

Recursive Blocked Algorithms and Hybrid Data Structures for Dense Matrix Computations

Bo Kågström Dept of Computing Science & HPC2N Umeå University, Sweden

PARA'04 - State-of-the-art in Scientific Computing, June 20-23, 2004, DTU, Lyngby, Denmark

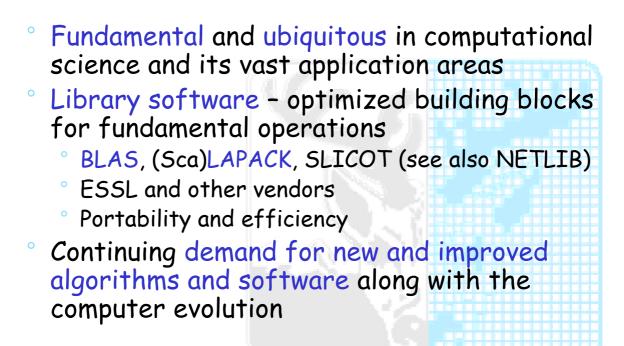
National center for Scientific and
 Parallel Computing

HPC2N - "HPC to North"

- New super cluster (installed 2004-06-07):
- 384 proc (64 bit, AMD Opteron)
- 1.5 TB memory
- Myrinet
- 1.3 Tflops/s HP-Linpack (~79% of peak)
- Most powerful computer in Sweden
- Funded by the Wallenberg Foundation (KAW)

Funded by the Swedish Research Council and its metacenter SNIC

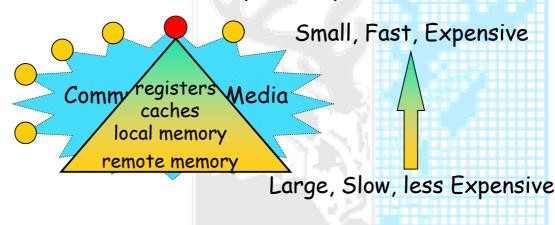
Matrix Computations



Bo Kågström 2004

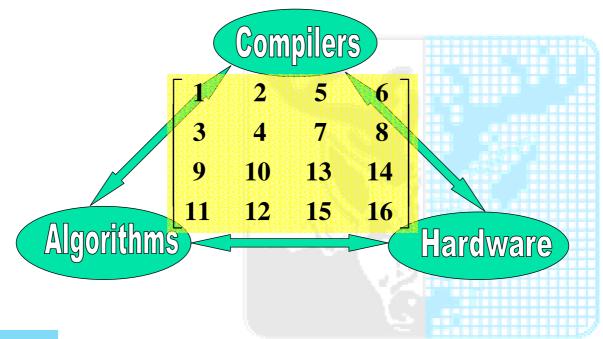
of today's computer systems

° PC - cluster - supercomputer



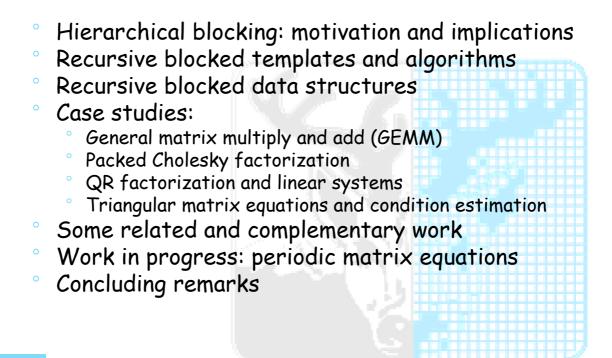
Management of deep memory hierarchies

- Architecture evolution: HPC systems with multiple SMP nodes, several levels of caches, more functional units per CPU
- Key to performance: understand the algorithm and architecture interaction
- ° Hierarchical blocking



Bo Kågström 2004

Outline



Bo Kågström 2004

SIAM REVIEW Vol. 46, No. 1, pp. 3-45

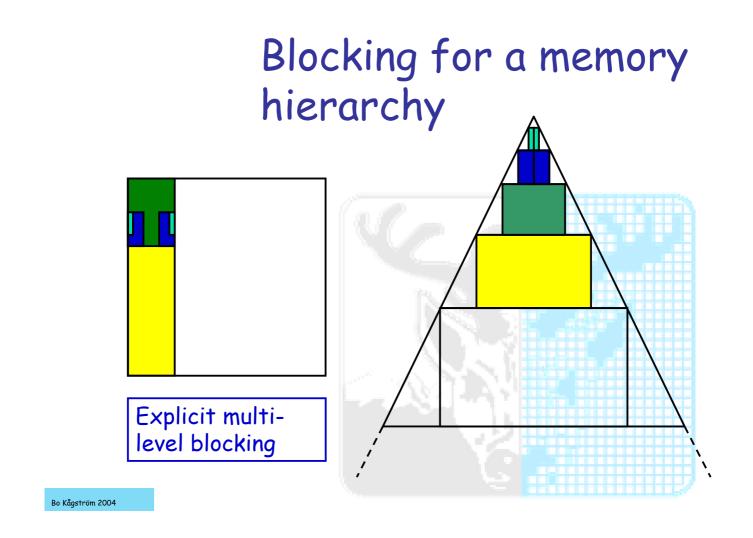
C 2004 Society for Industrial and Applied Mathematics

Recursive Blocked Algorithms and Hybrid Data Structures for Dense Matrix Library Software^{*}

