
Combining Explicit and Recursive
Blocking for Solving Triangular
Sylvester-Type Matrix Equations

on Distributed Memory Platforms

EuroPar 2004 contribution
Robert Granat, Isak Jonsson & Bo Kågström,
Umeå University and HPC2N, Sweden

Outline

Triangular Sylvester-type matrix equations
ScaLAPACK-style algorithms
RECSY – recursive blocked algorithms and
HPC library
Experimental results
Conclusions and summary
Future work
References

Triangular Sylvester-type matrix equations (1)

Arise in many different
applications in science and
engineering

Condition estimation of
eigenvalue problems
Control theory

nmnnmm RCRBRACXBAX ××× ∈∈∈=− ,,,

∅=∩)()(BA λλ

Consider the continuous-time Sylvester equation (SYCT):

Solution is unique iff

A and B in real Schur form

Triangular Sylvester-type matrix equations (2)

SYCT equivalent to linear system of equations:

Explicit Kronecker product representation used in kernel solvers,
e.g., in blocked algorithms:

⎩
⎨
⎧

⊗−⊗=

=

m
T

nSYCT

SYCT

IBAIZ

CvecXvecZ),()(

With appropriate
blocking, cost is
dominated by
GEMM-updates of
right hand side

ScaLAPACK-style algorithms (1)

Rectangular process grid
2D block cyclic mapping
Wave-front matrix traversal
LAPACK’s DTRSYL kernel
solver (ess. Level-2)

Two comm. schemes:
1. ”On demand” [3]
2. ”Matrix shifts” [7]

ScaLAPACK-style algorithms (2)
Communication operations (”On demand”):

1. Implicit redistribution [3] (splitted 2x2 diagonal blocks)
Minor impact on total execution time

2. Solving subsystem (i,j)
Minor impact on total execution time

3. Broadcast of subsolution (i,j) in block row i and block column j
Bottleneck – causes idle processes waiting for BC to start

4. GEMM-updates of right hand side
Bottleneck – causes idle processes

”Matrix shifts” approach combines (2) and (4) into one single (expensive)
operation but suffers from broadcast bottleneck
”OD” allows single transposes in equation, whereas ”MS” does not

This contribution attempts to minimize (3) by means of a faster kernel
node solver thus improving the total execution time – and creating
ScaLAPACK-style hybrid algorithms

RECSY – recursive blocked algorithms (1)

HPC library which solves 42 sign- and transpose
variants of 8 Sylvester-type matrix equations

Recursive blocking approach
Automatic variable-sized blocking matches memory
hierarchies of today´s modern computers
Significant speedup compared to standard library routines

For example SYCT solver RECSYCT: 10-folded
speedup compared to LAPACK’s DTRSYL

Based on work by Jonsson-Kågström [4,5,6]
Library was presented at EuroPar 2003.
Documentation, download and installation
instructions at
http://www.cs.umu.se/research/parallel/recsy

RECSY – recursive blocked algorithms (2)

Recursive blocking makes RECSY rich in GEMM-operations =>
high performance (if good GEMM impl. is available)
Keep subsystems ”squarish” by testing dimensions in each step
of the recursion. At leaf node apply superscalar kernel.
For example n/2 < m < 2n:

⇔ 1. Solve for X_21
(recursively)

2. Update C_11 and C_22

3. Solve for X_11 and X_22
(recursively)

4. Update C_12

5. Solve for X_12
(recursively)

R
E

C
S

Y
 te

m
pl

at
e

–
ap

pl
ie

d
re

cu
rs

iv
el

y

to
 a

ll
su

bs
ys

te
m

s

Experimental results (1)

Comparing ScaLAPACK-style SYCT-solving algorithm with LAPACK
or RECSY node solvers
Target computer system: HPC2N Linux Super Cluster

120 dual 1.667MHz nodes with 1GB RAM
667 Mbyte/sec peak network bandwidth
Quite unbalanced

Time(flop) / (Memory bandwith)^(-1) ratio: 0.31
Time(flop) / (Network bandwidth)^(-1) ratio: 0.10

Efficient use of memory hierarchy and network necessary
for good performance

We present ratios of the parallel execution time with the node
solvers from LAPACK and RECSY, respectively, for both
communication schemes going from normal blocksize (128) to large
(512)

Ratio > 1.0 represents speedup when going from LAPACK
to RECSY

Experimental results (2)

0 10 20 30 40 50 60 70 80
0.9

0.95

1

1.05

1.1

1.15

#processors

Exec. time of using kernels LAPACK/RECSY: matrix shifts, blocksize 128

R
at

io

m=n=2048
m=n=4096
m=n=6144
m=n=8192
m=n=10240
m=n=12288

0 10 20 30 40 50 60 70 80
1

1.1

1.2

1.3

1.4

R
at

io

Exec. time of using kernels LAPACK/RECSY: on demand, blocksize 128

#processors

m=n=2048
m=n=4096
m=n=6144
m=n=8192
m=n=10240
m=n=12288

Experimental results (3)

