Evaluating Parallel Algorithms for Solving Sylvester-Type Matrix Equations

Direct Transformation-Based versus Iterative Matrix-Sign-Function-Based Methods

Robert Granat and Bo Kågström, Umeå University and HPC2N, Sweden

Swedish 5 Foundation for Strategic Research

Outline

- Sylvester-Type Matrix Equations
- Direct Transformation-Based Methods
- Matrix-Sign-Function-Based Methods
- Matrix Equations as Linear Systems
- Condition Estimation
- ScaLAPACK Environment
- Parallel Implementations
- Experimental Evalutation
- Summary
- Future/Ongoing Work
- References

Sylvester-Type Matrix Equations

- Sylvester-type matrix equations arise in many applications in science and engineering: block diagonalization of matrices in Schur form, condition estimation of eigenvalue problems, control theory etc.
- The continuous-time Sylvester equation (SYCT):

 $AX - XB = C, \quad A \in \mathbb{R}^{M \times M}, B \in \mathbb{R}^{N \times N}, C \in \mathbb{R}^{M \times N}$

- Solution is unique iff $\lambda(A) \cap \lambda(B) = \emptyset$
- If we can solve SYCT, we can solve many other similar equations
- We consider and compare two different methods

Direct Transformation-Based Methods (1)

- To solve SYCT apply Bartels-Stewart's method:
 - Transform *A* and *B* to real Schur form:

$$T_A = Q^T A Q, \quad T_B = P^T B P$$

- Update the matrix C with respect to the transformations $\widetilde{C} = Q^T C P$
- Solve the reduced triangular system

$$T_A \widetilde{X} - \widetilde{X} T_B = \widetilde{C}$$

Transform the solution back to the original coordinate system

$$X = Q \widetilde{X} P^{T}$$

No extra conditions is imposed on A or B by the method

Direct Transformation-Based Methods (2)

Triangular problem is solved by blocking

$$AX - XB = C \iff A_{ii}X_{ij} - X_{ij}B_{ij} = C_{ij} - (\sum_{k=i+1}^{D_a} A_{ik}X_{kj} - \sum_{k=1}^{j-1} X_{ik}B_{kj})$$

In parallel, we traverse the matrix C/X along its block diagonals and solve SYCT subsystems and do GEMM-updates w r t the subsolutions on the nodes

Fig. 3. Traversing the matrix C/X when solving AX - XB = C.

Matrix-Sign-Function-Based Methods (1)

• Let $Z \in \mathbb{R}^{p \times p}$, $\lambda(Z) \subset \mathbb{R}$ have the Jordan decomposition $Z = S \begin{bmatrix} J^- & 0 \\ 0 & J^+ \end{bmatrix} S^{-1}$ $J^- \in C^{k \times k}, J^+ \in C^{(p-k) \times (p-k)}$

where J^- and J^+ contain the Jordan blocks with eigenvalues in the open left and right half planes, respectively.

• The *matrix sign function* is defined as

$$sign(Z) = S \begin{bmatrix} -I_k & 0\\ 0 & I_{p-k} \end{bmatrix} S^{-1}$$

• The matrix sign function can be computed via Newton iteration for the equation $Z^2 = I$:

$$\begin{cases} Z_0 = Z \\ Z_{k+1} = (Z_k + Z_k^{-1})/2 \end{cases}$$

Matrix-Sign-Function-Based Methods (2)

- [J.D. Roberts, 11]: $sign(Z) = \lim_{k \to \infty} Z_k$, and $sign\left(\begin{bmatrix} A & -C \\ 0 & B \end{bmatrix}\right) + I_{m+n} = 2\begin{bmatrix} 0 & X \\ 0 & I \end{bmatrix}$
- Sign-function method can be applied to SYCT iff *A* and *–B* are c-stable: $\operatorname{Re}(\lambda_i) < 0, \forall i$
- Parallel implementation by Benner and Quitana-Orti (in PSLICOT)

Matrix Equations as Linear Systems

All linear matrix equations can be represented as a linear system of equations:

 $op(A)X - Xop(B) = C \iff Z_{SYCT}x = y$

$$Z_{SYCT} = I_N \otimes op(A) - op(B)^T \otimes I_M$$

$$x = vec(X), y = vec(C)$$

In blocked algorithms, Zx = y representation is used in kernels for solving small-sized matrix equations.