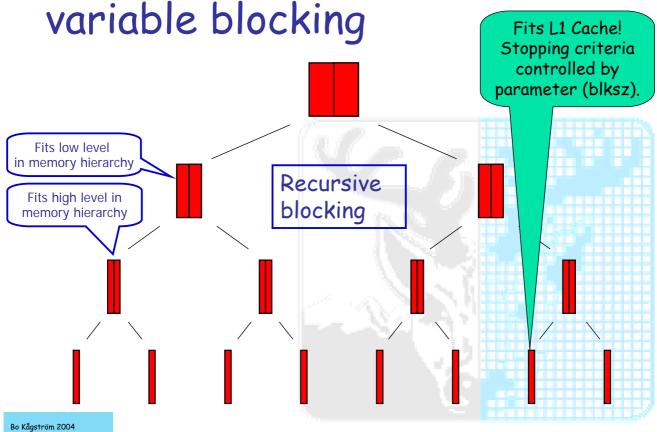
Joint work with:

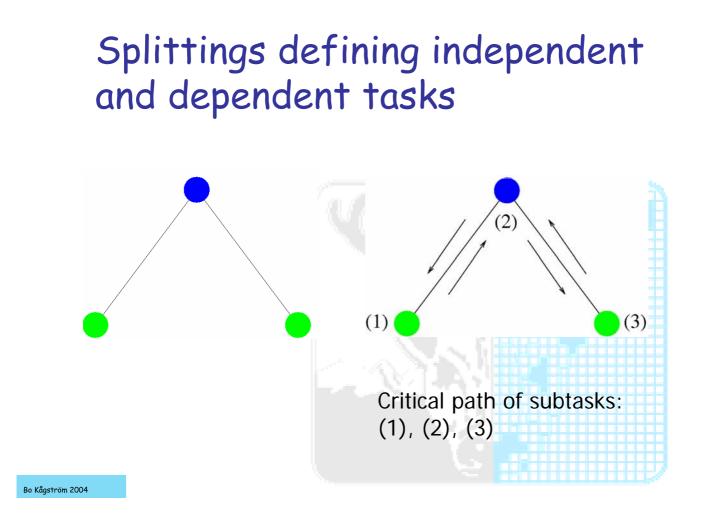
Erik Elmroth[†] Fred Gustavson[‡] Isak Jonsson[†] Bo Kågström[†]

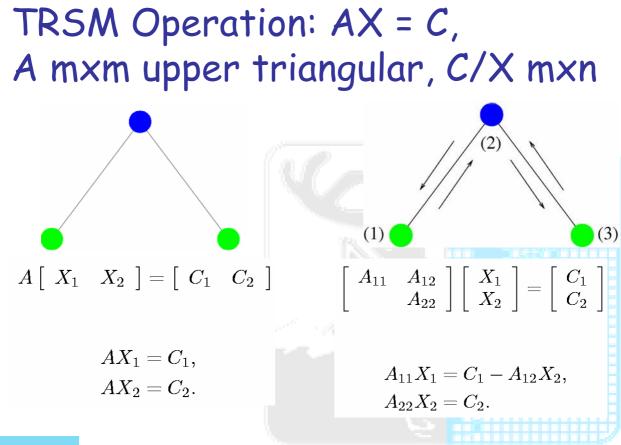
Abstract. Matrix computations are both fundamental and ubiquitous in computational science and its vast application areas. Along with the development of more advanced computer systems with complex memory hierarchies, there is a continuing demand for new algorithms and library software that efficiently utilize and adapt to new architecture features. This article reviews and details some of the recent advances made by applying the paradigm of recursion to dense matrix computations on today's memory-tiered computer systems. Recursion

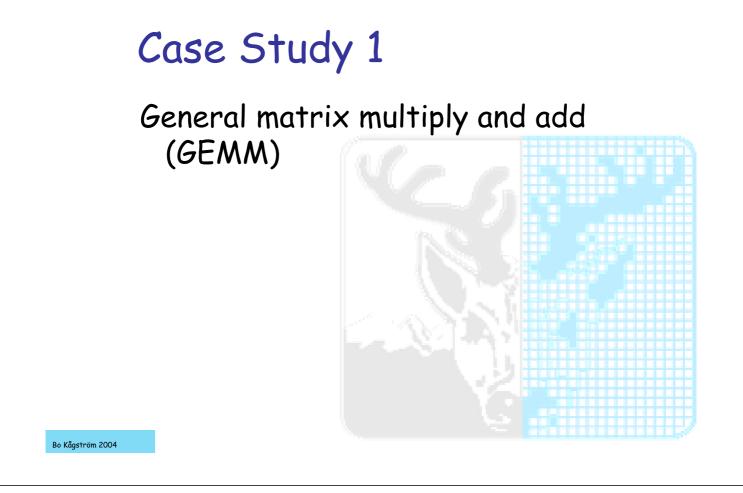


Recursion leads to automatic

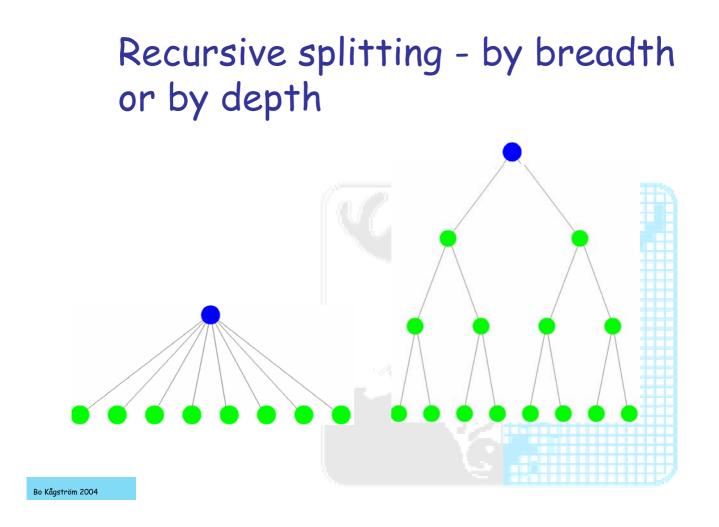








Recursive splittings for GEMM: $C \leftarrow \beta \operatorname{op}(C) + \alpha \operatorname{op}(A) \operatorname{op}(B)$

