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Abstract. Cover relations for orbits and bundles of controllability and observability pairs
associated with linear time-invariant systems are derived. The cover relations are combinatorial
rules acting on integer sequences, each representing a subset of the Jordan and singular Kronecker
structures of the corresponding system pencil. By representing these integer sequences as coin piles,
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which satisfy and preserve certain monotonicity properties. The stratification theory is illustrated
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examples, nearby uncontrollable systems are identified as subsets of the complete closure hierarchy
for the associated system pencils.
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1. Introduction. Computing the canonical structure of a linear time-invariant
(LTI) system, ẋ(t) = Ax(t) + Bu(t) with states x(t) and inputs u(t), is an ill-posed
problem, i.e., small changes in the input data matrices A and B may drastically change
the computed canonical structure of the associated system pencil

[
A− λI B

]
(e.g.,

see [13]). Besides knowing the canonical structure, it is equally important to be able
to identify nearby canonical structures in order to explain the behavior and possibly
determining the robustness of a state-space system under small perturbations. For
example, a state-space system which is found to be controllable may be very close to
an uncontrollable one, and can therefore by only a small change in some data, e.g.,
due to round-off or measurement errors, become uncontrollable. If the LTI system
considered and all nearby systems in a given neighborhood are controllable, the system
is called robustly controllable (e.g., see [46]).

The qualitative information about nearby linear systems is revealed by the theory
of stratification for the corresponding system pencil. A stratification shows which
canonical structures are near to each other (in the sense of small perturbations) and
their relation to other structures, i.e., the theory reveals the closure hierarchy of orbits
and bundles of canonical structures. A cover relation guarantees that two canonical
structures are nearest neighbours in the closure hierarchy.

For square matrices, Arnold [1] examined nearby structures by small perturba-
tions using versal deformations. For matrix pencils, Elmroth and K̊agström [23] first
investigated the set of 2-by-3 matrix pencils and later extended the theory, in col-
laboration with Edelman, to general matrices and matrix pencils [17, 18]. In line
of this work, the theory has further been developed in [21], and for matrix pairs
in [20, 42]. Several other people have worked on the theory of stratifications and
similar topics, and we refer to [2, 27, 31, 35, 49] and references there in. Further-
more, the related topic distance to uncontrollability has recently been studied in, e.g.,
[6, 22, 30, 33, 34, 46].

In this paper, we derive the cover relations for independent controllability and

∗ALSO AS REPORT UMINF 08-03
†Department of Computing Science, Ume̊a University, Sweden. {elmroth, stefanj,

bokg}@cs.umu.se. Financial support has been provided by the Swedish Foundation for Strategic
Research under the frame program grant A3 02:128.

1



observability pairs associated with LTI systems. These relations are combinatorial
rules acting on integer sequences, each representing a subset of the Jordan and sin-
gular Kronecker structures (canonical form) of the corresponding system pencil. By
following [17, 18], and representing these integer sequences as coin piles, the derived
stratification rules are expressed as simple coin moves between and within these piles.
Besides, only coin moves that satisfy and preserve certain monotonicity properties of
the integer sequences are valid moves.

Before we go into further details, we outline the contents of the rest of the paper.
In Section 2, some linear systems background, including matrix pencil representa-
tions, are presented. In addition, a subsection introduces minimum coin moves for
piles of coins representing integer partitions that frequently appear in the covering
rules. Section 3 gives a concise presentation of the Kronecker canonical form (KCF) of
a general matrix pencil and its invariants, as well as the Brunovsky canonical form for
various system pencils. In Section 4, system pencils for matrix pairs are considered.
Concepts introduced include orbits and bundles for controllability and observability
pairs, matrix representations for associated tangent spaces, and their codimensions
expressed in terms of the KCF invariants. Equipped with all these concepts and no-
tation, Section 5 is devoted to the stratification theory, focusing on the derivation
of cover relations for matrix pair orbits and bundles. In Section 6, we illustrate the
stratification theory by considering two examples from systems and control applica-
tions, a mechanical system consisting of a thin uniform platform supported at both
ends by springs [44], and a linearized Boeing 747 model [51]. For both examples, we
identify nearby uncontrollable systems as subsets of the complete closure hierarchy
for the associated system pencils.

Following [23, 18], we present stratifications as graphs where each node represents
an orbit or a bundle of a canonical structure and an edge represents a covering relation.
A graph is organized with the most generic structure(s) at the top and other structures
further down, ordered by increasing degeneracy (increasing codimension). Figure 1.1
illustrates how to interpret such a graph, assuming that each node represents the orbit
of some canonical structure.

a

b

c d

e

f

Fig. 1.1. A graph presenting a hypothetical closure hierarchy, where letters (a – f) represent
some canonical structures, the nodes represent orbits of these structures, and the edges represent
covering relations.

The topmost node shows the structure denoted a as the most generic structure.
The edge to the node b illustrates that a covers b, i.e., the orbit of b is in the closure
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of that of a and there are no other structures between them in the closure hierarchy.
Notably, all structures in the closure of b are also in the closure of a, although there are
no covering relations between a and these structures since b appears between them in
the hierarchy. Continuing downwards, b covers both c and d and there is no covering
relation between c and d. Further down, the orbit of e is in the closure of that of
d but not in the closure of c’s orbit. The most degenerate structure is f , which is
covered by both c and e, actually showing that f ’s orbit is in the intersection of the
orbits of c and e. In this example, f is the most degenerate structure, whose orbit is
in the closure of all other orbits.

In Section 6, we make use of this type of graphs to illustrate closure hierarchies.
The graphs presented are generated with StratiGraph [21, 38, 40, 41], which is a
software tool for determining and presenting closure hierarchies based on the theory
in [17, 18, 42]. The current version of StratiGraph (v. 2.1) has support for stratification
of matrices, matrix pencils, and controllability and observability pairs. The theory of
the latter is presented and illustrated in this paper.

2. Background and notation. A linear time-invariant, finite dimensional sys-
tem (LTI system) is in continuous time represented as a state-space model by a system
of the differential equations

ẋ(t) = Ax(t) +Bu(t),
y(t) = Cx(t) +Du(t),

(2.1)

where A ∈ Cn×n, B ∈ Cn×m, C ∈ Cp×n and D ∈ Cp×m. Such a state-space system
is in short form represented by the quadruple of matrices (A,B,C,D).

System (2.1) is said to be controllable if there exists an input signal u(t), t0 ≤ t ≤
tf , that takes every state variable from an initial state x(t0) to a desired final state
x(tf) in finite time. Otherwise it is said to be uncontrollable. The dual concept of
controllability is observability. System (2.1) is said to be observable if it is possible
to find the initial state x(t0) from the input signal u(t) and the output signal y(t)
measured over a finite interval t0 ≤ t ≤ tf . Otherwise it is said to be unobservable.

The controllability and observability of a system only depend on the matrix pairs
(A,B) and (A,C), respectively, associated with the particular systems

ẋ(t) = Ax(t) +Bu(t), and
ẋ(t) = Ax(t),
y(t) = Cx(t),

of (2.1). The matrix pairs (A,B) and (A,C) are referred to as the controllability and
observability pairs, respectively.

2.1. The pencil representation. The set of matrices of the form G − λH with
λ ∈ C corresponds to a general matrix pencil, where the two complex matrices G and
H are of size mp × np. Notice that all matrix pencils where mp 6= np are singular,
which is the case in most control applications.

A state-space system (2.1) can also be represented and analyzed in terms of a
matrix pencil, which in this special form is called a system pencil, S(λ). In contrary
to a general matrix pencil, a system pencil emphasizes the structure of the system.
The associated system pencil for the state-space system (2.1) is

S(λ) = G − λH =
[
A B
C D

]
− λ

[
In 0
0 0

]
, (2.2)
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where G and H are of size (n + p) × (n + m) and consequently mp = n + p and
np = n+m. The corresponding system pencils for the controllability and observability
pairs are

SC(λ) =
[
A B

]
− λ

[
In 0

]
, and SO(λ) =

[
A
C

]
− λ

[
In
0

]
.

