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• Sylvester-type matrix equations arise in many 
applications in science and engineering: block 
diagonalization of matrices in Schur form, condition 
estimation of eigenvalue problems, control theory etc.

• The continuous-time Sylvester equation (SYCT):

• Solution is unique iff

• If we can solve SYCT, we can solve many other similar 
equations

• We consider and compare two different methods

Sylvester-Type Matrix Equations
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Direct Transformation-Based Methods (1)

To solve SYCT apply Bartels-Stewart’s method:
Transform A and B to real Schur form:

Update the matrix C with respect to the transformations

Solve the reduced triangular system

Transform the solution back to the original coordinate 
system

No extra conditions is imposed on A or B by the 
method 
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Direct Transformation-Based Methods (2)

Triangular problem is solved by blocking

In parallel, we traverse the matrix C/X along its block 
diagonals and solve SYCT subsystems and do 
GEMM-updates w r t the subsolutions on the nodes
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Matrix-Sign-Function-Based Methods (1)

Let                                       have the Jordan decomposition

where        and         contain the Jordan blocks with eigenvalues in 
the open left and right half planes, respectively.
The matrix sign function is defined as

The matrix sign function can be computed via Newton iteration for 
the equation              :
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Matrix-Sign-Function-Based Methods (2)

[J.D. Roberts, 11]:                         , and  

Sign-function method can be applied to SYCT iff A
and –B are c-stable:
Parallel implementation by Benner and Quitana-Orti 
(in PSLICOT)
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Matrix Equations as Linear Systems

All linear matrix equations can be 
represented as a linear system of equations:
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In blocked algorithms, Zx = y representation is used 
in kernels for solving small-sized matrix equations.



Condition Estimation 

An important quantity in the perturbation theory for Sylvester-
type equations is the separation between two matrices:

To  compute sep(A,B) exactly costs O(M3N3) flops (only of 
interest in theory). We want to compute a reliable but low cost 
estimate (serially as well as in parallel).
We apply a general method (Hager’84, Higham’88, Kågström-
Poromaa’92) for estimating             which only uses matrix 
vectors products:

we can estimate sep(A,B) for SYCT by solving the 
equation itself to an O(M2N + MN2) cost. 
Notice that when sep(A, B) is tiny, the SYCT equation is close 
to singular, i.e., ill-conditioned (compare with the scalar case 
x = c / (a – b) ).
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ScaLAPACK Environment

HPC library for dense linear algebra on 
distributed memory machines
Buildt on LAPACK, BLAS, PBLAS, BLACS
Fortan 77 SPMD object-oriented
programming style
2D processor grid
All matrices are blockpartitioned by rows and 
columns and distributed using 2D block-cyclic 
mapping



Parallell Implementations (1)

ScaLAPACK-style implementation of Bartels-
Stewart’s method (Granat-Kågström-Poromaa):

Reduction to triangular form 
Hessenberg reduction – PDGEHRD
QR-algorithm – PDLAHQR

Transforming rhs and solution to tri. problem – PDGEMM
Solving the triangular problem 

Kernel SYCT-solver – DTRSYL
GEMM-updates – DGEMM 

Resulting routine PGESYCTD



Parallell Implementations (2)

ScaLAPACK-style implementation of the 
Matrix-sign-function-based method (Benner 
and Quintana-Orti):

LU decomposition – PDGETRF
Solving linear systems of equations – PDGETRS
Inversion based on LU decomposition – PDGETRI
Solving triangular systems with multiple rhs –
PDTRSM
Pivoting of a distributed matrix - PDLAPIV
Resulting routine from PSLICOT – psb04md



Experimental Evaluation (1)

Two target parallel computers:
IBM SP system

64 thin 120MHz nodes with 128MB RAM
150 Mbyte/sec peak network bandwidth
Well-balanced: t_flop/t_comm = 0.11

Linux Super Cluster
120 dual 1.667MHz nodes with 1GB RAM
667 Mbyte/sec peak network bandwidth
Less well-balanced: t_flop/t_comm = 0.025



Experimental Evaluation (2)

Test problem matrices:
We present three performance ratios

Measured parallel execution time
Accuracy:

Frobenius norm of absolute error:
Frobenius norm of absolute residual:

If any ratio > 1, psb04md shows better results, 
otherwise PGESYCTD performs equal or better
Condition estimation by computing a lower bound of
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Experimental Evaluation (3)
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Experimental Evaluation (4)
Illconditioned problems on IBM SP 511 10),(10 ≤≤ −− BAsepest
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Experimental Evaluation (5)
31 10),( −− ≈BAsepestWellconditioned problems on Linux Super Cluster 
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Experimental Evaluation (6)
Illconditioned problems on Linux Super Cluster 610 10),(10 ≤≤ − BAsepest
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Experimental Evaluation (7)
31 10),( −− ≈BAsepestWellconditioned triangular problems on Linux Super Cluster 

0 50 100
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

#procs

q t

Exec.time mb=nb=128

m=n=1024
m=n=2048
m=n=4096
m=n=8192

0 50 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

#procs

q x

Error mb=nb=128

m=n=1024
m=n=2048
m=n=4096
m=n=8192

0 50 100
0

0.5

1

1.5

2

2.5

#procs

q x

Residual mb=nb=128

m=n=1024
m=n=2048
m=n=4096
m=n=8192



Summary

Did not always 
converge for 
illconditioned 
problems

Always 
delivers a 
result

Reliability

Slightly better 
absolute error 
norm for 
wellconditioned 
problems

Always faster for 
general problems on 
the less balanced 
platform when 
converging

A and B must 
have no 
eigenvalues in 
common
A and -B must 
be c-stable

psb04md

Always much 
better for 
illconditioned 
problems 
Tends to 

deliver the 
smallest 
residual norm

Up to four times 
faster on the most 
balanced parallel 
platform
Always much faster 

for triangular problems 
(even on less 
balanced platform)

A and B must have 
no eigenvalues in 
common

PGESYCTD

AccuracySpeed GeneralityRoutine
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•New implementations for all 
transpose and sign-variants of the 
non-generalized standard matrix 
equations

•Software package SCASY will 
also contain generalized solvers 
and parallel condition estimators

•Ongoing investigation of hybrid 
algorithms with fast kernels from 
HPC library RECSY
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