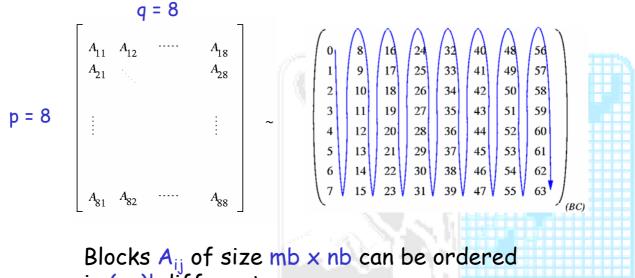


GEMM recursive blocked template - splitting by depth

C = rgemm(A, B, C, blksz)When to end the recursive splitting? $C = opt_gemm(A, B, C) & optimized GEMM \text{ kernel!}$ elseif m = max(m, n, k) & split m: $\underline{m2} = \underline{m/2}$ C(1:m2, :) = rgemm(A(1:m2, :), B, C(1:m2, :), blksz) C(m2+1:m, :) = rgemm(A(m2+1:m, :), B, C(m2+1:m, :), blksz)elseif n = max(n,k) & split n: $\underline{n2} = \underline{n/2}$, k C(:,1:n2) = rgemm(A, B(:,1:n2), C(:,1:n2), blksz) C(:,n2+1:n) = rgemm(A, B(:,n2+1:n), C(:,n2+1:n), blksz)else & & split k: $\underline{k2} = \underline{k/2}$, C = rgemm(A(:,1:n2), B(1:m2, :), C, blksz) C = rgemm(A(:,n2+1:n), B(m2+1:m, :), C, blksz)

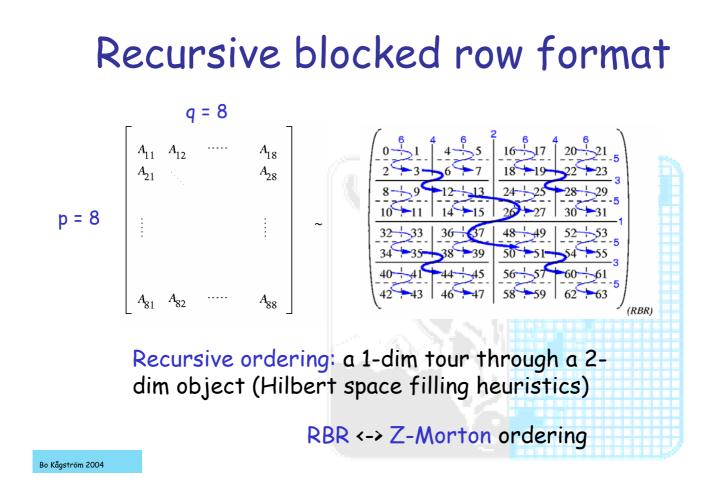
Locality of reference

- Recursive blocked algorithms mainly improve on the temporal locality
- Further performance improvements by matching the data structure with the algorithm (and vice versa)
- Recursive blocked data structures improve on the spatial locality