Condition Estimation

 An important quantity in the perturbation theory for Sylvestertype equations is the *separation between two matrices*:

 $sep(A,B) = \inf_{\|X\|_{F}=1} \|op(A)X - Xop(B)\|_{F} = \sigma_{\min}(Z_{SYCT}) = \|Z_{SYCT}^{-1}\|_{2}^{-1}$

- To compute sep(A,B) exactly costs O(M³N³) flops (only of interest in theory). We want to compute a reliable but low cost estimate (serially as well as in parallel).
- We apply a general method (Hager'84, Higham'88, Kågström-Poromaa'92) for estimating $\|A^{-1}\|_1$ which only uses matrix vectors products: $A^{-1}x \qquad A^{-T}x$
- we can estimate sep(A,B) for SYCT by solving the equation itself to an $O(M^2N + MN^2)$ cost.
- Notice that when sep(A, B) is tiny, the SYCT equation is close to singular, i.e., ill-conditioned (compare with the scalar case x = c / (a - b)).

ScaLAPACK Environment

- HPC library for dense linear algebra on distributed memory machines
- Buildt on LAPACK, BLAS, PBLAS, BLACS
- Fortan 77 SPMD object-oriented programming style
- 2D processor grid
- All matrices are blockpartitioned by rows and columns and distributed using 2D block-cyclic mapping

Parallell Implementations (1)

- ScaLAPACK-style implementation of Bartels-Stewart's method (Granat-Kågström-Poromaa):
 - Reduction to triangular form
 - Hessenberg reduction PDGEHRD
 - QR-algorithm PDLAHQR
 - Transforming rhs and solution to tri. problem PDGEMM
 - Solving the triangular problem
 - Kernel SYCT-solver DTRSYL
 - GEMM-updates DGEMM
 - Resulting routine PGESYCTD

Parallell Implementations (2)

- ScaLAPACK-style implementation of the Matrix-sign-function-based method (Benner and Quintana-Orti):
 - LU decomposition PDGETRF
 - Solving linear systems of equations PDGETRS
 - Inversion based on LU decomposition PDGETRI
 - Solving triangular systems with multiple rhs PDTRSM
 - Pivoting of a distributed matrix PDLAPIV
 - Resulting routine from PSLICOT psb04md

Experimental Evaluation (1)

Two target parallel computers:

- IBM SP system
 - 64 thin 120MHz nodes with 128MB RAM
 - 150 Mbyte/sec peak network bandwidth
 - Well-balanced: t_flop/t_comm = 0.11
- Linux Super Cluster
 - 120 dual 1.667MHz nodes with 1GB RAM
 - 667 Mbyte/sec peak network bandwidth
 - Less well-balanced: t_flop/t_comm = 0.025

Experimental Evaluation (2)

- Test problem matrices: $A = Q(\alpha D_A + \beta M_A)Q^T$
- We present three performance ratios q_T, q_X, q_R
 - Measured parallel execution time
 - Accuracy:
 - Frobenius norm of absolute error:
 - Frobenius norm of absolute residual:

$$\left\| \begin{array}{c} X - \widetilde{X} \\ A \widetilde{X} - \widetilde{X} B - C \end{array} \right\|_{F}$$

- If any ratio > 1, psb04md shows better results, otherwise PGESYCTD performs equal or better
- Condition estimation by computing a lower bound of $sep^{-1}(A, B)$

Experimental Evaluation (3)

Wellconditioned problems on IBM SP $sep_{est}^{-1}(A, B) \approx 10^{-3}$

Experimental Evaluation (4)

Illconditioned problems on IBM SP $10^{-1} \le sep_{est}^{-1}(A, B) \le 10^{5}$

Experimental Evaluation (5)

Experimental Evaluation (6)

Experimental Evaluation (7)

Wellconditioned *triangular* problems on Linux Super Cluster $sep_{est}^{-1}(A, B) \approx 10^{-3}$

