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BOUNDS FOR THE DISTANCE BETWEEN NEARBY JORDAN AND KRONECKER
STRUCTURES IN A CLOSURE HIERARCHY

E. Elmroth, P. Johansson, and B. K̊agström UDC 519

Computing the fine-canonical-structure elements of matrices and matrix pencils are ill-posed problems. Therefore,
besides knowing the canonical structure of a matrix or a matrix pencil, it is equally important to know what are the
nearby canonical structures that explain the behavior under small perturbations. Qualitative strata information is
provided by our StratiGraph tool. Here, we present lower and upper bounds for the distance between Jordan and
Kronecker structures in a closure hierarchy of an orbit or bundle stratification. This quantitative information is
of importance in applications, e.g., distance to more degenerate systems (uncontrollability). Our upper bounds are
based on staircase regularizing perturbations. The lower bounds are of Eckart-Young type and are derived from
a matrix representation of the tangent space of the orbit of a matrix or a matrix pencil. Computational results
illustrate the use of the bounds. Bibliography: 42 titles.

Dedicated to Vera N. Kublanovskaya
on the occasion of her 80th birthday

1. Introduction

Computing the fine-canonical-structure elements of matrices and matrix pencils are ill-posed problems. Ar-
bitrarily small perturbations in the data can drastically change the canonical structure, and the perturbations
introduced by the finite-precision arithmetic are likely to corrupt the computed canonical forms. However, it is
possible to regularize the problem by allowing a deflation criterion for range/null-space separations, and thereby
to make it possible to compute the canonical structure of a nearby matrix or pencil. It was Vera Nikolaevna
Kublanovskaya who laid the foundation in her 1966 paper [33], where she presented the staircase algorithm for
computing the Jordan structure of a multiple eigenvalue by unitary similarity transformations. This milestone
contribution stimulated numerous subsequent papers on algorithms for the numerical computation of Jordan and
Kronecker structure information (e.g., see [40, 29, 28, 41, 26, 3, 11, 12, 30]), including several important contri-
butions by Kublanovskaya herself (e.g., see [34, 35, 31, 32, 4, 36, 37]). Moreover, new insight and understanding
of the mathematical theory of orbits and bundles of matrices and matrix pencils have led to new results, which,
in turn, has stimulated the development of improved algorithms and new software tools (e.g., see [18, 14, 15,
17]).

Almost all n× n matrices have n distinct eigenvalues and can be transferred into diagonal form by similarity
transformations. This corresponds to the generic case. Only if the matrix lies in a particular manifold in
the n2-dimensional space of n × n matrices does it have a more interesting Jordan structure. The manifolds
corresponding to all different structures form a closure hierarchy, i.e., a stratification of this space. The theory
describing the complete stratification of orbits and bundles of matrices and matrix pencils is presented in [15],
and a tool, StratiGraph, for computing and displaying closure hierarchies was recently presented in [17].

A stratification provides qualitative information about which structures are related to each other, which
structures can be found near a specific matrix or matrix pencil, etc. Based on stratifications, this contribution
provides quantitative results in terms of upper and lower bounds of the distance to the closest matrix or pencil
with a specified structure. These quantitative results are important in applications, e.g., distance to more
degenerate systems (uncontrollability). Our upper bounds are based on staircase regularizing perturbations.
Our lower bounds are of Eckart–Young type and are derived from a matrix representation of the tangent space
of the orbit of a matrix or a matrix pencil.

The outline of the paper is as follows. Section 2 introduces necessary definitions and notation for the matrix
and matrix-pencil spaces, including canonical forms and structure characteristics and orbits and bundles. In
Sec. 3, we discuss dimensions and codimensions of orbits and bundles and give some further details on stratifica-
tions. This section also includes an example presenting the complete stratification of orbits of 2×4 matrix pencils
using StratiGraph [17]. Sections 4 and 5 present the theory underlying our lower and upper bounds, respectively.
For the lower bounds, this includes the Kronecker product representation of the tangent space of the orbit of
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a matrix or a matrix pencil. For the upper bounds, we outline the main steps of the staircase algorithm and
introduce the concept of regularizing perturbations in order to impose a specific Jordan or Kronecker structure.
In Sec. 6, we present computational results and illustrate our bounds for orbits of 7× 7 matrices and bundles of
3× 5 matrix pencils. In Sec. 7, we summarize this contribution, present some related work, and give an outline
for future work.

2. The matrix and matrix-pencil spaces

Any n×n matrix A defines a manifold of similar matrices in the n2-dimensional space M of square matrices.
This manifold is the similarity orbit defined as

O(A) = {P−1AP : det(P ) 6= 0}.

We may choose a special element of O(A) that reveals the Jordan canonical form (JCF) of the matrix [19]:

AP = PJ,

where
J = diag{J(λ1), J(λ2), . . . , J(λt)}.

Here, we assume that A has t distinct eigenvalues λi with algebraic multiplicities ai. The Jordan matrix J(λi)
is a direct sum of the Jordan blocks associated with the eigenvalue λi. The number of Jordan blocks for an
eigenvalue is the same as its geometric multiplicity gi. Let s(i)k be the sizes of the Jordan blocks associated with
λi, where s(i)1 ≥ s

(i)
2 ≥ . . . ≥ s

(i)
gi ≥ 1. Algebraically, the s(i)k s are the degrees of the elementary divisors of A−λI

at λ = λi, also known as the Segre characteristics. We also see that hi = s
(i)
1 is the maximum height of the

vector chains for the eigenvalue λi. The Jordan matrix J(λi) can be expressed as

J(λi) = diag{J
s
(i)
1

(λi), Js
(i)
2

(λi), . . . , Js
(i)
gi

(λi)}.