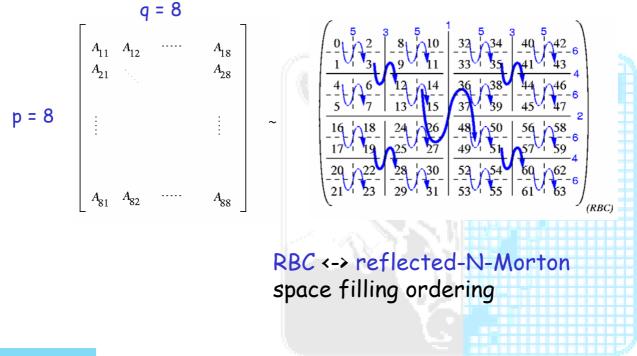


in (pq)! different ways

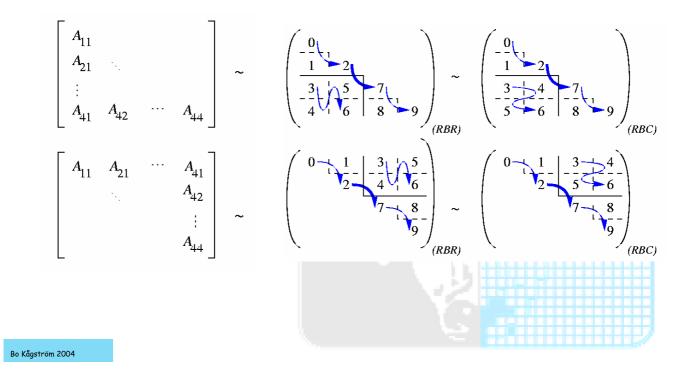
Bo Kågström 2004



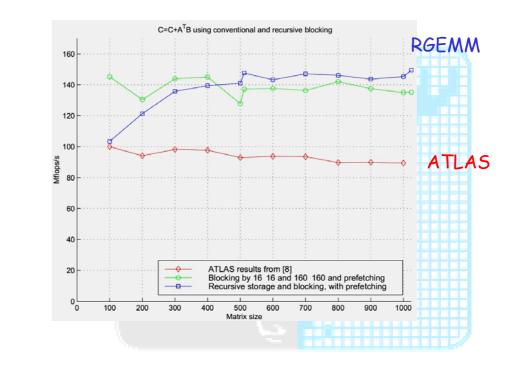
Recursive blocked column format



Triangular recursive data format

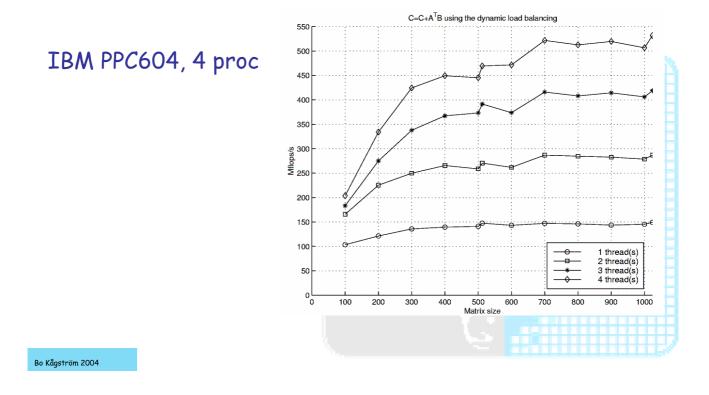


Recursive GEMM: multi-level vs. recursive blocking

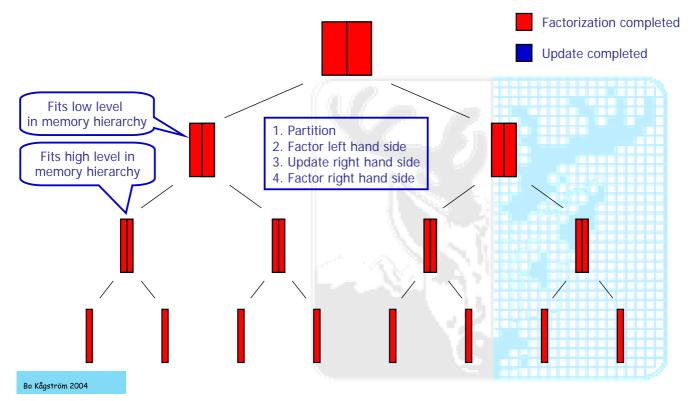


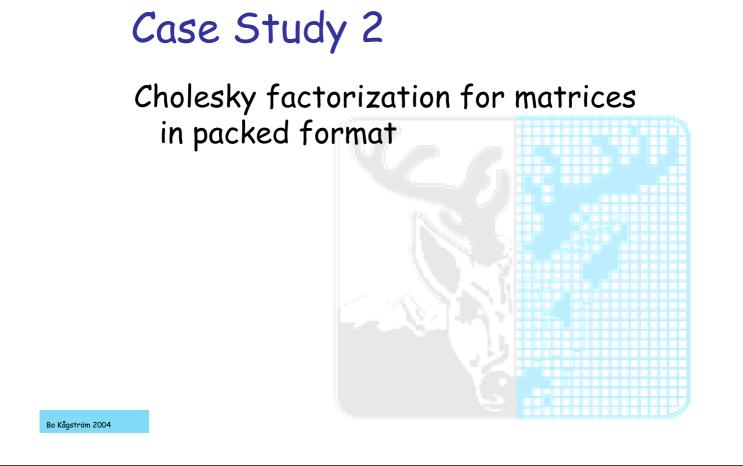
IBM PPC604, 112 MHz

Recursive blocked GEMM and SMP parallelism via threads



Recursion template for onesided matrix factorization





Packed Cholesky factorization

$$A \equiv \left[\begin{array}{cc} A_{11} & A_{21}^T \\ A_{21} & A_{22} \end{array} \right] = LL^T \equiv \left[\begin{array}{cc} L_{11} & 0 \\ L_{21} & L_{22} \end{array} \right] \left[\begin{array}{cc} L_{11}^T & L_{21}^T \\ 0 & L_{22} \end{array} \right]$$

Standard approach (typified by LAPACK):

- Packed storage -> cannot use standard level 3 BLAS (e.g., DGEMM)
- Possible to produce packed level 3 BLAS routines at a great programming cost
- Run at level 2 performance, i.e., much below full storage routines.
- Minimum storage: 1/2n(n+1) elements

Packed recursive blocked data

1	2	4	7	11	16	22	1	2	3	7	10	13	16
	3	5	8	12	17	23		4	5	8	11	14	17
		6	9	13	18	24			6	9	12	15	18
			10	14	19	25				19	20	22	24
				15	20	26					21	23	25
					21	27						26	27
						28							28
Packed upper							Packed recursive upper						

FIG. 3.1. Memory indices for 7×7 upper triangular matrix stored in traditional packed format and recursive packed format.

- •Divide into two isosceles triangles T1, T2 and rectangle R
- ·Divide triangles recursively down to element level
- •Store in order: T1, R, T2
- Rectangles stored in full format ->

(5)

Possible to use full storage level 3 BLAS

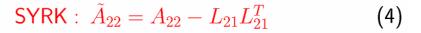
Bo Kågström 2004

Cholesky recursive blocked template

$$A = \begin{pmatrix} A_{11} & A_{21}^T \\ A_{21} & A_{22} \end{pmatrix} = LL^T = \begin{pmatrix} L_{11} & 0 \\ L_{21} & L_{22} \end{pmatrix} \begin{pmatrix} L_{11}^T & L_{21}^T \\ 0 & L_{22} \end{pmatrix}$$
(1)

Factor :
$$A_{11} = L_{11}L_{11}^T$$
. (2)

$$\mathsf{TRSM}: \ L_{21}L_{11}^T = A_{21}. \tag{3}$$



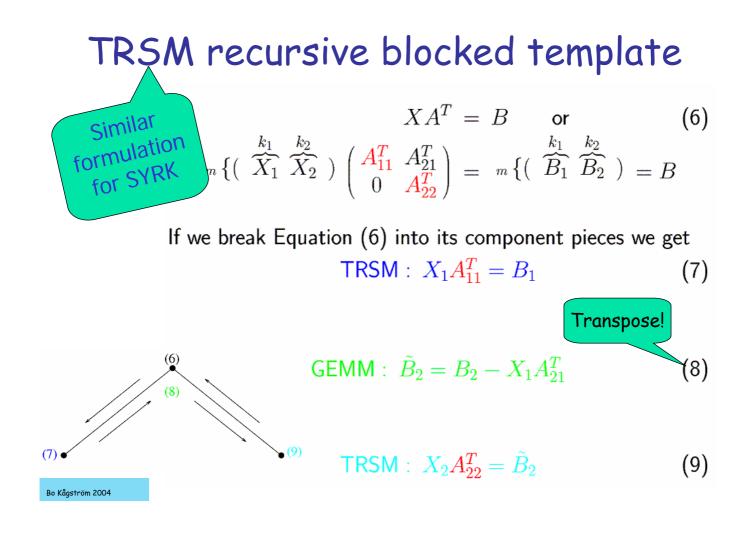
Factor :
$$\tilde{A}_{22} = L_{22}L_{22}^T$$
 (5)

