A Framework for Dynamic Node-Scheduling
of Two-Sided Blocked Matrix Computations

Lars Karlsson and Bo Kagstrom

Department of Computing Science and HPC2N, Umeé University,
S-901 87 Umed, Sweden, {larsk, bokg}@cs.umu.se

Abstract. Blocked matrix algorithms are characterized by a high uti-
lization of floating point units. Memory bandwidth is not a critical issue
due to the surface-to-volume effect of level 3 algorithms. Factors limiting
the performance of distributed algorithms include communication over-
head and spurious synchronizations. Load balance is often achieved by
using a 2D Block Cyclic Layout. To reduce communication overhead and
synchronizations, a node algorithm is often rearranged into an efficient
but more complicated variant. Frameworks for dynamic scheduling of
node programs promise to remove much of the complexities while pre-
serving most of the performance improvements. We present a design of
a minimalistic framework for dynamic scheduling specifically targeting
two-sided blocked matrix computations. A model algorithm, nonscalable
in its straightforward implementation and with applications in modern
algorithms for the nonsymmetric eigenvalue problem is shown to be scal-
able in practice. The scalability is enabled by the framework, specifically
by the priority-based scheduling mechanism.

1 Introduction

Blocked matrix algorithms on possibly hybrid distributed memory machines (the
nodes themselves may be shared address space parallel computers) usually utilize
a large fraction of the machine’s peak performance [8]. The main limiting factors
are communication overhead and spurious synchronizations, both between and
within nodes. Communication overhead can often be reduced by rearranging the
node algorithm to expose overlap possibilities via nonblocking communication.
The overlap is then exploited in hardware via network interfaces with Direct
Memory Access (DMA) which ultimately reduces the communication overhead
[5]. Spurious synchronizations are handled similarly; by rearranging the node
algorithm, spurious synchronizations can be removed.

The added complexity increases the likelihood of programming errors. For
some algorithms it is also difficult to find an almost optimal schedule, which
typically depends on machine parameters, problem and block sizes.

To remove most of the extra complexity one may use dynamic scheduling.
In such dynamic implementations the execution order of different portions of
the node program (its tasks) is non-deterministic. Some recent work on dynamic
scheduling on shared address space and multicore architectures are [6,7,3,2].

Typically, a new bookkeeping overhead is introduced and some programmer as-
sistance in decomposing the program into tasks as well as guidance on enforcing
dependencies is required. A dynamic scheduling approach mainly benefits pro-
grammer productivity, maintainability, quality assurance, and portability. Per-
formance for particular problems may often be suboptimal due to unexploited
problem-specific optimizations.

In this contribution, we present a design of a minimalistic and efficient dy-
namic scheduling framework. The design is intended for blocked matrix com-
putations on hybrid distributed memory machines. The tasks are statically dis-
tributed to processes and dynamic scheduling is applied only on the nodes.

We introduce a model algorithm which appears as the computationally dom-
inant part in several algorithms related to the nonsymmetric eigenvalue problem
[4,10,9,1]. A straightforward parallelization on a 2D Block Cyclic Layout (BCL)
is nonscalable. This is not caused by load imbalance but rather by a suboptimal
execution order that introduces spurious synchronizations. We show that the
priority-based scheduling in our framework allows flexible and more efficient, ex-
ecution orders to be imposed. The algorithm expressed using the framework has
the same overall structure as the straightforward implementation, demonstrat-
ing a clear advantage of a dynamic approach compared with a manual, static
approach that would require restructuring of the code.

2 Framework Design

Our framework design consists of four major parts:

1. An API to express a node program in a familiar sequential style while al-
lowing it to be executed by multiple threads.

2. An efficient algorithm and API that at runtime identifies data dependencies

from programmer declarations of read and write accesses to matrix blocks.

A scheduling and dependency tracking mechanism.

