
LAPACK Working Note #216:

A novel parallel QR algorithm

for hybrid distributed memory HPC systems∗

R. Granat1 Bo K̊agström1 D. Kressner2

Abstract

A novel variant of the parallel QR algorithm for solving dense nonsymmetric eigenvalue
problems on hybrid distributed high performance computing (HPC) systems is presented.
For this purpose, we introduce the concept of multi-window bulge chain chasing and
parallelize aggressive early deflation. The multi-window approach ensures that most com-
putations when chasing chains of bulges are performed in level 3 BLAS operations, while
the aim of aggressive early deflation is to speed up the convergence of the QR algorithm.
Mixed MPI-OpenMP coding techniques are utilized for porting the codes to distributed
memory platforms with multithreaded nodes, such as multicore processors. Numerous
numerical experiments confirm the superior performance of our parallel QR algorithm in
comparison with the existing ScaLAPACK code, leading to an implementation that is one
to two orders of magnitude faster for sufficiently large problems, including a number of
examples from applications.

Keywords: Eigenvalue problem, nonsymmetric QR algorithm, multishift, bulge chasing,
parallel computations, level 3 performance, aggressive early deflation, parallel algorithms,
hybrid distributed memory systems.

1 Introduction

Computing the eigenvalues of a matrix A ∈ R
n×n is at the very heart of numerical linear

algebra, with applications coming from a broad range of science and engineering. With the
increased complexity of mathematical models and availability of HPC systems, there is a
growing demand to solve large-scale eigenvalue problems.

Iterative eigensolvers, such as Krylov subspace or Jacobi-Davidson methods [8], have been
developed with the aim of addressing such large-scale problems. However, in some applications
it might be difficult or even impossible to make use of iterative methods that presume the
availability of direct LU factorizations or good preconditioners of A− σI for several different

1Department of Computing Science and HPC2N, Ume̊a University, SE-901 87 Ume̊a, Sweden.
{granat,bokg}@cs.umu.se

2Seminar for Applied Mathematics, ETH Zurich, Switzerland. kressner@math.ethz.ch
∗Technical Report UMINF-09.06, Department of Computing Science, Ume̊a University, Sweden, and Re-

search Report 2009-15, Seminar for applied mathematics (SAM), ETH Zurich, Switzerland. This research was
conducted using the resources of the High Performance Computing Center North (HPC2N). Financial support
has been provided by the Swedish Research Council under grant VR 70625701 and by the Swedish Foundation

for Strategic Research under grant A3 02:128.

1

1 core 4 cores
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

226 secs. 112 secs.

2762 secs.

9219 secs.

100 cores 100 cores
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

575 secs.

16755 secs.

(a) (b)

Figure 1: Performance of existing ScaLAPACK implementation PDLAHQR (red) vs. newly
proposed implementation PDHSEQR (blue) on Intel Xeon quadcore nodes when computing the
Schur form of a dense random matrix reduced to Hessenberg form. (a) Execution times for
a 4000 × 4000 matrix using 1 or all 4 cores of a single node. (b) Execution times for a
16 000 × 16 000 matrix using all 100 cores of 25 nodes.

shifts σ. To use iterative methods effectively, one typically requires some knowledge on the
locations of eigenvalues of interest. Moreover, there is always the (slight) danger that an
eigenvalue is missed, which may have perilous consequences in, e.g., a stability analysis.
Finally, by their nature, standard iterative methods are ineffective in situations where a
large number of eigenvalues and eigenvectors needs to be computed, as in linear-quadratic
optimal control [48] or density functional theory [50]. In contrast, eigensolvers based on
similarity transformations, such as the QR algorithm, require no additional knowledge about
the problem at hand and, since all eigenvalues are computed anyway, there is no danger to
miss an eigenvalue. We conclude that an urgent need for highly performant parallel variants
of direct eigensolvers can be expected to persist also in the future.

Often motivated by applications in computational chemistry, particular attention has been
paid to parallel direct eigensolvers for symmetric matrices, see [4, 13, 62] for some recent work.
Less emphasis has been put on the more general dense nonsymmetric case, which is the focus
of this paper. The current state-of-the-art parallel implementation of the QR algorithm for
solving nonsymmetric eigenvalue problems is the ScaLAPACK [56] routine PDLAHQR [36]. In
this paper, we propose a significantly improved parallel variant of the QR algorithm. Figure 1
provides a representative sample of the speedups that can be expected when using our new
implementation PDHSEQR. We refer to Section 4 for more details on the experimental setup.

1.1 Review of earlier work

Parallelizing the nonsymmetric QR algorithm is a non-trivial task. Many of the early attempts
achieved neither an even workload nor sufficient scalability, see, e.g., [15, 25, 27, 28, 57].

2

A major obstacle was the sequential nature of the once-popular double implicit shift QR
algorithm, which was considered for parallelization at that time.

More recent attempts to solve the scalability problems were presented in [35, 55, 58,
59, 60, 63], especially when focus turned to small-bulge multishift variants with (Cartesian)
two-dimensional (2D) block cyclic data layout [36]. However, as will be discussed below, a
remaining problem so far has been a seemingly non-tractable trade-off problem between local
node speed and global scalability. We refer to the introduction of [36] for a more detailed
history of the parallel QR algorithm until the end of the last century.

State-of-the-art serial implementation

Compared to Francis’ original description [26, 45], two major ingredients contribute to the
high efficiency of the current LAPACK [3] implementation of the QR algorithm [20].

1. Instead of only a single bulge, containing two (or slightly more) shifts [6, 65], a chain
of several tightly coupled bulges, each containing two shifts, is chased in the course
of one multishift QR iteration. Independently proposed in [17, 46], this idea allows
to perform most of the computational work in terms of matrix-matrix multiplications
and to benefit from highly efficient level 3 BLAS [24, 40]. It is worth noting that the
experiments in [17] demonstrate quite remarkable parallel speedup on an SMP system
(Origin2000), by simply linking the serial implementation of the QR algorithm with
multithreaded BLAS.

2. Introduced by Braman, Byers, and Mathias [18], aggressive early deflation (AED) al-
lows to detect converged eigenvalues much earlier than conventional deflation strategies,
such as the classical subdiagonal criterion. In effect, the entire QR algorithm requires
significantly less iterations, and henceforth less operations, until completion. A theo-
retical analysis of AED can be found in [44]. Braman [16] has investigated how this
deflation strategy could be extended to force deflations in the middle of the matrix,
possibly leading to a divide-and-conquer QR algorithm.

State-of-the-art parallel implementation

PDLAHQR, the current parallel multishift QR algorithm implemented in ScaLAPACK, was
developed by Henry, Watkins, and Dongarra [36]. It is – to the best of our knowledge –
the only publicly available parallel implementation of the nonsymmetric QR algorithm. The
main idea of this algorithm is to chase a chain of loosely coupled bulges, each containing two
shifts, during a QR iteration. Good scaling properties are achieved by pipelining the 3 × 3
Householder reflectors, generated in the course of the QR iteration, throughout the processor
mesh for updates. Unfortunately, because of the small size of the Householder reflectors, the
innermost computational kernel DLAREF operates with level 1 speed [36], which causes the
uniprocessor speed to be far below practical peak performance.

1.2 Motivation and organization of this work

Despite its good scalability, the current ScaLAPACK implementation of the QR algorithm
often represents a severe time-consuming bottleneck in applications that involve the parallel
computation of the Schur decomposition of a matrix. We have observed this phenomenon in

3

our work on parallel Schur-based solvers for linear and quadratic matrix equations [32, 31, 34].
So far, the lack of a modern and highly efficient parallel QR algorithm has rendered these
solvers slow and less competitive in comparison with fully iterative methods, such as the
sign-function iteration [19, 54] for solving matrix equations from control-related applications
in parallel [9, 10, 11]. One motivation of this paper is to use our new parallel variant of the
nonsymmetric QR algorithm to increase the attractiveness of Schur-based methods from the
perspective of an improved Total-Time-to-Delivery (TTD).

The rest of this paper is organized as follows. In Section 2, we present our strategy for par-
allelizing the multishift QR algorithm, essentially a careful combination of ideas from [33] and
the state-of-the-art LAPACK/ScaLAPACK implementations. Section 3 provides an overview
of the new routine PDHSEQR and illustrates selected implementation details. In Section 4, we
present a broad range of experimental results confirming the superior performance of PDHSEQR
in comparison with the existing ScaLAPACK implementation. Some conclusions and an out-
line of future work can be found in Section 5. Finally, Appendix A contains supplementary
experimental data for various application oriented examples.

2 Algorithms

Given a matrix A ∈ R
n×n, the goal of the QR algorithm is to compute a Schur decomposi-

tion [29]
ZTAZ = T, (1)

where Z ∈ R
n×n is orthogonal and T ∈ R

n×n is quasi-upper triangular with diagonal blocks
of size 1 × 1 and 2 × 2 corresponding to real eigenvalues and complex conjugate pairs of
eigenvalues, respectively. This is the standard approach to solving non-symmetric eigenvalue
problems, that is, computing eigenvalues and invariant subspaces (or eigenvectors) of a general
dense matrix A. Note that the matrix T is called a real Schur form of A and its diagonal
blocks (eigenvalues) can occur in any order along the diagonal.

Any modern implementation of the QR algorithm starts with a decomposition

QT AQ = H, (2)

where H is in upper Hessenberg form [29] and Q is orthogonal. Efficient parallel algorithms for
this Hessenberg reduction, which can be attained within a finite number of orthogonal trans-
formations, are described in [12, 21] and implemented in the ScaLAPACK routine PDGEHRD.
Note that the term QR algorithm often refers only to the second iterative part, after (2) has
been computed. We will follow this convention throughout the rest of this paper.

Optionally, balancing [29] can be used before applying any orthogonal transformation to
A, with the aim of (i) reducing the norm of A and (ii) isolating eigenvalues that can be
deflated without performing any floating point operations. We have implemented balancing
in PDGEBAL, a straightforward ScaLAPACK implementation of the corresponding LAPACK
routine DGEBAL. In many software packages, balancing is by default turned on. See, however,
recent examples by Watkins [66], for which it is advisable to turn part (i) of balancing off.

To produce an invariant subspace corresponding to a specified set of eigenvalues, the
decomposition (1) needs to be post-processed by reordering the eigenvalues of T [7], for
which a blocked parallel algorithm is described in [33]. Note that eigenvalue reordering is also
an important part of AED.