Bo Kågström 2004

(2)

(1)

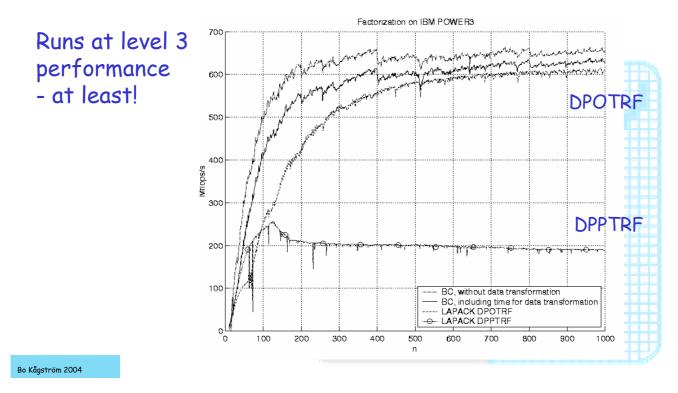
(3) (4)



Packed recursive blocked Cholesky highlights

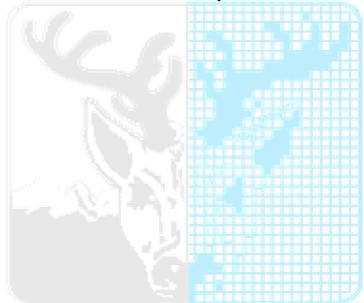
- Recursive blocked algorithm + recursive packed data layout => can make use of high performance level 3 BLAS routines (e.g., DGEMM)
- ^o Use minimal storage for matrix A
- Temporary workspace = 1/8n² elements (~25%)
- Leaf problems (< blksz) are solved using superscalar kernels (Cholesky, TRSM, SYRK)

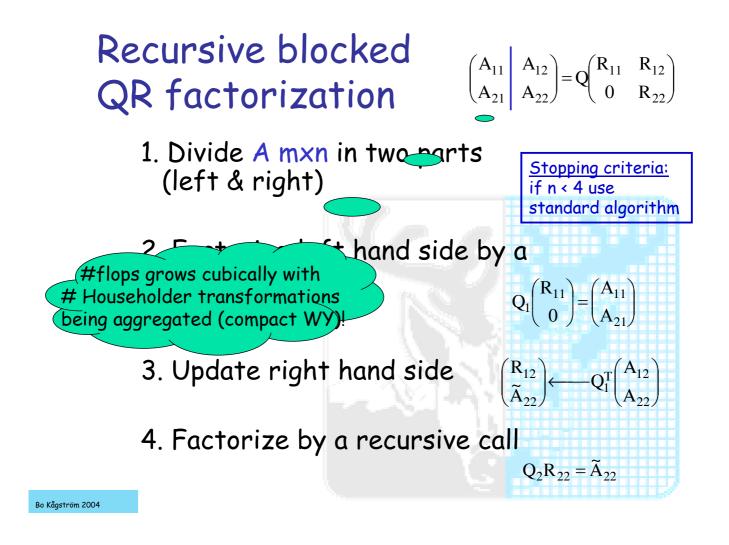
Recursive blocked Cholesky vs. LAPACK - (rec.) packed format



Case Study 3

QR factorization and linear systems



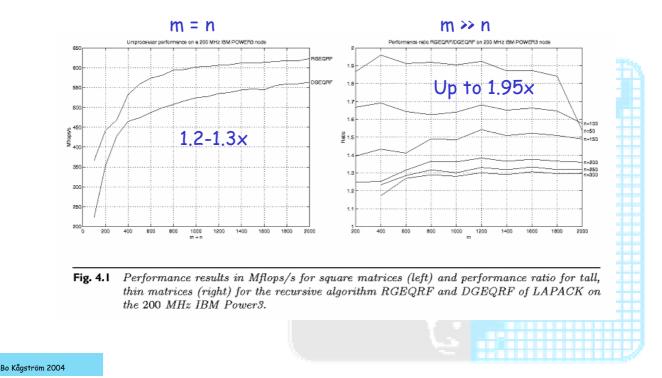


Recursive blocked QR highlights

- Recursive splitting controlled by nb (splitting point = min(nb, n/2), nb = 32-64)
- Level 3 algorithm for generating
 Q = I YTY^T (compact WY) within the recursive blocked algorithm (T triangular of size <= nb)

Replaces LAPACK level 2 and 3 algorithms

Recursive QR vs. LAPACK



Least squares recursive algorithm

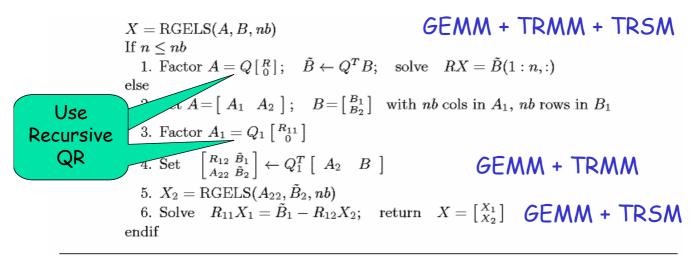


Fig. 4.2 Recursive least squares RGELS algorithm for computing the solution to AX = B, where A is $m \times n$ $(m \ge n)$.