4. An API and scheduling mechanism for asynchronous matrix-based commu-
nication built on top of MPI [11].

i

2.1 Application Programming Interface

The main APT of the framework is used to annotate a correct sequential node
program so that during execution it constructs a correct Directed Acyclic Graph
(DAG) representation of the program. The DAG is then scheduled onto a team
of threads consisting of one master thread (the thread that builds the DAG)
and w > 0 worker threads. The master thread handles all calls to MPI functions
which means that the MPI implementation does not need to be thread-safe.

The framework considers two types of tasks: computation tasks (user-defined)
and communication tasks (fully integrated).

Computation tasks are constructed from a sequence of API function calls.
First a DAG node and its payload (user-defined task-specific information) are

created, then all task dependencies are constructed, and finally the node is com-
mitted to the scheduler.

The scheduling and execution of communication tasks is fully integrated
within the framework. Communication tasks are constructed using a separate
API for matrix-based communication. The structure of task creation is the same
as for computation tasks.

Data dependencies for a particular task are identified at runtime by the
method described in Section 2.2. During task construction a sequence of API
calls is used to specify read and write accesses to one or more matrix blocks.

2.2 Runtime Data Dependence Analysis

Due to the surface-to-volume effect in level 3 blocked matrix computations the
number of floating point operations is often far greater than the number of mem-
ory references. The difference is even greater between floating point operations
and matriz block references. This holds for the entire computation as well as
for all of its level 3 subcomputations (such as GEMM updates, recursive panel
factorizations, etc.) and is at the heart of the method described in this section.

Data dependencies may tightly couple otherwise independent parts of a large
program. Manual analysis could therefore be prohibitively difficult. Approxima-
tion of data dependencies at runtime using matrix blocks as the unit of memory
reference effectively solves the problem of coupling.

A task may request read-only access (read request) or read/write access
(write request) to a block. Concurrent reads are allowed but writes serializes.
Artificial DAG nodes (so called join nodes) are constructed to collect dependen-

® ® O ® ®
o)

®

Fig. 1. Example showing how dependencies on a matrix block are efficiently con-
structed from a sequence of read and write requests (in this case: Write, Read, Read,
Write). Double outlines denote nodes which may get new arcs and are hence retained
as a part of the algorithm state. Bold arcs are the new dependencies that are added
during the current step of the algorithm.

cies from concurrent reads to a single block in anticipation of a write request.
This process is illustrated by example in Figure 1 and it allows the amount of
memory required by the algorithm to remain constant.

3 Application Example

A model algorithm (Algorithm 1: Sweep) with applications in the nonsymmet-
ric eigenvalue problem is described and analyzed in this section. We use our
node-scheduling framework to effectively turn the straightforward implementa-
tion of Sweep into an efficient, scalable implementation which has two antidiag-
onal wavefronts running through the matrix.

3.1 Model Algorithm: Sweep

Algorithm 1 details the distributed algorithm from a global perspective. We use a
special notation to specify which process or group of processes that are involved
in each operation. With P(i, j) we mean the process that owns element A(i,
j). The notation P(i, *) refers to the process row that owns the matriz row
A(i, :) and similarly P(*, j) refersto the process column that owns the matriz
column A(:, j). In each iteration, a diagonal block of size ny x ny is used to
compute an n, X np orthogonal matrix) and is modified in the process by
applying QT from the left and @ from the right. The iteration step is half the
block size (the distribution block size is np) and the algorithm is assumed to
start aligned with a block. At every other iteration the diagonal submatrix is
local to one process (a local iteration, lines 7-15), whereas during the remaining
iterations it is distributed onto four processes (a cross-border iteration, lines
17-39).

After the orthogonal matrix () has been computed and applied to the diag-
onal block (line 8 or 18) the corresponding block row and column must also be
updated in order to complete the orthogonal similarity transformation

T
Iy Iy

A« Q A Q
I I

Figure 2 shows the affected portions of the matrix during two iterations of the
loop (one local and one cross-border).

All of the block row and column operations (copy, update, and send /receive)
are partitioned into independent suboperations at block boundaries. Each sub-
operation is regarded as an atomic unit of computation (copy and update) or
communication (send/receive) and maps to one task.