2.2. Integer partitions and coins. We give a brief introduction to integer
partitions and minimum coin moves, which are used to represent the invariants of the
matrix and system pencils and to define the stratification rules.

An integer partition κ = (κ1, κ2, . . .) of an integer K is a monotonically decreasing
sequence of integers (κ1 ≥ κ2 ≥ · · · ≥ 0) where κ1 +κ2 + · · · = K. We denote the sum
κ1 + κ2 + · · · as

∑
κ. The union τ = (τ1, τ2, . . .) of two integer partitions κ and ν is

defined as τ = κ ∪ ν where τ1 ≥ τ2 ≥ · · · . The difference τ of two integer partitions
κ and ν is defined as τ = κ \ ν, where τ includes the elements from κ except elements
existing in both κ and ν, which are removed. Furthermore, the conjugate partition of
κ is defined as ν = conj(κ), where νi is equal to the number of integers in κ that is
equal or greater than i, for i = 1, 2, . . .

If ν is an integer partition, not necessarily of the same integer K as κ, and
κ1 + · · · + κi ≥ ν1 + · · · + νi for i = 1, 2, . . ., then κ ≥ ν. When κ ≥ ν and κ 6= ν
then κ > ν. If κ, ν and τ are integer partitions of the same integer K and there does
not exist any τ such that κ > τ > ν where κ > ν, then κ covers ν. It follows that κ
covers ν if and only if κ > ν and conj(κ) < conj(ν). A weaker definition of cover is
adjacent [11, 35], where κ and ν can be partitions of different integers. We say that
κ > ν are adjacent partitions if either κ covers ν or if κ = ν ∪ (1).

An integer partition κ = (κ1, . . . , κn) can also be represented by n piles of coins,
where the first pile has κ1 coins, the second κ2 coins and so on. An integer partition
κ covers ν if ν can be obtained from κ by moving one coin one column rightward or
one row downward, and keep κ monotonically decreasing. Or equivalently, an integer
partition κ is covered by τ if τ can be obtained from κ by moving one coin one column
leftward or one row upward, and keep κ monotonically decreasing. These two types of
coin moves are defined in [18] and called minimum rightward and minimum leftward
coin moves, respectively (see Figure 2.1).

Fig. 2.1. Minimum rightward and leftward coin moves illustrate that κ = (3, 2, 2, 1) covers
ν = (3, 2, 1, 1, 1) and κ = (3, 2, 2, 1) is covered by τ = (3, 3, 1, 1).

3. Canonical forms and invariants. In the following, we introduce the Kro-
necker canonical form (KCF) of a general matrix pencil and its invariants in terms of
integer sequences, as well as the Brunovsky canonical form for various system pencils.

3.1. Kronecker canonical form. Any general mp × np matrix pencil G − λH
can be transformed into Kronecker canonical form (KCF) in terms of an equivalence
transformation with two nonsingular matrices U and V [26]:

U(G − λH)V −1

= diag(Lε1 , . . . , Lεr0 , J(µ1), . . . , J(µq), Ns1 , . . . , Nsg∞
, LTη1 , . . . , L

T
ηl0

),
(3.1)
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where J(µi) = diag(Jh1(µi), . . . , Jhgi
(µi)), i = 1, . . . , q. The blocks Jhk

(µi) are hk×hk
Jordan blocks associated with each distinct finite eigenvalue µi and the blocks Nsk

are
sk×sk Jordan blocks for matrix pencils associated with the infinite eigenvalue. These
two types of blocks constitute the regular part of a matrix pencil and are defined by

Jhk
(µi) =

µi−λ 1
. . . . . .
µi−λ 1

µi−λ

 , and Nsk
=

1 −λ
. . . . . .

1 −λ
1

 .
If mr 6= nc or det(G − λH) ≡ 0 for all λ ∈ C, then r0 ≥ 1 and/or l0 ≥ 1 and

the matrix pencil also includes a singular part which consists of the r0 right singular
blocks Lεk of size εk× (εk+1) and the l0 left singular blocks LTηk

of size (ηk+1)×ηk:

Lεk =
[−λ 1. . . . . .

−λ 1

]
, and LTηk

=

−λ1 . . .. . . −λ
1

 .
L0 and LT0 blocks are of size 0×1 and 1×0, respectively, and each of them contributes
with a column or row of zeros.

In general, a block diagonal matrix A = diag(A1, A2, . . . , Aq) with q blocks can
also be represented as a direct sum

A ≡ A1 ⊕A2 ⊕ · · · ⊕Aq ≡
q⊕

k=1

Ak.

Using this notation, the KCF (3.1) can compactly be rewritten as

U(G − λH)V −1 ≡ L⊕ LT ⊕ J(µ1)⊕ · · · ⊕ J(µq)⊕ N,

where

L =
r0⊕
k=1

Lεk , LT =
l0⊕
k=1

LTηk
, J(µi) =

gi⊕
k=1

Jhk
(µi), and N =

g∞⊕
k=1

Nsk
.

Without loss of generality, we order the blocks of the KCF in the direct sum notation
so that the singular blocks (L and LT ) appear first.

3.2. Invariants of matrix pencils. The matrix pencil characteristics can
equivalently be expressed in terms of column/row minimal indices and finite/infinite
elementary divisors. Two matrix pencils are strictly equivalent if and only if they
have the same minimal indices and elementary divisors or, equivalently, if they have
the same KCF, i.e., the same L, LT , J and N blocks.

The four invariants are defined as follows [26]:
(i) The column (right) minimal indices are ε = (ε1, . . . , εr0), where ε1 ≥ ε2 ≥

· · · ≥ εr1 > εr1+1 = · · · = εr0 = 0 define the sizes of the Lεk blocks, εk × (εk + 1).
From the conjugate partition (r1, . . . , rε1 , 0, . . .) of ε we define the integer partition
R(G − λH) = (r0) ∪ (r1, . . . , rε1).

(ii) The row (left) minimal indices are η = (η1, . . . , ηl0), where η1 ≥ η2 ≥ · · · ≥
ηl1 > ηl1+1 = · · · = ηl0 = 0 define the sizes of the LTηk

blocks, (ηk + 1)× ηk. From the
conjugate partition (l1, . . . , lη1 , 0, . . .) of η we define the integer partition L(G − λH) =
(l0) ∪ (l1, . . . , lη1).
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(iii) The finite elementary divisors are of the form (λ − µi)h
(i)
1 , . . . , (λ − µi)h

(i)
gi ,

with h
(i)
1 ≥ · · · ≥ h

(i)
gi ≥ 1 for each of the q distinct finite eigenvalue µi, i = 1, . . . , q.

Here, gi is the geometric multiplicity of µi and the sum of all h(i)
k for k = 1, . . . , gi

is the algebraic multiplicity of µi. For each distinct eigenvalue µi we introduce the
integer partition hµi = (h(i)

1 , . . . , h
(i)
gi ) which is known as the Segre characteristics.

These characteristics correspond to the sizes h(i)
k × h

(i)
k of the Jhk

(µi) blocks (the
largest first). The conjugate partition J µi

(G − λH) = (j1, j2, . . .) of hµi
, is the Weyr

characteristics of µi.
(iv) The infinite elementary divisors are of the form ρs1 , ρs2 , . . . , ρsg∞ , with s1 ≥

· · · ≥ sg∞ ≥ 1, where g∞ is the geometric multiplicity of the infinite eigenvalue and
the sum of all sk for k = 1, . . . , g∞ is the algebraic multiplicity. Similarly to case
(iii), the integer partition s = (s1, . . . , sg∞) is the Segre characteristics for the infinite
eigenvalue, which correspond to the sizes sk × sk of the Nsk

blocks. The conjugate
partition N (G − λH) = (n1, n2, . . .) of s, is the Weyr characteristics of the infinite
eigenvalue.