Factorization, update and triangular solve are interleaved for each block => data reuse

Recursive linear systems solvers

Solve op(A)X = B, A m × n - full row (or column) rank (compare LAPACK DGELS):

- 1. linear least squares solution to min $||AX B||_F$ $(m \ge n)$;
- 2. linear least squares solution to $\min \|A^T X B\|_F$ (m < n);
- 3. minimum norm solution to min $||A^T X B||_F$ $(m \ge n);$
- 4. minimum norm solution to min $||AX B||_F$ (m < n).
 - RGELS solves P1
 - P2 solved as P1 after explicit transposition
 - RGELS-like algorithm solves P3
 - P4 solved as P3 after explicit transposition

Bo Kågström 2004

Case Study 4

Triangular matrix equations and condition estimation

Matrix equations

Name	Matrix equation	Acronym
Standard Sylvester (CT)	AX - XB = C	SYCT
Standard Lyapunov (CT)	$AX + XA^T = C$	LYCT
Generalized coupled Sylvester	(AX - YB, DX - YE) = (C, F)	GCSY
Standard Sylvester (DT)	$AXB^T - X = C$	SYDT
Standard Lyapunov (DT)	$AXA^T - X = C$	LYDT
Generalized Sylvester	$AXB^T - CXD^T = E$	GSYL
Generalized Lyapunov (CT)	$AXE^T + EXA^T = C$	GLYCT
Generalized Lyapunov (DT)	$AXA^T - EXE^T = C$	GLYDT

One-sided (top) and two-sided (bottom)

Bo Kågström 2004

Block diagonalization and spectral projectors

S block-diagonalized by similarity:

$$\begin{bmatrix} I_m & -R \\ 0 & I_n \end{bmatrix} S \begin{bmatrix} I_m & R \\ 0 & I_n \end{bmatrix} = \begin{bmatrix} A & 0 \\ 0 & B \end{bmatrix} \qquad S = \begin{bmatrix} A & -C \\ 0 & B \end{bmatrix}$$

where R satifies AR - RB = C

Spectral projector associated with (1,1)-block:

$$P = \begin{bmatrix} I_m & R \\ 0 & 0 \end{bmatrix}$$

Computed estimate:

$$s = 1/\|P\|_F$$

 $||P||_2 = (1 + ||R||_2^2)^{1/2}$

Bo Kågström 2004

Separation of two matrices

$$\begin{split} \mathsf{Sep}[A,B] &= \inf_{\|X\|_F = 1} \|AX - XB\|_F = \sigma_{\min}(Z), \\ \text{where} \quad Z &= I_n \otimes A - B^T \otimes I_m. \end{split}$$

Computing Sep[A,B] costs O(m³n³) - impractical!

Reliable Sep-estimates of cost O(m²n + mn²):

$$\frac{\|x\|_2}{\|y\|_2} = \frac{\|X\|_F}{\|C\|_F} \le \|Z^{-1}\|_2 = \frac{1}{\sigma_{\min}(Z)} = \mathsf{Sep}^{-1}$$

$$(mn)^{-1/2} \|Z^{-1}\|_1 \le \|Z^{-1}\|_2 \le \sqrt{mn} \|Z^{-1}\|_1.$$

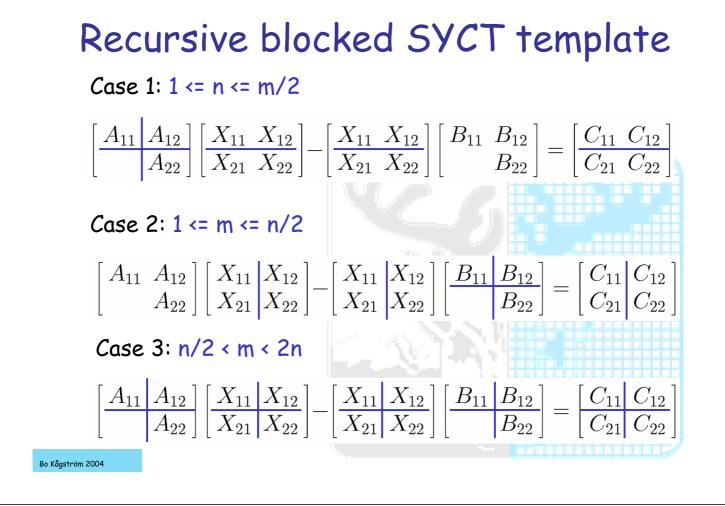
Bo Kågström 2004

Matrix equation Sep-functions

Z-matrix	Sep-function $= \sigma_{\min}(Z_{-})$	
$\begin{vmatrix} Z_{\text{SYCT}} = I_n \otimes A - B^T \otimes I_m \\ Z_{\text{LYCT}} = I_n \otimes A + A \otimes I_n \end{vmatrix}$	$ \inf_{\ X\ _F=1} \ AX - XB\ _F \\ \inf_{\ X\ _F=1} \ AX - X(-A^T)\ _F $	5
$Z_{\text{GCSY}} = \begin{bmatrix} I_n \otimes A & -B^T \otimes I_m \\ I_n \otimes D & -E^T \otimes I_m \end{bmatrix}$	$\inf_{\ (X,Y)\ _{F}=1} \ (AX - YB, DX - YE)\ _{F}$	
$\begin{aligned} Z_{\text{SYDT}} &= B \otimes A - I_n \otimes I_m \\ Z_{\text{LYDT}} &= A \otimes A - I_n \otimes I_n \\ Z_{\text{GSYL}} &= B \otimes A - D \otimes C \\ Z_{\text{GLYCT}} &= E \otimes A + A \otimes E \\ Z_{\text{GLYDT}} &= A \otimes A - E \otimes E \end{aligned}$	$ \begin{split} &\inf_{\ X\ _{F}=1} \ AXB^{T} - X\ _{F} \\ &\inf_{\ X\ _{F}=1} \ AXA^{T} - X\ _{F} \\ &\inf_{\ X\ _{F}=1} \ AXB^{T} - CXD^{T}\ _{F} \\ &\inf_{\ X\ _{F}=1} \ AXE^{T} - EX(-A^{T})\ _{F} \\ &\inf_{\ X\ _{F}=1} \ AXA^{T} - EXE^{T}\ _{F} \end{split} $	