The complete Jordan matrix J is uniquely defined up to the order of the Jordan blocks.
We also mention a dual way of characterizing the JCF. Let w(i)

k be the number of principal vectors of grade
k associated with λi (or, equivalently, the number of Jj(λi) blocks of size j ≥ k). We have that w(i)

1 ≥ w
(i)
2 ≥

. . . ≥ w
(i)
hi
≥ 1, which is the set of nonzero successive differences in the nullities of the matrices (A − λiI)k for

k = 1, . . . , hi, also known as the Weyr characteristics.
The matrix-pencil analogue is to consider any m × n matrix pair (A,B). Then A − λB defines an orbit of

strictly equivalent matrix pencils in the 2mn-dimensional space P of m× n pencils:

O(A− λB) = {P−1(A− λB)Q : det(P )det(Q) 6= 0}.

Similarly to the matrix case, we may choose a special element of O(A − λB) that exhibits the fine-structure
blocks of the matrix pencil, namely, the Kronecker canonical form (KCF) [19]. In addition to Jordan blocks for
finite and infinite eigenvalues, the Kronecker form contains singular blocks corresponding to the minimal indices
of a singular pencil.

Let A,B ∈ Cm×n. Then there exist nonsingular matrices P ∈ Cm×m and Q ∈ Cn×n such that

P−1(A − λB)Q = Ã − λB̃ ≡ diag(A1 − λB1, . . . , Ab − λBb),

where Ai − λBi is of size mi × ni. Every block Mi ≡ Ai − λBi must be of one of the following forms:

Jj(α), Nj , Lj , or LT
j .

The Jj(α) and Nj are simply the Jordan blocks of the finite and infinite eigenvalues, respectively. These
blocks together constitute the regular structure of the pencil.

The other two types of diagonal blocks are

Lj ≡

−λ 1
. . . . . .

−λ 1

 and LT
j ≡


−λ
1

. . .

. . . −λ
1

 .
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The j× (j+ 1) block Lj is called a singular block of right (or column) minimal index j. It has a one-dimensional
right null-space, rj = [1, λ, . . . , λj]T , such that Ljrj = 0 for all λ. Similarly, the (j+1)×j block LT

j is a singular
block of left (or row) minimal index j, and it has a one-dimensional left null-space for any λ. The left and right
singular blocks together constitute the singular structure of the pencil and appear in the KCF if and only if the
pencil is singular. The regular and singular structures define the Kronecker structure of a singular pencil. Also,
the KCF is uniquely determined up to the order of the canonical blocks. For consistency reasons, the Lj blocks
appear before the LT

j blocks, while the Jordan blocks of the regular part may appear anywhere along the block
diagonal of Ã − λB̃.

Two elements of an orbit have exactly the same canonical structure, including the types and sizes of the blocks
and the eigenvalues. A bundle is a union of orbits that have the same canonical structure, but their eigenvalues
may differ. The concept of a bundle is defined both for matrices and matrix pencils, and we use the notation
B(A) and B(A − λB), respectively.

2.1. Generic and degenerate Jordan and Kronecker structures
Almost all n×n matrices have n distinct eigenvalues. Hence, the generic Jordan structure is trivial; it consists

of n blocks J1, each of which corresponds to a different eigenvalue. Only in the case of multiple eigenvalues is
the Jordan structure more interesting. The most generic structure corresponding to an eigenvalue of multiplicity
k is Jk, a Jordan block of size k × k. The Jordan structure of the most degenerate n × n matrix consists of n
blocks J1, all of which correspond to the same eigenvalue (of multiplicity n).

The KCF looks quite complicated in the general case, but most matrix pencils have a more simple Kronecker
structure. Almost all rectangular m× n pencils A−λB (m 6= n) have the same KCF, depending only on m and
n, and this KCF only includes the blocks Lj if m < n and LT

j otherwise (e.g., see [41, 10, 14]). This corresponds
to the generic case where A− λB has full rank for any scalar λ. It follows that generic rectangular pencils have
no regular part. We note that any pencil with only Lj or only LT

j blocks has full rank, but it is only one of them
which is the generic structure.

Square pencils are generically regular, i.e., det(A − λB) = 0 if and only if λ is an eigenvalue. Moreover, the
most generic regular pencil is diagonalizable and has distinct finite eigenvalues.

3. Hierarchies of nearby canonical structures

Orbits and bundles are manifolds in the n2-dimensional space of n × n matrices and the 2mn-dimensional
space of m × n matrix pencils. The dimension of an orbit or bundle is uniquely determined by the Jordan or
Kronecker structure. In practice, it is more convenient to work with the dimension of the space complementary
to the orbit or bundle, called the codimension.

The normal space of an orbit or a bundle at a certain point (matrix or matrix pencil) is the space complemen-
tary and orthogonal to the tangent space at this point. The codimension is the dimension of the normal space,
and it can be calculated from information about the Jordan and Kronecker structure (e.g., see [10]). It can also
be computed as the number of zero singular values of a block matrix of Kronecker products [14] (see also Sec. 4).

