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Triangular Sylvester-type matrix equations (1)

Arise in many different 
applications in science and 
engineering

Condition estimation of 
eigenvalue problems
Control theory
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Consider the continuous-time Sylvester equation (SYCT):

Solution is unique iff

A and B in real Schur form



Triangular Sylvester-type matrix equations (2)

SYCT equivalent to linear system of equations:

Explicit Kronecker product representation used in kernel solvers, 
e.g., in blocked algorithms:
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With appropriate 
blocking, cost is 
dominated by 
GEMM-updates of 
right hand side



ScaLAPACK-style algorithms (1)

Rectangular process grid
2D block cyclic mapping
Wave-front matrix traversal
LAPACK’s DTRSYL kernel 
solver (ess. Level-2)

Two comm. schemes:
1. ”On demand” [3]
2. ”Matrix shifts” [7]



ScaLAPACK-style algorithms (2)
Communication operations (”On demand”):

1. Implicit redistribution [3] (splitted 2x2 diagonal blocks)
Minor impact on total execution time

2. Solving subsystem (i,j)
Minor impact on total execution time

3. Broadcast of subsolution (i,j) in block row i and block column j
Bottleneck – causes idle processes waiting for BC to start

4. GEMM-updates of right hand side
Bottleneck – causes idle processes

”Matrix shifts” approach combines (2) and (4) into one single (expensive) 
operation but suffers from broadcast bottleneck
”OD” allows single transposes in equation, whereas ”MS” does not

This contribution attempts to minimize (3) by means of a faster kernel
node solver thus improving the total execution time – and creating 
ScaLAPACK-style hybrid algorithms



RECSY – recursive blocked algorithms (1)

HPC library which solves 42 sign- and transpose 
variants of 8 Sylvester-type matrix equations

Recursive blocking approach
Automatic variable-sized blocking matches memory 
hierarchies of today´s modern computers
Significant speedup compared to standard library routines

For example SYCT solver RECSYCT: 10-folded 
speedup compared to LAPACK’s DTRSYL

Based on work by Jonsson-Kågström [4,5,6]
Library was presented at EuroPar 2003.
Documentation, download and installation 
instructions at 
http://www.cs.umu.se/research/parallel/recsy



RECSY – recursive blocked algorithms (2)

Recursive blocking makes RECSY rich in GEMM-operations => 
high performance (if good GEMM impl. is available)
Keep subsystems ”squarish” by testing dimensions in each step 
of the recursion. At leaf node apply superscalar kernel.
For example n/2 < m < 2n:

⇔ 1. Solve for X_21 
(recursively)

2. Update C_11 and C_22

3. Solve for X_11 and X_22 
(recursively)

4. Update C_12

5. Solve for X_12 
(recursively) 
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Experimental results (1)

Comparing ScaLAPACK-style SYCT-solving algorithm with LAPACK 
or RECSY node solvers
Target computer system: HPC2N Linux Super Cluster

120 dual 1.667MHz nodes with 1GB RAM
667 Mbyte/sec peak network bandwidth
Quite unbalanced 

Time(flop) / (Memory bandwith)^(-1) ratio: 0.31
Time(flop) / (Network bandwidth)^(-1) ratio: 0.10

Efficient use of memory hierarchy and network necessary 
for good performance

We present ratios of the parallel execution time with the node 
solvers from LAPACK and RECSY, respectively, for both 
communication schemes going from normal blocksize (128) to large 
(512)

Ratio > 1.0 represents speedup when going from LAPACK 
to RECSY



Experimental results (2)
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Experimental results (3)
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Experimental results (4)
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Conclusions and summary

RECSY solver improves overall parallel performance by 15-43% for the 
results presented (Notice the misprint in contribution abstract!)

Allows larger blocks in the parallel algorithm 
Close(r) to GEMM-performance for subsystem solves
Decreases synchronization cost for both ”On demand” and ”Matrix shifts” 
But affects scalability (harder to hide comm. during comp.)

Improves comparision with iterative methods [2] on unbalanced 
systems
With RECSY both communications schemes perform equally good
With LAPACK:

”On demand” best for small blocks
”Matrix shifts” best for larger blocks 

RECSY’s LAPACK/SLICOT wrappers allow the user to choose kernel 
node solver without modifying source code
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• New implementations for all 
transpose and sign-variants of 
the non-generalized standard 
matrix equations

• User may choose 
communication scheme

• Future software package 
SCASY will also contain 
generalized solvers and parallel 
condition estimators

• By linking with RECSY, hybrid 
algorithms come for free

√
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