Z x = b, Z is a Kronecker product representation

Sep-function = smallest singular value of Z



Recursive SYCT - Case 3

$$\begin{bmatrix} A_{11} & A_{12} \\ A_{22} \end{bmatrix} \begin{bmatrix} X_{11} & X_{12} \\ X_{21} & X_{22} \end{bmatrix} - \begin{bmatrix} X_{11} & X_{12} \\ X_{21} & X_{22} \end{bmatrix} \begin{bmatrix} B_{11} & B_{12} \\ B_{22} \end{bmatrix} = \begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix}$$

$$A_{11}X_{11} - X_{11}B_{11} = C_{11} - A_{12}X_{21}$$

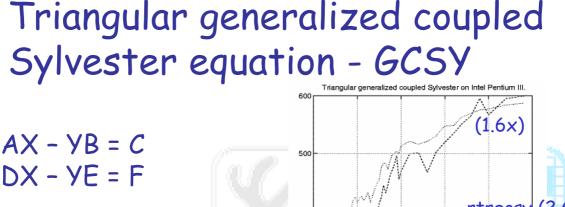
$$A_{11}X_{12} - X_{12}B_{22} = C_{12} - A_{12}X_{22} + X_{11}B_{12}$$

$$A_{22}X_{21} - X_{21}B_{11} = C_{21}$$

$$A_{22}X_{22} - X_{22}B_{22} = C_{22} + X_{21}B_{12}$$

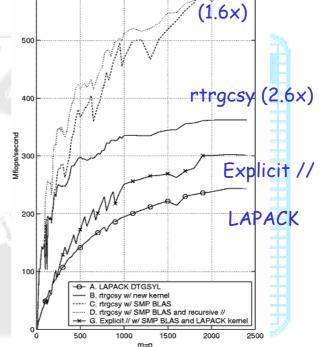
Recursive SYCT - Case 3

 $A_{11}X_{11} - X_{11}B_{11} = C_{11} - A_{12}X_{21}$ $A_{1} = X_{12}B_{22} = C_{12} - A_{12}X_{22} + X_{11}B_{12}$ $A_{22}X_{21} - X_{21}B_{11} = C_{21}$ $A_{22}X_{22} = C_{22} + X_{21}B_{12}$ 1. SYLV('N', 'N', A_{22}, B_{11}, C_{21}) 2a. GEMM('N', 'N', \alpha = +1, C_{21}, B_{12}, C_{22}) 2b. GEMM('N', 'N', \alpha = -1, A_{12}, C_{21}, C_{11}) 3a. SYLV('N', 'N', A_{22}, B_{22}, C_{22}) 3b. SYLV('N', 'N', A_{11}, B_{11}, C_{11}) 4. GEMM('N', 'N', \alpha = -1, A_{12}, C_{22}, C_{12}) 5. GEMM('N', 'N', \alpha = +1, C_{11}, B_{12}, C_{12}) 6. SYLV('N', 'N', A_{11}, B_{22}, C_{12})

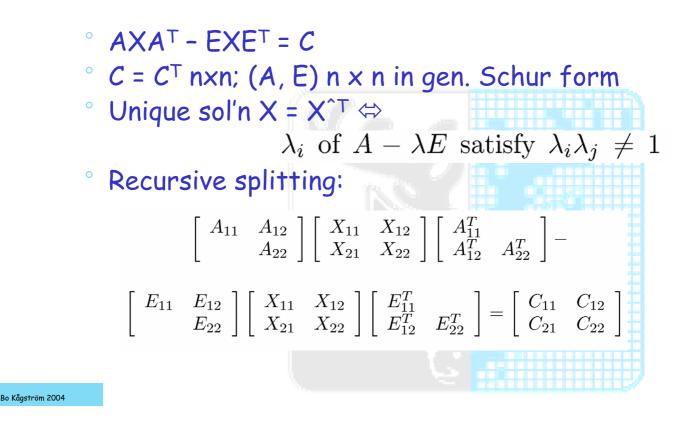


(A, D) and (B, E) in generalized Schur form

Solution (X, Y) overwrites r.h.s. (C, F)



Two-sided matrix equation: GLYDT



GLYDT recursion template $X_{21} = X_{21}^{T} =>$ three GLYDT subequations:

 $\begin{aligned} A_{11}X_{11}A_{11}^{T} - E_{11}X_{11}E_{11}^{T} &= C_{11} - A_{12}X_{12}^{T}A_{11}^{T} - (A_{11}X_{12} + A_{12}X_{22})A_{12}^{T} \\ &\quad + E_{12}X_{12}^{T}E_{11}^{T} + (E_{11}X_{12} + E_{12}X_{22})E_{12}^{T}, \\ A_{11}X_{12}A_{22}^{T} - E_{11}X_{12}E_{22}^{T} &= C_{12} - A_{12}X_{22}A_{22}^{T} + E_{12}X_{22}E_{22}^{T}, \\ A_{22}X_{22}A_{22}^{T} - E_{22}X_{22}E_{22}^{T} &= C_{22}. \end{aligned}$

Four two-sided updates of C₁₁ as two SYR2K ops:

$$C_{11} = C_{11} - (A_{11}X_{12})A_{12}^T - A_{12}(A_{11}X_{12})^T$$
$$C_{11} = C_{11} + (E_{11}X_{12})E_{12}^T + E_{12}(E_{11}X_{12})^T$$

where $A_{11}X_{12}$ and $E_{11}X_{12}$ are TRMM operations

Two-sided matrix product

 $C = \beta C + \alpha \operatorname{op}(A) \operatorname{Xop}(B)^{T}$

•A and/or B can be dense or triangular

- •One or several of A, B and C can be symmetric
- •Extra workspace size of r.h.s.

