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Umeå, Sweden; email: {isak,bokg}@cs.umu.se.
Permission to make digital/hard copy of part or all of this work for personal or classroom use is
granted without fee provided that the copies are not made or distributed for profit or commercial
advantage, the copyright notice, the title of the publication, and its date appear, and notice is given
that copying is by permission of the ACM, Inc. To copy otherwise, to republish, to post on servers,
or to redistribute to lists, requires prior specific permission and/or a fee.
C© 2002 ACM 0098-3500/02/1200-0416 $5.00

ACM Transactions on Mathematical Software, Vol. 28, No. 4, December 2002, Pages 416–435.



Recursive Blocked Algorithms—Part II • 417

1. INTRODUCTION

We continue the presentation of recursive blocked algorithms for solving var-
ious types of triangular matrix equations. Our goal is to design efficient algo-
rithms for today’s HPC systems with multilevel memory hierarchies. The hier-
archical recursive blocking promotes good data locality and combined with our
highly optimized superscalar kernels, we obtain a notable boost in performance
compared to existing algorithms as implemented in state-of-the-art libraries
[Anderson et al. 1999; SLICOT 2001]. In Part I [Jonsson and Kågström 2002],
we introduced and discussed new recursive blocked algorithms for one-sided
Sylvester-type equations, including the continuous-time standard Sylvester
and Lyapunov equations, and a generalized coupled Sylvester equation.

In this contribution (Part II), we introduce and discuss new recursive blocked
algorithms for two-sided matrix equations, which include matrix product terms
of type op(A)X op(B), where op(Y ) can be Y or its transpose Y T . Examples
include discrete-time standard and generalized Sylvester and Lyapunov equa-
tions. The standard methods for solving two-sided matrix equations are also
based on the Bartels–Stewart method [Bartels and Stewart 1972]. As in Part I,
we focus on the solution of the two-sided triangular counterparts, which typi-
cally are obtained after an initial transformation of matrices (or regular matrix
pairs) to Schur (or generalized Schur) form [Anderson et al. 1999; Dackland
and Kågström 1999].

Before we go into any further details, we outline the contents of the rest of
the article. In Section 2, we introduce Sep-functions associated with the two-
sided matrix equations and reestablish the relationship between the solution of
triangular matrix equations and condition estimation. Section 3 introduces our
recursive blocked algorithms for two-sided matrix equations, including the gen-
eralized Sylvester equation (Section 3.1), the discrete-time Sylvester equation
(Section 3.2), the generalized and standard discrete-time Lyapunov equations
(Sections 3.3 and 3.4), and finally the generalized continuous-time Lyapunov
equation (Section 3.5). In Section 4, we revisit our discussion about implemen-
tation issues, now focusing on the design of optimized two-sided matrix product
kernels. Sample performance results of our recursive blocked algorithms are
presented and discussed in Section 5. Finally, we give some concluding remarks
in Section 6.

2. CONDITION ESTIMATION OF MATRIX EQUATIONS REVISITED

The two-sided matrix equations can also be written as a linear system of equa-
tions Zx = c, where Z is a Kronecker product matrix representation of the
associated matrix equation operator. The solution x and the right-hand side c
are represented in vec(·) notation, where vec(X ) denotes a column vector with
the columns of X stacked on top of each other.

We introduce the following Z -matrices.

ZSYDT = ZAXBT−X = B ⊗ A− In ⊗ Im,
ZLYDT = ZAXAT−X = A⊗ A− In ⊗ In,
ZGSYL = ZAXBT−CXDT = B ⊗ A− D ⊗ C,
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ZGLYCT = ZAXET+EXAT = E ⊗ A+ A⊗ E,
ZGLYDT = ZAXAT−EXET = A⊗ A− E ⊗ E,

where from top to bottom they represent the matrix operators of the
discrete-time Sylvester and Lyapunov equations, the generalized (discrete/
continuous-time) Sylvester equation, and the generalized continuous-time and
discrete-time Lyapunov equations.

Similar techniques to those described in the Part I article [Jonsson and
Kågström 2002] can be used for estimating the conditioning of two-sided ma-
trix equations. This leads to solving triangular two-sided matrix equations for
estimating the Sep-function:

Sep[·] = ‖Z−1‖−1
2 = σmin(Z ),

where Z is any of the Kronecker product matrices above. The Sep-functions
associated with the two-sided matrix equations considered are:

Sep[SYDT] = inf‖X ‖F=1 ‖AXBT − X ‖F = σmin(ZSYDT),

Sep[LYDT] = inf‖X ‖F=1 ‖AXAT − X ‖F = σmin(ZLYDT),

Sep[GSYL] = inf‖X ‖F=1 ‖AXBT − CXDT‖F = σmin(ZGSYL),

Sep[GLYCT] = inf‖X ‖F=1 ‖AXET − EX(−AT )‖F = σmin(ZGLYCT),

Sep[GLYDT] = inf‖X ‖F=1 ‖AXAT − EXET‖F = σmin(ZGLYDT).

One-norm Sep−1-estimators based on LAPACK techniques [Hager 1984;
Higham 1988; Anderson et al. 1999] are implemented in the SLICOT [2001]
library. Each estimator involves solving several (around five) triangular ma-
trix equations. Therefore, it is important that these triangular matrix equation
problems can be solved efficiently on today’s memory tiered systems.

The underlying perturbation theory for standard and generalized matrix
equations is presented in Higham [1993] and Kågström [1994], respectively.

3. RECURSIVE BLOCKED ALGORITHMS FOR TWO-SIDED
MATRIX EQUATIONS

There is a quite extensive literature on the solution of matrix equations, and
we refer to the selection of fundamental papers by Bartels and Stewart [1972],
Golub et al. [1979], Hammarling [1982], Chu [1987], Kågström and Westin
[1989], Gardiner et al. [1992a], Kågström and Poromaa [1996], and Penzl [1998]
that all present reliable algorithms. Our recursive approach also applies to
triangular two-sided matrix equations, which is the topic of this section.