4

In the following, we describe our approach to parallelizing the QR algorithm, which relies
on experiences from our work on a parallel eigenvalue reordering algorithm [33] mentioned
above. In this context, the key to high node speed and good scalability is the concept
of a parallel multi-window approach, combined with delaying and accumulating orthogonal
transformations [17, 23, 43, 47]. In what follows, we assume that the reader is somewhat
familiar with the basics of the implicit shifted QR algorithm, see, e.g., [42, 67, 68] for an
introduction.

2.1 Data partitioning and process organization

We make use of the following well-known ScaLAPACK [14] conventions of a distributed mem-
ory environment:

• The p = PrPc parallel processes are organized into a Pr × Pc rectangular mesh labeled
from (0, 0) to (Pr − 1, Pc − 1) according to their specific position indices in the mesh.

• All n×n matrices are distributed over the mesh using a 2-dimensional (2D) block cyclic
mapping with block size nb in the row and column dimensions.

Locally, each process in the mesh may also utilize multithreading, see Section 3.2. This can
be seen as adding another level of explicit parallelization by organizing the processes into
a three-dimensional Pr × Pc × Pt mesh, where the third dimension denotes the number of
threads per parallel ScaLAPACK process.

2.2 Parallel bulge chasing

Consider a Hessenberg matrix H and two shifts σ1, σ2, such that either σ1, σ2 ∈ R or σ1 = σ2.
Then the implicit double shift QR algorithm proceeds by computing the first column of the
shift polynomial:

v = (H − σ1I)(H − σ2I)e1 =





X

X

X

0
..
.
0




.

Here, and in the following, X denotes arbitrary, typically nonzero, entries. By an orthogonal
transformation Q0, typically a 3 × 3 Householder reflection, the second and third entries of
v are mapped to zero. Applying the corresponding similarity transformation to H results in
the nonzero pattern

H ← QT
0 HQ0 =





X̂ X̂ X̂ X̂ X̂ X̂ X̂ · · ·

X̂ X̂ X̂ X̂ X̂ X̂ X̂ · · ·

X̂ X̂ X̂ X̂ X̂ X̂ X̂ · · ·

X̂ X̂ X̂ X X X X · · ·

0 0 0 X X X X · · ·

0 0 0 0 X X X · · ·

0 0 0 0 0 X X · · ·

..

.
..
.

..

.
..
.

..

.
..
.

..

.





,

where X̂ denotes elements that have been updated during the transformation. Note that the
Hessenberg structure of H is disturbed by the so called bulge in H(2 : 4, 1 : 3). In a very

5

specific sense [64], the bulge encodes the information contained in the shifts σ1, σ2. By an
appropriate 3× 3 Householder reflection, the entries H(3, 1) and H(4, 1) can be eliminated:

H ← QT
1 HQ1 =





X X̂ X̂ X̂ X X X · · ·

X̂ X̂ X̂ X̂ X̂ X̂ X̂ · · ·

0̂ X̂ X̂ X̂ X̂ X̂ X̂ · · ·

0̂ X̂ X̂ X̂ X̂ X̂ X̂ · · ·

0 X̂ X̂ X̂ X X X · · ·

0 0 0 0 X X X · · ·

0 0 0 0 0 X X · · ·

...
...

...
...

...
...

...





,

which chases the bulge one step down along the subdiagonal. The bulge can be chased further
down by repeating this process in an analogous manner:

H ← QT
2 HQ2 =





X X X̂ X̂ X̂ X X · · ·

X X X̂ X̂ X̂ X X · · ·

0 X̂ X̂ X̂ X̂ X̂ X̂ · · ·

0 0̂ X̂ X̂ X̂ X̂ X̂ · · ·

0 0̂ X̂ X̂ X̂ X̂ X̂ · · ·

0 0 X̂ X̂ X̂ X X · · ·

0 0 0 0 0 X X · · ·

.

..
.
..

.

..
.
..

.

..
.
..

.

..





, H ← QT
3 HQ3 =





X X X X̂ X̂ X̂ X · · ·

X X X X̂ X̂ X̂ X · · ·

0 X X X̂ X̂ X̂ X · · ·

0 0 X̂ X̂ X̂ X̂ X̂ · · ·

0 0 0̂ X̂ X̂ X̂ X̂ · · ·

0 0 0̂ X̂ X̂ X̂ X̂ · · ·

0 0 0 X̂ X̂ X̂ X · · ·

...
...

...
...

...
...

...





. (3)

Early implementations of the QR algorithm continue this process until the bulge vanishes at
the bottom right corner, completing the QR iteration. The key to more efficient implemen-
tations is to note that another bulge, belonging to a possibly different set of shifts σ1, σ2, can
be introduced right away without disturbing the first bulge:

H ← QT
4 HQ4 =





X̂ X̂ X̂ X X X X · · ·

X̂ X̂ X̂ X̂ X̂ X̂ X̂ · · ·

X̂ X̂ X̂ X̂ X̂ X̂ X̂ · · ·

X̂ X̂ X̂ X̂ X̂ X̂ X̂ · · ·

0 0 0 X X X X · · ·

0 0 0 X X X X · · ·

0 0 0 X X X X · · ·

..

.
..
.

..

.
..
.

..

.
..
.

..

.





This creates a chain of 2 tightly coupled bulges. Chasing an entire chain of bulges instead
of a single bulge offers more possibilities for higher node performance and, as demonstrated
below, more concurrency/parallelism in the computations.

In ScaLAPACK’s PDLAHQR, a chain of loosely coupled bulges is used, see Figure 2. The
bulges are placed at least nb steps apart, such that each bulge resides on a different diagonal
block in the block cyclic distribution of the matrix H. Such an approach achieves good
scalability by chasing the bulges in parallel and pipelining the 3× 3 Householder reflections,
generated during the bulge chasing process, before updating off-diagonal blocks. However,
since the updates are performed by calls to DLAREF, which has data reuse similar to level 1
BLAS operations [36, Pg. 285], the performance attained on an individual node is typically
far below its practical peak performance. To avoid this effect, we adapt ideas from [17, 46]
that allowed for level 3 BLAS in serial implementations of the QR algorithm.

Our new implementation PDHSEQR uses several chains of tightly coupled bulges. Each of
the chains is placed on a different diagonal block, see Figure 2. The number of such chains is
determined by the number of available shifts (see Section 2.3), the wanted number of shifts

6

ScaLAPACK’s PDLAHQR New implementation PDHSEQR

Figure 2: Typical location of bulges in PDLAHQR and PDHSEQR. Only parts of the matrix are
displayed. The solid red lines represent block/process borders.

per chain, and the number of processes utilized. Typically, we choose the number of shifts
such that each chain covers at most half of the data layout block. Each chain resides in a
computational window, within which its bulges are chased.

Assuming a situation as in the right part of Figure 2, the intra-block chase of bulge chains
proceeds as follows.

• The computational windows are chosen as the diagonal blocks in which chains reside,
see the yellow regions in Figure 3.

• Within each computational window, the chain is chased from the top left corner to the
bottom right corner. This is performed in parallel and independently. During the chase
we perform only local updates, that is, only these parts of the matrix which belong to a
computational window are updated by the transformations generated during the chase.
Depending on the block size, a well-known delay-and-accumulate technique [17, 23, 33,
47] can be used to ensure that an overwhelming majority of the computational work is
performed by calls to level 3 BLAS during the local chase.

• For each window, the corresponding orthogonal transformations are accumulated into
an orthogonal factor of size at most (nb − 2) × (nb − 2). Each orthogonal factor takes
the form

U =

[
U11 U12

U21 U22

]
=




@

@@
@

@@



 ; (4)

that is, U21 is upper triangular and U12 is lower triangular. These orthogonal factors
are broadcasted to the processes holding off-diagonal parts that need to be updated.
To avoid conflicts in intersecting scopes (see the (1,2) block in Figure 3), broadcasts
are performed in parallel first in the row direction and only afterward in the column

7

Figure 3: An intra-block chase of the bulge chains.

direction. The updates of the off-diagonal blocks are performed by calls to the level
3 BLAS routine DGEMM (GEneral Matrix Multiply and add operation). Optionally,
the structure (4) can be utilized by calls to DGEMM and DTRMM (TRiangular Matrix
Multiply operation). Note that these off-diagonal updates are strictly local and require
no additional communication.

After the described intra-block chase is completed, all chains reside on the bottom right
corners of the diagonal blocks. To move these chains across the process border, the following
inter-block (cross border) chase is performed.

• Each computational window is chosen to accommodate the initial and target locations
of the bulge chain, see Figure 4. In the first round, we only select odd-numbered
windows (counted from the bottom). Only after this round is completed, we select
even-numbered windows. This odd-even cross-border approach is also used in [33]; it
increases concurrency while limiting the amount of extra storage for the overlapping
off-diagonal update regions.

• For each selected window in the current round, we create a copy of the window on
each side of the border. Then we chase the chain to the bottom of the window, just
as in the intra-block chase, and broadcast the corresponding orthogonal factors to the
blocks on both sides of the cross border. Note that there are no intersecting scopes. For
updating parts outside the windows, neighbor processes holding cross-border regions
exchange their data in parallel, and the updates are computed in parallel. Note that
the structure (4) of the orthogonal factors aligns with the cross border, so that again a
combination of DGEMM and DTRMM can optionally be used.

The intra- and inter-block chases of bulge chains illustrated above describe the generic
situation in the middle of a QR iteration. In the beginning and in the end of a QR iteration,
the chains are introduced in the top left corner and chased off the bottom right corner,
respectively. For these parts, the ideas from the intra- and inter-block chases can be extended

8

Odd-numbered windows Even-numbered windows

Figure 4: An inter-block (cross process border) chase of the bulge chains.

in an obvious fashion. However, a careful implementation is needed to handle these parts
properly.

In exceptional cases, when there is a lack of space on the target side of the cross border
for an incoming bulge chain, this chain is delayed and chased across the border as soon as
there is sufficient space. Sometimes it is also necessary to handle windows in chunks of size
min{Pr, Pc} − 1 to avoid conflicts between computational windows with intersecting process
scopes.

In this paper, we follow the typical ScaLAPACK approach of scheduling communication
and computation statically. For preliminary work on the use of dynamic scheduling, which
might be more suitable for distributed memory architectures with multi-core nodes, we refer
to [41, 49].

2.3 Parallel aggressive early deflation

In the classical QR algorithm, convergence is detected by checking the subdiagonal entries of
the Hessenberg matrix H after each iteration. If the (i + 1, i) subdiagonal entry satisfies

|hi+1,i| ≤ umax{|hi,i|, |hi+1,i+1|}, (5)

where u denotes the unit roundoff (double precision u ≈ 1.1 × 10−16), then hi+1,i is set to
zero and H becomes block upper triangular. The eigenvalue problem deflates into two smaller
problems associated with the two diagonal blocks of H, which can be treated separately by
the QR algorithm. Typically, convergence takes place at the bottom right corner and the size
of the lower diagonal block is roughly the number of shifts used in the iteration.