The difference between the orbit and bundle cases is that, in the bundle case, we do not specify the value of
an eigenvalue. Hence, for every eigenvalue in the Jordan or Kronecker form, the bundle has one more dimension
compared to the corresponding orbit. It follows that the codimension count for this unspecified eigenvalue is one
less. Therefore,

cod(B(A)) = cod(O(A)) −# distinct eigenvalues of A,

and
cod(B(A − λB)) = cod(O(A − λB)) −# distinct eigenvalues of A − λB.

The codimensions for all generic and the most degenerate cases are summarized in Table 1. For example, for
orbits of n× n matrices, the generic case has cod(A) = n because there are n specified and distinct eigenvalues.
The corresponding most degenerate case has cod(A) = n2 corresponding to a Jordan structure with n blocks J1
for the same eigenvalue. For example, if the eigenvalue is zero, then A = 0n×n.

The codimension counts induce a natural hierarchy: one matrix or pencil is more generic than another if it
has lower codimension. However, this classification does not give the complete picture. Orbits and bundles of
different canonical structures of a given size can have the same codimensions. We are also interested in knowing
the relations between these and the other structures above and below in the hierarchy. The answer is given by a
stratified manifold, which is the union of nonintersecting manifolds whose closures are finite unions of themselves
with strata of smaller dimensions (thereby defining stratified manifolds recursively, see [2]). For matrices, the
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strata is a set of similarity orbits or bundles. For pencils, the strata is a set of equivalence orbits or bundles.
We use the notation O(·) and B(·) to denote the closures of orbits and bundles, respectively. The problem of
stratification is to find the closure relations among various orbits or bundles, i.e., the closure hierarchy of Jordan
and Kronecker structures. These relations define a partial ordering on the set of orbits or bundles, which we call
a covering relationship. One structure covers another if its closure contains the closure of the other and there is
no other structure in between.

Table 1. Codimensions for the generic and
the most degenerate orbits and bundles

Dimensions Orbits Bundles
m = n cod(A) = n cod(A) = 0

cod(A− λB) = n cod(A− λB) = 0 Generic
m 6= n cod(A− λB) = 0 cod(A− λB) = 0
m = n cod(A) = n2 cod(A) = n2 − 1 Most

cod(A− λB) = 2mn cod(A− λB) = 2mn degene-
m 6= n cod(A− λB) = 2mn cod(A− λB) = 2mn rate

A stratification is a classification of all possible changes in the canonical structure that can take place for suf-
ficiently small perturbations of a given matrix or pencil. Moreover, every possible change is smoothly attainable
in terms of versal deformations (e.g., see [2] for the matrix case and [14] for general matrix pencils).

Fig. 1. The stratification of orbits of 2 × 4 matrix pencils.

A stratification can nicely be represented by a graph. A node represents an orbit or a bundle of matrices or
matrix pencils. An edge represents a covering relation between two orbits or bundles, i.e., the one below is in the
closure of the one above, and there is no other orbit or bundle in between. It follows that all orbits or bundles
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that can be reached by downward paths from a given node define orbits or bundles that are in the closure of
the one represented by this node. A tool for computing and displaying stratifications of orbits and bundles of
matrices and matrix pencils, called StratiGraph, has recently been presented in [17].

3.1. A sample stratification
We now illustrate this representation by considering Fig. 1, where StratiGraph presents the complete strati-

fication of orbits of matrix pencils of size 2× 4. The pencils live in a 16-dimensional space. The codimensions
are given on the left-hand side of the window. The topmost node, marked “0 over 1,” corresponds to the generic
2 × 4 pencil with KCF 2L1. This pencil has codimension 0, i.e., the closure of this orbit is the complete 16-
dimensional space. It follows naturally that all other orbits are in O(2L1). In the graph, this is represented by
paths downward from “0 over 1” to every other node.

The second most generic structure, L0 ⊕ L2 with codimension 1, is represented by the node “1 over 1”
immediately below the generic structure. Since the codimension is 1, this orbit is a 15-dimensional space. The
node “3 over 1,” representing O(L0 ⊕L1⊕ J1(µ1)), defines a 13-dimensional space in the closure of O(L0 ⊕L2).
Downward from this node, we have two edges to “6 over 1” (O(2L0⊕J1(µ1)⊕J1(µ2))) and “6 over 2” (O(2L0⊕
J2(µ1))). These orbits with codimension 6 represent two independent 10-dimensional spaces.

The nodes “7 over 1” (O(2L0 ⊕ L1 ⊕ LT
0 )) and “9 over 1” (O(3L0 ⊕ LT

1 )) define two independent spaces (of
dimension 9 and 7, respectively) in the intersection of the spaces represented by “6 over 1” and “6 over 2.” The
node “8 over 1” represents O(2L0 ⊕ 2J1(µ1)), an 8-dimensional space, also in O(2L0 ⊕ J2(µ1)).

An interesting case isO(3L0⊕LT
0 ⊕J1(µ1)), the node “11 over 1.” It is a 5-dimensional space in the intersection

of the closures of the 9-, 8-, and 7-dimensional spaces represented by the nodes “7 over 1,” “8 over 1,” and “9
over 1.”