Some of the matrix equations considered can be seen as special cases of other
formulations. However, this is mainly of theoretical interest, since either these
equivalences include matrix inversion (when transforming a generalized matrix
equation to a standard counterpart), or the matrix equations have symmetry
structure that we want to utilize in the algorithms.

As in Part I, we define recursive splittings for each matrix equation which
in turn lead to a few similar subproblems to be solved. These splittings are re-
cursively applied to all “half-sized” triangular matrix equations. We terminate
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the recursion when the new problem sizes (M and/or N ) are smaller than a
certain block size, blks, which is chosen such that at least a few submatrices
involved in the current matrix equation fit in the first-level cache memory. For
the solution of the small-sized problems, we apply our new high-performance
kernels (see Part I).

We present Matlab-style templates for two of the recursive blocked solvers.
We remark that all updates with respect to the solution of subproblems in the
recursion are GEMM-rich operations of the type

C← βC + αop(A)X op(B)T ,

where α and β are real scalars, and op(Y) is Y or Y T . A and/or B can be
dense or triangular. This is due to the “two-sidedness” of the matrix equations.
We refer to Section 4.1 for a discussion of the design of a high-performance
implementation of this operation. In the algorithm descriptions, we use the
function [C] = axb(A, X , B), which implements the matrix-product operation
C = C + AXB. Other functions, including level-3 BLAS operations are intro-
duced the first time they are used in the algorithm descriptions. See Part I for
BLAS references.

3.1 Recursive Triangular Generalized Sylvester Solvers

Consider the real generalized Sylvester (GSYL) matrix equation

AXBT − CXDT = E, (1)

where (A, C) of size M ×M and (B, D) of size N × N are in generalized Schur
form; that is, A and B are upper quasitriangular and C, B are upper triangular.
The right-hand side E and the solution X are of size M × N and, typically, the
solution overwrites the right-hand side (E ← X ). The GSYL equation (1) has a
unique solution if and only if A− λC and D− λB are regular and have disjoint
spectra [Chu 1987], or equivalently Sep[GSYL] 6= 0.

We see that (1) is a generalization of the continuous-time Sylvester equation
(B = IN and C = IM ), as well as the discrete-time Sylvester equation (C = IM
and D = IN ). We consider three alternatives for doing a recursive splitting.

Case 1 (1 ≤ N ≤ M/2). We split (A, C) by rows and columns, and E by
rows only: [

A11 A12

A22

] [
X 1

X 2

]
BT −

[
C11 C12

C22

] [
X 1

X 2

]
DT =

[
E1

E2

]
,

or equivalently

A11 X 1 BT − C11 X 1 DT = E1 − A12 X 2 BT + C12 X 2 DT ,
A22 X 2 BT − C22 X 2 DT = E2.

The original problem is split in two triangular generalized Sylvester equations.
First, we solve for X 2 and after updating E1 with respect to X 2, we can solve
for X 1.
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Case 2 (1 ≤ M ≤ N/2). We split (B, D) by rows and columns, and E by
columns only:

A [X 1 X 2]

 BT
11

BT
12 BT

22

− C [X 1 X 2]

 DT
11

DT
12 DT

22

 = [E1 E2],

or equivalently

AX 1 BT
11 − CX 1 DT

11 = E1 − AX 2 BT
12 + CX 2 DT

12,
AX 2 BT

22 − CX 2 DT
22 = E2.

As in Case 1, we first solve for X 2 and then after updating the right-hand side
of the first equation, solve for X 1.

Case 3 (N/2 < M < 2N ). We split (A, C), (B, D), and E by rows and
columns:[

A11 A12

A22

] [
X 11 X 12

X 21 X 22

] BT
11

BT
12 BT

22

− [ C11 C12

C22

] [
X 11 X 12

X 21 X 22

] DT
11

DT
12 DT

22


=
[

E11 E12

E21 E22

]
.

This recursive splitting results in the following four triangular generalized
Sylvester equations:

A11 X 11 BT
11 − C11 X 11 DT

11 = E11 − A12 X 21 BT
11 − (A11 X 12 + A12 X 22)BT

12

+C12 X 21 DT
11 + (C11 X 12 + C12 X 22)DT

12,
A11 X 12 BT

22 − C11 X 12 DT
22 = E12 − A12 X 22 BT

22 + C12 X 22 DT
22,

A22 X 21 BT
11 − C22 X 21 DT

11 = E21 − A22 X 22 BT
12 + C22 X 22 DT

12,
A22 X 22 BT

22 − C22 X 22 DT
22 = E22.

We start by solving for X 22 in the fourth equation. After updating E12 and
E21 with respect to X 22, we can solve for X 12 and X 21. Both updates and the
triangular generalized Sylvester solves are independent operations and can be
executed concurrently. Finally, after updating E11 with respect to X 12, X 21, and
X 22, we solve for X 11. Some of the updates of E11 can be combined in larger
GEMM operations. We obtain

E11 = E11 − A12 X 21 BT
11 + C12 X 21 DT

11 −
(

[A11 A12]
[

X 12

X 22

])
BT

12

+
(

[C11C12]
[

X 12

X 22

])
DT

12.

Alternatively, the update of E11 can be performed as

E11 = E11 − A11 X 12 BT
12 + C11 X 12 DT

12 − A12([X 21 X 22][B11 B12])T

+ C12

(
[X 21 X 22]

[
D11

D12

])T

.

ACM Transactions on Mathematical Software, Vol. 28, No. 4, December 2002.



Recursive Blocked Algorithms—Part II • 421

Algorithm 1: rtrgsyl

Input: (A, C) (M × M ) and (B, D) (N × N ) in upper generalized Schur form. E (M × N ) dense
matrix. blks, block size that specifies when to switch to a standard algorithm for solving
small-sized triangular generalized Sylvester equations.

