Evaluating Parallel Algorithms for Solving Sylvester-Type Matrix Equations

Direct Transformation-Based versus Iterative Matrix-Sign-Function-Based Methods

Robert Granat and Bo Kågström, Umeå University and HPC2N, Sweden

Outline

- Sylvester-Type Matrix Equations
- Direct Transformation-Based Methods
- Matrix-Sign-Function-Based Methods
- Matrix Equations as Linear Systems
- Condition Estimation
- ScaLAPACK Environment
- Parallel Implementations
- Experimental Evalutation
- Summary
- Future/Ongoing Work
- References

Sylvester-Type Matrix Equations

- Sylvester-type matrix equations arise in many applications in science and engineering: block diagonalization of matrices in Schur form, condition estimation of eigenvalue problems, control theory etc.
- The continuous-time Sylvester equation (SYCT):

$$
A X-X B=C, \quad A \in R^{M \times M}, B \in R^{N \times N}, C \in R^{M \times N}
$$

- Solution is unique iff $\lambda(A) \cap \lambda(B)=\varnothing$
- If we can solve SYCT, we can solve many other similar equations
- We consider and compare two different methods

Direct Transformation-Based Methods (1)

- To solve SYCT apply Bartels-Stewart's method:
- Transform A and B to real Schur form:

$$
T_{A}=Q^{T} A Q, \quad T_{B}=P^{T} B P
$$

- Update the matrix C with respect to the transformations

$$
\tilde{C}=Q^{T} C P
$$

- Solve the reduced triangular system

$$
T_{A} \tilde{X}-\tilde{X} T_{B}=\tilde{C}
$$

- Transform the solution back to the original coordinate system

$$
X=Q \tilde{X} P^{T}
$$

- No extra conditions is imposed on A or B by the method

Direct Transformation-Based Methods (2)

- Triangular problem is solved by blocking

$$
A X-X B=C \Leftrightarrow A_{i i} X_{i j}-X_{i j} B_{i j}=C_{i j}-\left(\sum_{k=i+1}^{D_{a}} A_{i k} X_{k j}-\sum_{k=1}^{j-1} X_{i k} B_{k j}\right)
$$

- In parallel, we traverse the matrix C / X along its block diagonals and solve SYCT subsystems and do GEMM-updates wrt the subsolutions on the nodes

Matrix-Sign-Function-Based Methods (1)

- Let $Z \in R^{p \times p}, \quad \lambda(Z) \subset R$ have the Jordan decomposition

$$
Z=S\left[\begin{array}{cc}
J^{-} & 0 \\
0 & J^{+}
\end{array}\right] S^{-1} \quad J^{-} \in C^{k \times k}, J^{+} \in C^{(p-k) \times(p-k)}
$$

where J^{-}and J^{+}contain the Jordan blocks with eigenvalues in the open left and right half planes, respectively.

- The matrix sign function is defined as

$$
\operatorname{sign}(Z)=S\left[\begin{array}{cc}
-I_{k} & 0 \\
0 & I_{p-k}
\end{array}\right] S^{-1}
$$

- The matrix sign function can be computed via Newton iteration for the equation $Z^{2}=I$:

$$
\left\{\begin{array}{l}
Z_{0}=Z \\
Z_{k+1}=\left(Z_{k}+Z_{k}^{-1}\right) / 2
\end{array}\right.
$$

Matrix-Sign-Function-Based Methods (2)

- [J.D. Roberts, 11]: $\operatorname{sign}(Z)=\lim _{k \rightarrow \infty} Z_{k}$, and

$$
\operatorname{sign}\left(\left[\begin{array}{cc}
A & -C \\
0 & B
\end{array}\right]\right)+I_{m+n}=2\left[\begin{array}{lc}
k \rightarrow \infty & X \\
0 & I
\end{array}\right]
$$

- Sign-function method can be applied to SYCT iff A and $-B$ are c-stable: $\operatorname{Re}\left(\lambda_{i}\right)<0, \forall i$
- Parallel implementation by Benner and Quitana-Orti (in PSLICOT)

Matrix Equations as Linear Systems

- All linear matrix equations can be represented as a linear system of equations:

$$
\begin{aligned}
& o p(A) X-X o p(B)=C \Leftrightarrow Z_{S Y C T} x=y \\
& Z_{S Y C T}=I_{N} \otimes o p(A)-o p(B)^{T} \otimes I_{M} \\
& x=\operatorname{vec}(X), y=\operatorname{vec}(C)
\end{aligned}
$$

In blocked algorithms, $Z x=y$ representation is used in kernels for solving small-sized matrix equations.

