
Combining Explicit and Recursive Blocking
for Solving Triangular Sylvester-Type Matrix
Equations on Distributed Memory Platforms

Robert Granat, Isak Jonsson and Bo K̊agström

Department of Computing Science and HPC2N, Ume̊a University,
SE-901 87 Ume̊a, Sweden.

{granat,isak,bokg}@cs.umu.se

Abstract. Parallel ScaLAPACK-style hybrid algorithms for solving the
triangular continuous-time Sylvester (SYCT) equation AX − XB = C
using recursive blocked node solvers from the novel high-performance
library RECSY are presented. We compare our new hybrid algorithms
with parallel implementations based on the SYCT solver DTRSYL from
LAPACK. Experiments show that the RECSY solvers can significantly
improve on the serial as well as on the parallel performance if the problem
data is partitioned and distributed in an appropriate way. Examples
include cutting down the execution time by 47% and 34% when solving
large-scale problems using two different communication schemes in the
parallel algorithm and distributing the matrices with blocking factors
four times larger than normally. The recursive blocking is automatic for
solving subsystems of the global explicit blocked algorithm on the nodes.

Keywords: Sylvester matrix equation, continuous-time, Bartels–Stewart
method, blocking, GEMM-based, level 3 BLAS, LAPACK, ScaLAPACK-
style algorithms, RECSY, recursive algorithms, automatic blocking

1 Introduction

This contribution deals with parallel algorithms and software for the numerical solution
of the triangular continuous-time Sylvester equation (SYCT)

AX −XB = C, (1)

on distributed memory (DM) environments, where A of size m ×m, B of size n × n
and C of size m×n are arbitrary matrices with real entries. The matrices A and B are
in upper (quasi-)triangular Schur form. A quasi-triangular matrix is upper triangular
with some 2× 2 blocks on the diagonal that correspond to complex conjugate pairs of
eigenvalues. SYCT has a unique solution X of size m× n if and only if A and B have
disjoint spectra, or equivalently the separation sep(A, B) 6= 0. The Sylvester equation
appears naturally in several applications. Examples include block-diagonalization of a
matrix in Schur form and condition estimation of eigenvalue problems (e.g., see [17, 10,
19]).



Using the Kronecker product notation, ⊗ , we can rewrite the Sylvester equation
as a linear system of equations

ZSYCTx = c, (2)

where ZSYCT = In ⊗ A − BT ⊗ Im is a matrix of size mn × mn, x = vec(X) and
c = vec(C). As usual, vec(X) denotes an ordered stack of the columns of the matrix X
from left to right starting with the first column. Since A and B are (quasi-)triangular,
the triangular Sylvester equation can be solved to the cost O(m2n + mn2) using a
combined backward/forward substitution process [1]. In blocked algorithms, the explicit
Kronecker matrix representation Zx = c is used in kernels for solving small-sized matrix
equations (e.g., see [11, 12, 17]).

Our objective is to investigate the performance of our ScaLAPACK-style algorithms
for solving SYCT [7, 6] when combined with recursive blocked matrix equation solvers
from the recently developed high-performance library RECSY [11–13].

The rest of the paper is organized as follows; In Section 2, we review our ScaLAPACK-
style algorithms for solving SYCT. Then the RECSY library, which is used for building
the hybrid algorithms, is briefly presented in Section 3. In Section 4, we display and
compare some experimental results of the standard and hybrid ScaLAPACK-style al-
gorithms, respectively. Finally, in Section 5, we summarize our findings and outline
ongoing and future work.

2 Parallel ScaLAPACK-style algorithms for solving
SYCT using explicit blocking

To solve SYCT we transform it to triangular form, following the Bartels–Stewart
method [1], before applying a direct solver. This is done by means of a Hessenberg
reduction, followed by the QR-algorithm applied to both A and B. The right hand
side C must also be transformed with respect to the Schur decomposition of A and B.
Reliable and efficient algorithms for the reduction step can be found in LAPACK [2],
for the serial case, and in ScaLAPACK [9, 8, 3] for distributed memory environments.
Assuming that this reduction step has already been performed, we partition the matri-
ces A and B in SYCT using the blocking factors mb and nb, respectively. This implies
that mb is the row-block size and nb is the column-block size of the matrices C and
X (which overwrites C). By defining Da = dm/mbe and Db = dn/nbe, SYCT can be
rewritten in blocked form as

AiiXij −XijBjj = Cij − (

Da∑
k=i+1

AikXkj −
j−1∑
k=1

XikBkj), (3)

where i = 1, 2, . . . , Da and j = 1, 2, . . . , Db. The resulting serial blocked algorithm is
outlined in Figure 1 [17, 19].