Output: X (M × N ), the solution of AXBT −CXDT = E. X is allowed to overwrite E.

function [X ] = rtrgsyl(A, B, C, D, E, uplo, blks)
if 1 ≤ M , N ≤ blks then

X = trgsyl(A, B, C, D, E, uplo);
else switch uplo
case 1

if 1 ≤ N ≤ M/2 % Case 1: Split (A, C) (by rows and columns), E (by rows only)
X 2 = rtrgsyl(A22, B, C22, D, E2, uplo, blks);
E1 = axb(−A12, X 2, BT , E1); E1 = axb(C12, X 2, DT , E1);
X 1 = rtrgsyl(A11, B, C11, D, E1, uplo, blks);
X = [X 1; X 2];

elseif 1 ≤ M ≤ N/2 % Case 2: Split (B, D) (by rows and columns), E (by columns only)
X 2 = rtrgsyl(A, B22, C, D22, E2, uplo, blks);
E1 = axb(−A, X 2, BT

12, E1); E1 = axb(C, X 2, DT
12, E1);

X 1 = rtrgsyl(A, B11, C, D11, E1, uplo, blks);
X = [X 1, X 2];

else % M , N > blks Case 3: Split (A, C), (B, D) and E (all by rows and columns)
X 22 = rtrgsyl(A22, B22, C22, D22, E22, uplo, blks);
E12 = axb(−A12, X 22, BT

22, E12); E12 = axb(C12, X 22, DT
22, E12);

E21 = axb(−A22, X 22, BT
12, E21); E21 = axb(C22, X 22, DT

12, E21);
X 12 = rtrgsyl(A11, B22, C11, D22, E12, uplo, blks);
X 21 = rtrgsyl(A22, B11, C22, D11, E21, uplo, blks);
if M < N then

E11 = axb(−A11, X 12, BT
12, E11); E11 = axb(C11, X 12, DT

12, E11);
E11 = axb(−A12, [X 21 X 22], [B11 B12]T , E11);
E11 = axb(C12, [X 21 X 22], [D11 D12]T , E11);

else
E11 = axb(−A12, X 21, BT

11, E11); E11 = axb(C12, X 21, DT
11, E11);

E11 = axb(−[A11 A12],
[

X T
12 X T

22

]T
, BT

12, E11);

E11 = axb([C11 C12],
[

X T
12 X T

22

]T
, DT

12, E11);
end
X 11 = rtrgsyl(A11, B11, C11, D11, E11, uplo, blks);
X = [X 11, X 12; X 21, X 22];

end
case 2 % Code for uplo = 2.
case 3 % Code for uplo = 3.
case 4 % Code for uplo = 4.
end

Algorithm 1. Recursive blocked algorithm for solving the triangular generalized Sylvester
equation.

In the discussion above, we have assumed that A, B, C, and D are up-
per triangular (or quasitriangular). However, it is straightforward to derive
recursive splittings where each of the matrices can be in either upper or lower
Schur form.

In Algorithm 1, a Matlab-style function [X ] = rtrgsyl(A, B, C, D, E, uplo,
blks) for our recursive blocked solver is presented. The algorithm also shows an
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alternative way to combine the matrix multiply operations into large GEMM
operations, and the choice of which one to use is dependent on the sizes of M and
N . The input uplo signals the triangular structure of the matrix pairs (A, B)
and (C, D). The function [X ] = trgsyl(A, B, C, D, E) implements an algorithm
for solving triangular generalized Sylvester kernel problems.

3.2 Recursive Triangular Discrete-Time Sylvester Solvers

By setting C = D = I in real generalized Sylvester matrix equation (1), the
real discrete-time Sylvester (SYDT) matrix equation is obtained:

AXBT − X = C. (2)

The SYDT equation (2) has a unique solution if and only if A and B−1 (or A−1 and
B) have disjoint spectra; that is, λi(A)λ j (B) 6= 1 for all i and j , or equivalently
Sep[SYDT] 6= 0.

The algorithm for solving the SYDT equation, named rtrsydt, is similar to
Algorithm 1. For example, the recursive splitting of both dimensions, Case 3,
results in the following four triangular discrete-time Sylvester equations.

A11 X 11 BT
11 − X 11 = C11 − A12

(
X 21 BT

11 + X 22 BT
12

)− A11 X 12 BT
12,

A11 X 12 BT
22 − X 12 = C12 − A12 X 22 BT

22,
A22 X 21 BT

11 − X 21 = C21 − A22 X 22 BT
12,

A22 X 22 BT
22 − X 22 = C22.

We start by solving for X 22 in the fourth equation. After updating C12 and
C21 with respect to X 22, we can solve for X 12 and X 21. Both updates and the
triangular Sylvester solves are independent operations and can be executed
concurrently. Finally, after updating C11 with respect to X 12, X 21, and X 22, we
solve for X 11. Also, two of the matrix multiply operations can be combined in
one large GEMM operation, as for the GSYL equation. The other two cases are
similar.

3.3 Recursive Triangular Generalized Discrete-Time Lyapunov Solvers

Consider the real generalized discrete-time Lyapunov (GLYDT) matrix equation

AXAT − EXET = C, (3)

where A and E of size N × N are upper quasitriangular and upper trian-
gular, respectively. In other words, (A, E) is in generalized Schur form. If C
is symmetric, then X is symmetric as well. This is a special case of GSYL
with A = B and C = D in (1), and we want to make use of the symmetry
properties.