3.2 Analysis

We derive an approximate upper bound on the efficiency of the straightforward
implementation. We assume that) can be computed for free, that all updates

Algorithm 1 Sweep: Distributed Memory Model Algorithm

1 local = true

2: for i = 1 to N-nb+l step nb/2

3 a=1i

4: b=31i+mnb -1

5: c=1i+nb/2 -1

6 if local then

7 Copy A(a:b, a:b) to C on P(a, a)

8 Compute Q from C on P(a, a)

9: Copy C to A(a:b, a:b) on P(a, a)

10: Broadcast Q to P(a, *) from P(a, a)

11: Broadcast Q to P(*, a) from P(a, a)

12: Copy A(1l:a-1, a:b) to W on P(*, a)

13: Copy A(a:b, b+1:N) to S on P(a, *)

14: Update A(l:a-1, a:b) = WxQ on P(*, a)

15: Update A(a:b, b+1:N) = Q’°*S on P(a, *)

16: else

17: Gather A(a:b, a:b) to C on P(a, a)

18: Compute Q from C on P(a, a)

19: Scatter C to A(a:b, a:b) from P(a, a)

20: Partition Q into two column blocks: Q = [Q1, Q2]
21: Send Q2 from P(a, a) to P(b, b)

22: Broadcast Q1 to P(a, *) from P(a, a)

23: Broadcast Q1 to P(*, a) from P(a, a)

24: Broadcast Q2 to P(b, *) from P(b, b)

25: Broadcast Q2 to P(*, b) from P(b, b)

26: Partition W into two equal column blocks: W = Wi, w2]
27: Partition S into two equal row blocks: S = [S1; S2]
28: Copy A(1l:a-1, a:c) to Wl on P(*, a)

29: Send A(1:a-1, a:c) to W1 on P(x, b) from P(x, a)
30: Copy A(1l:a-1, c+1:b) to W2 on P(*, b)

31: Send A(1:a-1, c+1:b) to W2 on P(x, a) from P(x, b)
32: Copy A(a:c, b+1:N) to S1 on P(a, *)

33: Send A(a:c, b+1:N) to S1 on P(b, *) from P(a, *)
34: Copy A(c+1l:b, b+1:N) to S2 on P(b, *)

35: Send A(c+1:b, b+1:N) to S2 on P(a, *) from P(b, *)
36: Update A(l:a-1, a:c) = W*Q1 on P(*, a)

37: Update A(l:a-1, c+1:b) = W¥Q2 on P(x, b)

38: Update A(a:c, b+1:N) = Q1°%S on P(a, *)

39: Update A(c+l:b, b+1:N) = Q2°*S on P(b, *)

40: end if

41: local = not local

42: end for

Fig. 2. Illustration of the model algorithm on a sample block matrix with N = 6ny.
Solid lines mark the region affected by iteration ¢ = 2n,. The diagonal block is used to
compute @ and the corresponding block row and column are modified by the subsequent
updates. Dashed lines show the half-block step taken to the next iteration (i = 2.5ny)
and is also an example of a cross-border iteration.

perform at a fixed performance of a flops/s. Communication and other sources
of overhead are not taken into consideration.

To perform all local block row updates (lines 14-15) over the course of the
algorithm sequentially requires

ang(Nb -].)
«Q

Tlocal ~

seconds. Similarly, to perform all cross-border block row updates (lines 36-39)
over the course of the algorithm sequentially requires

~ an(?;(Nb — 2) -I-n,?;

TCI‘OSS ~

«

seconds. The same timing models hold for block column updates.

When the algorithm executes in parallel on a P, x P. mesh the updates
are assumed to be perfectly load balanced across the involved processes. This
means that local block row and column updates are parallelized over P, and P,
processes, respectively. The cross-border block row and column updates are par-
allelized onto 2P, and 2P, processes, respectively. Since, in every iteration, one
process has to participate in both a block row and a block column update these
two operations are effectively serialized. The estimate of the parallel execution
time of the straightforward implementation is therefore approximated by

Tloca] T]ocal Tcross Tcross 3Tloca] Pr + Pc
T, ~ <
PP + P. 2P, + 2P, = 2 P.P.