We now assume that the matrices A, B and C are distributed using 2D block-cyclic
mapping across a Pr × Pc processor grid. We then traverse the matrix C/X along its
block diagonals from South-West to North-East, starting in the South-West corner.
To be able to compute Xij for different values of i and j, we need Aii and Bjj to
be held by the same process that holds Cij . We also need to have the blocks used
in the general matrix-multiply and add (GEMM) updates of Cij in the right place
at the right time. In general, this means we have to communicate for some blocks
during the solves and updates. This can be done “on demand” [7]. A brief outline of



for j=1, Db

for i=Da, 1, -1
{Solve the (i, j)th subsystem using a kernel solver}
AiiXij −XijBjj = Cij

for k=1, i− 1
{Update block column j of C}
Ckj = Ckj − AkiXij

end
for k=j + 1, Db

{Update block row i of C}
Cik = Cik + XijBjk

end
end

end

Fig. 1. Block algorithm for solving AX −XB = C, A and B in real Schur form.

a parallel algorithm PTRSYCTD that uses this approach is presented in Figure 2. The
matrices can also be shifted one step across the process mesh for every block diagonal
that we solve for [19, 6]. This brings all the blocks needed for the solves and updates
associated with the current block diagonal into the right place in one single global
communication operation. A brief outline of such a parallel algorithm is presented in
Figure 3. The “matrix-shifting” approach puts a restriction on the data distribution: the
last rows/columns of A and B must be mapped onto the last process row/column [19].
Both communication schemes have been implemented in the same routine PGESYCTD

[7, 6], which can solve four variants of SYCT with one or both of A and B replaced by
their transposes.

The parallel algorithms presented in Figures 2 and 3 both tend to give speedup of
O(
√

p), where p is the number of processors used in the parallel execution [19, 6, 7].

for k=1, the number of block diagonals in C
{Solve subsystems on current block diagonal in parallel}
if(mynode holds Cij)

if(mynode does not hold Aii and/or Bjj)
Communicate for Aii and/or Bjj

Solve for Xij in AiiXij −XijBij = Cij

Broadcast Xij to processors that need Xij for updates
elseif(mynode needs Xij)

Receive Xij

if(mynode does not hold block in A needed for updating block column j)
Communicate for requested block in A

Update block column j of C in parallel
if(mynode does not hold block in B needed for updating block row i)

Communicate for requested block in B
Update block row i of C in parallel

endif
end

Fig. 2. Parallel “communicate-on-demand” block algorithm for AX − XB = C, A and B in real
Schur form.

Notice that we are free to choose any kernel solver for the subsystems AiiXij −
XijBjj = Cij in the algorithms presented in Figures 1, 2 and 3. Here Aii and Bjj

are of size mb × mb and nb × nb, respectively, and C/X is of size mb × nb. The



for k=1, number of block diagonals in C
if(m = n) then

if(Pc 6= 1) Shift A East
if(Pr 6= 1) Shift B North

elseif(m < n) then
Shift A South-East
if(Pr 6= 1) Shift C South

else
Shift B North-West
if(Pc 6= 1) Shift C West

endif
{Solve subsystems on current block diagonal in parallel}
if(mynode holds Cij)

Solve for Xij in AiiXij −XijBij = Cij

Broadcast Xij to processors that need Xij for updates
elseif(mynode needs Xij)

Receive Xij

Update block column j of C in parallel
Update block row i of C in parallel

endif
end

Fig. 3. Parallel “matrix-shifting” block algorithm for AX −XB = C, A and B in real Schur form.

original implementation of the parallel algorithms used LAPACK’s DTRSYL as node
solver, which is essentially a level-2 BLAS algorithm. For more information about the
ScaLAPACK-style algorithms we refer to [19, 7, 6].