The GLYDT equation (3) has a unique symmetric solution if and only if
C = CT , and the eigenvalues λi of A − λE satisfy λiλ j 6= 1 for all i and j
(with the convention that 0 · ∞ = 1), or equivalently Sep[GLYDT] 6= 0. If C
is (semi)definite and |λi(A − λE)| < 1 for all i, then a unique (semi)definite
solution exists [Penzl 1998].
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Since all matrices are square, we only have one way of doing a recursive
splitting. We split A, E, and C by rows and columns:[

A11 A12

A22

] [
X 11 X 12

X 21 X 22

] AT
11

AT
12 AT

22

− [ E11 E12

E22

] [
X 11 X 12

X 21 X 22

] ET
11

ET
12 ET

22


=
[

C11 C12

C21 C22

]
.

Since X 21 = X T
12, the recursive splitting results in three triangular generalized

discrete-time Lyapunov equations:

A11 X 11 AT
11 − E11 X 11 ET

11 = C11 − A12 X T
12 AT

11 − (A11 X 12 + A12 X 22) AT
12

+E12 X T
12 ET

11 + (E11 X 12 + E12 X 22) ET
12,

A11 X 12 AT
22 − E11 X 12 ET

22 = C12 − A12 X 22 AT
22 + E12 X 22 ET

22,
A22 X 22 AT

22 − E22 X 22 ET
22 = C22.

We start by solving for X 22 in the third equation. After updating C12 with
respect to X 22, we can solve for X 12. Finally, after updating C11 with respect to
X 12 and X 22, we solve for X 11.

Four of the two-sided matrix product updates of C11 can be expressed as two
SYR2K operations:

C11 = C11 − (A11 X 12)AT
12 − A12(A11 X 12)T , and

C11 = C11 + (E11 X 12)ET
12 + E12(E11 X 12)T ,

where A11 X 12 and E11 X 12 are TRMM operations. The GEMM-rich updates

C11 = C11 − A12 X 22 AT
12 and C11 = C11 + E12 X 22 ET

12

are performed by the SLICOT MB01RD subroutine; see Section 4.1.
In Algorithm 2, a Matlab-style function [X ] = rtrglydt(A, E, C, blks) im-

plementing our recursive blocked solver is presented. The function [X ] =
trglydt(A, E, C) implements an algorithm for solving triangular generalized
discrete-time Lyapunov kernel problems. For solving the triangular general-
ized Sylvester equations that appear, we make use of the recursive algorithm
rtrgsyl, described in Section 3.1.

3.4 Recursive Triangular Discrete-Time Lyapunov Solvers

The real discrete-time Lyapunov (LYDT) or Stein matrix equation is obtained
by setting E = IN in (3). We get the equation

AXAT − X = C, (4)

where A is upper triangular or upper quasitriangular, that is, in real Schur
form. This equation is also the result of setting A = B in (2). If C is symmetric,
then X is symmetric as well, and the Stein matrix equation corresponds to the
discrete-time standard algebraic Lyapunov equation. The LYDT equation (4)
has a unique solution if and only if λiλ j 6= 1 for all i and j , or equivalently
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Algorithm 2: rtrglydt

Input: (A, E) (N ×N ) in upper generalized Schur form. C (N ×N ) dense matrix. blks, block size
that specifies when to switch to a standard algorithm for solving small-sized triangular
generalized Lyapunov equations.

Output: X (N × N ), the solution of AXAT −EXET = C. X is allowed to overwrite C, and is
symmetric if C = CT on entry.

function [X ] = rtrglydt(A, E, C, blks)
if 1 ≤ N ≤ blks then

X = trglydt(A, E, C);
elseif C is symmetric

% Split (A, E), and C (all by rows and columns)
X 22 = rtrglydt(A22, E22, C22, blks);
C12 = axb(−A12, X 22, AT

22, C12); C12 = axb(E12, X 22, ET
22, C12);

X 12 = rtrgsyl(A11, A22, E11, E22, C12, blks); X 21 = X T
12;

C11 = syr2k(trmm(A11, X 12),−A12, C11);
C11 = syr2k(trmm(E11, X 12), E12, C11);
C11 = axb(−A12, X 22, AT

12, C11); C11 = axb(E12, X 22, ET
12, C11);

X 11 = rtrglydt(A11, E11, C11, blks);
X = [X 11, X 12; X 21, X 22];

else
X = rtrgsyl(A, A, E, E, C, blks);

end

Algorithm 2. Recursive blocked algorithm for solving the triangular generalized discrete-time
Lyapunov equation.

Sep[LYDT] 6= 0. If C is (semi)definite and |λi| < 1 for all i, then a unique
(semi)definite solution exists [Hammarling 1982].

The template for the recursive splitting follows the one for the GLYDT equa-
tion. If C = CT , then X 21 = X T

12 and the recursive splitting leads to three
triangular matrix equations:

A11 X 11 AT
11 − X 11 = C11 − A12 X T

12 AT
11 − A11 X 12 AT

12 − A12 X 22 AT
12,

A11 X 12 AT
22 − X 12 = C12 − A12 X 22 AT

22,
A22 X 22 AT

22 − X 22 = C22.

The first and the third are standard Stein-type equations, while the second is
a triangular discrete-time Sylvester equation. The recursive blocked algorithm
is named rtrlydt.

3.5 Recursive Triangular Generalized Continuous-Time Lyapunov Solvers

Consider the real generalized continuous-time Lyapunov (GLYCT) matrix
equation

AXET + EXAT = C, (5)

where A and E of size N × N are upper quasitriangular and upper triangular,
respectively. If C is symmetric, then X is symmetric as well. We treat this case
as a special case of the generalized Sylvester equation with A = C, B = D, and
changing the sign in the GSYL equation (1). The right-hand side C and the so-
lution X are of size N×N , and typically, the solution overwrites the right-hand
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Table I. Complexity of Standard Algorithms
Measured in Flops

Matrix Equation Overall Cost in Flops
SYDT (2) 2M 2 N +MN2 (M ≤ N )

M 2 N + 2MN2 (M > N )
LYDT (4) 4

3 N3

GSYL (1) 4M 2 N + 2MN2 (M ≤ N )
2M 2 N + 4MN2 (M > N )

GLYCT (5) 8
3 N3

GLYDT (3) 8
3 N3

side (C← X ). By choosing E = IN in (5), we get the standard continuous-time
Lyapunov equation, which is covered in Jonsson and Kågström [2001].