Condition Estimation

- An important quantity in the perturbation theory for Sylvestertype equations is the separation between two matrices:

$$
\operatorname{sep}(A, B)=\inf _{\|X\|_{F}=1}\|\operatorname{op}(A) X-X o p(B)\|_{F}=\sigma_{\min }\left(Z_{S Y C T}\right)=\left\|Z_{S Y C T}^{-1}\right\|_{2}^{-1}
$$

- To compute $\operatorname{sep}(A, B)$ exactly costs $O\left(M^{3} N^{3}\right)$ flops (only of interest in theory). We want to compute a reliable but low cost estimate (serially as well as in parallel).
- We apply a general method (Hager'84, Higham'88, KågströmPoromaa'92) for estimating $\left\|A^{-1}\right\|_{1}$ which only uses matrix vectors products:

$$
A^{-1} x \quad A^{-T} x
$$

- \quad we can estimate $\operatorname{sep}(A, B)$ for SYCT by solving the equation itself to an $O\left(M^{2} N+M N^{2}\right)$ cost.
- Notice that when $\operatorname{sep}(A, B)$ is tiny, the SYCT equation is close to singular, i.e., ill-conditioned (compare with the scalar case $x=c /(a-b))$.

ScaLAPACK Environment

- HPC library for dense linear algebra on distributed memory machines
- Buildt on LAPACK, BLAS, PBLAS, BLACS
- Fortan 77 SPMD object-oriented programming style
- 2D processor grid
- All matrices are blockpartitioned by rows and columns and distributed using 2D block-cyclic mapping

Parallell Implementations (1)

- ScaLAPACK-style implementation of BartelsStewart's method (Granat-Kågström-Poromaa):
- Reduction to triangular form
- Hessenberg reduction - PDGEHRD
- QR-algorithm - PDLAHQR
- Transforming rhs and solution to tri. problem - PDGEMM
- Solving the triangular problem
- Kernel SYCT-solver - DTRSYL
- GEMM-updates - DGEMM
- Resulting routine PGESYCTD

Parallell Implementations (2)

- ScaLAPACK-style implementation of the Matrix-sign-function-based method (Benner and Quintana-Orti):
- LU decomposition - PDGETRF
- Solving linear systems of equations - PDGETRS
- Inversion based on LU decomposition - PDGETRI
- Solving triangular systems with multiple rhs PDTRSM
- Pivoting of a distributed matrix - PDLAPIV
- Resulting routine from PSLICOT - psb04md

Experimental Evaluation (1)

- Two target parallel computers:
- IBM SP system
- 64 thin 120MHz nodes with 128MB RAM
- 150 Mbyte/sec peak network bandwidth
- Well-balanced: t_flop/t_comm = 0.11
- Linux Super Cluster
- 120 dual 1.667 MHz nodes with 1GB RAM
- 667 Mbyte/sec peak network bandwidth
- Less well-balanced: t_flop/t_comm = 0.025

Experimental Evaluation (2)

- Test problem matrices: $\quad A=Q\left(\alpha D_{A}+\beta M_{A}\right) Q^{T}$
- We present three performance ratios q_{T}, q_{X}, q_{R}
- Measured parallel execution time
- Accuracy:
- Frobenius norm of absolute error:
- Frobenius norm of absolute residual: $\|A \tilde{X}-\tilde{X} B-C\|$
- If any ratio $>1, \mathrm{psb} 04 \mathrm{md}$ shows better results, otherwise PGESYCTD performs equal or better
- Condition estimation by computing a lower bound of $\operatorname{sep}^{-1}(A, B)$

Experimental Evaluation (3)

Wellconditioned problems on IBM SP $\operatorname{sep}_{\text {est }}{ }^{-1}(A, B) \approx 10^{-3}$

Experimental Evaluation (4)

Illconditioned problems on IBM SP $10^{-1} \leq \operatorname{sep}_{\text {est }}{ }^{-1}(A, B) \leq 10^{5}$

Experimental Evaluation (5)

Wellconditioned problems on Linux Super Cluster $\operatorname{sep}_{\text {est }}{ }^{-1}(A, B) \approx 10^{-3}$

Experimental Evaluation (6)

IIIconditioned problems on Linux Super Cluster $10^{0} \leq \operatorname{sep}_{\text {est }}{ }^{-1}(A, B) \leq 10^{6}$

Experimental Evaluation (7)