When it is clear from context, we use the abbreviated notation R, L, J , and N ,
for the above defined integer partitions corresponding to the right and left singular
structures, and the Jordan structures of the finite and infinite eigenvalues, respectively.
In the following, these integer partitions are referred to as structure integer partitions.

3.3. Brunovsky canonical form. When considering canonical forms of the
system pencils SC(λ) and SO(λ) associated with pairs of matrices, we are (mainly)
interested in canonical forms obtained from structure-preserving equivalence trans-
formations. One such example is the Brunovsky canonical form. This canonical form
explicitly reveals the system characteristics from the system pencils. This is in con-
trast to the KCF, which destroys the special block structure of SC(λ) and SO(λ),
respectively, and only implicitly gives the system characteristics. Canonical and con-
densed forms for generalized matrix pairs appearing in descriptor systems [5, 43] are
out of the scope of this paper.

Given a controllability pair (A,B) there exists a feedback equivalent (also known
as Γ-equivalent or block similar) matrix pair (AB , BB) in Brunovsky canonical form
(BCF) [4, 28, 31], such that

P
[
A− λIn B

] [P−1 0
R Q−1

]
=
[
AB − λIn BB

]
=
[
Aε 0 Bε
0 Aµ 0

]
, (3.2)

where Aε = diag(Jε1(0), . . . , Jεr1 (0)), Aµ = diag(J(µ1), . . . , J(µq)), and Bε =
diag(eε1 , . . . , eεr0 ). The transformation matrices P ∈ Cn×n and Q ∈ Cm×m are
nonsingular and R ∈ Cm×n. Each block J(µi) in Aµ is block diagonal with the Jor-
dan blocks for the specified finite eigenvalue µi. Jεi(0) are Jordan blocks for the zero
eigenvalue and ei = [0, . . . , 0, 1]T ∈ Ci×1. Moreover, the matrix pair (Aε, Bε) is con-
trollable and corresponds to the L blocks in the KCF of SC(λ). If rank(SC(λ)) < n
for some λ ∈ C then (A,B) is uncontrollable and there exists a regular pencil Aµ
whose eigenvalues correspond to the uncontrollable eigenvalues (modes).

The dual form of BCF for the observability pair (A,C) is

[
P S
0 T

] [
A− λIn

C

]
P−1 =

[
AB − λIn

CB

]
=

 Aη 0
0 Aµ
Cη 0

 , (3.3)
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where Aη = diag(Jη1(0), . . . , Jηl1
(0)), Aµ = diag(J(µ1), . . . , J(µq)), and Cη =

diag(eTη1 , . . . , e
T
ηl0

). The transformation matrices P ∈ Cn×n and T ∈ Cp×p are non-
singular and S ∈ Cn×p. The matrix pair (Aη, Cη) is observable and corresponds to
the LT blocks. If rank(SO(λ)) < n for some λ ∈ C then (A,C) is unobservable and
there exists a regular pencil Aµ whose eigenvalues correspond to the unobservable
eigenvalues (modes).

Some of the system characteristics that the BCF directly reveals are: (A,B)
has exactly m L blocks, one for each column in Bε, and m − rank(BB) L0 blocks.
Likewise, (A,C) has exactly p LT blocks, one for each row in Cη, and p− rank(CB)
LT0 blocks. Since εr1+1 = . . . = εr0 = 0, the column vectors eεr1+1 , . . . , eεr0 are 0 × 1
and correspond to the L0 blocks; rank(B) = m−#(L0 blocks). For each L0 block one
input signal uk(t) can be removed without loosing controllability of (Aε, Bε). Likewise,
the row vectors eTηl1+1

, . . . , eTηl0
are 1× 0 and correspond to the LT0 blocks, where for

each LT0 block one output signal yk(t) can be removed without loosing observability
of (Aη, Cη).

4. The system pencil space. An n × (n + m) controllability pair (A,B) has
n2 + nm free elements and therefore belongs to an (n2 + nm)-dimensional (system
pencil) space, one dimension for each parameter. A controllability pair (A,B) can be
seen as a point in the (n2+nm)-dimensional space, and the union of equivalent matrix
pairs as a manifold in this space [17, 18]. Similarly, the (n+ p)× n observability pair
(A,C) is a point in an (n2 + np)-dimensional system pencil space. We say that the
matrix pair “lives” in the space spanned by the manifold, and the dimension of the
manifold is given from the number of parameters of the matrix pair, where each fixed
parameter gives one less degree of freedom. The dimension of the complementary
space to the manifold is called the codimension.

The orbit of a matrix pair, O(A,B) or O(A,C), is a manifold of all equivalent
matrix pairs, i.e., manifolds in the (n2 + nm)-dimensional and (n2 + np)-dimensional
spaces, respectively. In the following, when something holds for both (A,B) and
(A,C) we denote the matrix pairs with (∗), e.g., O(∗). Throughout this paper we
only consider orbits under feedback equivalence [4, 31], which for the controllability
pairs is defined as

O(A,B) =
{
P
[
A− λI B

] [P−1 0
R Q−1

]
: det(P ) · det(Q) 6= 0

}
,

and for observability pairs as

O(A,C) =
{[
P S
0 T

] [
A− λI
C

]
P−1 : det(P ) · det(T ) 6= 0

}
.

In other words, all matrix pairs in the same orbit have the same canonical form, with
the eigenvalues and the sizes of the Jordan blocks fixed. A bundle defines the union of
all orbits with the same canonical form but with the eigenvalues unspecified,

⋃
µi
O(∗)

[1]. We denote the bundle of a matrix pair by B(∗).
The dimension of the space O(A,B) is equal to the dimension of the tangent

space to O(A,B) at (A,B), denoted by tan(A,B). Similar definitions hold for the
matrix pair (A,C). The tangent spaces tan(A,B) and tan(A,C) can be represented
in matrix form as [

TA TB
]

= X
[
A B

]
+
[
A B

] [−X 0
V W

]
,
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and [
TA
TC

]
=
[
X Y
0 Z

] [
A
C

]
+
[
A
C

] [
−X

]
,

respectively, where X, Y, Z, V and W are matrices of conforming sizes [7].
Using the technique in [17], the tangent vectors

[
TA TB

]
can be expressed in

terms of the vec-operator and Kronecker products (see also [7]):

[
vec(TA)
vec(TB)

]
= T(A,B)

vec(X)
vec(V )
vec(W )

 ,
where tan(A,B) is the range of the (n2 + nm)× (n2 + nm+m2) matrix

T(A,B) =
[
AT ⊗ In − In ⊗A In ⊗B 0

BT ⊗ In 0 Im ⊗B

]
. (4.1)

Similarly, tan(A,C) is the range of the (n2 + np)× (n2 + np+ p2) matrix

T(A,C) =
[
AT ⊗ In − In ⊗A CT ⊗ In 0
−In ⊗ C 0 CT ⊗ Ip

]
, where (4.2)

[
vec(TA)
vec(TC)

]
= T(A,C)

vec(X)
vec(Y )
vec(Z)

 .
The orthogonal complement of the tangent space is the normal space, nor(∗). The

dimension of the normal space is called the codimension of O(∗) [12, 52], denoted by
cod(∗). Together, the tangent and the normal spaces span the complete (n2 + nm)-
dimensional space for (A,B) and the complete (n2+np)-dimensional space for (A,C).

Knowing the canonical structure, the explicit expression for the codimension of
the controllability pair (A,B) is derived in [24], see also [25]. By rewriting the result,
it is obvious that the computation of the codimension of (A,B) can be done using
parts of the expression for matrix pencils [12]. The codimension of the observability
pair (A,C) is easily derived by its duality to (A,B). In summary, the codimension of
the orbit of a controllability pair (A,B), with the column minimal indices ε1, . . . , εr0
and the finite elementary divisors h(i)

1 , . . . , h
(i)
gi for each distinct eigenvalue µi, is

cod(A,B) = cRight + cJor + cJor,Right, (4.3)

where

cRight =
∑
εk>εl

(εk − εl − 1), cJor =
q∑
i=1

gi∑
k=1

(2k − 1)h(i)
k , and cJor,Right = r0

q∑
i=1

gi∑
k=1

h
(i)
k .