3 RECSY—using recursive blocked algorithms for
solving Sylvester-type subsystems

RECSY [13] is a high-performance library for solving triangular Sylvester-type matrix
equations, based on recursive blocked algorithms, which are rich in GEMM-operations
[4, 15, 16]. The recursive blocking is automatic and has the potential of matching the
memory hierarchies of today’s high-perfromance computing systems. RECSY com-
prises a set of Fortran 90 routines, all equipped with Fortran 77 interfaces and LA-
PACK/SLICOT wrappers, which solve 42 transpose and sign variants of eight common
Sylvester-type matrix equations. Table 1 lists the standard variants of these matrix
equations.

Table 1. The Sylvester-type matrix equations considered in the RECSY library. CT and DT denote
the continuous-time and discrete-time variants, respectively.

Name Matrix Equation
Standard Sylvester (CT) AX −XB = C

Standard Lyapunov (CT) AX + XAT = C

Standard Sylvester (DT) AXBT −X = C

Standard Lyapunov (DT) AXAT −X = C
Generalized Coupled Sylvester (AX − Y B, DX − Y E) = (C, F )

Generalized Sylvester AXBT − CXDT = E

Generalized Lyapunov (CT) AXET + EXAT = C

Generalized Lyapunov (DT) AXAT − EXET = C



Depending on the sizes of m and n, three alternatives for doing a recursive splitting
are considered [11, 13]. In Case 1 (1 ≤ n ≤ m/2), A is split by rows and columns, and
C by rows only. Similarly, in Case 2 (1 ≤ m ≤ n/2), B is split by rows and columns,
and C by columns only. Finally, in Case 3 (n/2 < m < 2n) both rows and columns of
the matrices A, B and C are split:

[
A11 A12

A22

][
X11 X12

X21 X22

]
−

[
X11 X12

X21 X22

][
B11 B12

B22

]
=

[
C11 C12

C21 C22

]
.

This recursive splitting results in the following four triangular SYCT equations:

A11X11 −X11B11 = C11 −A12X21,

A11X12 −X12B22 = C12 −A12X22 + X11B12,

A22X21 −X21B11 = C21,

A22X22 −X22B22 = C22 + X21B12.

First, X21 is solved for in the third equation. After updating C11 and C22 with respect
to X21, one can solve for X11 and X22. Both updates and the triangular Sylvester solves
are independent operations and can be executed concurrently. Finally, one updates C12

with respect to X11 and X22, and solves for X12. In practice, all four subsystems are
solved using the recursive blocked algorithm. If a splitting point (m/2 or n/2) appears
at a 2 × 2 diagonal block of A or B, the matrices are split just below this diagonal
block.

The recursive approach is natural to SMP-parallelize, which is implemented in
RECSY using OpenMP. The performance gain compared to standard algorithms is
remarkable, including 10-fold speedups, partly due to new superscalar kernels. The
software and documentation concerning RECSY is available for download [14]. For
details we also refer to the papers by Jonsson and K̊agström [11, 12].

4 Computational experiments

In this section, we compare measured performance results for the parallel algorithms
in Figures 2 and 3 solving SYCT using two different node solvers DTRSYL (from
LAPACK) and RECSYCT (from RECSY) in PGESYCTD. The test results are for dif-
ferent values of m = n and different process configurations Pr × Pc on the HPC2N
Super Linux Cluster seth. The cluster consists of 120 dual Athlon MP2000+ nodes
(1.667 GHz), where each node has 1–4 GB memory. The cluster is connected through
the Wolfkit3 SCI high-speed interconnect with a bandwidth of 667 Mbytes/second. The
network connects the nodes in a 3-dimensional torus organized as a 4×5×6 grid, where
each link is “one-way” directed. The theoretical peak system performance of seth is
800 Gflops/sec. The fraction ta/tw, where ta and tw denote the time for one flop and
the per-word transfer time, respectively, is approximately 0.025. Compared to other
more well-balanced systems, e.g., the HPC2N IBM SP system which has ta/tw = 0.11,
communication is almost a factor 10 more expensive on seth.

The results are displayed in Tables 2 and 3. The variables qs and qd are the ra-
tios between the execution times of PGESYCTD using the two different communication
schemes. These ratios are presented for both node solvers (LAPACK, RECSY). If a
ratio is larger than 1.0, the RECSY variant is the fastest, and represents the speedup
gain compared to the LAPACK variant.



Table 2. Timing results (in seconds) of PGESYCTD using different kernel solvers DTRSYL (LA-
PACK) and RECSYCT (RECSY) and different communication schemes “matrix-shifting” (S) and
“on-demand”(D). Here we use moderate-sized blocking factors mb = nb = 128.