The GLYCT equation (5) has a unique symmetric solution if and only if C =
CT , and all eigenvalues λi of A− λE are finite with λi + λ j 6= 0 for all i and j ,
or equivalently Sep[GLYCT] 6= 0. If C is (semi)definite and Reλi < 0 for all i,
then a unique (semi)definite solution exists [Penzl 1998].

Since X is symmetric, the recursive splitting results in two triangular
GLYCT equations and one GSYL equation:

A11 X 11 ET
11 + E11 X 11 AT

11 = C11 − A12 X T
12 ET

11 − (A11 X 12 + A12 X 22) ET
12

−E12 X T
12 AT

11 − (E11 X 12 + E12 X 22) AT
12,

A11 X 12 ET
22 + E11 X 12 AT

22 = C12 − A12 X 22 ET
22 − E12 X 22 AT

22,
A22 X 22 ET

22 + E22 X 22 AT
22 = C22.

We start by solving for X 22 in the third equation. After updating C12 with
respect to X 22, we can solve for X 12. Finally, after updating C11 with respect to
X 12 and X 22, we solve for X 11. We remark that the update of C11 includes two
SYR2K operations, namely,

C11 = C11 − (A11 X 12 + A12 X 22)ET
12 − E12(A11 X 12 + A12 X 22)T and

C11 = C11 − (E11 X 12)AT
12 − A12(E11 X 12)T ,

where A11 X 12 and E11 X 12 are TRMM operations and A12 X 22 is a GEMM
operation. The recursive blocked algorithm is called rtrglyct.

3.6 Number of Operations and Execution Order

In Table I, we summarize the complexity measured in floating point operations
(flops) of the standard elementwise explicit algorithms for solving two-sided
triangular matrix equations (e.g., see Bartels and Stewart [1972], Chu [1987],
Gardiner et al. [1992a], and Penzl [1998]). They are all based on backward or
forward substitutions with one or several right-hand sides. We remark that the
difference in flops between the two extreme cases (i.e., when all diagonal blocks
of the matrices in upper Schur form are of size 1× 1 or 2× 2, respectively) only
show up in the lower-order terms.
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Table II. Complexity of Recursive Blocked Algorithms Measured in Flops

Matrix Equation Overall Cost in Flops Flop Ratio (M = N )
SYDT (2) 6

4 M 2 N + 2MN2 (M ≤ N ) 1.1667
2M 2 N + 6

4 MN2 (M > N )
LYDT (4) 25

12 N3 1.5625
GSYL (1) 3M 2 N + 4MN2 (M ≤ N ) 1.1667

4M 2 N + 3MN2 (M > N )
GLYCT (5) 21

6 N3 1.3125
GLYDT (3) 25

6 N3 1.5625

Assuming 2N > M > N/2, the flopcounts of the recursive blocked algo-
rithms can be expressed in terms of the following recurrence formulas.

FSYDT(M , N ) = 4FSYDT(M/2, N/2)+ M 2N + 1
2

MN2, (6)

FLYDT(N ) = 2FLYDT(N/2)+ FSYDT(N/2, N/2)+ 7
8

N 3, (7)

FGSYL(M , N ) = 4FGSYL(M/2, N/2)+ 2M 2N + 3
2

MN2, (8)

FGLYCT(N ) = 2FGLYCT(N/2)+ FGSYL(N/2, N/2)+ 5
4

N 3, (9)

FGLYDT(N ) = 2FGLYDT(N/2)+ FGSYL(N/2, N/2)+ 7
4

N 3. (10)

These expressions correspond to the most general case when the recursive
splitting is by rows and by columns for all input matrices. We have collected
the cost for all two-sided matrix multiplications (including the SYR2K oper-
ations) of each recursive algorithm in the last term(s) of the recurrences. The
flopcounts take any triangular structure of the matrices in each two-sided
matrix product into account (see Section 4.1). Ignoring the lower-order terms,
it is straightforward to derive the expressions in Table II from Equations (6)
through (10), respectively.

Our recursive blocked algorithms require both extra workspace and more
flops compared to the standard elementwise algorithms. The extra workspace
is needed in the evaluation of the two-sided matrix multiplications (see
Section 4.1). In the third column of Table II, the ratios between the flopcounts
for the recursive blocked algorithms and the standard algorithms are listed.
Despite the quite large flops penalties of the recursive blocked algorithms, they
outperform the standard algorithms for large enough problems (see measured
performance results in Section 5). This fact is mainly due to the difference in
their data reference patterns, that is, the order in which they access data and
how many times the data are moved in the memory hierarchy of the target
computer system. The cost of redundant memory transfers can be devastating
to the algorithm performance.

4. DESIGN AND IMPLEMENTATION ISSUES

In Part I [Jonsson and Kågström 2002], we describe the three levels of triangu-
lar matrix equation solvers used in our implementations. Here, we recapitulate

ACM Transactions on Mathematical Software, Vol. 28, No. 4, December 2002.



Recursive Blocked Algorithms—Part II • 427

Algorithm 3: axb

Input: A (M × P ), X (P × Q), B (Q × N ) and C (M × N ).
Output: C (M × N ), the result of the matrix product C = C+AXB.

function [C] = axb(A, X , B, C)
if A, B dense then

C = gemm(A, gemm(X , B, ∅), C);
elseif A triangular, B dense

C = gemm(trmm(A, X ), B, C);
elseif A dense, B triangular

C = gemm(A, trmm(X , B), C);
elseif A triangular, B triangular

C = gemm(∅, ∅, trmm(A, trmm(X , B)));
end

Algorithm 3. Algorithm for computing a GEMM-rich matrix product.

the properties of these solvers. At the user level there are the recursive blocked
rtr* solvers. Each of them calls a tr* block or subsystem solver when the cur-
rent problem sizes (M and/or N ) from a recursive splitting are smaller than
a certain block size, blks. Finally, each of the block solvers calls a superscalar
kernel for solving matrix equations with M , N ≤ 4.