The codimension of the orbit of a observability pair (A,C), with the row minimal
indices η1, . . . , ηl0 and the finite elementary divisors h(i)

1 , . . . , h
(i)
gi for each distinct

eigenvalue µi, is

cod(A,C) = cLeft + cJor + cJor,Left, (4.4)
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where

cLeft =
∑
ηk>ηl

(ηk − ηl − 1), cJor =
q∑
i=1

gi∑
k=1

(2k − 1)h(i)
k , and cJor,Left = l0

q∑
i=1

gi∑
k=1

h
(i)
k .

Eigenvalues make no contribution to the codimension in the bundle case. There-
fore, knowing the codimension of an orbit the codimension of the corresponding bundle
is one less for each distinct eigenvalue: cod(B(∗)) = cod(O(∗))− (number of distinct
eigenvalues). For example, if we are interested in a matrix pair (A,B) with k unspeci-
fied eigenvalues and the rest with known specified values, the codimension of B(A,B)
is cod(O(A,B))− k.

5. Stratification of orbits and bundles. In this section, we present the strat-
ification of orbits and bundles of matrix pairs (A,B) and (A,C). The most and least
generic cases are considered in Section 5.1, and in Section 5.2 the coin rules repre-
senting the closure and cover relations are derived.

A stratification is a closure hierarchy of orbits (or bundles). Following [23, 18],
we represent the stratification by a connected graph where the nodes correspond to
orbits (or bundles) of canonical structures and the edges to their covering relations,
see Figures 1.1 and 6.2. The graph is organized from top to bottom with nodes in
increasing order of codimension.

Given a node representing an orbit (or bundle) of a canonical structure, the
closure of that orbit (or bundle) includes the orbit (or bundle) itself and all orbits
(or bundles) represented by the nodes which can be reached by a downward path. A
downward path is defined as a path for which all edges start in a node and end in
another node below in the graph. An upward path is a path in the opposite direction.
In the following, when it is clear from context we use the shorter term structure when
we refer to a canonical structure.

Given a matrix pair and its corresponding node in the graph, it is always possible
to make the pair more generic by a small perturbation, i.e., change the pair to one
corresponding to a node along an upward path from the node. It is normally not
possible to make a corresponding downward move by a small perturbation, i.e., a
structure is not, in general, near any of the more degenerate structures below in the
graph. However, the cases when a structure below in the hierarchy actually is nearby
is often of particular interest, as it shows that a more degenerate structure can be
found by a small perturbation.

5.1. Most and least generic cases. Almost all matrix pairs of the same size
and type (controllability or observability pairs) have the same canonical structure.
This canonical structure corresponds to the most generic case and has the lowest
codimension in the closure hierarchy. The opposite case is the least generic case, or
equivalently, the most degenerate case with the highest codimension. In the closure
hierarchy graph, the most generic case is represented by the topmost node and the
most degenerate case by the bottom node. The canonical structures in between cor-
respond to degenerate (or non-generic) cases, which from a computational point of
view can be a real challenge [14, 15].

The most generic structure of the controllability pair (A,B) has R = (r0, . . . ,
rα, rα+1) where r0 = · · · = rα = m, rα+1 = n mod m, and α = bn/mc [29, 53].
For the observability pair (A,C) the most generic structure has L = (l0, . . . , lα, lα+1)
where l0 = · · · = lα = p, lα+1 = n mod p, and α = bn/pc. The most degenerate
controllability pair has m L0 blocks and n Jordan blocks of size 1×1 corresponding to
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an eigenvalue of multiplicity n. Similarly, the most degenerate observability pair has p
LT0 blocks and n 1×1 Jordan blocks. In other words, the most generic cases correspond
to completely controllable and observable systems, while the most degenerate cases
correspond to systems with n uncontrollable and n unobservable multiple modes,
respectively.

We remark that the above formulae to compute the most generic structure only
hold if there are no restrictions on the matrix pair. Otherwise, for example when the
matrix pair has a special structure or fixed rank, the restrictions must be considered
when determining the most and least generic cases. There can even exist several most
generic structures, but only one with codimension 0 (if it exists). This has recently
been studied for general matrix pencils in, e.g., [9, 10, 37].

5.2. Closure and cover relations. To determine the closure hierarchy for n×
(n + m) controllability pairs we stratify the (n2 + nm)-dimensional system pencil
space into feedback equivalent orbits (or bundles). Similarly, the closure hierarchy
for (n + p) × n observability pairs is determined by the stratification of feedback
equivalent orbits (or bundles) in the (n2 + np)-dimensional system pencil space. The
stratification of orbits or bundles is given from the closure relations and further the
cover relations between these manifolds. We say that we have a stratified manifold if
it is the union of non-intersecting manifolds whose closure is the finite union of itself
with orbits of smaller dimensions (thereby defining stratified manifolds recursively,
see Arnold [1] and [17, 18]). An orbit covers another orbit if its closure includes the
closure of the other orbit and there is no orbit in between in the closure hierarchy,
i.e., they are nearest neighbours in the hierarchy. The closure and cover relations for
bundles are defined analogously.

Before we give the closure and cover relations for matrix pairs, we review some
results for matrices and general matrix pencils.

From the closure condition for nilpotent matrices derived in [1, 18] and the def-
inition of covering partitions, the cover relations for orbits of nilpotent matrices
are obtained [18]. The orbit of a matrix is the manifold of all similar matrices:
O(A) = {PAP−1 : det(A) 6= 0}. If the matrix A has well clustered eigenvalues but is
not nilpotent, we order the Jordan blocks such that A = diag(A1, . . . , Aq), where Ai
contains all Jordan blocks associated with the eigenvalue µi. Then for each matrix Ai,
we consider Ãi = Ai − µiI which is nilpotent, and the closure and cover relations for
nilpotent matrices are applicable. It follows that the number of eigenvalues and the
total size of all blocks associated with the same eigenvalue, are the same for all orbits
in the closure hierarchy. This is in contrast to the bundle case where eigenvalues can
coalesce or split apart.

Theorem 5.1. [1, 18] O(A1) covers O(A2) if and only if some J µi
(A2) can be

obtained from J µi
(A1) by a minimum leftward coin move, and J µj

(A2) = J µj
(A1)

for all µj 6= µi.
In the case of not well-clustered eigenvalues, we have to consider the bundle case as

defined by Arnold [1]. Even if testing for closure relations between nilpotent matrices
is trivial, deciding if one bundle is in the closure of another bundle is an NP-complete
problem [18, 32]. The solution to the closure decision problem for matrix bundles is
given in [16, 18, 45], and the cover relations expressed in terms of coin moves in [18].

The necessary conditions for an orbit or a bundle of two matrix pencils to be
closest neighbours in a closure hierarchy were derived in [3, 8, 50], where the orbit is
the manifold of strictly equivalent matrix pencils: O(G − λH) = {U(G − λH)V −1 :
det(U) ·det(V ) 6= 0}. These conditions were later complemented with the correspond-
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ing sufficient conditions in [18]. Notice that in the following theorem, for the structure
integer partition J µi

the eigenvalue µi belongs to the extended complex plane C, i.e.,
µi ∈ C∪ {∞}. Furthermore, the restrictions on r0 and l0 in rules 1 and 2 correspond
to that the number of Lk and LTk blocks cannot change.

Theorem 5.2. [18] Given the structure integer partitions L, R and J µi
of

G − λH, where µi ∈ C, one of the following if-and-only-if rules finds G̃ − λH̃ such
that O(G − λH) covers O(G̃ − λH̃):

(1) Minimum rightward coin move in R (or L).
(2) If the rightmost column in R (or L) is one single coin, move that coin to a

new rightmost column of some J µi
(which may be empty initially).

(3) Minimum leftward coin move in any J µi
.