Finally, in the closure of all other orbits, we find the bottommost node “16 over 1,” representing O(4L0⊕2LT
0 ),

which corresponds to A = B = 0. The codimension of the orbit is 16, i.e., it is a point in the 16-dimensional
space of 2× 4 matrix pencils.

Since all other structures can be found by following paths upward from this orbit, the zero pencil is in the
closure of every other orbit. This is of course also easy to verify because any Kronecker structure can be imposed
by a small perturbation of the zero pencil.

4. Lower bounds for the distances to less generic matrices and pencils

In [14], Edelman, Elmroth, and Kågström presented a general technique for deriving lower bounds for the
distances to less generic matrices and matrix pencils. It is based on a matrix representation of the tangent space
of a matrix or matrix-pencil orbit and leads to Eckart–Young-type bounds expressed in terms of the singular
values of the “tangent space matrix.” We use these bounds for obtaining lower bounds for the distance to nearby
Jordan and Kronecker structures in a closure hierarchy. For completeness, below we give an overview of the
results, focusing on the matrix-pencil case.

The dimension of O(A − λB) is equal to the dimension of the space tangent to the orbit at A − λB, which
we denote by tan(A− λB). The tangent space of O(A − λB) consists of pencils represented in the form

TA − λTB = (XA − AY ) − λ(XB −BY ),

where X is an m ×m matrix and Y is an n× n matrix.
Using Kronecker products, we can represent TA − λTB ∈ tan(A− λB) as the 2mn× (m2 + n2) matrix

T ≡
[
AT ⊗ Im −In ⊗A
BT ⊗ Im −In ⊗B

]
. (1)

Moreover, it follows that the range of T represents a basis for the tangent space of A− λB:

tan(A− λB) = range(T ) = {TA − λTB}.

Since the space orthogonal to the range of a matrix is the kernel of the Hermitian transpose, we also have

nor(A − λB) = ker(TH ) = ker
[

Ā⊗ Im B̄ ⊗ Im
−In ⊗AH −In ⊗BH

]
. (2)
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These facts lead to the following “compact” characterization of the codimension of the orbit O(A− λB) [14]:

codO(A− λB) = the number of zero singular values of T (1). (3)

The matrix representation of the tangent and normal spaces and the SVD characterization of the codimension
of O(A−λB) lead to the following information on the distance between nearby structures in a closure hierarchy.

For a given m× n pencil A− λB with codimension c, we derive the following lower bound for the distance to
the closest pencil C − λD with codimension c+ d, where d ≥ 1 [14]:

‖(A− C,B −D)‖E ≥ 1√
m+ n

(
2mn∑

i=2mn−c−d+1

σ2
i (T )

)1/2

. (4)

Here, σi(T ) denotes the ith largest singular value of T (σi(T ) ≥ σi+1(T ) ≥ 0).
Starting with the generic case, i.e., codO(A − λB) = c = 0, we can traverse the closure-hierarchy graph and

obtain information on distances to all less generic structures in the stratification. As a special case, we obtain a
lower bound for the distance to the closest degenerate pencil C − λD:

‖(A− C,B −D)‖E ≥ σmin(T )√
m + n

, (5)

where σmin(T ) = σ2mn(T ) is the smallest nonzero singular value of T in (1).
If A−λB is a square n×n regular pencil, then (5) gives a lower bound for the distance to the closest nonregular

(or singular) pencil. Other types of bounds on the closest nonregular pencil are presented in [8].
Another application is to estimate the distance to uncontrollability for a multiple-input-multiple-output linear

system Eẋ(t) = Fx(t) + Gu(t), where E and F are m × m matrices, G is m × p (m ≥ p), and E is assumed
to be nonsingular. If A − λB ≡ [G|F − λE] is generic, the linear system is controllable (i.e., the dimension of
the controllable subspace equals m), and a lower bound for the distance to the closest uncontrollable system is
given by (5) (see Sec. 6.2 for some computational results).

Similar bounds are, of course, valid for the matrix case. The matrix representation of the tangent space of an
n × n matrix A in O(A) is T = In ⊗ A − AT ⊗ In of size n2 × n2. Now, for a given A with codimension c, we
obtain the following lower bound for the distance to the closest matrix C with codimension c + d, where d ≥ 1:

‖A− C‖E ≥
1√
2n

 n2∑
i=n2−c−d+1

σ2
i (T )

1/2

. (6)

5. Upper bounds for the distances to less generic matrices and pencils

The staircase algorithm due to Vera N. Kublanovskaya (1966) [33] is our basic tool for computing upper
bounds for the distances between nearby canonical structures in a closure hierarchy. Our bounds are based
on staircase regularizing perturbations, which means that we apply a regularization technique by allowing a
deflation criterion for range/null-space separations in finite-precision arithmetic, thereby making it possible to
compute or impose the canonical structure of a nearby problem.

5.1. The Schur-staircase forms
In general, we cannot guarantee that the JCF of a matrix or the KCF of a pencil is computed stably because

the transformation matrices that reduce A to JCF or A−λB to KCF can be arbitrarily ill-conditioned. However,
it is possible to compute the Jordan/Kronecker structure (or parts of it) by using only unitary transformations.
The price we must pay is a denser canonical form, called the Schur-staircase form in the matrix case and the
generalized Schur-staircase form for matrix pencils. These forms are block upper triangular with diagonal blocks
in staircase form (also block upper triangular) that reveal the fine-structure elements of the JCF and KCF,
respectively. We illustrate this with the most general case.