In modern variants of the QR algorithm, the award-winning aggressive early deflation
(AED) strategy [18] is used in addition to (5). It often detects convergence much earlier
than (5) and significantly reduces the average number of shifts needed to deflate one eigen-
value, see also Table 6 in Section 4.5. In the following, we illustrate the basic principle of AED

9

but refer to [18] for algorithmic details. After having performed a QR iteration, a deflation
window size nwin is chosen and the n× n matrix H is partitioned as follows:

H =





n−nwin−1 1 nwin

n−nwin−1 H11 H12 H13

1 H21 H22 H23

nwin 0 H32 H33



. (6)

Then a Schur decomposition of H33 is computed and H is updated by the corresponding
orthogonal similarity transformation. The following diagram illustrates the shape of the
updated matrix H for nwin = 5:

H ←





...
...

...
...

...
...

...

· · · X X X̂ X̂ X̂ X̂ X̂

· · · X X X̂ X̂ X̂ X̂ X̂

· · · 0 X̂ X̂ X̂ X̂ X̂ X̂

· · · 0 X̂ 0 X̂ X̂ X̂ X̂

· · · 0 X̂ 0 0 X̂ X̂ X̂

· · · 0 X̂ 0 0 0 X̂ X̂

· · · 0 X̂ 0 0 0 0 X̂





To keep the description simple, we have assumed that all eigenvalues of H33 are real. The
vector of newly introduced red entries is called spike. If the trailing entry of the spike is
sufficiently small, say not larger than u times the Frobenius norm of H33, it can be safely set
to zero. As a consequence, H becomes block upper triangular with a deflated eigenvalue at the
bottom right corner. Subsequently, the procedure is repeated for the remaining (n−1)×(n−1)
diagonal block. If, however, the trailing spike entry is not sufficiently small then eigenvalue
reordering [29] is used to move the undeflatable eigenvalue to the top left corner of H33. This
brings a different eigenvalue of H33 into the bottom right position. Again, the (updated)
trailing entry of the spike is checked for convergence. The entire procedure is repeated until
all eigenvalues have been checked for deflation. At the end, hopefully k ≥ 1 eigenvalues could
be deflated and H takes the following form (in this example, k = 2 eigenvalues could be
deflated):

H ←





...
...

...
...

...
...

...

· · · X X X̂ X̂ X̂ X̂ X̂

· · · X X X̂ X̂ X̂ X̂ X̂

· · · 0 X̂ X̂ X̂ X̂ X̂ X̂

· · · 0 X̂ 0 X̂ X̂ X̂ X̂

· · · 0 X̂ 0 0 X̂ X̂ X̂

· · · 0 0 0 0 0 X̂ X̂

· · · 0 0 0 0 0 0 X̂





A Householder reflection of the spike combined with Hessenberg reduction of the top left part
of H33 turn H back to Hessenberg form:

H ←





...
...

...
...

...
...

...

· · · X X X̂ X̂ X̂ X X

· · · X X X̂ X̂ X̂ X X

· · · 0 X̂ X̂ X̂ X̂ X̂ X̂

· · · 0 0̂ X̂ X̂ X̂ X̂ X̂

· · · 0 0̂ 0 X̂ X̂ X̂ X̂

· · · 0 0 0 0 0 X X

· · · 0 0 0 0 0 0 X





.

10

Table 1: Suggested size of deflation window.
n ns nwin

75–150 10 15
150–590 see [20]
590–3000 64 96
3000–6000 128 192
6000–12000 256 384
12000–24000 512 768
24000–48000 1024 1536
48000–96000 2048 3072

96000–∞ 4096 6144

The QR algorithm is continued on the top left (n− k)× (n− k) submatrix of H.
The eigenvalues of H33 that could not be deflated are used as shifts in the next multishift

QR iteration. Following the recommendations in [20] we use ns = 2nwin/3 shifts, see also
Table 1. If there are less than ns undeflatable eigenvalues available, the next multishift QR
iteration is skipped and another AED is performed.

To perform AED in parallel, we need to discuss (i) the reduction of H33 to Schur form,
and (ii) the eigenvalue reordering within the AED window.

(i) Table 1 provides suggestions for choosing nwin with respect to the total matrix size n,
extrapolated from Byers’ suggestions [20] for the serial QR algorithm. With a typical
data layout block size between 32 and a few hundreds, the AED window will usually not
reside on a single block (or process). For modest window sizes, a viable and remarkably
efficient option is to simply gather the entire window on one processor and perform the
Schur decomposition serially by calling LAPACK’s DHSEQR. For larger window sizes,
this can be expected to become a bottleneck and a parallel algorithm needs to be used.
We have evaluated an extension of the LAPACK approach [20] to use one level of
recursion and perform the Schur decomposition for AED with the same parallel QR
algorithm described in this paper. (The AED on the lower recursion level is performed
serially.) Unfortunately, we have observed rather poor scalability when using such an
approach, possibly because of the relatively small window sizes. At the moment, we
use a modification of ScaLAPACK’s PDLAHQR (see Section 3.1) to reduce H33 to Schur
form. When profiling our parallel QR algorithm, see Appendix A, it becomes obvious
that the performance of this part of the algorithm has a substantial impact on the
overall execution time. Developing a parallel variant of the QR algorithm that scales
and performs well for the size of matrices occurring in AED is expedient for further
improvements and subject to future research.

(ii) To attain good node performance in the parallel algorithm for the eigenvalue reorder-
ing [33] used in the AED process, it is necessary to reorganize AED such that groups
instead of individual eigenvalues are to be reordered. For this purpose, a small com-
putational window at the bottom right corner of the AED window is chosen, marked
by the yellow region in Figure 5. The size of this window is chosen to be equal to nb

and could be shared by several processes or completely local. Within this smaller win-
dow, the ordinary AED is used to identify deflatable eigenvalues and move undeflatable
eigenvalues (marked blue in Figure 5) to the top left corner of the smaller window.

11

Figure 5: AED within a local computational window of a single process.

The rest of the AED window is updated by the corresponding accumulated orthogonal
transformations. Now the entire group of undeflatable eigenvalues can be moved simul-
taneously by parallel eigenvalue reordering to the top left corner of the AED window.
The whole procedure is repeated by placing the next local computational window at
the bottom right corner of the remaining AED window.

The orthogonal transformations generated in the course of AED are accumulated into a 2D
block-cyclic distributed orthogonal matrix. After AED has been completed, this orthogonal
matrix is used to update parts of the Hessenberg matrix outside of the AED window. The
update is performed by parallel GEMM using PBLAS [53].

We have performed preliminary experiments with a partial AED procedure that still per-
forms a Schur reduction of the AED window but omits the somewhat tricky reordering step.
Our observations revealed that such a partial procedure on the one hand deflates a surpris-
ingly substantial part of the eigenvalues corresponding to the bottom-most part of the spike,
located below the first undeflatable eigenvalue. On the other hand, it is still less effective
than the full AED procedure and leads to an increased number of QR iterations, ultimately
increasing the execution time by roughly up to a factor two. Further research into simple
heuristic but yet effective variants of AED is needed.

3 Implementation details

3.1 Software hierarchy

Figure 6 provides an overview of the software developed to implement the algorithms de-
scribed in Section 2. We used a naming convention that is reminiscent of the current LA-
PACK implementation of the QR algorithm [20]. The entry routine for the new parallel QR
algorithm is the ScaLAPACK-like Fortran routine PDHSEQR, which branches into PDLAQR1

for small (sub)matrices or PDLAQR0 for larger (sub)matrices. We remark that the current
ScaLAPACK routine PDLAHQR (version 1.8.0) does not properly post-process 2 × 2 blocks
that contain two real eigenvalues. Our modification in PDLAQR1 partly consists of fixing this
bug, which would have severely harmed AED. More importantly, PDLAQR1 is equipped with
a novel multithreaded version of the computational kernel DLAREF for applying Householder

12

Entry routine for new parallel QR algorithm.
PDHSEQR

PDLAQR1
Modified version of ScaLAPACK’s
current implementation of the
parallel QR algorithm.

Multithreaded version of Sca−
LAPACK routine for applying
Householder reflectors.

PDLAQR3 PDLAQR5
Aggressive early deflation and
shift computation.

Multishift QR iteration based on
chains of tightly coupled bulges.

Modified version of LAPACK’s
DLAQR5 for local bulge chasing.

DLAREF

PDLAQR0
New parallel QR algorithm.

PBDTRSEN PDGEHRD
Parallel eigenvalue
reordering.

Hessenberg
reduction.

DLAQR6

Figure 6: Routines and dependencies for new implementation of the parallel QR algorithm.
Dependencies on LAPACK routines, auxiliary ScaLAPACK routines, BLAS, BLACS, and
parallel BLAS are not shown.

reflections. The routines PDLAQR3 and PDLAQR5 implement the algorithms described in Sec-
tions 2.3 and 2.2, respectively. Parallel eigenvalue reordering, which is needed for AED, is
implemented in the routine PBDTRSEN described in [33].

3.2 Mixing MPI and OpenMP for multithreaded environments

We provide the possibility for local multithreading on each node in the logical process grid by
mixing our parallel MPI (BLACS [14]) program with OpenMP directives. These directives
are inserted directly in our ScaLAPACK-style code and optionally compiled and executed in
a multithreaded environment with SMP-like and/or multicore nodes.

For example, applications of Householder transformations and accumulated orthogonal
transformations within a computational window are fairly evenly divided inside parallel re-
gions of the code as independent loop iteration operations or disjunct tasks among the available
threads. In the parallel bulge-chase, the level 3 updates of the far-from-diagonal entries in H
and the updates of the orthogonal matrix Z are divided between several threads within each
node in the logical grid by using a new level of blocking for multithreading.

Alternatively, a highly efficient threaded implementation of the BLAS could be utilized.
However, this would not cover all parallelizable operations; moreover, for small-sized matrix
operations an explicit blocking procedure in combination with a carefully tuned OpenMP
parallelization is expected to be more efficient than a threaded BLAS, especially for multicore
environments.

4 Experiments

In this section, we present various experiments on two different parallel platforms to con-
firm the superior performance of our parallel QR algorithm in comparison to the existing
ScaLAPACK implementation.