.

LAPACK RECSY Ratios LAPACK RECSY Ratios
m = n Pr × Pc S D S D qs qd m = n Pr × Pc S D S D qs qd

2048 1× 1 18.0 18.1 16.0 15.9 1.12 1.12 6144 2× 2 573 215 528 200 1.08 1.08
2048 2× 1 25.3 15.1 26.5 13.6 0.95 1.11 6144 4× 2 277 156 276 148 1.00 1.05
2048 2× 2 20.9 9.8 20.2 8.4 1.04 1.16 6144 4× 4 160 112 160 103 1.00 1.09
2048 4× 2 11.8 8.2 11.5 6.8 1.03 1.21 6144 8× 4 74.2 73.0 73.4 62.3 1.01 1.17
2048 4× 4 7.6 6.8 7.5 5.5 1.01 1.24 6144 8× 8 68.9 65.2 68.4 59.5 1.01 1.09
2048 8× 4 4.6 5.4 5.0 4.1 0.91 1.32 8192 4× 2 662 359 651 347 1.02 1.03
2048 8× 8 4.4 4.6 4.0 3.8 1.10 1.21 8192 4× 4 369 247 367 231 1.01 1.07
4096 1× 1 134 134 125 126 1.07 1.07 8192 8× 4 172 152 169 133 1.02 1.14
4096 2× 1 198 111 196 106 1.01 1.05 8192 8× 8 153 136 152 127 1.00 1.08
4096 2× 2 159 66.1 156 62.7 1.02 1.05 10240 4× 4 742 462 714 442 1.04 1.04
4096 4× 2 84.9 50.1 84.8 45.9 1.00 1.09 10240 8× 4 362 272 336 245 1.08 1.11
4096 4× 4 50.1 38.1 49.1 33.8 1.02 1.13 10240 8× 8 302 247 301 234 1.00 1.06
4096 8× 4 23.8 26.7 22.3 21.8 1.07 1.23 12288 8× 4 559 441 556 406 1.01 1.08
4096 8× 8 23.3 23.6 22.8 20.8 1.02 1.14 12288 8× 8 490 405 488 385 1.00 1.05

Table 3. Timing results (in seconds) of PGESYCTD using different kernel solvers DTRSYL (LAPACK)
and RECSYCT (RECSY) and different communication schemes “matrix-shifting” (S) and “on-
demand” (D). Here we use large blocking factors mb = nb = 512. The sign ’–’ means that the
restriction on the data distribution imposed by the “matrix-shifting” scheme was not fulfilled (see
Section 2).

.

LAPACK RECSY Ratios LAPACK RECSY Ratios
m = n Pr × Pc S D S D qs qd m = n Pr × Pc S D S D qs qd

2048 1× 1 57.5 54.7 13.0 10.8 4.43 5.06 6144 2× 2 425 410 187 123 2.28 3.34
2048 2× 1 63.6 53.5 14.9 9.7 4.27 5.52 6144 4× 2 329 381 109 93.7 3.02 4.07
2048 2× 2 38.3 40.0 10.9 7.2 3.51 5.55 6144 4× 4 198 335 75.3 72.5 2.63 4.63
2048 4× 2 35.6 38.8 7.9 6.2 4.51 6.25 6144 8× 4 – 297 – 59.2 – 5.02
2048 4× 4 28.1 32.7 6.4 5.6 4.35 5.83 6144 8× 8 – 245 – 50.9 – 4.81
2048 8× 4 – – – – – – 8192 4× 2 580 707 247 202 2.35 3.51
2048 8× 8 – – – – – – 8192 4× 4 350 614 158 152 2.21 4.04
4096 1× 1 258 255 80.9 80.1 3.19 3.19 8192 8× 4 288 521 107 113 2.68 4.60
4096 2× 1 267 234 87.1 63.3 3.05 3.69 8192 8× 8 183 413 90.7 91.7 2.02 4.50
4096 2× 2 167 170 57.7 40.5 2.89 4.20 10240 4× 4 542 989 296 275 1.83 3.60
4096 4× 2 138 162 36.6 32.7 3.78 4.97 10240 8× 4 – 848 – 200 – 4.24
4096 4× 4 89.2 143 31.1 26.5 2.86 5.40 10240 8× 8 – 688 – 170 – 4.06
4096 8× 4 80.3 122 20.2 22.1 3.98 5.53 12288 8× 4 657 1220 311 314 2.11 3.89
4096 8× 8 55.7 95.4 17.1 17.1 3.26 5.57 12288 8× 8 406 971 257 256 1.58 3.80

Table 4. Ratios qbest and gain g = 1− q−1
best in percent between the best timing results from Tables

2 and 3 for PGESYCTD using different kernel solvers DTRSYL (LAPACK) and RECSYCT (RECSY)
and different communication schemes “matrix-shifting” (S) and “on-demand” (D).