(4) Let k denote the total number of coins in all of the longest (= lowest) rows
from all of the J µi . Remove these k coins, add one more coin to the set, and
distribute k+ 1 coins to rp, p = 0, . . . , t and lq, q = 0, . . . , k− t− 1 such that
at least all nonzero columns of R and L are given coins.

Rules 1 and 2 are not allowed to make coin moves that affect r0 (or l0).
Necessary and sufficient conditions for closure relations between orbits of matrix

pairs (A,B) have been studied in [31], and later in [35, 36]. These are a subset of those
for general matrix pencils. Here we give our reformulation and slight modification of
the theorem originally presented in [36, Theorem 4.6] for orbits and the corresponding
theorem for bundles, where O denotes the orbit closure and B is the bundle closure.

Theorem 5.3. [36, 42] O(A,B) ⊇ O(Ã, B̃) if and only if the following condi-
tions hold:

(1) R(A,B) ≥ R(Ã, B̃).
(2) J µi

(A,B) ≤ J µi
(Ã, B̃), for all µi ∈ C, i = 1, . . . , q.

Theorem 5.4. If B(A,B) has at least as many distinct eigenvalues as B(Ã, B̃),
then B(A,B) ⊇ B(Ã, B̃) if and only if the following conditions hold:

(1) R(A,B) ≥ R(Ã, B̃).
(2) It is possible to coalesce eigenvalues and apply the dominance ordering coin

moves to J µi
(A,B), for any µi, to reach (Ã, B̃).

Proof. The theorem follows directly from Theorem 5.3 and the closure condition
for matrix bundles presented in [18].

The conditions for closure relations between two observability matrix pairs (A,C)
are, from the duality with (A,B), equal to those for (A,B) except that R is replaced
by L.

In [35], also the necessary conditions for cover relations of matrix pencils with no
row minimal indices have been derived. A matrix pencil G − λH with no row minimal
indices differs from a controllability pair (A,B) in that it can have infinite elementary
divisors, which is not the case for standard matrix pairs. The cover relations [35,
Proposition 5.2] are summarized in Proposition 5.5 with some minor reformulations,
where the invariants of G − λH and G̃ − λH̃ are

ε = (ε1, . . . , εr0), hµi = (h(i)
1 , . . . , h(i)

gi
), s = (s1, . . . , sg∞), and

ε̃ = (ε̃1, . . . , ε̃r̃0), h̃µj
= (h̃(j)

1 , . . . , h̃
(j)
g̃j

), s̃ = (s̃1, . . . , s̃g̃∞),

respectively. Remark, the integer partitions associated with the same invariants of
G − λH and G̃ − λH̃, e.g. ε and ε̃, can be of different length.
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Proposition 5.5. [35] Let G − λH and G̃ − λH̃ be two n × (n + m) matrix
pencils with no row minimal indices. If O(G − λH) covers O(G̃ − λH̃) then one of
the following conditions holds:

(1) conj(ε) > conj(ε̃) are adjacent, hµi
= h̃µi

for all eigenvalues µi, and s = s̃.
(2)

∑m
i=1 εi >

∑m
i=1 ε̃i, conj(ε) > conj(ε̃) are adjacent, h̃(i)

1 = h
(i)
1 + 1 for some

eigenvalue µi (where µi can be a new eigenvalue), and s = s̃.
(3)

∑m
i=1 εi >

∑m
i=1 ε̃i, conj(ε) > conj(ε̃) are adjacent, hµi = h̃µi for all eigenval-

ues µi, and s̃1 = s1 + 1 (where s and s̃ can be empty partitions).
(4) ε = ε̃, hµi

> h̃µi
for all eigenvalues µi, and s = s̃.

(5) ε = ε̃, hµi
= h̃µi

for all eigenvalues µi, and s > s̃.
From Theorem 5.3, Proposition 5.5, and the cover conditions for matrix pencils

in Theorem 5.2, it is possible to derive both necessary and sufficient conditions for a
covering relation between two controllability pairs (A,B). The result is given in The-
orem 5.6, where r0(A,B) denotes the number of column minimal indices for (A,B).
The proof is organized as follows. We modify Proposition 5.5 so that it fulfills the
restrictions given by the structure of the controllability pair and then, where required,
strengthen each condition so that they become not only necessary but also sufficient.

Theorem 5.6. O(A,B) covers O(Ã, B̃) if and only if one of the following con-
ditions holds:

(1) R(A,B) covers R(Ã, B̃) where r0(A,B) = r0(Ã, B̃), and J µi
(A,B) =

J µi(Ã, B̃) for all eigenvalues µi.
(2) If rε1 = 1 and ε1 ≥ 1 for R(A,B), then R(Ã, B̃) = R(A,B) \ (rε1),
J µi

(Ã, B̃) = J µi
(A,B) ∪ (1) for some eigenvalue µi (where J µi

(A,B) can
be an empty partition), and J µj (A,B) = J µj (Ã, B̃) for all µj 6= µi.

(3) R(A,B) = R(Ã, B̃), J µi(A,B) covers J µi(Ã, B̃) for one eigenvalue µi, and
J µj

(A,B) = J µj
(Ã, B̃) for all µj 6= µi.

Proof. Let 5.5(n) denote condition n of Proposition 5.5, and similarly, 5.6(m)
denotes condition m of Theorem 5.6.

A matrix pencil G − λH with no row minimal indices can have infinite elemen-
tary divisors which a controllability pair (A,B) cannot have. This restriction is intro-
duced by only considering finite elementary divisors, which obviously exclude 5.5(3)
and 5.5(5) (where G − λH and/or G̃ − λH̃ have infinite elementary divisors). The
remaining three conditions are now considered, and we begin each proof by rewriting
the conditions in the structure integer notation: R, L, and J .

First we consider 5.5(1) which can be rewritten as:
R(A,B) > R(Ã, B̃) are adjacent and J µi

(A,B) = J µi
(Ã, B̃).

Since the two matrix pairs have the same Jordan structure, the size of the singular
parts of (A,B) and (Ã, B̃) must be equal, i.e.,

∑
R(A,B) =

∑
R(Ã, B̃). Conse-

quently, R(A,B) > R(Ã, B̃) are adjacent is strengthened to R(A,B) covers R(Ã, B̃).
This is also remarked in [35, proof of Theorem 5.1]. A consequence of the change of
representation from column minimal indices to R, is that we in 5.6(1) have to intro-
duce the restriction that r0 may not be affected. Otherwise the number of column
minimal indices may change. The new condition is given in 5.6(1).

Now consider 5.5(2) which can be rewritten as:∑
R(A,B) >

∑
R(Ã, B̃), R(A,B) > R(Ã, B̃) are adjacent, and

J µi(Ã, B̃) = J µi(A,B) ∪ (1) for some µi (where µi can be a new
eigenvalue).
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If
∑
R(A,B) >

∑
R(Ã, B̃) then R(A,B) > R(Ã, B̃) are adjacent if and only if

R(Ã, B̃) can be derived from R(A,B) in the following way. If rε1 = 1 and ε1 ≥ 1
for R(A,B), then R(Ã, B̃) = R(A,B) \ (rε1) [11]. Furthermore, the regular part is
expanded by increasing the largest block for some eigenvalue by one, or by creating
a 1 × 1 block for a new eigenvalue. It follows that condition 5.5(2) corresponds to
rule (2) for orbits of matrix pencils, which already fulfills both the necessary and
sufficient conditions, and we have 5.6(2).

Finally, 5.5(4) can be rewritten as:
R(A,B) = R(Ã, B̃) and J µi

(A,B) < J µi
(Ã, B̃) for all µi.

This condition considers the case when the two matrix pairs have equal singular
parts, as opposed to 5.5(1) where the regular parts are the same. The conditions
R(A,B) = R(Ã, B̃) and J µi

(A,B) < J µi
(Ã, B̃) do not guarantee that (A,B) covers

(Ã, B̃). To guarantee that (A,B) covers (Ã, B̃) the corresponding integer partitions
J µi(A,B) and J µi(Ã, B̃) must also cover each other, which corresponds to the matrix
case (Theorem 5.1). The new condition is given in 5.6(3).