13

4.1 Hardware and software issues

We utilized the following two computer systems akka and sarek, both hosted by the High
Performance Computing Center North (HPC2N).

akka 64-bit low power Intel Xeon Linux cluster
672 dual socket quadcore L5420 2.5GHz nodes
256KB dedicated L1 cache, 12MB shared L2 cache, 16GB RAM per node
Cisco Infiniband and Gigabit Ethernet, 10 GB/sec bandwidth
OpenMPI 1.2.6 [52], BLACS 1.1patch3, GOTO BLAS r1.26 [30]
LAPACK 3.1.1, ScaLAPACK/PBLAS 1.8.0

sarek 64-bit Opteron Linux Cluster
192 single-core AMD Opteron 2.2GHz dual nodes
64KB L1 cache, 1MB L2 caches, 8GB RAM per node
Myrinet-2000 high performance interconnect, 250 MB/sec bandwidth
MPICH-GM 1.5.2 [52], BLACS 1.1patch3, GOTO BLAS r0.94 [30]
LAPACK 3.1.1, ScaLAPACK/PBLAS 1.7.0

For all our experiments, we used the Fortran 90 compiler pgf90 version 7.2-4 from the Port-
land group compiler suite using the flags -mp -fast -tp k8-64 -fastsse -Mnontemporal

-Msmart -Mlarge arrays -Kieee -Mbounds -Mpreprocess.

4.2 Performance tuning

The 2D block cyclic distribution described in Section 2.1 depends on a number of parameters,
such as the sizes of the individual data layout blocks. Block sizes that are close to optimal for
PDHSEQR have been determined by extensive tests on a few cores and then used throughout
the experiments: for sarek we use the block factor nb = 160, and on akka we use the block
factor nb = 50. This striking difference merely reflects the different characteristics of the
architectures. On akka, the size of the L1 cache local to each core and the shared L2 cache
on each node benefit from operations on relatively small blocks. On sarek, the larger blocks
represent a close to optimal explicit blocking for the memory hierarchy of each individual
processor. Alternatively, auto-tuning may be used to determine good values for nb and other
parameters on a given architecture but this is beyond the scope of this paper, see [69, 70, 71]
for possible approaches. We found ScaLAPACK’s PDLAHQR to be quite insensitive to the block
size, presumably due to the fact that its inner kernel DLAREF is not affected by this choice.
However, a tiny block size, say below 10, causes too much communication and should be
avoided. We use the same block size for PDLAHQR as for PDHSEQR. Since the QR algorithm
operates on square matrices, it is natural to choose a square process grid, i.e., Pr = Pc.

If AED detects a high fraction of eigenvalues in the deflation window to be converged, it
can be beneficial to skip the subsequent QR sweep and perform AED once again on a suitably
adjusted deflation window. An environment parameter NIBBLE is used to tune this behavior:
if the percentage of converged eigenvalues is higher than NIBBLE then the subsequent QR
sweep is skipped. In the serial LAPACK implementation of the QR algorithm, the default
value of NIBBLE is 14. For large random matrices, we observed for such a parameter setting an
average of 10 AEDs performed after each QR sweep, i.e., 90% of the QR sweeps are skipped.
For our parallel algorithm, such a low value of NIBBLE severely harms speed and scalability;
for all tests in this paper, we have set NIBBLE to 50, which turned out to be a well-balanced
choice.

14

4.3 Performance metrics

In the following, we let Tp(PDHSEQR) and Tp(PDLAHQR) denote the measured parallel execution
time in seconds when executing PDHSEQR and PDLAHQR on p cores.

The performance metrics for parallel scalability and speedup are defined as follows.

Sp(PDHSEQR) denotes the ratio Tpmin
(PDHSEQR)/Tp(PDHSEQR), where pmin is a small fixed num-

ber of processors and p varies. Typically, pmin is chosen as the smallest number of cores
for which the allocated data structures fit in the aggregate main memory. Sp(PDLAHQR)
is analogously defined. The metric Sp corresponds to the classical speedup obtained
when increasing the number of cores from pmin to p, while the matrix size n remains
the same. Typically, Sp is also used to investigate the scalability of an implemented
algorithm when increasing p and keeping the data load per node constant.

Sp(PDLAHQR/PDHSEQR) denotes the ratio Tp(PDLAHQR)/Tp(PDHSEQR) and corresponds to the
speedup obtained when replacing PDLAHQR by PDHSEQR on p cores.

Both metrics are important to gain insights into the performance of the new parallel QR
algorithm. In practice, of course, it is Sp(PDLAHQR/PDHSEQR) what matters. It has been
several times pointed out in the literature that the classical speedup definition based on
Sp(PDHSEQR) or Sp(PDLAHQR) alone tends to unduly reward parallel algorithms with low node
speed. In a general setting, two-sided bulge-chasing transformation algorithms executed in
distributed memory environments are expected to have a classical parallel speedup of about
O(

√
p/pmin) [22].

4.4 Accuracy and reliability

All experiments are conducted in double precision arithmetic (εmach ≈ 2.2 × 10−16), and we
compute the following accuracy measures after the Schur reduction is completed:

• Relative residual norm: Rr =
‖ZT AZ − T‖F

‖A‖F

• Relative orthogonality check: Ro =
max(‖ZT Z − In‖F , ‖ZZT − In‖F)

εmachn

Here, ‖ · ‖F denotes the Frobenius norm of a matrix and A denotes the original unreduced
matrix before reduction to Hessenberg form. The orthogonal factor Z contains both the
transformations to Hessenberg form and the transformations from Hessenberg to Schur form.
Since all variants of the QR algorithm described in this paper are numerically backward stable,
we expect Rr ≈ 10−16 for small matrices, with a modest increase as n increases [37]. In fact,
on akka both PDLAHQR and PDHSEQR usually return with Rr ≈ 10−14 also for larger matrices.
For the orthogonality check, both routines always return a value of Ro not significantly larger
than 1.

To check whether the returned matrix T is indeed in real Schur form we traverse the
subdiagonal of T and signal an error if there are two consecutive nonzero subdiagonal elements.
For none of the experiments reported in this paper, such an error was signaled.

15

4.5 Performance for random problems

Two classes of random problems are considered:

fullrand A full matrix A with pseudo-random entries from a uniform distribution in [0, 1].
The matrix H is obtained by reducing A to Hessenberg form.

hessrand A Hessenberg matrix H with pseudo-random nonzero entries from a uniform dis-
tribution in [0, 1].

The matrices generated by fullrand usually have well-conditioned eigenvalues, yielding a
convergence pattern of the QR algorithm that is predictable and somewhat typical for “well-
behaved” matrices. In contrast, the eigenvalues of the matrices generated by hessrand are
notoriously ill-conditioned, see [61] for a theoretical explanation of the closely related phe-
nomenon of ill-conditioned random triangular matrices. In effect, the convergence of the QR
algorithm becomes rather poor, see also Table 6; we refer to the discussion in [42] for more
details.

Table 2: Tp(PDLAHQR) and Tp(PDHSEQR) on akka for matrix class fullrand.
n =

p = Pr × Pc × Pt 4 000 8 000 16 000 32 000

1× 1× 1 9332 226 79943 1478

2× 2× 1 2761 112 20161 640
4× 4× 1 1174 69 8582 265 67779 1644
6× 6× 1 697 60 5192 194 32920 1007 ∞ 6218
8× 8× 1 418 57 3671 152 20856 595 ∞ 4164

10× 10× 1 368 63 2589 165 16755 516 ∞ 3046

1× 1× 4 2592 173 18324 913
2× 2× 4 1617 126 11032 591
3× 3× 4 834 102 5692 408 38834 2327
4× 4× 4 612 76 3986 277 25823 1332 ∞ 9250
5× 5× 4 474 70 2971 203 18934 1061 ∞ 6568

Table 3: Tp(PDLAHQR) and Tp(PDHSEQR) on akka for matrix class hessrand.
n =

p = Pr × Pc × Pt 4 000 8 000 16 000 32 000

1× 1× 1 7529 577 61119 5303

2× 2× 1 2760 271 18844 2281
4× 4× 1 1789 138 11373 838 77081 2932
6× 6× 1 1066 116 6677 561 58366 1593 ∞ 2234
8× 8× 1 755 92 5058 458 37976 996 ∞ 1714

10× 10× 1 588 106 4172 401 29219 888 ∞ 1599

1× 1× 4 2136 453 17726 3535
2× 2× 4 1570 284 9834 1953 70792 4887
3× 3× 4 932 218 5956 1367 40317 3669
4× 4× 4 687 165 4499 1040 26573 2094 ∞ 2284
5× 5× 4 593 123 3319 623 23718 1946 ∞ 2031

Tables 2–5 provide the execution times of PDLAHQR and PDHSEQR for both random problem
classes. Notice that for Pt > 1, PDLAHQR is linked with our threaded version of DLAREF. To

16

avoid excessive use of computational resources, we had to set a limit of approximately 1500
cpu-hours for the accumulated time used by all p cores on an individual problem. Runs which
were found to exceed this limit are marked with ∞ in the tables. For example, the ∞-value
in Table 4 for n = 24000 and a 6 × 6× 2 mesh means that the 6× 6 × 2 mesh did not solve
the problem within the cpu-hours limit, while the 4×4×2 and 8×8×2 meshes did solve the
same problem within the cpu-hours limit. An empty space means that there was insufficient
memory available to allocate among the nodes to hold the data structures of the test program.

For the convenience of the reader, the explicitly computed values of the performance
metrics Sp can be found in Section A.1 of the appendix. In all examples, the new PDHSEQR is
faster than PDLAHQR. The speedup Sp(PDLAHQR/PDHSEQR) ranges from a few times up to almost
fifty times, depending on the problem class, the size of the corresponding Hessenberg matrix
and the number of utilized processors. The difference in performance between fullrand and
hessrand is largely due to differences in the total number of applied shifts until convergence.
In Table 6 below, we provide this number for a selected set of examples.