We also refer the reader to Part I for discussions on the impact and design of
the subsystem solvers and superscalar kernels, block sizes, BLAS implementa-
tions, and parallelization issues. In this section, the impact of the two-sidedness
of the matrix equations on the different routines is discussed.

4.1 Design of Optimized Two-Sided Matrix Product Kernels

The update of the right-hand side of the equations is done by the axb opera-
tion, that is, an optimized kernel which performs the two-sided matrix product
operation

C← βC + αop(A) Xop(B)T ,

where α and β are real scalars, and op(Y ) is Y or Y T . A and/or B can be dense
or triangular. Besides, one or several of the three matrices can be symmetric.
Unfortunately, these operations need extra workspace, which can be substantial
(typically the size of the current right-hand side).

For an outline version that implements the generic operation C = C + AXB
see Algorithm 3. Depending on the sizes of A, X , and B, we should perform
the matrix product as (op(A)X )op(B) or as op(A)(X op(B)). Here, it is important
that the BLAS implementation provide proper blocking for the cases which
lead to bad memory access patterns. If matrices are stored in column-major
order, the order (AT X )B might give a significantly better access pattern than
AT (XB). Also, A and/or B might be quasitrapezoidal and/or quasitriangular.
Examples of both cases are found in rtrgsyl, Algorithm 1. We also want to make
use of symmetry properties; for example, see rtrglydt, Algorithm 2, where
C← C − AXAT , X = X T , is computed.
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In our implementation, the costs of computing (op(A)X )op(B) ( f lops1A +
f lops1B) and op(A)(X op(B)) (f lops2A + f lops2B) are compared. The operation
that requires the least amount of flops is then chosen. Small trapezoidal ma-
trices are treated as dense matrices, as the performance gain from handling
the triangular and the rectangular parts separately is penalized by the extra
function call and matrix setup. Subroutine setup costs are minimized by the use
of our superscalar GEMM routine for problems that fit into the level-1 cache,
that is, problems solved by the tr* subsystem solvers. In the algorithm, this
is controlled by the parameter blks, the same parameter used in the recursive
algorithms to switch from the recursive blocked algorithms to the subsystem
solvers. In the implementation, fix-up code for handling any 2×2 diagonal blocks
of the quasitriangular matrices is implemented using level-1 BLAS routines.

For the symmetric case, C̃← C−AXAT , X = X T , and C = CT , the SLICOT
MB01RD subroutine is used [SLICOT 2001]. It reduces the complexity from
2M 3 to (3/2)M 3, by calculating the upper triangular part of the symmetric
matrix triu(C̃ ) = V + triu(B)+ stril(B)T + diag(V )+ diag(triu(B)), where B =
ATAT , T = triu(X )− 1

2 diag(X ), and V = triu(C)− 1
2 diag(C), and triu, stril, and

diag denote the upper triangular, the strictly lower triangular, and the diagonal
parts, respectively. The MB01RD routine is implemented using level-3 BLAS
routines and requires no workspace.

However, for some problems, the complexity can be lowered even more, at
the cost of extra workspace. In rtrglydt, Algorithm 2, the temporary result
W = A12 X 22 in the operation C12 = axb(−A12 X 22 AT

22) can be reused in the oper-
ation C11 = axb(−A12 X 22 AT

22), and analogously for the E matrix. Although this
triples the workspace needed, it lowers the overall complexity of the algorithm
from (25/6)N 3 to (23/6)N 3.

5. PERFORMANCE RESULTS OF RECURSIVE BLOCKED ALGORITHMS

The recursive blocked algorithms for solving two-sided triangular matrix equa-
tions have been implemented in Fortran 90, using the facilities for recursive
calls of subprograms, dynamic memory allocation, and threads. In this sec-
tion, sample performance results of these implementations executing on IBM
Power, MIPS, and Intel Pentium processor-based systems are presented. We
have selected a few processors representing different vendors and different
architecture characteristics and memory hierarchies. The details of the proces-
sors, memory subsystems, and operating systems are all described in Part I
[Jonsson and Kågström 2002]. The only difference from Part I is the Power3
machine, which is running at 375 MHz, giving each processor a theoretical peak
rate of 1500 Mflops/s. The performance results (measured in Mflops/s) are com-
puted using the flopcounts presented in Table I of Section 3.6. The results are
displayed in graphs and tables, where the performances of different variants
of the recursive blocked implementations are visualized together with existing
routines in the state-of-the-art SLICOT library [SLICOT 2001]. Moreover, the
relative performances (measured as speedup) between different algorithms in-
cluding sequential as well as parallel implementations are presented in tables.
Most of the results presented should be quite self-explanatory. Therefore, our
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Table III. Performance Results for Triangular Generalized Sylvester
Equation: IBM Power3 (Left) and Intel Pentium III (Right)a

IBM Power3 Intel Pentium III
Time (sec) Speedup Time (sec) Speedup

M = N A B/A C/A A B/A C/A
100 1.30e− 02 0.96 1.16 4.30e− 02 0.98 1.26
250 1.31e− 01 0.48 1.26 4.49e− 01 0.96 1.34
500 8.91e− 01 0.67 1.50 3.07e+ 00 0.96 1.38
1000 6.42e+ 00 1.05 1.91 2.18e+ 01 1.05 1.51
1500 2.13e+ 01 1.34 2.09 7.10e+ 01 1.09 1.54
2000 4.77e+ 01 1.48 2.16 1.60e+ 02 1.14 1.59

A – rtrgsyl
B – A+ linking with SMP BLAS
C – B+utilizing explicit // in the recursion tree

aLabels A–C represent different algorithms and implementations.

discussion is restricted to significant or unexpected differences between the
implementations executing on different computing platforms. For additional
performance results see Jonsson and Kågström [2001]. The accuracy of the re-
sults computed by our recursive blocked algorithms are overall very good and
similar to the accuracy obtained by the corresponding SLICOT routines. For
benchmark problems see Kressner et al. [1999a,b] and SLICOT [2001].