Wellconditioned triangular problems on Linux Super Cluster $\operatorname{sep}_{\text {est }}{ }^{-1}(A, B) \approx 10^{-3}$

Summary

Routine	Generality	Reliability	Speed	Accuracy
PGESYCTD	A and B must have no eigenvalues in common	Always delivers a result	-Up to four times faster on the most balanced parallel platform Always much faster for triangular problems (even on less balanced platform)	-Always much better for illconditioned problems -Tends to deliver the smallest residual norm
psb04md	A and B must have no eigenvalues in common A and - B must be c-stable	Did not always converge for illconditioned problems	Always faster for general problems on the less balanced platform when converging	Slightly better absolute error norm for wellconditioned problems

Ongoing/Future Work

-New implementations for all transpose and sign-variants of the non-generalized standard matrix equations

- Software package SCASY will also contain generalized solvers and parallel condition estimators
- Ongoing investigation of hybrid algorithms with fast kernels from HPC library RECSY

$o p(A) X \pm \operatorname{Xop}(B)=C$	SYCT	\checkmark
$o p(A) X+X o p\left(A^{T}\right)=C$	LYCT	$\sqrt{ }$
$o p(A) X o p(B) \pm X=C$	SYDT	\checkmark
$o p(A) X o p\left(A^{T}\right)-X=C$	LYDT	\checkmark
$\left\{\begin{array}{l}o p(A) X \pm Y o p(B)=C, \\ o p(D) X \pm Y o p(E)=F\end{array}\right.$	GCSY	
$o p(A) X o p(B) \pm o p(D) X o p(E)=C$	GSYL	
$o p(A) X o p\left(A^{T}\right)-o p(E) \operatorname{Xop}\left(E^{T}\right)=C$	GLYCT	
$o p(A) X\left(E^{T}\right)+o p(E) X o p\left(A^{T}\right)=C$	GLYDT	

References

[1] R.H. Bartels and G.W. Stewart. Algorithm 432: Solution of the Equation $\mathrm{AX}+\mathrm{XB}=\mathrm{C}$, Comm. $A C M$, 15(9):820-826, 1972.
[2] P. Benner, E.S. Quintana-Orti. Solving Stable Generalized Lyapunov Equations with the matrix sign functions, Numerical Algorithms, 20(1), pp. 75-100, 1999.
[3] P. Benner, E.S. Quintana-Orti, G. Ouintana-Orti. Numerical Solution of Discrete Schur Stable Linear Matrix Equations on Multicomputers, Parallel Alg. Appl., Vol. 17, No 1, pp. 127-146, 2002.
[4] R. Granat, B. Kågström, P. Poromaa. Parallel ScaLAPACK-style Algorithms for Solving Continuous-Time Sylvester Equations. In H. Kosch et al. (eds), Euro-Par 2003 Parallel Processing. Lecture Notes in Computer Science, Vol. 2790, pp. 800-809, 2003.
[5] W.W. Hager, Condition Estimates, SIAM J. Sci. Statist. Comput. 5, pp. 311-316,1984.
[6] N. J. Higham, FORTAN codes for Estimating the One-Norm of a Real of Complex Matrix, ACM Trans. Of Math. Software, Vol. 14, No. 4, pp. 381-396, December 1988
[7] I. Jonsson and B. Kågström, Recursive Blocked Algorithms for Solving Triangular Matrix Equations - Part I: One-Sided and Coupled Sylvester-Type Equations, ACM Trans. Math. Software, Vol. 28, No. 4, pp 393-415, 2002.
[8] I. Jonsson and B. Kågström, Recursive Blocked Algorithms for Solving Triangular Matrix Equations - Part II:Two-Sided and Generalized Sylvester and Lyapunov Equations, ACM Trans. Math. Software, Vol. 28, No. 4, pp 416-435, 2002.
[9] B. Kågström and P. Poromaa, Distributed and shared memory block algorithms for the triangular Sylvester Equation with Sep ${ }^{-1}$ estimators, SIAM J. Matrix Anal. Appl., 13 (1992), pp. 99-101.
[10] P. Poromaa. Parallel Algorithms for Triangular Sylvester Equations: Design, Scheduling and Scalability Issues. In Kågström et al. (eds), Applied Parallel Computing. Large Scale Scientific and Industrial Problems, Lecture Notes in Computer Science, Vol. 1541, pp. 438-446, SpringerVerlag, 1998.
[11] J.D. Roberts. Linear model reduction and solution of the algebraic Ricatti Equation by use of the sign function, Intern. J. Control, 32:667-687, 1980.