0 10 20 30 40 50 60 70 80
1

2

3

4

5
Exec. time of using kernels LAPACK/RECSY: matrix shifts, blocksize 512

#processors

R
at

io

0 10 20 30 40 50 60 70 80
3

4

5

6

7

R
at

io

#processors

Exec. time of using kernels LAPACK/RECSY: on demand, blocksize 512

m=n=2048
m=n=4096
m=n=6144
m=n=8192
m=n=10240
m=n=12288

m=n=2048
m=n=4096
m=n=6144
m=n=8192
m=n=12288

Experimental results (4)

0 10 20 30 40 50 60 70 80
1

1.2

1.4

1.6

1.8

#processors

R
at

io

Exec. time, best ratio: LAPACK & blocksize 128 −> RECSY & blocksize 512

m=n=2048
m=n=4096
m=n=6144
m=n=8192
m=n=10240
m=n=12288

0 10 20 30 40 50 60 70 80
10

15

20

25

30

35

40

45

G
ai

n
g

=
 1
−

1
/ r

at
io

be
st

 (
%

)

#processors

Exec. time, gain in percent: LAPACK & blocksize 128 −> RECSY & blocksize 512

m=n=2048
m=n=4096
m=n=6144
m=n=8192
m=n=10240
m=n=12288

Conclusions and summary

RECSY solver improves overall parallel performance by 15-43% for the
results presented (Notice the misprint in contribution abstract!)

Allows larger blocks in the parallel algorithm
Close(r) to GEMM-performance for subsystem solves
Decreases synchronization cost for both ”On demand” and ”Matrix shifts”
But affects scalability (harder to hide comm. during comp.)

Improves comparision with iterative methods [2] on unbalanced
systems
With RECSY both communications schemes perform equally good
With LAPACK:

”On demand” best for small blocks
”Matrix shifts” best for larger blocks

RECSY’s LAPACK/SLICOT wrappers allow the user to choose kernel
node solver without modifying source code

GLYDT

GLYCT

GSYL

GCSY

LYDT

SYDT

LYCT

SYCT

√

√

√
CBXopXAop =±)()(

Future Work

CAXopXAop T =+)()(

CXBXopAop =±)()(

CXAXopAop T =−)()(

⎩
⎨
⎧

=±
=±

FEYopXDop

CBYopXAop

)()(

,)()(

CEXopDopBXopAop =±)()()()(

CEXopEopAXopAop TT =−)()()()(

CAXopEopEXAop TT =+)()()()(

• New implementations for all
transpose and sign-variants of
the non-generalized standard
matrix equations

• User may choose
communication scheme

• Future software package
SCASY will also contain
generalized solvers and parallel
condition estimators

• By linking with RECSY, hybrid
algorithms come for free

√

References

[1] R.H. Bartels and G.W. Stewart. Algorithm 432: Solution of the Equation AX+XB = C, Comm. ACM,
15(9):820-826, 1972.

[2] Robert Granat and Bo Kågström. Evaluating Parallel Algorithms for Solving Sylvester-Type Matrix
Equations: Direct Transformation-Based versus Iterative Matrix-Sign-Function-Based Methods. To
appear in PARA'04 State-of-the-Art in Scientific Computing Conference Proceedings, LCNS,
Springer Verlag, 2004.

[3] R. Granat, B. Kågström, P. Poromaa. Parallel ScaLAPACK-style Algorithms for Solving
Continuous-Time Sylvester Equations. In H. Kosch et al. (eds), Euro-Par 2003 Parallel
Processing. Lecture Notes in Computer Science, Vol. 2790, pp. 800-809, 2003.

[4] I. Jonsson and B. Kågström, Recursive Blocked Algorithms for Solving Triangular Matrix Equations
- Part I: One-Sided and Coupled Sylvester-Type Equations, ACM Trans. Math. Software, Vol. 28,
No. 4, pp 393-415, 2002.

[5] I. Jonsson and B. Kågström, Recursive Blocked Algorithms for Solving Triangular Matrix Equations
- Part II:Two-Sided and Generalized Sylvester and Lyapunov Equations, ACM Trans. Math.
Software, Vol. 28, No. 4, pp 416-435, 2002.

[6] I. Jonsson and B. Kågström, RECSY – A High Performance Library for Solving Sylvester-Type
Matrix Equations, In H. Kosch et al. (editors), Euro-Par 2003 Parallel Processing, Lecture Notes in
Computer Science, Springer-Verlag, Vol. 2790, pp. 810-819, 2003.

[7] P. Poromaa. Parallel Algorithms for Triangular Sylvester Equations: Design, Scheduling and
Scalability Issues. In Kågström et al. (eds), Applied Parallel Computing. Large Scale Scientific and
Industrial Problems, Lecture Notes in Computer Science, Vol. 1541, pp. 438-446, Springer-Verlag,
1998.