5.1 Triangular Generalized Sylvester Equation

In Table III, performance results for different algorithms and implementations,
executing on IBM Power3 and Intel Pentium III processor-based systems, for
solving the triangular generalized Sylvester equation are displayed. We have
not found any library or public software for solving triangular generalized
Sylvester equations, so the results presented here are for our recursive blocked
algorithms only.

5.2 Triangular Discrete-Time Sylvester Equation

In Figure 1, we show performance graphs for different algorithms and imple-
mentations, executing on IBM Power3 and Intel Pentium III processor-based
systems, for solving triangular discrete-time Sylvester equations.

The SLICOT SB04PY implements an explicit Bartels–Stewart solver and is
mainly a level-2 routine, which explains its poor performance behavior. Our
recursive blocked rtrsydt shows between a 2-fold and a 118-fold speedup with
respect to SLICOT SB04PY and an additional speedup up to 2.14 on a four-
processor Power3 node for large enough problems.

5.3 Triangular Discrete-Time Lyapunov Equation

In Figure 2, performance results for the triangular discrete-time Lyapunov
equation are presented, now using IBM PowerPC 604e and SGI MIPS R10000
processor-based systems. We compare our recursive blocked rtrlydt algorithm
with the SLICOT SB03MX routine, which mainly is a level-2 implementation
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Fig. 1. Performance results for the triangular discrete-time Sylvester equation (M = N ): IBM
Power3 (left) and Intel Pentium III (right).

as well. As expected, the relative behavior between the different algorithms
and implementations follows qualitatively that of the discrete-time Sylvester
equation. We remark that the speedup of rtrlydt with respect to the SLICOT
SB03MX is between 1.9 and 76 and an additional speedup of 2.6 on a four-
processor IBM PowerPC 604e node for large enough problems. The results for
the MIPS R10000 show between a 1.5-fold to over 28-fold speedup. Due to lack of
support for nested multithreading with OpenMP and incompatibilities between
pthreads and efficient SMP BLAS, we do not show any parallel performance
results for the MIPS processor.

5.4 Relative Performance of the Recursive Blocked Solvers

We have also investigated the relative performance between the recursive
blocked algorithms of the two-sided triangular matrix equations. In Table IV
(upper part), the relative performance of the solvers with respect to rtrsydt is
displayed. All timings are from using one IBM Power3 processor. In the lower
part, the ratios of the dominating terms of the flops counts in Table II are shown,
and we see that the time and flops ratios agree nicely. We remark that the flops
ratio of rtrglydt corresponds to the implemented algorithm, which has a lower
dominating factor than recorded in Table II (see Section 4.1).
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Fig. 2. Performance results for the triangular discrete-time Lyapunov equation: IBM PowerPC
604e (left) and SGI Onyx2 MIPS R10000 (right).

Table IV. Relative Performance Results for Recursive Blocked
Solvers

Time Time Relative to rtrsydt
N rtrsydt rtrlydt rtrgsyl rtrglydt rtrglyct
100 0.0075 0.68 1.77 1.22 0.99
250 0.0700 0.60 1.87 1.11 0.97
500 0.4607 0.60 1.93 1.09 0.99
1000 3.2667 0.60 1.96 1.10 1.00
1500 10.8120 0.60 1.97 1.09 1.00
2000 24.1414 0.61 1.98 1.10 1.01

Flops Flops Relative to rtrsydt
N rtrsydt rtrlydt rtrgsyl rtrglydt rtrglyct

3.5N3 0.60 2.0 1.10 (1.19) 1.0

5.5 Impact on Solving Unreduced Two-Sided Generalized Matrix Equations

As for the one-sided matrix equations, we have investigated the impact of the
choice of triangular matrix equation solver on the time to solve unreduced two-
sided matrix equations. Although the transformation of an unreduced matrix
equation to a triangular counterpart and the backtransformation of the solution
are normally operations at least as costly (measured in flops) as the triangular
solve, the impact of using our recursive triangular solvers can be substantial.
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Table V. (a) Total Execution Times for Solving an Unreduced Generalized Discrete-Time
Lyapunov Equation (Upper Part) and Computing an Estimate of Sep[GLYDT] (Lower Part)

for Two Different Triangular Generalized Lyapunov Solvers. Here, the Reduction to
Generalized Schur Form of (A, E) is Performed Using the LAPACK Routines DGGHRD and
DHGEQZ. (b) Corresponding Results Using Blocked Algorithms Described in Dackland and

Kågström [1999] for the Initial Condensing Operation on (A, E)

(a) SG03AD Using SG03AX SG03AD Using rtrglydt
N Total Time Solver Part (%) Total Time Solver Part (%) Speedup Job
50 0.0277 49.9 0.0185 20.1 1.50 X
100 0.180 51.2 0.0967 9.0 1.86 X
250 2.89 46.8 1.62 4.7 1.79 X
500 59.0 42.3 34.5 1.5 1.71 X
750 303.4 42.0 177.5 0.9 1.71 X
1000 646.6 44.6 361.8 1.0 1.79 X
50 0.117 87.6 0.0263 45.6 4.44 X+Sep
100 0.709 87.3 0.152 40.6 4.68 X+Sep
250 9.98 84.5 2.08 25.4 4.81 X+Sep
500 178.6 80.9 37.8 9.4 4.73 X+Sep
750 924.1 80.9 184.4 4.5 5.01 X+Sep
1000 2076.6 82.7 391.8 8.4 5.30 X+Sep