Table 4: Tp(PDLAHQR) and Tp(PDHSEQR) on sarek for fullrand.
n =

p = Pr × Pc × Pt 6 000 12 000 24 000 48 000

1× 1× 1 60600 1201

2× 2× 1 14691 491 138671 3029
4× 4× 1 4019 256 33877 1165 338393 6783
6× 6× 1 2025 203 16345 675 144576 3675 ∞ 27629
8× 8× 1 1213 184 11097 608 ∞ 2665 ∞ 17618

1× 1× 2 27554 824
2× 2× 2 7537 371 66607 2019
4× 4× 2 2221 201 21935 819 141716 5020
6× 6× 2 1119 164 13627 547 ∞ 2859 ∞ 16108
8× 8× 2 771 149 5877 490 41530 2059 ∞ 11598

Table 5: Tp(PDLAHQR) and Tp(PDHSEQR) on sarek for hessrand.
n =

p = Pr × Pc × Pt 6 000 12 000 24 000 48 000

1× 1× 1 40992 4183

2× 2× 1 14834 1538 135879 4716
4× 4× 1 5313 773 40751 1834 ∞ 2984
6× 6× 1 3386 551 24866 953 ∞ 1820 ∞ 9812
8× 8× 1 2326 466 17513 829 ∞ 1460 ∞ 6934

1× 1× 2 19870 2546
2× 2× 2 7906 1245 65868 3679
4× 4× 2 2948 616 20917 1349 ∞ 1876
6× 6× 2 1913 466 12769 908 ∞ 1260 ∞ 5850
8× 8× 2 1365 375 9449 636 ∞ 981 ∞ 4412

The speedups Sp(PDLAHQR) and Sp(PDHSEQR) are typically found in the range of 2–3 when
the number of processors is increased from p to 4p while the matrix size n remains the same.
It is evident that PDLAHQR often scales significantly better. We think that this is to a large
extent – in two different ways – an effect of the low node speed of PDLAHQR. On the one

17

n=4000 n=8000 n=16000 n=32000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Balancing
Hessenberg red.
QR: AED Schur red.
QR: AED reordering
QR: AED return to Hess.
QR: Sweep − updates
QR: Sweep − local chase

Figure 7: Profiles of Tp for the complete Schur reduction on akka; the memory load corre-
sponds to a 4 000 × 4 000 submatrix per core.

hand, a high execution time on one core makes it disproportionately easy for PDLAHQR to
scale well. On the other hand, as explained in Section 2.3, the AED in PDHSEQR is based on
PDLAHQR. Since the AED window is usually rather small, PDHSEQR does not benefit from the
good scalability of PDLAHQR as much as it suffers from its low node speed.

To gain more insight into the amount of time spent for AED, Figure 7 provides sample
profiles of the execution time for reducing 4 000 × 4 000 to 32 000 × 32 000 dense random
matrices (fullrand), including balancing and Hessenberg reduction, having a fixed memory
load on each core corresponding to a 4 000 × 4 000 matrix. The QR algorithm occupies
about 60–70% of the time. As much as 13–28% is spent for AED, mostly for reducing the
AED window to Schur form. Note that the portion of time spent on AED increases as n
increases; this is due to the increased effectiveness of AED at deflating eigenvalues as the size
of the deflation window grows along with n. 1 This confirms the findings of Section 2.3 that
significant improvements of our new algorithm for massively parallel computations can only
be made if the call to ScaLAPACK’s PDLAHQR within AED is addressed.

Table 6: Average number of applied shifts to let one eigenvalue converge for PDLAHQR and
PDHSEQR. The figures are identical for akka and sarek.

n = 4 000 6 000 8 000 12 000 16 000 24 000

fullrand

3.93 0.75 3.82 0.48 4.23 0.55 5.32 0.50 4.46 0.46 8.16 0.46
hessrand

4.74 1.87 4.49 3.92 4.74 2.21 5.92 4.27 7.77 1.14 N/A 0.00

1A dynamic value of NIBBLE could possibly be used to keep the balance between the number of performed
AEDs and QR sweeps constant.

18

We note that our threaded version of DLAREF already gives a fine boost to the node per-
formance of PDLAHQR, which is mainly due to loop parallelization on the nodes. For example,
by adding an extra thread on the dual nodes of the Opteron-based platform, we sometimes
experience a nearly linear speedup for PDLAHQR (e.g, going from 2 × 2 × 1 to 2 × 2 × 2 pro-
cessors for n = 12000 in Table 5). By adding three extra threads on each allocated processor
of the quadcore Xeon-based platform, we obtain a speedup of up to about 3 (e.g., going from
4× 4× 1 to 4× 4× 4 cores for n = 16000 in Table 2).

The figures clearly reveal that on akka it is generally more beneficial for PDHSEQR to
allocate one MPI process per core, compared to allocating one MPI process on each node and
utilizing multithreading. On the Opteron (NUMA) platform sarek, there are more benefits
from multithreading but the best choice is still to use only one MPI process per processor.

4.6 Performance without aggressive early deflation

PDHSEQR benefits from two separate ingredients, several tightly coupled bulge chains and
AED. Of course, both are interwoven. The bulge chains facilitate the undeflatable eigenvalues
from AED and, on the other hand, AED works best if a large number of shifts are chased
simultaneously. It is still of interest to measure the effect when AED is turned off. For this
purpose, we have run experiments on akka with 4000× 4000 matrices of the class fullrand.
For example, when using 2×2×1 cores, PDLAHQR consumes 2 761 seconds, PDHSEQR consumes
112 seconds, and PDHSEQR without AED consumes 520 seconds. This demonstrates that both
improvements, bulge chains and AED, have a significant impact.

4.7 Performance for benchmark examples

We have performed experiments on a number of benchmark examples from [18, 51] and the
NEP collection [5]. The findings are similar as for random matrices: PDHSEQR outperforms
PDLAHQR significantly. More details and can be found in Section A.2. of the appendix.

4.8 A 100.000× 100.000 dense eigenvalue problem

To obtain an impression how our parallel QR algorithm as implemented in PDHSEQR performs
on very large dense eigenvalue problems, we have computed the Schur form of a 100.000 ×
100.000 random matrix (fullrand).

The experiment was conducted using 1024 cores of akka organized as a 32×32 logical pro-
cess grid. The whole process took slightly less than 9 hours, where balancing was performed
in about 20 minutes, the Hessenberg form was computed in 1 hour and 7 minutes, while the
QR algorithm took 7 hours, 3 minutes and 31 seconds. To validate the output we checked the
residual, which took about another 23 minutes. Within the QR algorithm, 34 QR iterations
were performed but in 22 of these iterations the QR sweep was skipped because AED discov-
ered that more than half of the eigenvalues within the deflation window had converged. In
consequence, 80% of the total execution time of the QR algorithm was spent in the parallel
AED procedure. On average 0.44 shifts per deflated eigenvalue were needed and the size of
the deflation window was 6145 × 6145 for most iterations.

In the following, we argue that our parallel algorithm is still scalable for n = 100.000. Since
the QR algorithm in general is an O(n3) operation (except for situations where no sweeps are
performed and the complexity approaches O(n2), see also Section A.2) and by neglecting the
complexity constant we estimate the time for one flop from the 4000× 4000 uni-core data in

19

Table 2, where the memory load is about the same as for the 100.000 × 100.000 problem, as
ta = 226/40003 ≈ 3.53 × 10−9. This gives an estimate for Tp, p = 1 as approximately 981
hours for a 100.000 × 100.000 fullrand problem. Assuming Sp(PDHSEQR) is in line with the
assumptions in Section 4.3, i.e.,

√
1024 = 32, gives a value of Tp, p = 1024 as roughly 30 hours

and 40 minutes. The remaining factor can be explained by that the complexity constant for
n = 100, 000 is probably close to one half of that for n = 4, 000 (see the converging values of
the number of applied shifts for fullrand in Table 6) and the real value of Sp(PDHSEQR) is
likely higher than 32. Also, in the light of the time ratio of the Hessenberg reduction and the
QR algorithm, this 100.000× 100.000 problem is consistent with the tendency of an n-driven
increased ratio of the QR algorithm as displayed in Figure 7. To conclude, under the given
assumptions our novel parallel QR algorithms is indeed scalable for such large-scale problems
as 100.000 × 100.000 matrices.

5 Conclusions and future work

A significantly improved parallel QR algorithm has been presented, incorporating modern
techniques such as multiple bulge chain chasing and aggressive early deflation (AED). The
resulting implementation outperforms the current ScaLAPACK implementation PDLAHQR sig-
nificantly and uniformly for all problems under consideration. Still, there is room for further
improvement. At the moment, the Schur reduction within AED is based on a multithreaded
PDLAHQR and represents a bottleneck already for a modest number of processes. Designing a
tailored version of PDLAHQR for AED can be expected to diminish the impact of this bottleneck
to a certain extent. However, the relatively small size of the AED window will always affect
scalability. Simply increasing the size of this window would yield better scalability but also
result in more computational work. A more fundamental algorithmic idea might be needed
to completely remove this bottleneck.

In the work on this paper, we have benefited from ongoing work on parallelizing the QZ
algorithm [1, 2, 39] for generalized eigenvalue problems. Note that, in contrast to the QR
algorithm, there is no parallel implementation of the QZ algorithm publicly available. We
expect that the insights from this paper will cross-fertilize this ongoing work.

We were surprised by the large performance impact of using multithreaded computational
kernels in the ScaLAPACK routine PDLAHQR. This encourages further investigation of eigen-
value solvers on multicore processors.

The software developed in this paper is available on request from the authors. We welcome
comments and suggestions from users.

Acknowledgments

The authors are grateful to Björn Adlerborn and Lars Karlsson for helpful discussions on the
subject and for constructive comments on earlier versions of this paper, and to Åke Sandgren
for valuable support in cleaning up and porting the Fortran codes to the various platforms
and compilers at HPC2N [38].

20

References

[1] B. Adlerborn, K. Dackland, and B. Kågström. Parallel and blocked algorithms for reduction
of a regular matrix pair to Hessenberg-triangular and generalized Schur forms. In J. Fagerholm
et al., editor, Applied Parallel Computing PARA 2002, volume 2367 of Lecture Notes in Computer
Science, pages 319–328. Springer-Verlag, 2002.

[2] B. Adlerborn, D. Kressner, and B. Kågström. Parallel variants of the multishift QZ algorithm
with advanced deflation techniques. In B. Kågström et al., editor, Applied Parallel Computing -
State of the Art in Scientific Computing (PARA’06), volume 4699, pages 117–126. Lecture Notes
in Computer Science, Springer, 2007.

[3] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. W. Demmel, J. J. Dongarra, J. Du Croz,
A. Greenbaum, S. Hammarling, A. McKenney, and D. C. Sorensen. LAPACK Users’ Guide.
SIAM, Philadelphia, PA, third edition, 1999.

[4] D. Antonelli and C. Voemel. LAPACK working note 168: PDSYEVR. ScaLAPACK’s parallel
MRRR algorithm for the symmetric eigenvalue problem. Technical Report UCB/CSD-05-1399,
EECS Department, University of California, Berkeley, 2005.