In most applications, it is sufficient to reduce A − λB to the generalized Schur-staircase form, e.g., to the
GUPTRI form [11, 12]

PH(A − λB)Q = S − λT ≡

Ar − λBr ∗ ∗
0 Areg − λBreg ∗
0 0 Al − λBl

 , (7)
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where P (m×m) and Q (n× n) are unitary, and ∗ denotes arbitrary conforming submatrices. Here, the square
upper triangular block Areg − λBreg is regular and has the same regular structure as A − λB (i.e., it contains
all finite and infinite eigenvalues of A− λB). The rectangular block Ar − λBr has only right minimal indices in
its KCF, actually the same blocks Lj as A− λB. Similarly, Al − λBl has only left minimal indices in its KCF,
the same blocks LT

j as A− λB. If A− λB is singular, at least one of the blocks Ar − λBr and Al − λBl will be
present in (7). If A−λB is regular, then neither Ar−λBr nor Al−λBl is present in (7), and the GUPTRI form
reduces to Areg−λBreg. Staircase forms that reveal the Jordan structure of the zero and infinite eigenvalues are
contained in Areg − λBreg:

Areg =

Az ∗ ∗
0 Af ∗
0 0 Ai

 , Breg =

Bz ∗ ∗
0 Bf ∗
0 0 Bi

 . (8)

In summary, the diagonal blocks of the GUPTRI form of A−λB describe the Kronecker structure as follows:

Ar − λBr reveals the whole right singular structure (the right minimal indices);
Az − λBz reveals the Jordan structure for the zero eigenvalue;
Af − λBf contains all finite, nonzero eigenvalues;
Ai − λBi reveals the Jordan structure for the infinite eigenvalue;
Al − λBl reveals the whole left singular structure (the left minimal indices).

For a description of the explicit structure of the diagonal blocks in staircase form, we refer the reader to [11,
12, 27]. The nonzero finite eigenvalues of A− λB (if any) are in the block Af − λBf , but their multiplicities or
Jordan structures are not computed explicitly. However, it is possible to extract the Jordan structure of a finite
nonzero eigenvalue of A − λB by computing the RZ-staircase form1 of the shifted pencil (Af − λiBf ) − λBf ,
which has zero as an eigenvalue of multiplicity ≥ 1.

The deflations made in the staircase algorithm result in the exact GUPTRI form of a nearby matrix pencil
A+ δA− λ(B + δB):

PH(A + δA − λ(B + δB))Q = S − λT.

If all the range and null-space separations in the GUPTRI algorithm are well defined with respect to the
deflation-tolerance parameters (TOL and GAP)2, then ‖(δA, δB)‖F = O(TOL‖(A,B)‖F ). The nearby problem
C −λD ≡ P (S −λT )QH represents a regularized problem that has a stable Kronecker structure with respect to
the deflation criteria of the algorithm.

5.2. Upper bounds via computing or imposing a canonical structure
By applying the standard (or greedy) staircase algorithm as described in the previous section, we immediately

obtain an upper bound for the distance to the nearest matrix pencil with the computed Kronecker structure as
the exact one:

‖(A− C,B −D)‖F ≤ ‖(δA, δB)‖F , (9)

where ‖(δA, δB)‖2F is the sum of squares of “deleted” singular values in the deflation steps. Note that there
might exist a closer C̃−λD̃ in O(S−λT ). Minimization techniques for computing a closer C̃−λD̃ are discussed
in [13, 38].

We have also designed different variants of the staircase algorithm, where we impose a canonical structure
(or staircase form). Starting with the generic case, our objective is to traverse the closure-hierarchy graph by
imposing all possible structures. Let A − λB be a pencil with a known canonical structure. Then we compute
unitary transformation matrices P and Q such that

PH(A + δA − λ(B + δB))Q = Simp − λTimp,

where the generalized Schur-staircase form Simp − λTimp has the imposed canonical structure.
Several deficiencies can appear during such an application of an “imposing” staircase algorithm. We illustrate

this with the nilpotent matrix case.

1The RZ-staircase form (RZ for Right-Zero) reveals the right singular structure and the Jordan structure of the zero eigenvalue
of A − λB.

2In order to determine which singular values are to be considered zero, the two parameters TOL and GAP are used. Singular
values smaller than TOL are considered zero, and the smallest nonzero singular value must be at least a factor GAP larger than the

largest singular value that is considered zero.
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5.3. Imposed staircase forms. The nilpotent case
Without loss of generality, we assume that n = 7 and fix a Jordan structure, e.g., J4(0)⊕ J2(0)⊕ J1(0), to be

imposed. Given an arbitrary n × n nilpotent matrix A, the corresponding imposed Schur-staircase form looks
like

QH (A+ QEQH)Q = Simp,

where

Simp =

 0 S12 S13

0 0 S23

0 0 0

 and E =

E11 0 0
E21 E22 0
E31 E32 E33

 .
The superdiagonal blocks Sii+1 are of size mi ×mi+1 with m1 = 3,m2 = 2, and m3 = 2. Of course, we obtain
the same block structure of Simp as if A would have had the Jordan structure that we imposed. If each of the
blocks Sii+1 is rank deficient, then A has a more degenerate (less generic) structure in O(Simp), which can be
obtained by applying the standard staircase algorithm to A.