Theorem 5.7. B(A,B) covers B(Ã, B̃) if and only if one of the following condi-
tions holds:

(1) R(A,B) covers R(Ã, B̃) where r0(A,B) = r0(Ã, B̃), and J µi(A,B) =
J µi

(Ã, B̃) for all eigenvalues µi.
(2) If rε1 = 1 and ε1 ≥ 1 for R(A,B), then R(Ã, B̃) = R(A,B) \ (rε1),
J µi(Ã, B̃) = (1) for a new eigenvalue µi, and J µj (A,B) = J µj (Ã, B̃) for
all µj 6= µi.

(3) R(A,B) = R(Ã, B̃), J µi
(A,B) covers J µi

(Ã, B̃) for one eigenvalue µi, and
J µj

(A,B) = J µj
(Ã, B̃) for all µj 6= µi.

(4) R(A,B) = R(Ã, B̃), J µi
(Ã, B̃) = J µi

(A,B) ∪ J µj
(A,B) for one pair of

eigenvalues µi and µj, µi 6= µj, and J µk
(A,B) = J µk

(Ã, B̃) for all µk 6=
µi, µj.

Proof. The proof of the bundle case follows directly from Theorem 5.6 and the
covering rules for bundles of matrix pencils given in [18].

Notably, Theorem 5.7 has four rules in contrary to Theorem 5.6 which has three
rules. The additional rule (4) follows from that eigenvalues can coalesce in the bundle
case.

From the dual relation between the controllability pair (A,B) and the observ-
ability pair (A,C), it follows that replacing partition R by L in Theorems 5.6 and
5.7 give the cover conditions for the observability pair (A,C). We remark that the
theorems are only valid for independent matrix pairs (A,B) and (A,C), respectively.
They cannot be applied straightforwardly to the related matrix triple (A,B,C) or
matrix quadruple (A,B,C,D). The covering relations for orbits and bundles of the
controllability and observability pairs in terms of coin rules are given in Corollar-
ies 5.8 and 5.9. The reformulations are done using the definition of integer partitions
in Section 2.2.

Corollary 5.8. Given the structure integer partitions R and J µi of (A,B), one
of the if-and-only-if rules of A–D in Table 5.1 finds (Ã, B̃) fulfilling orbit or bundle
covering relations with (A,B).

Corollary 5.9. Given the structure integer partitions L and J µi
of (A,C), one

of the if-and-only-if rules of E–H in Table 5.1 finds (Ã, C̃) fulfilling orbit or bundle
covering relations with (A,C).
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Table 5.1
Given the structure integer partitions R, L, and J µi

of a matrix pair, one of the following

if-and-only-if rules finds (Ã, B̃) or (Ã, C̃) fulfilling orbit or bundle covering relations with (A,B) or
(A,C), respectively.

A. O(A,B) covers O(Ã, B̃):
(1) Minimum rightward coin move in R.
(2) If the rightmost column in R is one

single coin, move that coin to a new
rightmost column of some J µi

(which
may be empty initially).

(3) Minimum leftward coin move in any
J µi

.
Rules 1 and 2 are not allowed to do coin moves
that affect r0.

E. O(A,C) covers O(Ã, C̃):
(1) Minimum rightward coin move in L.
(2) If the rightmost column in L is one

single coin, move that coin to a new
rightmost column of some J µi

(which
may be empty initially).

(3) Minimum leftward coin move in any
J µi

.
Rules 1 and 2 are not allowed to do coin moves
that affect l0.

B. B(A,B) covers B(Ã, B̃)
(1) Same as rule A(1).
(2) Same as rule A(2), except it is only al-

lowed to start a new set corresponding
to a new eigenvalue (i.e., no appending
to nonempty sets).

(3) Same as rule A(3).
(4) Let any pair of eigenvalues coalesce,

i.e., take the union of their sets of
coins.

F. B(A,C) covers B(Ã, C̃):
(1) Same as rule E(1).
(2) Same as rule E(2), except it is only al-

lowed to start a new set corresponding
to a new eigenvalue (i.e., no appending
to nonempty sets).

(3) Same as rule E(3).
(4) Let any pair of eigenvalues coalesce,

i.e., take the union of their sets of
coins.

C. O(A,B) is covered by O(Ã, B̃)
(1) Minimum leftward coin move in R,

without affecting r0.
(2) If the rightmost column in some J µi

consists of one coin only, move that
coin to a new rightmost column in R.

(3) Minimum rightward coin move in any
J µi

.

G. O(A,C) is covered by O(Ã, C̃):
(1) Minimum leftward coin move in L,

without affecting l0.
(2) If the rightmost column in some J µi

consists of one coin only, move that
coin to a new rightmost column in L.

(3) Minimum rightward coin move in any
J µi

.

D. B(A,B) is covered by B(Ã, B̃)
(1) Same as rule C(1).
(2) Same as rule C(2), except that J µi

must consist of one coin only.
(3) Same as rule C(3).
(4) For any J µi

, divide the set of coins
into two new sets so that their union
is J µi

.

H. B(A,C) is covered by B(Ã, C̃):
(1) Same as rule G(1).
(2) Same as rule G(2), except that J µi

must consist of one coin only.
(3) Same as rule G(3).
(4) For any J µi

, divide the set of coins
into two new sets so that their union
is J µi

.

The major difference between the rules for matrix pencils and matrix pairs, is
that rule (4) in Theorem 5.2 does not apply to matrix pairs, since there is only one
type of singular blocks (Li or LTj ) in each matrix pair type. Moreover, rules (1) and
(2) of A–D in Table 5.1 only apply to the structure integer partition R and rules (1)
and (2) of E–H in Table 5.1 only apply to L.

6. Illustrating the stratification. To illustrate the concept of stratification we
consider two examples from systems and control applications. We use the software tool
StratiGraph [38, 41] for computing and visualizing the closure hierarchy graphs for
the different matrix pairs in the examples. The numerical results regarding Kronecker
structure information and upper/lower bounds are computed using the prototype of
the Matrix Canonical Structure (MCS) Toolbox for Matlab [39, 22].
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Fig. 6.1. Mechanical system consisting of a uniform platform controlled by a vertical force [44].

6.1. Mechanical system. The first example is a mechanical system studied by
Mailybaev [44], see Figure 6.1. It consists of a thin uniform platform supported at
both ends by springs, where the platform has mass m and length 2l, and the springs
have elasticity coefficients k1, k2 and viscous damping coefficients d1, d2. The position
of the platform is determined by the vertical coordinate z of its center and the angle
φ between the platform and the horizontal axis.

At distance ∆l, −1 ≤ ∆ ≤ 1, from the center of the platform a force F is applied,
which is the control parameter of the system. The equilibrium of the system when
F = 0 is assumed to be z = 0 and φ = 0. For a zero force F and a nonzero z
and/or φ, the system oscillates with a decaying amplitude until it reaches equilibrium
asymptotically. If the system is controllable, there exists a control action such that
the system can be put into equilibrium in finite time. Otherwise, if it is uncontrollable
or close to an uncontrollable system this task becomes difficult or even impossible.

By linearizing the equations of motion of the system near the equilibrium the
system can be expressed by the state-space model ẋ = Ax(τ) + Bu(τ), where the
derivative is taken with respect to time τ = t/ω and ω is a time scale coefficient. The
resulting state-space model is

ωż/l

ωφ̇
ω2z̈/l

ω2φ̈

 =


0 0 1 0
0 0 0 1
−c1 −c2 −f1 −f2
−3c2 −3c1 −3f2 −3f1



z/l
φ

ωż/l

ωφ̇

+


0
0
1
−3∆

 ω2

ml
F, (6.1)

where

c1 =
(k1 + k2)ω2

m
, c2 =

(k1 − k2)ω2

m
, f1 =

(d1 + d2)ω
m

, and f2 =
(d1 − d2)ω

m
.