Pr × Pc m = n qbest g(%) m = n qbest g(%) Pr × Pc m = n qbest g(%) Pr × Pc m = n qbest g(%)
1× 1 2048 1.67 40 4096 1.67 40 2× 2 6144 1.75 43 8× 4 8192 1.42 30
2× 1 2048 1.56 36 4096 1.75 43 4× 2 6144 1.66 40 8× 8 8192 1.50 33
2× 2 2048 1.36 26 4096 1.63 39 4× 4 6144 1.54 35 4× 4 10240 1.68 40
4× 2 2048 1.32 24 4096 1.53 35 8× 4 6144 1.23 19 8× 4 10240 1.36 26
4× 4 2048 1.24 19 4096 1.44 31 8× 8 6144 1.28 22 8× 8 10240 1.45 31
8× 4 2048 – – 4096 1.18 15 4× 2 8192 1.22 18 8× 4 12288 1.42 30
8× 8 2048 – – 4096 1.35 26 4× 4 8192 1.63 39 8× 8 12288 1.58 37

5 Discussion and conclusions

The results in Table 2 show that the RECSYCT solver decreases the execution time up
to 24% for moderate-sized block sizes mb = nb = 128 when “on-demand” communica-
tion is used, while the gain is only up to 9% for the “matrix-shifting” scheme. Note the



exceptions m = n = 2048 using a 2×1 and an 8×4 processor grid when PGESYCTD with
the LAPACK solver DTRSYL gives 5% and 9% shorter execution time, respectively.

From the results in Table 3, we conclude that the execution times for PGESYCTD

using RECSYCT decrease for larger block sizes (mb = nb = 512), while the execution
times for PGESYCTD using DTRSYL increase drastically compared to the results in Table
2.

In Table 4, we display the ratios of the shortest execution times of PGESYCTD using
DTRSYL and RECSYCT, respectively, and one of the two communication schemes
for a given processor grid and problem size. Overall the RECSYCT solver decreases
the execution times between 15% and 43% compared to DTRSYL. The best results
for RECSYCT are obtained when “on-demand” communication is used, while the best
results for DTRSYL are obtained for the “matrix-shifting” scheme.

In conclusion, PGESYCTD with the RECSYCT solver has a large impact on the per-
formance when mb and nb are several hundreds. Typically, PGESYCTD with the DTRSYL
solver is optimal for smaller block sizes. We also expect PGESYCTD with RECSYCT to
give less speedup compared to using DTRSYL, since a much faster node solver makes
overlapping of communication and computation harder. On the other hand, by the use
of larger block sizes, i.e., larger SYCT subsystems are solved on the nodes, we also get
less but larger messages to communicate, which may well compensate for the worse
communication-computation overlap.

Future work includes extending the comparisons to other parallel platforms, e.g.,
the HPC2N IBM SP system which has much less compute power but provides a
better “compute/communicate ratio”. Our aim is to construct a software package of
ScaLAPACK-style algorithms for solving all matrix equations listed in Table 1. The
implementations will build on standard node solvers from LAPACK and SLICOT [18,
20, 5], and recursive blocked solvers from RECSY. By using the LAPACK/SLICOT
wrappers provided in the RECSY library, the ScaLAPACK-style hybrid algorithms
come for free.

Acknowledgements

This research was conducted using the resources of the High Performance Computing
Center North (HPC2N).

Financial support has been provided by the Swedish Research Council under grant
VR 621-2001-3284 and by the Swedish Foundation for Strategic Research under grant
A3 02:128.

References

1. R.H. Bartels and G.W. Stewart Algorithm 432: Solution of the Equation AX +
XB = C, Comm. ACM, 15(9):820–826.

2. E. Anderson, Z. Bai, C. Bischof. J. Demmel, J. Dongarra, J. DuCroz, A. Green-
baum, S. Hammarling, A. McKenny, S. Ostrouchov and D. Sorensen. LAPACK
User’s Guide. Third Edition. SIAM Publications, 1999.