Make use of symmetry, e.g., in GLYDT:

 $C_{11} = C_{11} - A_{12}X_{22}A_{12}^T$ and $C_{11} = C_{11} + E_{12}X_{22}E_{12}^T$

Bo Kågström 2004

GLYDT performance with optional condition estimation

Table 5.3 Timings for solving unreduced two-sided matrix equations (GLYDT) with optional condition estimation. (Job = X, compute solution only; Job = X + Sep, compute solution and Sep-estimation.) Results from 375 MHz IBM Power3.

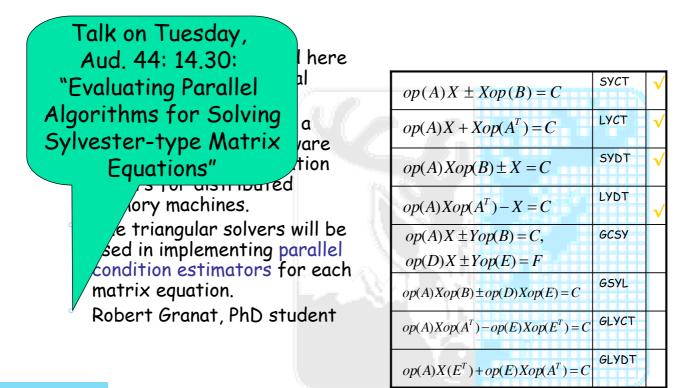
		SG03AD us	ing SG03AX	SG03AD us	sing rtrglydt	Up to 1.9x		
	n	Total time	Solver part	Total time	Solver part	Speedup	Job	
	50	0.0277	49.9 %	0.0185	$20.1 \ \%$	1.50	X	
	100	0.180	51.2~%	0.0967	9.0 %	1.86	X	
	250	2.89	46.8 %	1.62	4.7 %	1.79	X	
	500	59.0	$42.3 \ \%$	34.5	$1.5 \ \%$	1.71	X	
(a)	750	303.4	$42.0 \ \%$	177.5	0.9~%	1.71	X	
	1000	646.6	44.6 %	361.8	$1.0 \ \%$	1.79	X	
	50	0.117	87.6 %	0.0263	45.6 %	4.44	X + Sep	
	100	0.709	87.3~%	0.152	40.6 %	4.68	X + Sep	
	250	9.98	84.5 %	2.08	$25.4 \ \%$	4.81	X + Sep	
	500	178.6	80.9 %	37.8	$9.4 \ \%$	4.73	X + Sep	
	750	924.1	80.9~%	184.4	$4.5 \ \%$	5.01	X + Sep	
	1000	2076.6	82.7~%	391.8	8.4~%	5.30	X + Sep	
				Up +	0 5 3 ×			HH

RECSY library

- Recursive blocked algorithms for solving reduced matrix equations
- Recursion implemented in F90
- ° SMP versions using OpenMP
- F77 wrappers for LAPACK and SLICOT routines
- <u>www.cs.umu.se/research/parallel/recsy/</u>
- ° Part of Isak Jonsson's PhD Thesis, Dec 2003

Bo Kågström 2004

ScaLAPACK-style library



Recursive blocking ... creates new algorithms for linear algebra software expresses dense linear algebra algorithms entirely in terms of level~3 BLAS like matrix-matrix operations introduces an automatic variable blocking that targets every level of a deep memory hierarchy can also be used to define hybrid data formats for storing block-partitioned matrices (general, triangular, symmetric, packed) - L1, L2 and TLB misses are minimized for certain block sizes (Park-Hong-Prosana'O)

High-performance software

- implementations are based on data locality and superscalar optimization techniques
- recursive blocked algorithms improve on the temporal data locality
- hybrid data formats improve on the spatial data locality
- portable and generic superscalar kernels ensure that all functional units on the processor(s) are used efficiently

Some related and complementary work

- Recursive algorithms and hybrid data structures
 - Winograd-Strassen'69: Douglas etal'94, ESSL, Demmel-Higham'92 (stability)
 - Quad- and octtrees: Samet'84, Salman-Warner'94 (N-body, Barnes-Hut'84)
 - Cache oblivious algorithms: Leiserson etal'99 (sorting, FFT, A^T)
 - GEMM: Chatterjee etal'02, Valsalam and Skjellum'02, ATLAS-project
 - LU: Toledo'97(dense), Dongarra, Eijkhout Luszczek'01 (sparse)
 - QR: Rabani and Toledo'01 (out-of-core), Frens and Wise'03 (Givens-based)

Some related and complementary work

- Automated generation of library software and compiler technology
 - Empirical optimization: PHiPAC - Bilmes, Demmel etal'97, ATLAS - Whaley, Petitet and Dongarra'00, Sparse kernels - Vuduc, Demmel et al'03
 - [°] FLAME: Gunnels, Goto, Van de Geijn etal'01, '02
 - Compiler blockability: Wolf and Lam'91 (loop transformations), Carr and Lehoucq'97
 - Automatic generation of recursive codes: Ahmed and Pingali'00 (iterative algorithms -> recursive), Yi, Adve and Kennedy'00 (convert loop nests into recursive form)

Bo Kågström 2004

• Thanks for your attention!

Tuesday EURO 2004 forecast: Denmark - Sweden:

•15':	1 - 0
•37':	1 - 1
•49':	1 - 2
•89':	2 - 2