep-estimation.) Results from 375 MHz IBM Power3.

		CC02AD	CCO2AX	CC02 A D		<u>_</u>	Up to 1	9x	
			ing SG03AX		sing <i>rtrglydt</i>				
	n	Total time	Solver part	Total time	Solver part	Speedup	Job		
	50	0.0277	49.9 %	0.0185	$20.1 \ \%$	1.50	X		
	100	0.180	$51.2 \ \%$	0.0967	9.0 %	1.86	X		
	250	2.89	46.8 %	1.62	$4.7 \ \%$	1.79	X		
	500	59.0	$42.3 \ \%$	34.5	$1.5 \ \%$	1.71	X		
(a)	750	303.4	$42.0 \ \%$	177.5	0.9 %	1.71	X		
(a)	1000	646.6	44.6 %	361.8	1.0~%	1.79	X		
	50	0.117	87.6 %	0.0263	45.6 %	4.44	X + Sep		
	100	0.709	87.3~%	0.152	40.6 %	4.68	X + Sep		
	250	9.98	84.5 %	2.08	$25.4 \ \%$	4.81	X + Sep		
	500	178.6	80.9 %	37.8	$9.4 \ \%$	4.73	X + Sep		
	750	924.1	80.9~%	184.4	4.5 %	5.01	X + Sep		
	1000	2076.6	82.7~%	391.8	8.4~%	5.30	X + Sep		
	Up to 5.3×								

Bo Kågström 2004

RECSY library

- Recursive blocked algorithms for solving reduced matrix equations
- Recursion implemented in F90
- SMP versions using OpenMP
- F77 wrappers for LAPACK and SLICOT routines
- <u>www.cs.umu.se/research/parallel/recsy/</u>
- Part of Isak Jonsson's PhD Thesis, Dec 2003

ScaLAPACK-style library

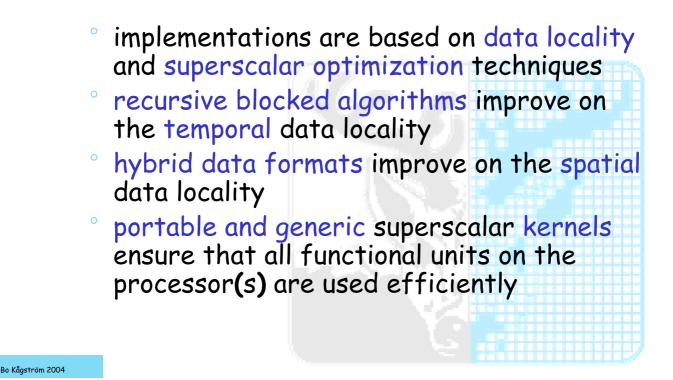
- The methods presented here can be applied to several similar problems.
- Our aim is to construct a ScaLAPACK-style software package of matrix equation solvers for distributed memory machines.
- The triangular solvers will be used in implementing parallel condition estimators for each matrix equation.
- [°] Robert Granat, PhD student

$op(A)X \pm Xop(B) = C$	SYCT	\checkmark
$op(A)X + Xop(A^T) = C$	LYCT	~
$op(A)Xop(B) \pm X = C$	SYDT	~
$op(A)Xop(A^T) - X = C$	LYDT	~
$op(A)X \pm Yop(B) = C,$	GCSY	
$op(D)X \pm Yop(E) = F$		
$op(A)Xop(B) \pm op(D)Xop(E) = C$	GSYL	
$op(A)Xop(A^{T}) - op(E)Xop(E^{T}) = C$	GLYCT	
$op(A)X(E^{T}) + op(E)Xop(A^{T}) = C$	GLYDT	

Recursive blocking ...

- creates new algorithms for linear algebra software
- expresses dense linear algebra algorithms entirely in terms of level~3 BLAS like matrix-matrix operations
- introduces an automatic variable blocking that targets every level of a deep memory hierarchy
- can also be used to define hybrid data formats for storing block-partitioned matrices (general, triangular, symmetric, packed)

High-performance software



Some related and complementary work

- Recursive algorithms and hybrid data structures
 - Winograd-Strassen'69: Douglas etal'94, ESSL, Demmel-Higham'92 (stability)
 - Quad- and octtrees: Samet'84, Salman-Warner'94 (N-body, Barnes-Hut'84)
 - Cache oblivious algorithms: Leiserson etal'99 (sorting, FFT, A^T)
 - GEMM: Chatterjee etal'02, Valsalam and Skjellum'02, ATLAS-project
 - LU: Toledo'97(dense), Dongarra, Eijkhout Luszczek'01 (sparse)
 - QR: Rabani and Toledo'01 (out-of-core), Frens and Wise'03 (Givens-based)

Some related and complementary work

- Automated generation of library software and compiler technology
 - Empirical optimization: PHiPAC - Bilmes, Demmel etal'97, ATLAS - Whaley, Petitet and Dongarra'00, Sparse kernels - Vuduc, Demmel et al'03
 - [°] FLAME: Gunnels, Goto, Van de Geijn etal'01, '02
 - Compiler blockability: Wolf and Lam'91 (loop transformations), Carr and Lehoucq'97
 - Automatic generation of recursive codes: Ahmed and Pingali'00 (iterative algorithms -> recursive), Yi, Adve and Kennedy'00 (convert loop nests into recursive form)

Bo Kågström 2004

• Thanks for your attention!