3. S. Blackford, J. Choi, A. Clearly, E. D’Azevedo, J. Demmel, I. Dhillon, J. Dongarra,
S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R.C. Whaley.
ScaLAPACK Users’ Guide. SIAM Publications, Philadelphia, 1997.



4. J. J. Dongarra, J. Du Croz, I. S. Duff, and S. Hammarling, A set of Level 3 Basic
Linear Algebra Subprograms, ACM Trans. Math. Soft., 16(1):1–17, 1990.

5. E. Elmroth, P. Johansson, B. K̊agström, and D. Kressner, A Web Computing
Environment for the SLICOT Library, In P. Van Dooren and S. Van Huffel, The
Third NICONET Workshop on Numerical Control Software, pp 53–61, 2001.

6. R. Granat, A Parallel ScaLAPACK-style Sylvester Solver, Master Thesis, UMNAD
435/03, Dept. Computing Science, Ume̊a University, Sweden, January, 2003.

7. R. Granat, B. K̊agström, P. Poromaa. Parallel ScaLAPACK-style Algorithms for
Solving Continous-Time Sylvester Matrix Equations, In H. Kosch et.al. (editors),
Euro-Par 2003 Parallel Processing, Lecture Notes in Computer Science, Springer-
Verlag, Vol. 2790, pages 800–809, 2003.

8. G. Henry and R. Van de Geijn. Parallelizing the QR Algorithm for the Unsym-
metric Algebraic Eigenvalue Problem: Myths and Reality. SIAM J. Sci. Com-
put. 17:870–883, 1997.

9. G. Henry, D. Watkins, and J. Dongarra. A Parallel Implementation of the Non-
symmetric QR Algorithm for Distributed Memory Architectures. Technical Report
CS-97-352 and Lapack Working Note 121, University of Tennessee, 1997.

10. N.J. Higham. Perturbation Theory and Backward Error for AX −XB = C, BIT,
33:124–136, 1993.

11. I. Jonsson and B. K̊agström. Recursive Blocked Algorithms for Solving Triangu-
lar Matrix Equations—Part I: One-Sided and Coupled Sylvester-Type Equations,
ACM Trans. Math. Software, Vol. 28, No. 4, pp 393–415, 2002.

12. I. Jonsson and B. K̊agström. Recursive Blocked Algorithms for Solving Triangular
Matrix Equations—Part II: Two-Sided and Generalized Sylvester and Lyapunov
Equations, ACM Trans. Math. Software, Vol. 28, No. 4, pp 416–435, 2002.

13. I. Jonsson and B. K̊agström. RECSY - A High Performance Library for Solving
Sylvester-Type Matrix Equations, In H. Kosch et.al. (editors), Euro-Par 2003
Parallel Processing, Lecture Notes in Computer Science, Springer-Verlag, Vol.
2790, pages 810–819, 2003.

14. I. Jonsson and B. K̊agström. RECSY — A High Performance Library for Sylvester-
Type Matrix Equations. www.cs.umu.se/research/parallel/recsy, 2003.

15. B. K̊agström, P. Ling, and C. Van Loan. GEMM-based level 3 BLAS: High-
performance model implementations and performance evaluation benchmark.
ACM Trans. Math. Software, 24(3):268–302, 1998.

16. B. K̊agström, P. Ling, and C. Van Loan. GEMM-based level 3 BLAS: Portability
and optimization issues. ACM Trans. Math. Software, 24(3):303–316, 1998.

17. B. K̊agström and P. Poromaa. Distributed and shared memory block algorithms
for the triangular Sylvester equation with Sep−1 estimators, SIAM J. Matrix Anal.
Appl., 13 (1992), pp. 99–101.

18. NICONET Task II: Model Reduction, website:
www.win.tue.nl/niconet/NIC2/NICtask2.html

19. P. Poromaa. Parallel Algorithms for Triangular Sylvester Equations: Design,
Scheduling and Scalability Issues. In K̊agström et al. (eds), Applied Parallel Com-
puting. Large Scale Scientific and Industrial Problems, Lecture Notes in Computer
Science, Vol. 1541, pp 438–446, Springer-Verlag, 1998.

20. SLICOT library in the Numerics in Control Network (NICONET), website:
www.win.tue.nl/niconet/index.html