That is fine, but what can we do if we really want to impose a given Jordan structure? One answer is that
we can force the blocks Sii+1 to be of full column rank by adding a staircase regularizing perturbation to Simp:

QH(A +QEQH +QFQH)Q = Simp + F,

where

F =

 0 F12 0
0 0 F23

0 0 0

 .
Note that F is a (staircase) perturbation in O(Simp). In theory, ‖F‖F can be chosen arbitrarily small. In
finite-precision arithmetic, the size of ‖F‖F must be at least of the size of the tolerance parameter used for the
rank decisions. Otherwise, we identify a less generic structure!

Our procedure for determining F is as follows. Assume that Sii+1 of size mi ×mi+1 has nullity c ≥ 0. From
the SVD of Sii+1(= UΣVH) we compute a rank-c perturbation

Fii+1 = U [:, 1 : c]DV [:, 1 : c]H (10)

with D = diag(di) > 0. Since we want ‖F‖ to be as small as possible, we choose di with respect to the deflation
criterion (= TOL · GAP).

Our upper bound for the distance from A to the nearby nilpotent C = Q(Simp + F )QH with the imposed
(requested) Jordan structure is

‖A− C‖F ≤ ‖E‖F + ‖F‖F . (11)

6. Examples and computational results

We illustrate the use of our bounds with two examples. The first is a nilpotent orbit, and we discuss distance
information concerning a given generic matrix and all structures in the closure hierarchy. In the second example,
we consider a bundle of matrix pencils and investigate a substratification associated with the “controllability
hierarchy” of linear systems Ex′(t) = Fx(t) +Gu(t).

6.1. A nilpotent orbit
The stratification of the nilpotent 7 × 7 orbits and the associated closure-hierarchy graph are displayed in

Fig. 2. The topmost node corresponds to the generic case, i.e., one 7× 7 Jordan block associated with the zero
eigenvalue. The bottom node corresponds to the most degenerate case, i.e., seven Jordan blocks J1(0) (the zero
matrix), and the orbit corresponds to a point in the 49-dimensional space of 7×7 nilpotent matrices (cod = 49).

In the sequel, we consider a matrix A = ZJZT in O(J4(0) ⊕ J2(0)⊕ J1(0)), where

J = diag




0 1.00e− 9 0 0
0 0 2.15e− 10 0
0 0 0 4.64e− 11
0 0 0 0

 , [ 0 1.00e− 11
0 0

]
, [ 0 ]


and Z is a 7× 7 random orthogonal matrix. The Segre and Weyr characteristics of A are [4, 2, 1] and [3, 2, 1,
1], respectively.
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For TOL = 2.204e− 15 and GAP = 500, the greedy staircase algorithm delivers the following Schur-staircase
form:

S=



0 0 0
... 7.35e−10 −3.36e−11

...−1.16e−24
... 4.41e−25

0 0 0
... −2.64e−10 1.70e−11

... 4.24e−25
...−1.65e−25

0 0 0
... −6.22e−10 4.11e−11

... 9.03e−25
...−3.60e−25

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0
... 0 0

...−2.15e−10
... 1.42e−24

0 0 0
... 0 0

... 1.18e−11
...−5.85e−26

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0
... 0 0

... 0
...−4.64e−11

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0
... 0 0

... 0
... 0



.

When we try to impose the covered structure 2J3 ⊕ J1 (with Weyr characteristics [3, 2, 2]) on A, we arrive at
the following results returned by the imposed staircase algorithm (with no rank checks on Sii+1):

Simp =



0 0 0
... 7.35e−10−3.36e−11

... 4.41e−25−1.16e−24

0 0 0
... −2.64e−10 1.70e−11

...−1.65e−25 4.24e−25

0 0 0
... −6.22e−10 4.11e−11

...−3.60e−25 9.03e−25
. . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0
... 0 0

... 1.42e−24−2.15e−10

0 0 0
... 0 0

...−5.85e−26 1.18e−11
. . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0
... 0 0

... 0 0

0 0 0
... 0 0

... 0 0


.

By inspection, we see that the superdiagonal block (2,3) of Simp does not have full column rank with respect
to the rank-deflation tolerance TOL. Indeed, Simp has a null-space of dimension four, and the computed Schur-
staircase form corresponds to the less generic structure J3⊕J2⊕2J1 with Weyr characteristics [4, 2, 1]. The lower
and upper bounds for the distance to a nilpotent matrix with this structure are 1.8707e− 11 and 4.6416e− 11,
respectively.

Upon adding the staircase regularizing perturbation

F23 =
[

1.22e− 13 0
2.22e− 12 0

]
,

computed in accordance with (10), the greedy staircase algorithm applied to S + F produces the following
Schur-staircase form, corresponding to the desired imposed structure 2J3 ⊕ J1:

S =



0 0 0
... 3.87e−10−5.78e−12

... 8.62e−25 −2.51e−22

0 0 0
... −8.35e−10 3.44e−11

...−1.69e−24 5.44e−22

0 0 0
... 3.89e−10−1.84e−11

... 7.48e−25 −2.53e−22
. . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0
... 0 0

... 2.15e−10 −1.25e−13

0 0 0
... 0 0

...−8.23e−12 −2.22e−12
. . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0
... 0 0

... 0 0

0 0 0
... 0 0

... 0 0


.
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Fig. 2. The closure-hierarchy graph of O(J7(0)) along with the Schur-
staircase forms S associated with each of the Jordan structures. The
black boxes in every S correspond to the superdiagonal blocks Sii+1 of
full column rank.