[5] Z. Bai, D. Day, J. W. Demmel, and J. J. Dongarra. A test matrix collection for non-Hermitian
eigenvalue problems (release 1.0). Technical Report CS-97-355, Department of Computer Science,
University of Tennessee, Knoxville, TN, USA, March 1997. Also available online from http:

//math.nist.gov/MatrixMarket.

[6] Z. Bai and J. W. Demmel. On a block implementation of the Hessenberg multishift QR iterations.
Internat. J. High Speed Comput., 1:97–112, 1989.

[7] Z. Bai and J. W. Demmel. On swapping diagonal blocks in real Schur form. Linear Algebra Appl.,
186:73–95, 1993.

[8] Z. Bai, J. W. Demmel, J. J. Dongarra, A. Ruhe, and H. van der Vorst, editors. Templates
for the Solution of Algebraic Eigenvalue Problems. Software, Environments, and Tools. SIAM,
Philadelphia, PA, 2000.

[9] P. Benner, R. Byers, E. S. Quintana-Ort́ı, and G. Quintana-Ort́ı. Solving algebraic Riccati
equations on parallel computers using Newton’s method with exact line search. Parallel Comput.,
26(10):1345–1368, 2000.

[10] P. Benner and E. S. Quintana-Ort́ı. Solving stable generalized Lyapunov equations with the
matrix sign function. Numer. Algorithms, 20(1):75–100, 1999.

[11] P. Benner, E. S. Quintana-Ort́ı, and G. Quintana-Ort́ı. Solving linear and quadratic matrix equa-
tions on distributed memory parallel computers. In IEEE International Symposium on Computer
Aided Control System Design, pages 64–69, 1999.

[12] M. W. Berry, J. J. Dongarra, and Y. Kim. A parallel algorithm for the reduction of a nonsymmetric
matrix to block upper-Hessenberg form. Parallel Comput., 21(8):1189–1211, 1995.

[13] P. Bientinesi, I. S. Dhillon, and R. A. van de Geijn. A parallel eigensolver for dense symmetric
matrices based on multiple relatively robust representations. SIAM J. Sci. Comput., 27(1):43–66,
2005.

[14] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. W. Demmel, I. Dhillon, J. J. Dongarra,
S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C. Whaley. ScaLAPACK
Users’ Guide. SIAM, Philadelphia, PA, 1997.

[15] D. Boley and R. Maier. A parallel QR algorithm for the nonsymmetric eigenvalue problem. Tech-
nical report TR-88-12, Department of Computer Science, University of Minnesota at Minneapolis,
1988.

21

[16] K. Braman. Middle deflations in the QR algorithm. Talk at Householder Symposium XVII, June
2008.

[17] K. Braman, R. Byers, and R. Mathias. The multishift QR algorithm, I: Maintaining well-focused
shifts and level 3 performance. SIAM J. Matrix Anal. Appl., 23(4):929–947, 2002.

[18] K. Braman, R. Byers, and R. Mathias. The multishift QR algorithm, II: Aggressive early deflation.
SIAM J. Matrix Anal. Appl., 23(4):948–973, 2002.

[19] R. Byers. Solving the algebraic Riccati equation with the matrix sign function. Linear Algebra
Appl., 85:267–279, 1987.

[20] R. Byers. LAPACK 3.1 xHSEQR: Tuning and Implementation Notes on the Small Bulge Multi-
shift QR Algorithm with Aggressive Early Deflation, 2007. LAPACK Working Note 187.

[21] J. Choi, J. J. Dongarra, and D. W. Walker. The design of a parallel dense linear algebra software
library: reduction to Hessenberg, tridiagonal, and bidiagonal form. Numer. Algorithms, 10(3-
4):379–399, 1995.

[22] K. Dackland. Parallel reduction of a regular matrix pair to block-Hessenberg-triangular form –
algorithm design and performance modelling. Report UMINF-98.09, Department of Computing
Science, Ume̊a University, Sweden, 1998.

[23] K. Dackland and B. Kågström. Blocked algorithms and software for reduction of a regular matrix
pair to generalized Schur form. ACM Trans. Math. Software, 25(4):425–454, 1999.

[24] J. J. Dongarra, J. Du Croz, I. S. Duff, and S. Hammarling. A set of level 3 basic linear algebra
subprograms. ACM Trans. Math. Software, 16:1–17, 1990.

[25] P. J. Eberlein. On the Schur decomposition of a matrix for parallel computation. IEEE Trans.
Comput., C-36:167–174, 1987.

[26] J. G. F. Francis. The QR transformation, Parts I and II. Computer Journal, 4:265–271, 332–345,
1961, 1962.

[27] G. A. Geist and G. J. Davis. Finding eigenvalues and eigenvectors of unsymmetric matrices using
a distributed memory multiprocessor. Parallel Comput., 13:199–209, 1990.

[28] G. A. Geist, R. C. Ward, G. J. Davis, and R. E. Funderlic. Finding eigenvalues and eigenvectors
of unsymmetric matrices using a hypercube multiprocessor. In G. Fox, editor, Proceedings of the
Third Conference on Hypercube Concurrent Computers and Applications, pages 1577–1582, 1988.

[29] G. H. Golub and C. F. Van Loan. Matrix Computations. Johns Hopkins University Press,
Baltimore, MD, third edition, 1996.

[30] GOTO-BLAS – high-performance BLAS by Kazushige Goto. See http://www.cs.utexas.edu/

users/flame/goto/.

[31] R. Granat and B. Kågström. Algorithm XXX: The SCASY software library – parallel solvers for
Sylvester-type matrix equations with applications in condition estimation, Part II. 2009. ACM
Transactions on Mathematical Software (submitted July 2007, revised January 2009).

[32] R. Granat and B. Kågström. Parallel solvers for Sylvester-type matrix equations with applications
in condition estimation, Part i: Theory and algorithms. 2009. ACM Transactions on Mathematical
Software (submitted July 2007, revised January 2009).

[33] R. Granat, B. Kågström, and D. Kressner. Parallel eigenvalue reordering in real Schur forms.
Concurrency and Computation: Practice and Experience, 2008. To appear.

[34] R. Granat, B. Kågström, and D. Kressner. A parallel Schur method for solving continuous-time
algebraic Riccati equations. 2008. Accepted for IEEE International Symposium on Computer-
Aided Control Systems Design, San Antonio, Texas, 2008.

22

[35] G. Henry and R. Van de Geijn. Parallelizing the QR algorithm for the unsymmetric algebraic
eigenvalue problem: Myths and reality. SIAM J. Sci. Comput., 17:870–883, 1997.

[36] G. Henry, D. S. Watkins, and J. J. Dongarra. A parallel implementation of the nonsymmetric
QR algorithm for distributed memory architectures. SIAM J. Sci. Comput., 24(1):284–311, 2002.

[37] N. J. Higham. Accuracy and Stability of Numerical Algorithms. SIAM, Philadelphia, PA, second
edition, 2002.

[38] HPC2N - High Performance Computing Center North. See http://www.hpc2n.umu.se.

[39] B. Kågström and D. Kressner. Multishift variants of the QZ algorithm with aggressive early
deflation. SIAM J. Matrix Anal. Appl., 29(1):199–227, 2006.

[40] B. Kågström, P. Ling, and C. Van Loan. GEMM-based level 3 BLAS: High-performance model im-
plementations and performance evaluation benchmark. ACM Trans. Math. Software, 24(3):268–
302, 1998.

[41] L. Karlsson and B. Kågström. A Framework for Dynamic Node Scheduling of Two-Sided Blocked
Matrix Computations. In State of the Art in Scientific and Parallel Computing, PARA 2008,
Lecture Notes in Computer Science (to appear). Springer, 2009.

[42] D. Kressner. Numerical Methods for General and Structured Eigenvalue Problems, volume 46 of
Lecture Notes in Computational Science and Engineering. Springer, Heidelberg, 2005.

[43] D. Kressner. Block algorithms for reordering standard and generalized Schur forms. ACM TOMS,
32(4):521–532, December 2006.

[44] D. Kressner. The effect of aggressive early deflation on the convergence of the QR algorithm.
SIAM J. Matrix Anal. Appl., 30(2):805–821, 2008.

[45] V. N. Kublanovskaya. On some algorithms for the solution of the complete eigenvalue problem.
USSR Comp. Math Phys., 3:637–657, 1961.

[46] B. Lang. Effiziente Orthogonaltransformationen bei der Eigen- und Singulärwertzerlegung. Ha-
bilitationsschrift, 1997.

[47] B. Lang. Using level 3 BLAS in rotation-based algorithms. SIAM J. Sci. Comput., 19(2):626–634,
1998.

[48] A. J. Laub. A Schur method for solving algebraic Riccati equations. IEEE Trans. Automat.
Control, AC-24:913–921, 1979.

[49] H. Ltaief, J. Kurzak, and J. Dongarra. LAPACK working note 214: Scheduling two-sided trans-
formations using algorithms-by-tiles on multicore architectures. Technical report, Department of
Electrical Engineering and Computer Science, University of Tennessee, Knoxville, 2009.

[50] R. M. Martin. Electronic Structure: Basic Theory and Practical Methods. Cambridge University
Press, 2004.

[51] Matrix Market - A visual repository of test data for use in comparative studies of algorithms for
numerical linear algebra. See http://math.nist.gov/MatrixMarket/.

[52] MPI - Message Passing Interface. See http://www-unix.mcs.anl.gov/mpi/.

[53] PBLAS - Parallel Basic Linear Algebra Subprograms. See http://www.netlib.org/scalapack/.

[54] J. D. Roberts. Linear model reduction and solution of the algebraic Riccati equation by use of
the sign function. Internat. J. Control, 32(4):677–687, 1980.

[55] T. Schreiber, P. Otto, and F. Hofmann. A new efficient parallelization strategy for the QR
algorithm. Parallel Comput., 20:63–75, 1994.

[56] ScaLAPACK Users’ Guide. See http://www.netlib.org/scalapack/slug/.

23

[57] G. W. Stewart. A parallel implementation of the QR algorithm. Parallel Comput., 9:187–196,
1987.

[58] R. A. van de Geijn. Storage schemes for parallel eigenvalue algorithms. In G. Golub and P. Van
Dooren, editors, Numerical Linear Algebra Digital Signal Processing and Parallel Algorithms,
pages 639–648. Springer-Verlag, 1988.

[59] R. A. van de Geijn. Deferred shifting schemes for parallel QR methods. SIAM J. Matrix Anal.
Appl., 14:180–194, 1993.

[60] R. A. van de Geijn and D. G. Hudson. An efficient parallel implementation of the nonsymmetric
QR algorithm. In Fourth Conference on Hypercube Concurrent Computers and Applications,
Monterey, CA, pages 697–700, 1989.