Summary

Routine	Generality	Reliability	Speed	Accuracy
PGESYCTD	A and B must have no eigenvalues in common	Always delivers a result	Up to four times faster on the most balanced parallel platform	 Always much better for illconditioned problems
			 Always much faster for triangular problems (even on less balanced platform) 	Tends to deliver the smallest residual norm
psb04md	 A and B must have no eigenvalues in common A and -B must be c-stable 	Did not always converge for illconditioned problems	Always faster for general problems on the less balanced platform when converging	Slightly better absolute error norm for wellconditioned problems

Ongoing/Future Work

•New implementations for all transpose and sign-variants of the non-generalized standard matrix equations

•Software package *SCASY* will also contain generalized solvers and parallel condition estimators

•Ongoing investigation of hybrid algorithms with fast kernels from HPC library *RECSY*

$op(A)X \pm Xop(B) = C$	SYCT	\checkmark
$op(A)X + Xop(A^T) = C$	LYCT	\checkmark
$op(A)Xop(B) \pm X = C$	SYDT	\checkmark
$op(A)Xop(A^T) - X = C$	LYDT	\checkmark
$\int op(A)X \pm Yop(B) = C,$	GCSY	
$\int op(D)X \pm Yop(E) = F$		
$op(A)Xop(B) \pm op(D)Xop(E) = C$	GSYL	
$op(A)Xop(A^{T}) - op(E)Xop(E^{T}) = C$	GLYCT	
$op(A)X(E^{T}) + op(E)Xop(A^{T}) = C$	GLYDT	

References

- [1] R.H. Bartels and G.W. Stewart. Algorithm 432: Solution of the Equation AX+XB = C, *Comm. ACM*, 15(9):820-826, 1972.
- [2] P. Benner, E.S. Quintana-Orti. Solving Stable Generalized Lyapunov Equations with the matrix sign functions, *Numerical Algorithms*, 20(1), pp. 75-100, 1999.
- [3] P. Benner, E.S. Quintana-Orti, G. Ouintana-Orti. Numerical Solution of Discrete Schur Stable Linear Matrix Equations on Multicomputers, *Parallel Alg. Appl.*, Vol. 17, No 1, pp. 127-146, 2002.
- [4] R. Granat, B. Kågström, P. Poromaa. Parallel ScaLAPACK-style Algorithms for Solving Continuous-Time Sylvester Equations. In H. Kosch et al. (eds), Euro-Par 2003 Parallel Processing. *Lecture Notes in Computer Science*, Vol. 2790, pp. 800-809, 2003.
- [5] W.W. Hager, Condition Estimates, SIAM J. Sci. Statist. Comput. 5, pp. 311-316,1984.
- [6] N. J. Higham, FORTAN codes for Estimating the One-Norm of a Real of Complex Matrix, ACM *Trans. Of Math. Software*, Vol. 14, No. 4, pp. 381-396, December 1988
- [7] I. Jonsson and B. Kågström, Recursive Blocked Algorithms for Solving Triangular Matrix Equations - Part I: One-Sided and Coupled Sylvester-Type Equations, *ACM Trans. Math. Software*, Vol. 28, No. 4, pp 393-415, 2002.
- [8] I. Jonsson and B. Kågström, Recursive Blocked Algorithms for Solving Triangular Matrix Equations - Part II:Two-Sided and Generalized Sylvester and Lyapunov Equations, ACM Trans. Math. Software, Vol. 28, No. 4, pp 416-435, 2002.
- [9] B. Kågström and P. Poromaa, Distributed and shared memory block algorithms for the triangular Sylvester Equation with *Sep*⁻¹ estimators, *SIAM J. Matrix Anal. Appl.*, 13 (1992), pp. 99-101.
- [10] P. Poromaa. Parallel Algorithms for Triangular Sylvester Equations: Design, Scheduling and Scalability Issues. In Kågström et al. (eds), Applied Parallel Computing. Large Scale Scientific and Industrial Problems, Lecture Notes in Computer Science, Vol. 1541, pp. 438-446, Springer-Verlag, 1998.
- [11] J.D. Roberts. Linear model reduction and solution of the algebraic Ricatti Equation by use of the sign function, *Intern. J. Control*, 32:667-687, 1980.