The sequential execution time is Ts = 2T1ocal + 2T cross < 47T10ca1l Which gives
the following approximate bound on the efficiency.

8
F,<—.
P =3(P. +P)

3.3 Dual Wavefront Implementation

In order to appreciate the number of allowed schedules we look at a single block
column of the matrix and consider a sequence of updates from the left. During
the first iteration, i=1 and the block column is updated on rows 1:nb. During the
second iteration, i=1+nb and the block column is updated on rows 1+nb:2#*nb.
The affected rows overlap and there is a true data dependence that serializes the
updates. The key thing to notice is that, while serialized on a particular block
column, all block columns are independent. The same reasoning holds for the
updates from the right, replacing block column with block row.

This allows for an algorithm where the number of applied updates differ
between each block column/row at any given time. The dual antidiagonal wave-
front implementation described visually in Figure 3 is one example obtainable
from the straightforward implementation by the framework and suitable priority
assignments.

Boundaries of
possible updates

Wavefront of
right updates

Wavefront of
left updates

Progress of
window

Direction of
progress

Fig. 3. The two antidiagonal wavefronts (the upper one corresponds to updates from
the right, the lower one to updates from the left). The grey areas represent the parts
of the matrix that have pending updates at this point.

3.4 Some Computational Results

In this section, we present measurements of execution time in the form of par-
allel efficiency. We do not yet have an equivalent sequential implementation of
the Sweep algorithm but as an estimate of the sequential cost we accumulated
the time spent in kernel computations (copy and update) in each process. All
efficiencies presented in this section are derived in this fashion. In Figure 4 and

Figure 5, we present results for the straightforward implementation and the
dual antidiagonal wavefront implementation, respectively. In these figures, the

4 processes 9 processes
100 100
—+— Efficiency —+— Efficiency
= = = Bound on Efficiency = = = Bound on Efficiency
BOF Minimum Wait BOF Minimum Wait
= Overhead = Overhead
60 60[,
T
® S I
40 T TP TP SR
el 7"
20 20
N e
0 0
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
N (x1000) N (x1000)

16 processes
100

—+— Efficiency

- Bound on Efficiency
80 PR Rl Minimum Wait
— Overhead

60

%

40

s

15 20 25
N (x1000)

35 40

Fig. 4. Efficiency, upper bound on efficiency, overhead, and minimum synchronization
overhead (Minimum Wait) for the straightforward implementation of Sweep (n, = 100).

following information is displayed.

— Efficiency. The relative efficiency (Té?mel refers to the time spent in kernel

computations in process ¢ and T}, is the parallel execution time)
P.P. p(3)
E. = Zi:l Tkernel
! P.P.T,
— Bound on efficiency. The approximate theoretical upper bound on efficiency,

8
3(P. + P.)’

as derived in Section 3.2.
— Minimum wait. On process i, the time spent in blocking MPI functions is

referred to as T‘f,i)it. The minimum wait curve shows the quantity
min; Tv(via)it

T,

This metric measures the impact of synchronization overhead on parallel
execution time.

— Overhead. The fraction of the parallel cost (P, P.T),) that is made up of ev-
erything except kernel computations, initialization of sends and receives, and
time spent in blocking MPI functions. This is the combined overhead of the
implementation and includes everything from building and maintaining the
DAG to polling the MPT library to miscellaneous unaccounted operations.

16 processes 36 processes
100 100

80

60f
® —+— Efficiency B3 —+— Efficiency
----- Minimum Wait 40 == Minimum Wait
= Overhead —— Overhead
20 A
\,
M
O e e i~
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
N (x1000) N (x1000)
64 processes 100 processes
100 100
—+— Efficiency
801y N 80 i\'\, Lo Minimum Wait|
s ; \ = Overhead
[N ! -

60 [60

%
7
%

—+— Efficiency
40 N e Minimum Wait 40
S Overhead
20 NG 20
s,
\
——— N e e
0 e i o
[5 10 15 20 25 30 35 40 [5 10 15 20 25 30 35 40

N (x1000) N (x1000)

Fig. 5. Efficiency, overhead, and minimum synchronization overhead (Minimum Wait)
for the more efficient dual wavefront implementation of Sweep (n, = 100).