Let us consider a controllability pair of (6.1), denoted (A0, B0), with the param-
eters d1 = 4, d2 = 4, k1 = 6, k2 = 6, m = 3, l = 1, ω = 0.01, and ∆ = 0. The KCF of
(A0, B0) is L2 ⊕ J1(α)⊕ J1(β) with the corresponding Brunovsky canonical form

[
AB BB

]
− λ

[
I4 0

]
=


0 1 0 0 0
0 0 0 0 1
0 0 α 0 0
0 0 0 β 0

− λ


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

 ,
where α = −0.02 and β = −0.06. From the BCF of (A0, B0) we can directly see that
the system is uncontrollable with the uncontrollable modes α and β; rank

([
AB BB

]
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−λ
[
I4 0

])
= 3 for λ ∈ {α, β}. The two uncontrollable modes correspond to that

the angle φ and its velocity φ̇ cannot be controlled by the force F .
In [44], Mailybaev developed a quantitative perturbation method for local analysis

of the uncontrollability set for a linear dynamical system depending on parameters.
A uncontrollability set is defined as the set of values of a parameter vector p for which
(A,B) depending on p is uncontrollable. In [44], an uncontrollable set for (A0, B0)
is computed by letting the parameters c1 and f1 be fixed and varying the parameter
vector p = (c2, f2,∆) in the range of −c1 < c2 < c1 and −f1 < f2 < f1. It is also
shown how the modes of (A0, B0) are changing over this set.

With the stratification theory, the quantitative results presented in [22, 44] and
additional results like distance to uncontrollability [34, 46] are complemented with new
qualitative information. In the following, we step-by-step illustrate the procedure to
obtain the bundle stratification of the controllability pencil SC(λ) of size 4× 5, which
(A0, B0) is part of. Note that we can only change the values of the parameters c1, c2,
f1, f2, and ∆ in the state-space model (6.1); The first two rows of the matrix A and the
first three of B are fixed. As we will see, due to the special structure of A and B not
all bundles or parts of these exist for (A,B), which would exist for a controllability
pair with unrestricted matrices A and B. We only show in details how to get the
subgraph representing the stratification of possible structures. The complete bundle
stratification of (A,B) is displayed in Figure 6.2, where the nodes corresponding to
the bundles of possible structures are highlighted by the grey area. Let c :k denote
node

c
k in Figure 6.2, where c is the codimension of the corresponding bundle and k

is an order number that identifies individual nodes with the same codimension.
The first step is to compute the codimension of (A0, B0) using (4.3):

cod(O(A0, B0)) = 0 + (1 + 1) + 1(1 + 1) = 4. To get the codimension of the bundle
the number of distinct eigenvalues are subtracted: cod(B(A0, B0)) = 4 − 2 = 2. In
Figure 6.2, B(A0, B0) corresponds to node 2:1. To find covered or covering bundle(s)
we use the set of rules B and D, respectively, in Table 5.1. To apply these rules we
express the KCF of (A0, B0) in terms of its structure integer partitions: R = (1, 1, 1),
J α = (1), and J β = (1). We are now ready to determine which bundle(s) that cover
B(A0, B0).

Rule D(1) is not applicable because it would affect r0 (the first column of R).
Rule D(2) can be applied to either J α or J β , we choose the former:

R: , J α: , J β : ⇒ R: , J β : ,
which gives the structure L3 ⊕ J1(β). The rules D(3) and D(4) are not applicable
because J α and J β only have one coin each. So the only bundle covering B(A0, B0) is
the bundle with KCF L3⊕J1(β), which has codimension 1 and is represented by node
1:1 in Figure 6.2. Furthermore, this system is uncontrollable with one uncontrollable
mode β = −0.06, which also can be seen from its BCF:

[
AB BB

]
− λ

[
I4 0

]
=


0 1 0 0 0
0 0 1 0 0
0 0 0 0 1
0 0 0 −0.06 0

− λ


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

 .
For the system (6.1), we can at least find two cases which belong to this bundle. The
first one1 occurs when the elasticity coefficients k1 and k2 are zero. This case is not of

1The parameters in A are: c1 = c2 = 0 and one of f1 and f2 is non-zero while the other one is
equal to zero (∆ is arbitrary).
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Fig. 6.2. The graph shows the complete bundle stratification of a 4 × 5 controllability pencil
SC (λ), where the grey area marks the possible structures for the mechanical system (6.1). The upper
number in each node is the codimension of the corresponding bundle. The lower number is an order
number that identifies individual nodes with the same codimension. The table to the right of the
graph displays the corresponding KCF structures associated with the nodes in the graph.

practical interest, since it corresponds to a system with no springs. The second case
occurs when element A(4, 2) = 1.2e−3 becomes zero and element A(4, 3) is perturbed
with ε ≥ 1e−12. The KCF of this system is L3 ⊕ J1(0).

We continue by repeating the procedure for L3 ⊕ J1(β). As for the previous
structure, the only rule applicable is D(2). So, we take the single coin in J β and
move that to a new right-most column of R:

17



R: , J β : ⇒ R: ,
which gives the KCF L4 with BCF:

[
AB BB

]
− λ

[
I4 0

]
=


0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

− λ


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

 .
This is the most generic case represented by the topmost node 0:1 in Figure 6.2 and
has codimension 0. As we can see from its BCF, it is controllable;
rank

([
AB BB

]
− λ

[
I4 0

])
= 4 for all λ ∈ C. In other words, there exists a control

parameter F such that any state of z and φ can be reached in finite time.
After having reached the most generic case and the top of the closure-hierarchy

graph, we continue by determining the bundle(s) covered by B(A0, B0) using the set
of rules B in Table 5.1. But first, we remark that the mechanical system represented
by the state-space system (6.1) must have an L block of at least size 2, i.e., it has
at most two uncontrollable modes. This can be seen by studying the system with all
parameters set to zero:

ωż/l

ωφ̇
ω2z̈/l

ω2φ̈

 =


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0



z/l
φ

ωż/l

ωφ̇

+


0
0
1
0

 ω2

ml
F,

which has the KCF L2 ⊕ J2(0). The bundle of this canonical structure has codimen-
sion 3 and is represented by node 3:1 in Figure 6.2. Indeed, it is the most degenerate
structure possible for the state-space system (6.1). As we can see from the graph in
Figure 6.2, B(L2 ⊕ J2(0)) is covered by B(A0, B0). This closure relation is obtained
by applying rule B(4) to (A0, B0):

R: , J α:
⋃
J β : ⇒ R: , J α: .

We can also reach this bundle by changing the value of m in (A0, B0). Let (Ã0, B̃0)
have the same parameters as (A0, B0) but with m unfixed. With m = 4, (Ã0, B̃0)
has KCF L2⊕ J2(−0.2) and by a small perturbation on m we again reach the bundle
of (A0, B0), B(L2 ⊕ J1(µ1) ⊕ J1(µ2)). Actually, for m < 4 (Ã0, B̃0) has KCF L2 ⊕
J1(µ1)⊕ J1(µ2) with two real eigenvalues, and for m > 4 the system has instead one
complex conjugate pair of eigenvalues.

The only other rule that can be applied to (A0, B0) is rule B(2), producing the
structure L1⊕J1(µ1)⊕J1(µ2)⊕J1(µ3). However, this structure has three uncontrol-
lable modes which is not possible for the mechanical system considered. So, the closure
hierarchy for the state-space system (6.1) corresponds to the highlighted subgraph of
the complete bundle stratification of 4× 5 controllability pencil in Figure 6.2.

Notice, there also exits a structure L2⊕2J1(µ) (node 5:1) in the closure hierarchy
which has an L block of size at least two, and therefore also should be possible.
However, since the codimension of B(L2 ⊕ 2J1(µ)) is less than the most degenerate
case L2 ⊕ J2(0), this case cannot appear for this example.