Now, all the blocks Sii+1 have full column rank with respect to TOL. Moreover, the lower and upper bounds
for the distance to the imposed structure are 3.7796e− 12 and 4.6469e− 11, respectively. The ratio between
the bounds has increased because we have added fewer nonzero singular values in the lower bound (the imposed
structure has lower codimension), whereas the upper bound is of the same size (we have only added a “zero-sized”
perturbation F ).

In Table 2, we present lower and upper bounds for the distance between A and the closest nilpotent matrices
in O(J4(0)⊕ J2(0)⊕ J1(0)) (see Fig. 2). The possible Jordan structures are marked with a “right-arrow” (−→)
followed by the corresponding Segre characteristic. In five cases, we first found more degenerate structures.
Each of them is listed just below the structure we wanted to impose, and, in these cases, we added staircase
regularizing perturbations as discussed above.
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Table 2. Distance information for imposed structures (Segre
characteristics) in O(J4(0)⊕ J1(0)) with and without staircase
regularization always outgoing from O(J4(0) ⊕ J2(0)⊕ J1(0))

From To cod Lower bound Upper bound Ratio
[421] 15
−→ [331] 17 3.78e− 12 4.65e− 11 12.29

[3211] 21 1.87e− 11 4.64e− 11 2.48
−→ [322] 19 6.55e− 12 4.65e− 11 7.10

[3211] 21 1.87e− 11 4.64e− 11 2.48
−→ [4111] 19 6.55e− 12 1.00e− 11 1.53
−→ [3211] 21 1.87e− 11 4.75e− 11 2.54

[31111] 27 1.87e− 11 4.64e− 11 2.48
−→ [2221] 25 3.13e− 11 2.21e− 10 7.05

[211111] 37 1.95e− 10 2.21e− 10 1.13
−→ [31111] 27 3.72e− 11 4.75e− 11 1.28
−→ [22111] 29 8.95e− 11 2.21e− 10 2.46

[211111] 37 1.95e− 10 2.21e− 10 1.13
−→ [211111] 37 1.95e− 10 2.21e− 10 1.13
−→ [1111111] 49 1.02e− 09 1.02e− 09 1.00

6.2. A pencil bundle stratification with applications to control theory
The stratification of bundles of 3× 5 matrix pencils is displayed in Fig. 3.
This is a stratification of a 30-dimensional space with, in total 26, different Kronecker structures. The most

generic structure, L1 ⊕ L2 with codimension 0, is the topmost node of the closure-hierarchy graph.
This stratification is of interest when studying controllability issues for the linear system

Ex′(t) = Fx(t) + Gu(t),

where E and F are m×m and G is m × p. The system is controllable if, starting with x(0) = x0, it is possible
to choose an input u to bring the state vector x to an arbitrary state in some finite time tN . One way of
characterizing controllability is via the controllability pencil

C(E,F,G) = [G|F ]− λ[0|E].

It has full rank except at k < m values of λ that correspond to the uncontrollable modes of the linear system
above.

The stratification in Fig. 3 is for the controllability pencil of a linear system with three states (m = 3) and
two inputs (p = 2). The graph gives the complete picture, but since E is assumed to be nonsingular, several of
the Kronecker structures represented in the graph are not possible for this application. In the sequel, we only
consider the part of the stratification that is relevant to this application, i.e., we do not consider structures that
include blocks LT

j or infinite eigenvalues.
Let us investigate the topmost nodes of the stratification graph. Next to the generic case L1⊕L2 there are two

structures with codimension 2, namely, L0⊕L3 and 2L1⊕J1(µ1). Each of these two bundles is a 28-dimensional
space. All other bundles are found in the intersection of these two spaces.

The most degenerate case considered here is 2L0⊕ 3J1(µ1) (denoted 14:1 in the graph). The dimension of its
bundle is 16 (= 30− 14).

Table 3 presents upper and lower bounds for the perturbations needed to find pencils with prescribed Kronecker
structures. The results are the mean values obtained from 100 random pencils, normalized so that ‖A‖F = 1
and ‖B‖F = 1. For every random pencil, the lower bounds are computed using (4) in Sec. 4, and the upper
bounds are obtained by imposing a pencil with prescribed structure by applying the modified GUPTRI software,
as described in Sec. 5.