(b) SG03AD Using SG03AX SG03AD Using rtrglydt
N Total Time Solver Part (%) Total Time Solver Part (%) Speedup Job
50 0.0306 44.7 0.019 11.2 1.61 X
100 0.213 43.2 0.129 6.5 1.65 X
250 3.18 42.5 1.90 3.9 1.67 X
500 41.8 59.7 17.3 2.9 2.41 X
750 187.1 68.2 61.1 2.7 3.06 X
1000 428.9 67.2 144.1 2.5 2.98 X
50 0.120 85.4 0.0285 39.1 4.19 X+Sep
100 0.741 83.5 0.166 26.2 4.47 X+Sep
250 10.3 82.1 2.69 31.0 3.83 X+Sep
500 161.3 89.5 20.0 15.3 8.06 X+Sep
750 807.7 92.6 67.9 12.1 11.89 X+Sep
1000 1857.4 92.4 174.0 18.9 10.68 X+Sep

For illustration, we first use the SLICOT routine SG03AD which solves unre-
duced generalized discrete-time Lyapunov equations. SG03AD also has an op-
tion to compute an estimate of the separation Sep[GLYDT] (see Section 2).

In Table V(a), timings for the SG03AD routine are displayed for problem
sizes ranging from 50 to 1000 using two different triangular matrix equation
solvers. These solvers are SG03AX provided in SLICOT, which implements a
variant of the Bartels–Stewart method calling BLAS [Penzl 1998], and our
recursive blocked rtrglydt algorithm. In the second column, the total times
for solving an unreduced system with SG03AX as the triangular solver are
displayed. This includes the time for the generalized Schur factorization and
backtransformation of the solution. In the fourth and fifth columns, similar
results are displayed when SG03AX is replaced by the rtrglydt routine. We
see up to 90% speedup for the problem sizes considered. The numbers in the
lower part of Table V(a) also include the time for computing a 1-norm-based
estimate for Sep[GLYDT]. The condition estimation process includes repeated
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calls (typically five) to the generalized triangular solver, and as expected we see
a four- to fivefold speedup when using our recursive solver.

In Table V(b), the corresponding results are displayed when we have replaced
the LAPACK routines DGGHRD and DHGEQZ by Dackland–Kågström’s
blocked Hessenberg-triangular reduction and Q Z algorithms [Dackland and
Kågström 1999] for transforming the regular pair (A, E) to generalized Schur
form. For large enough problems, this gives another factor of two speedup.

We have also compared the routine SYLG [Gardiner et al. 1992a,b] which
implements a variant of the Hessenberg–Schur method [Golub et al. 1979]
for solving unreduced generalized Sylvester equations (1). Also for this ma-
trix equation, we see a substantial impact in using our recursive blocked algo-
rithm (almost a factor 3 speedup for N = 1000). For detailed results we refer to
Jonsson and Kågström [2001]. We remark that we only see small benefits (or
no benefits at all) in using our recursive algorithm for small problem sizes or
when M = 10N . This result is not due to the properties of the recursive solvers,
but rather to the properties of the Hessenberg–Schur method, where only one
of the matrices of A and D is reduced to Schur form, and the other is reduced
to Hessenberg form. The Hessenberg–Schur algorithm is best suited for cases
when MÀN or M¿N , when only the smaller of the matrix pairs is reduced
to upper quasitriangular Schur form.

6. SUMMARY AND SOME CONCLUSIONS

The performance results verify that our recursive approach is also very effi-
cient for solving two-sided triangular matrix equations on today’s hierarchical
memory computer systems. Despite the quite large flops penalties of the re-
cursive blocked algorithms they outperform the standard algorithms for large
enough problems. For example, solving discrete-time Sylvester and Lyapunov
equations with coefficient matrices of size 2000× 2000 takes approximately
one hour using current routines in the SLICOT [2001] library, and the solu-
tion times of our recursive blocked algorithms are less than one minute for the
same problems. This is partly due to the difference in the data reference pat-
terns of the algorithms. Our recursive blocked algorithms automatically match
the memory hierarchy of a target machine and provide good data locality. As
described in the Part I paper on one-sided matrix equations, we develop new
high-performance superscalar kernels for solving the remaining small-sized
triangular matrix equations and lightweight GEMM operations, which implies
that a larger part of the total execution time is spent in high-performance
GEMM operations. Also for the two-sided matrix equations we terminate the
recursion with blks= 4 without degrading performance, which in turn means
that the implementations are architecture-independent. Moreover, we have de-
veloped optimized two-sided matrix product kernels that take any symmetry
properties as well as any triangular or trapezoidal structure of the matrices
into account. In order to maximize the performance of these two-sided matrix
product operations (e.g., AXBT ), we make use of optimized level-3 BLAS, which
by default require some temporary storage. Altogether, this leads to simpler
and much faster algorithms for solving reduced as well as unreduced two-sided
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and generalized Sylvester and Lyapunov matrix equations and different associ-
ated condition estimation problems. Our intention is to make these algorithms
available in the SLICOT [2001] library. For additional references see Part I
[Jonsson and Kågström 2002].

The concept of recursion is very old. Our invention is new recursive blocked
algorithms for efficient solution of triangular one-sided (Part I) and two-
sided (Part II) matrix equations including new efficient matrix equation
kernel solvers. Our work extends earlier work on level-3 BLAS and matrix
factorizations.

Furthermore, we want to emphasize that developing a novel set of algorithms
for an interesting class of problems is a merit itself. However, in our opinion
the real merit comes first when it is proved in practice that the software imple-
mentations give a substantial performance boost without sacrificing accuracy
for not too ill-conditioned problems. Indeed, both these merits are attained by
our work presented in the Part I and II articles. Together they cover all com-
mon linear matrix equations. Moreover, since the triangular matrix equations
considered also appear as frequent subproblems in solving Riccati-type matrix
equations, we foresee a great impact of our work in control theory applications.
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