[61] D. Viswanath and L. N. Trefethen. Condition numbers of random triangular matrices. SIAM J.
Matrix Anal. Appl., 19(2):564–581, 1998.

[62] V. Volkov and J. W. Demmel. LAPACK working note 197: Using GPUs to accelerate the
bisection algorithm for finding eigenvalues of symmetric tridiagonal matrices. Technical Report
UCB/EECS-2007-179, EECS Department, University of California, Berkeley, 2007.

[63] D. S. Watkins. Shifting strategies for the parallel QR algorithm. SIAM J. Sci. Comput., 15(4):953–
958, 1994.

[64] D. S. Watkins. Forward stability and transmission of shifts in the QR algorithm. SIAM J. Matrix
Anal. Appl., 16(2):469–487, 1995.

[65] D. S. Watkins. The transmission of shifts and shift blurring in the QR algorithm. Linear Algebra
Appl., 241/243:877–896, 1996.

[66] D. S. Watkins. A case where balancing is harmful. Electron. Trans. Numer. Anal., 23:1–4, 2006.

[67] D. S. Watkins. The matrix eigenvalue problem: GR and Krylov subspace methods. Society for
Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2007.

[68] D. S. Watkins. The QR algorithm revisited. SIAM Rev., 50(1):133–145, 2008.

[69] R. C. Whaley. Empirically tuning LAPACK’s blocking factor for increased performance. In
Proc. International Multiconference on Computer Science and Information Technology (IMCSIT),
volume 3, pages 303–310, 2008.

[70] R. C. Whaley, A. Petitet, and J. J. Dongarra. Automated empirical optimizations of software
and the ATLAS project. Parallel Computing, 27:3–35, 2001.

[71] Y. Yamamoto. Performance modeling and optimal block size selection for the small-bulge mul-
tishift QR algorithm. In M. Guo, L. T. Yang, B. Di Martino, H. Zima, J. J. Dongarra, and
F. Tang, editors, 4th International Symposium on Parallel and Distributed Processing and Ap-
plications, Sorrento, Italy, Lecture Notes in Computer Science, pages 451–463. Springer-Verlag,
2006.

24

A Supplementary numerical data

In the following, we present additional figures and tables to illustrate the performance of our
new parallel QR algorithm implemented in PDHSEQR. See Section 4.3 for the definition of the
performance metrics Sp.

A.1 Speedup and scalability for random matrices

Tables 7–10 contain the values of Sp for the numerical experiments with random matrices
reported in Section 4.5. In particular, we want to point out that the reported values of
Sp(PDLAHQR/PDHSEQR) are kept roughly constant when the number of utilized cores p and the
problem size n are scaled up simultaneously such that the memory load on each core is kept
fixed (see, e.g., n = 4, 000, p = 1 × 1 × 1 and n = 16, 000, p = 4 × 4 × 1 in Table 7, and
n = 6, 000, p = 1× 1× 1 and n = 24, 000, p = 4× 4× 1 in Table 9).

Table 7: Sp(PDLAHQR), Sp(PDHSEQR) and Sp(PDLAHQR/PDHSEQR) on akka for fullrand.
n =

p = Pr × Pc × Pt 4 000 8 000 16 000 32 000

1× 1× 1 1.0 1.0 41.3 1.0 1.0 54.1

2× 2× 1 3.4 2.0 24.7 4.0 2.3 31.5
4× 4× 1 7.9 3.3 17.0 9.3 5.6 32.4 1.0 1.0 41.2
6× 6× 1 13.4 3.8 11.6 15.4 7.6 26.8 2.1 1.6 32.7 ∞ 1.0 N/A
8× 8× 1 22.3 4.0 7.3 21.8 9.7 24.2 3.2 2.8 35.1 ∞ 1.6 N/A

10× 10× 1 25.4 3.6 5.8 30.9 9.0 15.7 4.0 3.2 32.5 ∞ 2.0 N/A

1× 1× 4 3.6 1.3 14.9 4.4 1.6 20.1
2× 2× 4 5.8 1.8 12.8 7.3 2.5 18.7
3× 3× 4 11.2 2.2 8.2 14.0 3.6 14.0 1.7 0.7 16.7
4× 4× 4 15.2 3.0 8.1 20.0 5.3 14.4 2.6 1.2 19.4 ∞ 0.7 N/A
5× 5× 4 19.7 3.2 6.8 26.9 7.3 13.3 3.6 1.5 17.8 ∞ 0.9 N/A

Table 8: Sp(PDLAHQR), Sp(PDHSEQR) and Sp(PDLAHQR/PDHSEQR) on akka for hessrand.
n =

p = Pr × Pc × Pt 4 000 8 000 16 000 32 000

1× 1× 1 1.0 1.0 13.0 1.0 1.0 11.5

2× 2× 1 2.7 2.1 10.2 3.2 2.3 8.3
4× 4× 1 4.2 4.2 13.0 5.4 6.3 13.5 1.0 1.0 26.3
6× 6× 1 7.1 5.0 9.2 9.2 9.5 11.9 1.3 1.8 36.6 ∞ 1.0 N/A
8× 8× 1 10.0 6.3 8.2 12.1 11.6 11.0 2.0 2.9 38.1 ∞ 1.3 N/A

10× 10× 1 12.8 5.4 5.5 14.6 13.2 10.4 2.6 3.3 32.9 ∞ 1.4 N/A

1× 1× 4 3.5 1.3 4.7 3.4 1.5 5.0
2× 2× 4 4.8 2.0 5.5 6.2 2.7 5.0 1.1 0.6 14.5
3× 3× 4 8.1 2.6 4.3 10.3 3.9 4.4 1.9 0.8 11.0
4× 4× 4 11.0 3.5 4.2 13.6 5.1 4.3 2.9 1.4 12.7 ∞ 1.0 N/A
5× 5× 4 12.7 4.7 4.8 18.4 8.5 5.3 3.2 1.5 12.2 ∞ 1.1 N/A

25

Table 9: Sp(PDLAHQR), Sp(PDHSEQR) and Sp(PDLAHQR/PDHSEQR) on sarek for fullrand.
n =

p = Pr × Pc × Pt 6 000 12 000 24 000 48 000

1× 1× 1 1.0 1.0 50.5

2× 2× 1 4.1 2.4 29.9 1.0 1.0 45.8
4× 4× 1 15.1 4.7 15.7 4.1 2.6 29.1 1.0 1.0 49.9
6× 6× 1 29.9 5.9 10.0 8.5 4.5 24.2 2.3 1.8 39.3 ∞ 1.0 N/A
8× 8× 1 50.0 6.5 6.6 12.5 5.0 18.3 N/A 2.5 N/A ∞ 1.6 N/A

1× 1× 2 2.2 1.5 24.1
2× 2× 2 8.0 3.2 21.3 2.1 1.5 33.0
4× 4× 2 27.3 6.0 14.7 6.3 3.7 26.8 2.4 1.4 28.2
6× 6× 2 54.2 7.3 11.7 10.2 5.5 24.9 N/A 2.4 N/A ∞ 1.7 N/A
8× 8× 2 78.6 8.1 9.2 23.6 6.2 12.0 8.1 3.4 20.2 ∞ 2.4 N/A

Table 10: Sp(PDLAHQR), Sp(PDHSEQR) and Sp(PDLAHQR/PDHSEQR) on sarek for hessrand.
n =

p = Pr × Pc × Pt 6 000 12 000 24 000 48 000

1× 1× 1 1.0 1.0 9.8

2× 2× 1 2.8 2.7 9.6 1.0 1.0 28.8
4× 4× 1 7.7 5.4 6.9 3.3 2.6 22.2 N/A 1.0 N/A
6× 6× 1 12.1 7.6 6.1 5.5 4.9 26.1 N/A 1.6 N/A ∞ 1.0 N/A
8× 8× 1 17.6 9.0 5.0 7.8 5.7 21.1 N/A 2.0 N/A ∞ 1.4 N/A

1× 1× 2 2.1 1.6 7.8
2× 2× 2 5.2 3.4 6.4 2.1 1.3 17.9
4× 4× 2 13.9 6.8 4.8 6.5 3.5 15.5 N/A 1.6 N/A
6× 6× 2 21.4 8.9 4.1 10.6 5.2 14.1 N/A 2.4 N/A ∞ 1.7 N/A
8× 8× 2 30.0 11.2 3.6 14.4 7.4 14.9 N/A 3.0 N/A ∞ 2.2 N/A

A.2 Performance, speedup and scalability for benchmark examples

Table 11 summarizes benchmark examples on which we have performed additional numerical
experiments. To keep the presentation compact, we have chosen to run all benchmarks in this
section on one of the target platforms only, always using one MPI process per allocated core.
Most of the benchmarks are available as data files, in a special Matrix Market format, or as
(serial) matrix generators, using compressed column (or row) storage, on Matrix Market [51].
For the purpose of running these benchmarks, specialized routines were developed that read
in and distribute the data, or generate and distribute the problem across the process mesh.

A.2.1 BBMSN

AED is at its best and deflates a significant amount of eigenvalues right away, eliminating any
need for doing QR sweeps. This observation was already made in the original paper [18] of
AED. To some extent, this effect is also observed for random matrices of the class hessrand,
see Tables 3 and 5. Since AED is performed on a small submatrix, the scalability – but
certainly not the performance – is negatively affected if only AED and almost no QR iterations
need to be performed. For the matrix sizes considered in Figure 8, PDHSEQR applied to BBSM
is two orders of magnitude faster than PDLAHQR.

26

Table 11: Considered benchmark examples.
Name Dimension Type/Structure Hess. req. Ref.

BBMSN n Sn =





n n − 1 n − 2 2 1
10−3 1 0 · · · 0 0

10−3 2 0 0

10−3
. . . 0 0

. . . n − 2 0
10−3 n − 1





No [18]

AF23560 23560 Computational fluid dynamics Yes [5]
CRYG10000 10000 Material science Yes [5]
OLM5000 5000 Computational fluid dynamics Yes [5]
DW8192 8192 Electrical engineering Yes [5]
MATRAN n Sparse random matrix Yes [5]
MATPDE n Partial differential equations Yes [5]

GRCAR n Gn =





1 1 1 1
−1 1 1 1 1

−1 1 1 1 1

. . .
. . .

. . .
. . .

. . .

−1 1 1 1 1
−1 1 1 1

−1 1 1
−1 1





No [5]

For the residuals defined in Section 4.4, PDHSEQR typically returns with Rr ≈ 10−15 while
PDLAHQR delivers Rr ≈ 10−13. The average numbers of shifts for one eigenvalue to converge
in PDHSEQR and PDLAHQR are 0.00 and 1.80, respectively.