In Figure 4 (straightforward implementation), the relative efficiency comes close
to the theoretical upper bound. The overhead is a few percent and the minimum
wait is almost constant but still very significant. The straightforward implemen-
tation is not scalable and the reason is synchronization overhead. In Figure 5
(dual wavefront implementation), the relative efficiency peaks at around 70-80%.
A strong negative correlation between the minimum wait and the efficiency shows
that synchronization overhead is virtually eliminated by the dual wavefront al-
gorithm for large enough problems.

10

4 Conclusions

We have presented a design of a framework for dynamic node-scheduling of
blocked matrix computations on hybrid distributed memory machines. The frame-
work uses an efficient runtime data dependence analysis method.Priority-based
scheduling has been shown to extract much more of the available parallelism
than standard FIFO scheduling. For example, comparing the timings in Fig-
ures 4 and 5 for 16 processes and N = 20000 (the largest problem solved on 16
processes), we get a speedup of 2.75 in favor for the wavefront implementation
of Sweep. Going from 16 to 64 processes in Figure 5, we get another speedup of
3.32. We also see that N = 20000 is not large enough to reach practical peak on
64 processes.

References

1. B. Adlerborn, B. Kéagstrom, and D. Kressner. Parallel Variants of the Multishift
QZ Algorithm with Advanced Deflation Techniques . In B. Kagstrom et al., editors,
Applied Parallel Computing: State of the Art in Scientific Computing, PARA 2006,
Lecture Notes in Computer Science, LNCS 4699, pages 117-126. Springer, 2007.

2. P. Bellens, J. M. Perez, R. M. Badia, and J. Labarta. CellSs: a Programming Model
for the Cell BE Architecture. In SC ’06: Proceedings of the 2006 ACM/IEEE
conference on Supercomputing, New York, NY, USA, 2006. ACM.

3. R. D. Blumofe and C. E. Leiserson. Scheduling multithreaded computations by
work stealing. Journal of the ACM, 46(5):720-748, September 1999.

4. K. Braman, R. Byers, and R. Mathias. The Multishift QR Algorithm. Part I:
Maintaining Well-Focused Shifts and Level 3 Performance. SIAM J. Matriz Anal.
Applics., 23:929-947, 2001.

5. R. Brightwell and K. D. Underwood. An analysis of the impact of MPI overlap and
independent progress. In ICS ’04: Proc. of the 18th annual international conference
on Supercomputing, pages 298-305, New York, NY, USA, 2004. ACM Press.

6. A. Buttari, J. Langou, J. Kurzak, and J. Dongarra. A Class of Parallel Tiled Linear
Algebra Algorithms for Multicore Architectures. Technical Report UT-CS-07-600,
University of Tennessee at Knoxville, 2007. Also as LAPACK Working Note 191.

7. E. Chan, E. S. Quintana-Orti, G. Quintana-Orti, and R. van de Geijn. Super-
Matrix Out-of-Order Scheduling of Matrix Operations for SMP and Multi-Core
Architectures. In SPAA ’07: Proceedings of the Nineteenth ACM Symposium on
Parallelism in Algorithms and Architectures, pages 116-125, San Diego, CA, USA,
June 9-11 2007.

8. G. H. Golub and C. F. Van Loan. Matriz Computations (8rd ed.). Johns Hopkins
University Press, Baltimore, MD, USA, 1996.

9. R. Granat, D. Kressner, and B. Kagstrom. Parallel Eigenvalue Reordering in Real
Schur Forms. Concurrency and Computation: Practice and Ezperience, submitted
2007. Also as LAPACK Working Note 192.

10. B. Kégstrom and D. Kressner. Multishift Variants of the QZ Algorithm with
Aggressive Early Deflation. SIAM J. Matriz Anal. Applics., 29:199-227, 2006.
11. MPI: A Message Passing Interface Standard. http://www.mpi-forum.org/, 1995.