6.2. Boeing 747. As the second example, we study the orbit closure hierarchy
of a linearized nominal longitudinal model of a Boeing 747 considered in [51]. In our
model we have joined nine inputs into five, which results in a model with 5 states, 6
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outputs, and 5 inputs:

x =


δq

δVTAS
δα
δθ
δhe




pitch rate (rad/s)
true airspeed (m/s)
angle of attack (rad)

pitch angle (rad)
altitude (m)

 , y =


δα

δV̇TAS
δθ
δq
δVz
δhe




angle of attack (rad)
acceleration (m/s2)

pitch angle (rad)
pitch rate (rad/s)

vertical velocity (m/s)
altitude (m)

 ,

u =


δei
δeo
δih

δEPR1,4

δEPR2,3




total inner elevator (rad)
total outer elevator (rad)
stabilizer trim angle (rad)

total thrust engine #1 and #4 (rad)
total thrust engine #2 and #3 (rad)

 ,

and the state-space matrices:

A =


−0.4861 0.000317 −0.5588 0 −2.04 · 10−6

0 −0.0199 3.0796 −9.8048 8.98 · 10−5

1.0053 −0.0021 −0.5211 0 9.30 · 10−6

1 0 0 0 0
0 0 −92.6 92.6 0

 ,

B =


−0.291 −0.2988 −1.286 0.0026 0.007

0 0 −0.3122 0.3998 0.3998
−0.0142 −0.0148 −0.0676 −0.0008 −0.0008

0 0 0 0 0
0 0 0 0 0

 ,

C =


0 0 1 0 0
0 −0.0199 3.0796 −9.8048 8.98 · 10−5

0 0 0 1 0
1 0 0 0 0
0 0 −92.6 92.6 0
0 0 0 0 1

 , D =


0 0 0 0 0
0 0 −0.3122 0.3988 0.3988
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 .

These state-space matrices correspond to a Boeing 747 under straight-and-level
flight at altitude 600 m with speed 92.6 m/s, flap setting at 20◦, and landing gears
up. The aircraft has mass = 317,000 kg and the center of gravity coordinates are
Xcg = 25%, Ycg = 0, and Zcg = 0.

The corresponding controllability pencil of the state-space system is of size 5×10
and the observability pencil of size 11 × 5. First, let us consider the controllability
pencil. Using StratiGraph the complete stratification of the orbit to a 5×10 controlla-
bility pencil can be computed, which has 62 nodes and 108 edges. In our case, we are
only interested to know the closest uncontrollable systems which can be reached by a
perturbation of the system matrices. Instead of generating the complete stratification
we derive only the controllable and the nearest uncontrollable systems, starting with
the controllability pencil given by the state-space matrices A and B above.

As in the previous example, we begin by determining the KCF of the controlla-
bility pair (A,B) which is 2L2 ⊕ L1 ⊕ 2L0 with codimension 4. From the KCF (and
BCF) we can see that the system is controllable with only three of the five input
signals.2

2The other two inputs (corresponding to the L0 blocks) can be removed without loss of control-
lability. However, for safety reasons it is customary to have redundancy in the actuation system and
the corresponding control surface in critical systems.
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Using the set of rules A and C in Table 5.1, the closure hierarchy around (A,B)
can be determined. The resulting stratification graph is shown in Figure 6.3, where
node 4:1 corresponds to the orbit which (A,B) belongs to. We now take the structural
restrictions of A and B into consideration. By keeping all zeros and ones constant
and choosing all free elements in A and B nonzero, it follows that the most generic
orbit must have at least 2L0 blocks; The number of L0 blocks is m − rank(A) =
5− 3 = 2. This exclude O(5L1) and O(L2 ⊕ 3L1 ⊕ L0) from possible orbits and the
most generic orbit is indeed the one (A,B) belongs to. The most degenerate orbit has
KCF 5L1 ⊕ J2(µ1) ⊕ 3J1(µ2), which is obtained by considering the system with all
parameters set to zero. This orbit is however more degenerate than those of interest.

Using the stratification graph together with bounds on the distance to uncontrol-
lability we can validate the robustness of the system. For a controllable pair (A,B),
the distance to uncontrollability [48] is defined as

τ(A,B) = min
{
‖
[
∆A ∆B

]
‖ : (A+ ∆A,B + ∆B) is uncontrollable

}
,

where ‖ · ‖ denotes the 2-norm or Frobenius norm. Equivalently,

τ(A,B) = inf
λ∈C

σmin

([
A− λI B

])
,

where σmin(X) denotes the smallest singular value of X ∈ Cn×(n+m) [19]. Using the
Matlab implementation [47] of the methods presented in [34, 46], the distance to
uncontrollability can be computed where τ(A,B) is bounded within an interval (l, u]
with any desired accuracy tol ≥ u − l. For the above system the computed distance
to uncontrollability is within (3.0323e−2, 3.0332e−2], where tol = 10−5.

Furthermore, using the technique presented in [22], the upper and lower bounds to
all less generic controllability pairs shown in Figure 6.3 can be computed, see Table 6.1.
The upper bounds are based on staircase regularizing perturbations, and the lower
bounds are of Eckart-Young type and are derived from the matrix representations
T(A,B) (4.1) and T(A,C) (4.2) of tan(A,B) and tan(A,C), respectively. For the upper
bounds, the implemented algorithm uses a naive approach to find a nearby matrix pair
and the computed upper bounds are sometimes too conservative. However, we can
observe that the above computed distance to uncontrollability is within the bounds
of the uncontrollable systems with codimensions 8, 12, and 13.

Briefly, we also consider the 11× 5 observability pencil SO(λ) given by the above
state-space matrices. This matrix pair has the KCF 5LT1 ⊕ LT0 with codimension 0,
i.e., it is completely observable. Considering the structural restrictions of (A,C), the
most degenerate orbit possible has the KCF 4LT1 ⊕ 2LT0 ⊕ J1(µ) with codimension 7.
This can be seen by studying the matrix C with all parameters set to zero; At most
two LT0 blocks can exist, p− rank(C) = 5− 3 = 2. Using the set of rules E (and G)
in Table 5.1, the closure hierarchy shown in Figure 6.4 is derived.

7. Conclusions. We have derived the closure and cover conditions for orbits
and bundles of matrix pairs, where the cover conditions are new results. In line with
previous work on matrices and matrix pencils [17, 18], we have derived the stratifi-
cation rules for matrix pairs, both for controllability pairs (A,B) and observability
pairs (A,C), in terms of coin moves.

The results are illustrated with two examples taken from real applications in
systems and control. We show how the rules are used and how they provide qualita-
tive information of a system, which together with distance information are useful for
validating an LTI state-space system.
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Fig. 6.3. Subgraph of the complete orbit stratification of a controllability pencil of size 5 ×
10, where the grey area marks the possible structures for the Boeing 747 model. The node with
codimension 4 represents the orbit to a system corresponding to a Boeing 747 under flight. The four
nodes in the left-most branch of the graph represent the orbits of uncontrollable systems with one
uncontrollable mode.

Table 6.1
Lower and upper bounds from the controllability pair (A,B) of a Boeing 747 under flight with

KCF 2L2 ⊕ L1 ⊕ 2L0 to the less generic orbits shown in Figure 6.3.

Imposed structure
from 2L2 ⊕ L1 ⊕ 2L0 cod Lower bound Upper bound
L3 ⊕ 2L1 ⊕ 2L0 6 1.29e−4 4.02e−2
L2 ⊕ 2L1 ⊕ 2L0 ⊕ J1(µ) 8 4.33e−4 1.0
L3 ⊕ L2 ⊕ 3L0 9 5.97e−4 1.59e−3
L4 ⊕ L1 ⊕ 3L0 11 8.47e−4 1.59e−3
2L2 ⊕ 3L0 ⊕ J1(µ) 12 1.09e−3 2.48e−1
L3 ⊕ L1 ⊕ 3L0 ⊕ J1(µ) 13 1.33e−3 1.79e−1
L5 ⊕ 4L0 16 1.78e−2 5.56e−1
L4 ⊕ 4L0 ⊕ J1(µ) 18 7.57e−2 5.56e−1
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