A.2.2 AF23560

This test matrix of order 23560 arises in the transient stability analysis of a Navier-Stokes
equation. Figure 9 displays the measured execution times and performance metrics, while
Figure 10 contains a performance profile. The scaling of PDHSEQR is somewhat disappointing,
due to the fact that a large fraction of the time is spent for AED. On the other hand, in terms
of Sp(PDLAHQR/PDHSEQR), PDHSEQR is superior with a speedup of about 74, 55 and 52 for 64,
100 and 144 cores, respectively.

For this benchmark, the accuracy degrades to a certain degree: both routines typically
return Rr ∈ [10−10, 10−14], but there are some exceptions for which PDLAHQR returns Rr ≈
10−5. The average numbers of shifts for one eigenvalue to converge in PDHSEQR and PDLAHQR

are 0.35 and 6.51, respectively.

A.2.3 CRYG10000

This is a nonsymmetric eigenvalue problem of order 10000 that arises from the stability
analysis of a crystal growth problem. A comparison of the performance of PDLAHQR and
PDHSEQR is presented in Figure 11. Both implementations exhibit quite similar scalability,
but PDHSEQR is much faster, about 23 − 36 times for a moderate number of cores. The
corresponding profile is displayed in Figure 12.

With respect to the residuals, PDHSEQR returns Rr ≈ 10−15 while PDLAHQR returns Rr ≈
10−14. The average numbers of shifts for one eigenvalue to converge in PDHSEQR and PDLAHQR

are 0.26 and 2.50, respectively.

27

n=5000, 1 core n=10000, 4 cores n=15000, 16 cores
10

0

10
1

10
2

10
3

10
4

10
5

PDLAHQR
PDHSEQR

Figure 8: Tp for PDLAHQR and PDHSEQR applied to BBMSN on akka.

0 50 100 150
10

0

10
1

10
2

10
3

10
4

10
5

10
6

#cores (p
min

=16)

PDLAHQR
PDHSEQR
S

p
(PDLAHQR/PDHSEQR)

S
p
(PDLAHQR)

S
p
(PDHSEQR)

Figure 9: Tp and Sp for PDLAHQR and PDHSEQR applied to AF23560 on akka.

28

0 50 100 150
10

−1

10
0

10
1

10
2

10
3

10
4

#cores (p
min

=16)

Total execution time
AED Schur red.
AED reordering
AED return to Hess.
Sweep − updates
Sweep − local chase
S

p
(Total execution time)

S
p
(AED Schur red.)

S
p
(AED reordering)

S
p
(AED return to Hess.)

S
p
(Sweep − updates)

S
p
(Sweep − local chase)

Figure 10: Profile of PDHSEQR applied to AF23560 on akka.

0 10 20 30 40 50 60 70 80 90 100
10

0

10
1

10
2

10
3

10
4

10
5

PDLAHQR
PDHSEQR
S

p
(PDLAHQR/PDHSEQR)

S
p
(PDLAHQR)

S
p
(PDHSEQR)

Figure 11: Tp and Sp for PDLAHQR and PDHSEQR applied to CRYG10000 on akka.

29

0 10 20 30 40 50 60 70 80 90 100
10

−2

10
−1

10
0

10
1

10
2

10
3

10
4

#cores

Total execution time
AED Schur red.
AED reordering
AED return to Hess.
Sweep − updates
Sweep − local chase
S

p
(Total execution time)

S
p
(AED Schur red.)

S
p
(AED reordering)

S
p
(AED return to Hess.)

S
p
(Sweep − updates)

S
p
(Sweep − local chase)

Figure 12: Profile of PDHSEQR applied to CRYG10000 benchmark on akka.

A.2.4 OLM5000

The Olmstead model represents the flow of a layer of viscoelastic fluid heated from below.
The discretized equations give rise to a matrix of size 5000. Since this is a relatively small
eigenvalue problem for a parallel solver, we expect the performance gain of using PDHSEQR

instead of PDLAHQR to be less remarkable, especially for larger process meshes. This expecta-
tion is certainly met, see Figure 13. Nevertheless, there is a notable speedup even though the
scaling of PDHSEQR deteriorates for more than 64 cores.

With respect to the residuals, PDHSEQR returns Rr ≈ 10−15 while PDLAHQR returns Rr ≈
10−14. The average numbers of shifts for one eigenvalue to converge in PDHSEQR and PDLAHQR

are 0.72 and 3.46, respectively.

A.2.5 DW8192

A finite difference discretization of the Helmholtz equation governing the magnetic field asso-
ciated with a dielectric channel waveguide problem, which arises in many integrated circuit
applications, leads to a 8192×8192 generalized nonsymmetric eigenvalue problem. A standard
nonsymmetric eigenvalue problem is obtained by explicit inversion. Again, this is a relatively
small-sized eigenvalue problem for larger process meshes. Figure 14 clearly reflects this. Note,
however, that the ratio between PDLAHQR and PDHSEQR is larger than for OLM5000.

With respect to the residuals, PDHSEQR returns Rr ≈ 10−15 while PDLAHQR returns Rr ≈
10−14. The average numbers of shifts for one eigenvalue to converge in PDHSEQR and PDLAHQR

are 0.58 and 3.42, respectively.

30

0 10 20 30 40 50 60 70 80 90 100
10

0

10
1

10
2

10
3

10
4

PDLAHQR
PDHSEQR
S

p
(PDLAHQR/PDHSEQR)

S
p
(PDLAHQR)

S
p
(PDHSEQR)

Figure 13: Tp and Sp for PDLAHQR and PDHSEQR applied to OLM5000 on akka. Note that with
4 cores, the time for PDLAHQR is measured for multithreading on one node, which turned out
to be faster than using 4 MPI processes inside the node.

0 10 20 30 40 50 60 70
10

0

10
1

10
2

10
3

10
4

10
5

#cores

PDLAHQR
PDHSEQR
S

p
(PDLAHQR/PDHSEQR)

S
p
(PDLAHQR)

S
p
(PDHSEQR)

Figure 14: Tp and Sp for PDLAHQR and PDHSEQR applied to DW8192 on sarek.

31

0 10 20 30 40 50 60 70
10

0

10
1

10
2

10
3

10
4

10
5

10
6

#cores

T

p
(PDLAHQR),n=5000

T
p
(PDHSEQR),n=5000

T
p
(PDLAHQR),n=10000

T
p
(PDHSEQR),n=10000

T
p
(PDLAHQR),n=15000

T
p
(PDHSEQR),n=15000

S
p
(PDLAHQR/PDHSEQR),n=5000

S
p
(PDLAHQR/PDHSEQR),n=10000

S
p
(PDLAHQR/PDHSEQR),n=15000

Figure 15: Tp and Sp for PDLAHQR and PDHSEQR applied to MATRAN on sarek.

A.2.6 MATRAN

This benchmark generator produces sparse matrices whose nonzero entries are uniformly
distributed on the interval (−1, 1). In our tests, we choose the number of non-zeros per
column to be max(1, bn/100c). We present the performance of PDLAHQR and PDHSEQR solving
this eigenproblem for n = 5000, 10000, 15000 in Figure 15. The speedup is significant (always
above 30) for n = 15000.

With respect to the residuals, both PDHSEQR and PDLAHQR return Rr ≈ 10−14. The average
numbers of shifts for one eigenvalue to converge in PDHSEQR and PDLAHQR are 0.65 and 3.85
for n = 5000, 0.52 and 4.03 for n = 10000, 0.40 and 5.26 for n = 15000, respectively.

A.2.7 MATPDE

This example arises from a five-point central finite difference discretization of a 2D variable-
coefficient linear elliptic PDE, using nx = ny grid points in each spatial dimension. The
resulting n × n matrix with n = nx · ny is block tridiagonal. All other parameters of the
generator are set to their default values, see [5]. This eigenvalue problem is solved for n =
10000 (nx = ny = 100), n = 14400 (nx = ny = 120) and n = 19600 (nx = ny = 140) on
akka. The obtained results are presented in Figure 16. Once again, the gain of using PDHSEQR

instead of PDLAHQR is significant – a speedup of 32 − 38 is obtained for the largest problem
(n = 19600).

With respect to the residuals, both PDHSEQR and PDLAHQR return with Rr ≈ 10−14. The
average numbers of shifts for one eigenvalue to converge in PDHSEQR and PDLAHQR are 0.57 and
3.23 for n = 10000, 0.52 and 8.34 for n = 14400, 0.54 and 8.83 for n = 19600, respectively.

32

0 50 100 150
10

1

10
2

10
3

10
4

10
5

10
6

#cores

T

p
(PDLAHQR),n=10000

T
p
(PDHSEQR),n=10000

T
p
(PDLAHQR),n=14400

T
p
(PDHSEQR),n=14400

T
p
(PDLAHQR),n=19600

T
p
(PDHSEQR),n=19600

S
p
(PDLAHQR/PDHSEQR),n=10000

S
p
(PDLAHQR/PDHSEQR),n=14400

S
p
(PDLAHQR/PDHSEQR),n=19600

Figure 16: Tp and Sp for PDLAHQR and PDHSEQR applied to MATPDE benchmark on akka.

0 10 20 30 40 50 60 70
10

0

10
1

10
2

10
3

10
4

10
5

10
6

#cores

T

p
(PDLAHQR),n=6000

T
p
(PDHSEQR),n=6000

T
p
(PDLAHQR),n=12000

T
p
(PDHSEQR),n=12000

T
p
(PDLAHQR),n=18000

T
p
(PDHSEQR),n=18000

S
p
(PDLAHQR/PDHSEQR),n=6000

S
p
(PDLAHQR/PDHSEQR),n=12000

S
p
(PDLAHQR/PDHSEQR),n=18000

Figure 17: Tp and Sp for PDLAHQR and PDHSEQR applied to GRCAR on sarek.

33

A.2.8 GRCAR

An n×n Grcar matrix is a nonsymmetric Toeplitz matrix with very ill-conditioned eigenvalues.
For this matrix, PDHSEQR is between 2–20 times faster than PDLAHQR depending on the problem
size and the number of cores, see Figure 17.

With respect to the residuals, PDHSEQR returns Rr ≈ 10−14 while PDLAHQR returns Rr ∈
[10−13, 10−14]. The average numbers of shifts for one eigenvalue to converge in PDHSEQR and
PDLAHQR are 1.22 and 3.36 for n = 6000, 1.52 and 3.69 for n = 12000, 1.29 and 3.83 for
n = 18000, respectively.

34