In this example, the values of the rank-deflation parameters used are TOL = 1e − 10 and GAP = 1000.
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Table 3. Upper and lower bounds for the distance from a
random generic pencil to pencils with prescribed Kronecker

structures (mean values for 100 random problems)

Imposed Structure cod Lower bound Upper bound Ratio
L0 ⊕ L3 2 1.63e− 02 1.31e− 01 8.07
2L1 ⊕ J1(µ1) 2 1.63e− 02 1.38e− 01 8.49
L0 ⊕ L2 ⊕ J1(µ1) 3 2.43e− 02 1.57e− 01 6.45
L0 ⊕ L1 ⊕ J1(µ1)⊕ J1(µ2) 4 3.93e− 02 2.19e− 01 5.57
L0 ⊕ L1 ⊕ J2(µ1) 5 5.30e− 02 4.71e− 01 8.89
2L0 ⊕ J1(µ1) ⊕ J1(µ2)⊕ J1(µ3) 6 6.58e− 02 2.64e− 01 4.02
2L0 ⊕ J2(µ1) ⊕ J1(µ2) 7 8.37e− 02 3.44e− 01 4.11
L0 ⊕ L1 ⊕ 2J1(µ1) 7 8.37e− 02 3.55e− 01 4.24
2L0 ⊕ J3(µ1) 8 1.05e− 01 5.27e− 01 5.01
2L0 ⊕ 2J1(µ1)⊕ J1(µ2) 9 1.25e− 01 3.77e− 01 3.02
2L0 ⊕ J1(µ1) ⊕ J2(µ1) 10 1.46e− 01 5.42e− 01 3.72
2L0 ⊕ 3J1(µ1) 14 2.46e− 01 9.93e− 01 4.04

Fig. 3. The stratification of bundles of 3× 5 matrix pencils.

In the standard version of the GUPTRI software as well as the version we use to impose specified structures,
the zero (and infinite) eigenvalue and the nonzero finite eigenvalues are treated differently. Since a zero eigenvalue
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corresponds to the null-space of A, the structure for this eigenvalue is determined in connection with the range
and null-space separations performed in order to determine the right singular structure (the blocks Lj). The
structure for the nonzero finite eigenvalues is computed upon reducing the pencil to a square regular pencil
without zero and infinite eigenvalues.

When imposing a specific structure in order to find the corresponding bundle, we do not want to specify
whether an eigenvalue is zero or not because both alternatives would place us in the same bundle. In our striving
to find the closest pencil in that bundle we, therefore, impose both cases, i.e., one with an eigenvalue specified
as zero and one without. As the result we choose the one we find to be the closest.

In addition to the mean values of the bounds, Table 3 also reports the ratio of the upper bound to the lower
bound. The ratio is a measure of how close we are able to bound the distance relative to the actual distance.

Since the tests are performed on random pencils, we would typically not find nongeneric structures at very
small distances. In Table 3, all lower bounds reported are in the range from 1.6e− 2 to 2.4e− 1, and the upper
bounds are in the range from 1.3e−1 to 9.9e−1. For all cases, the ratios of the bounds are in the range between
3.0 and 8.9. Since the exact distance is unknown for most cases, the ratio is our best measure for the quality of
the bounds. A high ratio means that one or both of the bounds are far from the exact value, but with all ratios
less than ten we conclude that all bounds are fairly tight.

For the two cases L0 ⊕L3 and 2L0 ⊕ J1(µ1)⊕ J1(µ2)⊕ J1(µ2), the distance to the closest pencil is known to
be the smallest perturbation that reduces the rank of the 6× 5 matrix

[
A
B

]
(12)

by one and two, respectively [18]. The Frobenius norms of the perturbations required are σ1 and
√
σ2

1 + σ2
2,

respectively, where σ1 ≤ σ2 are the two smallest singular values of (12).
For the 100 test problems, the average distance for L0 ⊕ L3 is 8.91e− 2. Our upper bound (1.31e − 1) is a

factor 1.48 larger than the actual distance, and the lower bound (1.63e − 2) is a factor 5.47 smaller than the
actual distance. For 2L0⊕ J1(µ1)⊕ J1(µ2)⊕ J1(µ2), the upper bound (2.64e− 1) is a factor 1.23 larger than the
actual distance, and the lower bound (6.58e− 2) is a factor 3.26 smaller than the actual distance.

7. Summary, related and future work

We have presented lower and upper bounds for the distance between Jordan and Kronecker structures in a
closure hierarchy of an orbit or bundle stratification. This quantitative information is of importance in applica-
tions, e.g., distance to more degenerate systems (uncontrollability). Our upper bounds are based on staircase
regularizing perturbations. The lower bounds are of Eckart–Young type and are derived from a matrix represen-
tation of the tangent space of the orbit of a matrix or a matrix pencil. We have also presented computational
results that illustrate the use and reliability of the bounds. For the examples considered, the ratios between the
upper and lower bounds are very sharp (less than ten).

Currently, qualitative strata information is provided by our StratiGraph tool [17, 25], which is built on the
mathematical theory of stratification of orbits and bundles of matrices and matrix pencils that was recently
completed (see [15]). Earlier works on the problem of stratification for matrices and matrix pencils include
those of Arnold (1971) [2], Abeasis and del Fra (1985) [1], Pokrzywa (1986) [39], De Hoyos (1990) [9], Bongartz
(1990)[7], Elmroth (1995) [16], and Boley (1998) [6]. Stratifications of various control applications are considered
in [42, 20, 23, 24].

In our future work, we will extend the functionalities of StratiGraph in several directions. For example,
interaction with Matlab is underway. In this way, we will extend StratiGraph with quantitative information on
distances between different structures in a Jordan or Kronecker closure hierarchy.

We will also investigate other techniques that can be used for obtaining distance information. Some examples
can be found in the papers of Boley (1990) [5], Elmroth and Kågström (1996) [18], Byers, He, and Mehrmann
(1998) [8], and Gracia and De Hoyos (1999) [22, 21].

This work was partially supported by the Swedish Research Council for Engineering Sciences under contract
TFR 222-97-112.
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